

Page : 1 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

RADIO TEST REPORT

Product: MiiS Horus Smart Wound Carer

Model Name : MPD 100

FCC ID : 2AFB3M-MPD100

Test Regulation: FCC 47 CFR Part 15 Subpart E (Section 15.407)

Received Date : Oct. 8, 2020

Test Date : Oct. 16, 2020 ~ Nov. 25, 2020

Issued Date : Dec. 1, 2020

Applicant : Medimaging Integrated Solution Inc.

3F, No. 24-2, Industry E. Rd. IV, Hsinchu Science Park,

Hsinchu, Taiwan 30077

Issued By : Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing

Rd., Zhudong Township, Hsinchu County, Taiwan

3398

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report are responsible of the test sample(s) provided by the client only and are not to be used to indicate applicability to other similar products.

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 2 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

REVISION HISTORY

Original Test Report No.: 4789673793-US-R1-V0

Rev.	Test report No.	Date	Page revised	Contents
Original	4789673793-US-R1-V0	Nov. 20, 2020	-	Initial issue
-	4789673793-US-R1-V0	Dec. 1, 2020	P.1, P.4, P.11, P.9 P.12 P.14~P.15 P.24~P.27, P.35~P.40, P.71~P.78 P.65, P.68, P.78, P.95 P.48, P.67, P.79, P.89	 Update test date. Modify note2. Modify section 6.5. Update cal. data. Modify test data and plots. Remove co-location data. Modify the heading.

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Page : 3 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

Table Of Contents

1. A	ttestation of Test Results	4
2. St	ummary of Test Results	5
3. T	est Methodology and Reference Procedures	6
4. F	acilities and Accreditation	6
5. M	leasurement Uncertainty	7
6. E	quipment under Test	8
6.1.	Description of EUT	8
6.2.	Channel List	
6.3.	Test Condition	11
6.4.	Description Of Available Antennas	
6.5.	Test Mode Applicability and Tested Channel Detail	12
6.6.	Duty cycle	13
7. T	est Equipment	14
8. D	escription of Test Setup	16
9. T	est Results	17
9.1.	6dB Bandwidth	17
9.2.	26dB Bandwidth	20
9.3.	Occupied Bandwidth	23
9.4.	Conducted output power	28
9.5.	Power Spectral Density	33
9.6.	Frequency Stability	
9.7.	Radiated Spurious Emission	
9.8.	AC Power Line Conducted Emission	69
Appen	dix I Radiated Band Edge and OOBE Measurement	79
Annen	dix II Radiated Spurious Emission Measurement	89

Page : 4 of 95 Issued date : Dec. 1, 2020 FCC ID : 2AFB3M-MPD100

1. Attestation of Test Results

APPLICANT: Medimaging Integrated Solution Inc.

3F, No. 24-2, Industry E. Rd. IV, Hsinchu Science Park,

Hsinchu, Taiwan 30077

MANUFACTURER Medimaging Integrated Solution Inc.

3F, No. 24-2, Industry E. Rd. IV, Hsinchu Science Park,

Hsinchu, Taiwan 30077

EUT DESCRIPTION: MiiS Horus Smart Wound Carer

BRAND:

MODEL: MPD 100

SAMPLE STAGE: Design Verification Test sample

DATE of TESTED: Oct. 16, 2020 ~ Nov. 25, 2020

APPLICABLE STANDARDS

STANDARD Test Results

FCC 47 CFR PART 15 Subpart E (Section 15.407) PASS

Underwriters Laboratories Taiwan Co., Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by Underwriters Laboratories Taiwan Co., Ltd. based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Underwriters Laboratories Taiwan Co., Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Underwriters Laboratories Taiwan Co., Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Prepared By: Approved and Authorized By:

Cindy Hsin Date: Dec. 1, 2020 Mike Cai Date: Dec. 1, 2020

Project Handler Engineer Project Associate

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Doc No: 17-EM-F0878 / 5.0

Mike

Page : 5 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

2. Summary of Test Results

Summary of Test Results				
FCC Clause	FCC Clause Test Items			
15.407(e)	6dB Bandwidth	PASS		
15.403(i)	26dB Bandwidth	PASS		
2.1049	Occupied Bandwidth	See Note2		
15.407(a)(1/2/3)	Conducted Output Power	PASS		
15.407(a)(1/2/3)	Power Spectral Density	PASS		
15.407(g)	Frequency Stability	PASS		
15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions and Band Edge Measurement	PASS		
15.407(b)(6)	AC Power Conducted Emission	PASS		
15.203	15.203 Antenna Requirement			

Note:

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

^{1.} For the Radiated Band Edge and OOBE test plots were recorded in Appendix I, the Radiated Emissions test plots were recorded in Appendix II.

^{2.} The Occupied Bandwidth was reference only.

Page : 6 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

3. Test Methodology and Reference Procedures

The tests documented in this report were performed in accordance with 47 CFR FCC Part 2, KDB 789033 D02 General UNII Test Procedure New Rules v02r01, KDB414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013 and KDB 662911 D01 Multiple Transmitter Output v02r01.

4. Facilities and Accreditation

Test Location	Underwriters Laboratories Taiwan Co., Ltd.		
Address	Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan		
Accreditation Certificate	Underwriters Laboratories Taiwan Co., Ltd. is accredited by TAF, Laboratory Code 3398. The full scope of accreditation can be viewed at http://accreditation.taftw.org.tw/taf/public/basic/viewApplyItems.action?unitNo=3398		

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Doc No: 17-EM-F0878 / 5.0

Page : 7 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

5. Measurement Uncertainty

For statement of conformity, accuracy method (Section 8.2.4 and 8.2.5 of ISO Guide 98-4) was applied as decision rule for measurement in this test report.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Test Item	Measurement Frequency Range	K	U(dB)
Conducted disturbance at mains terminals ports	0.15MHz ~ 30MHz	2	1.5
RF Conducted	9 kHz - 40GHz	2	1.0
Radiated disturbance below 30MHz	9 kHz - 30 MHz	2	1.9
Radiated disturbance below 1 GHz	30MHz ~ 1GHz	2	5.4
Radiated disturbance above 1GHz	1GHz ~ 40GHz	2	4.7

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Page : 8 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

6. Equipment under Test

6.1. Description of EUT

Product	MiiS Horus Smart Wound Carer		
Brand Name	horus BCOPE		
Model Name	MPD 100		
Operating Frequency	5180 ~ 5240 MHz 5745 ~ 5825 MHz		
Modulation	256QAM, 64QAM,	16QAM, QPSK, BPSK	
Transfer Rate	802.11a: up to 54 Mbps 802.11n: up to MCS15 802.11ac: up to MCS9		
	5180 ~ 5240 MHz	4 for 802.11a, 802.11n (HT20), 802.11ac (VHT20) 2 for 802.11n (HT40), 802.11 ac (VHT40) 1 for 802.11ac (VHT80)	
Number of Channel	5 for 802.11a, 802.11n (HT20), 802.11ac (VHT20) 5745 ~ 5825 MHz 2 for 802.11n (HT40), 802.11 ac (VHT40) 1 for 802.11ac (VHT80)		
Maximum Output Power	5180 ~ 5240 MHz: 11.65 dBm 5745 ~ 5825 MHz: 10.99 dBm		
Normal Voltage	5Vdc from adapter		
S/N	(21)300720380001		
Software Version	V1		

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 9 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

Note:

1. The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and two receivers.

Modulation Mode	Tx,Rx Function
802.11a	1TX,2RX
802.11n (HT20)	2TX,2RX
802.11n (HT40)	2TX,2RX
802.11ac (VHT20)	2TX,2RX
802.11ac (VHT40)	2TX,2RX
802.11ac (VHT80)	2TX,2RX

^{*} The modulation and bandwidth are similar for 802.11n mode for HT20 / HT40 and 802.11ac mode for VHT20 / VHT40, therefore investigated worst case to representative mode in test report.

2. The EUT contains following accessory devices.

	is rome wing accessor	,	
Product	Brand	Model	Description
AC Adapter	EDAC	EM1005AVRU	Input: 100-240Vac, 0.6-0.3A 50-60Hz Output: DC 5V, 1.2A
Battery	WINMATE	E430	DC 3.7V, 3900mAh
USB cable	Shinintech Electronic Co., Ltd.	16-450-E044	USB Type C 3.1 to USB 3.0 Type A Length: 1 m

3. The above EUT information is declared by manufacturer and for more detailed features description, please refer the manufacturer's or user's manual.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 10 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

6.2. Channel List

FOR 5180 ~ 5240MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency
42	5210MHz

FOR 5745 ~ 5825MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
149	5745MHz	161	5805MHz
153	5765MHz	165	5825MHz
157	5785MHz	-	-

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
151	5755MHz	159	5795MHz

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency
155	5775MHz

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 11 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

6.3. Test Condition

Test Item	Test Site No.	Environmental Condition	Input Power	Test Date	Tested by
Antenna Port Conducted Measurement	SR4	22~26°C / 63~68%RH	120Vac / 60 Hz	Oct. 25, 2020 ~ Nov. 25, 2020	Patrick Kuan
Radiated Spurious Emission	966-2	23~25°C / 64~68%RH	120Vac / 60 Hz	Oct. 16, 2020 ~ Nov. 10, 2020	Patrick Kuan
AC power Line Conducted Emission	SR1	22~26°C / 63~68%RH	120Vac / 60 Hz	Oct. 16, 2020 ~ Nov. 25, 2020	Patrick Kuan

FCC Test Firm Registration Number: 498077

6.4. Description Of Available Antennas

Ant. No.	Brand Name	Model Name	Ant. Type	Ant. Gain (dBi)
1	Winmate Inc	90RF0500001J	PIFA	3.39
2	Winmate Inc	90RF06000017	PIFA	1.78

Note: The above antenna information was provided from customer and for more detailed features description, please refer the manufacturer's specification or user's manual.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Page : 12 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

6.5. Test Mode Applicability and Tested Channel Detail

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports.
- 11a with antenna diversity function, the worst-case was be chosen via radiated emission pre-scan.
- For below 1 GHz radiated emission and AC power line conducted emission have performed all modes of operation were investigated and the worst-case emissions are reported.
- For Antenna Port Conducted Measurement, this item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- The fundamental of the EUT was investigated in three orthogonal axes X/Y/Z, it was determined that X axis was worst-case. Therefore, all final radiated testing was performed with the EUT in X axis.
- For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel), parallel and perpendicular are the worst orientations, therefore testing was performed on these two orientations only.
- For AC power line conducted emissions, the pre-scan has been determined by AC power 120Vac/60Hz

Test item	Mode	Frequency Band (MHz)	Modulation Technology	Available Channel	Test Channel	Data Rate
	802.11a		OFDM	36 to 48	36, 44, 48	6.0
	802.11ac (VHT20)	5180-5240	OFDM	36 to 48	36, 44, 48	MCS0
	802.11ac (VHT40)	3180-3240	OFDM	38 to 46	38, 46	MCS0
Radiated Emissions	802.11ac (VHT80)		OFDM	42	42	MCS0
(Above 1GHz)	802.11a		OFDM	149 to 165	149, 157, 165	6.0
,	802.11ac (VHT20)	5745 5925	OFDM	149 to 165	149, 157, 165	MCS0
	802.11ac (VHT40)	5745-5825	OFDM	151 to 159	151, 159	MCS0
	802.11ac (VHT80)		OFDM	155	155	MCS0
Radiated Emissions (Below 1GHz)	802.11ac (VHT20)	5180-5240	OFDM	36 to 48	36	6.0
AC Power Line Conducted Emission	802.11ac (VHT20)	5180-5240	OFDM	36 to 48	36	6.0
	802.11a		OFDM	36 to 48	36, 44, 48	6.0
	802.11ac (VHT20)	5180-5240	OFDM	36 to 48	36, 44, 48	MCS0
	802.11ac (VHT40)	3180-3240	OFDM	38 to 46	38, 46	MCS0
Antenna Port Conducted	802.11ac (VHT80)		OFDM	42	42	MCS0
Measurement	802.11a		OFDM	149 to 165	149, 157, 165	6.0
	802.11ac (VHT20)	5745-5825	OFDM	149 to 165	149, 157, 165	MCS0
	802.11ac (VHT40)	3143-3623	OFDM	151 to 159	151, 159	MCS0
	802.11ac (VHT80)		OFDM	155	155	MCS0

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 13 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

6.6. Duty cycle

Duty cycle of test signal is < 98 %, duty factor is required.

802.11a: Duty cycle = 2.035/2.125 = 0.958, Duty factor = $10 * \log(1/0.958) = 0.19$

802.11n (HT20): Duty cycle = 1.899/2.002 = 0.949, Duty factor = 10 * log(1/0.949) = 0.23

802.11n (HT40): Duty cycle = 0.9333/1.029 = 0.907, Duty factor = 10 * log(1/0.907) = 0.42

802.11ac (VHT80): Duty cycle = 0.4543/0.5394 = 0.842, Duty factor = $10 * \log(1/0.842) = 0.75$

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Doc No: 17-EM-F0878 / 5.0

Page : 14 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

7. Test Equipment

Test Equipment List							
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval		
	R	adiated Spurious	Emission				
Spectrum Analyzer	Keysight	N9010A	MY56070827	Nov. 13, 2019 Nov. 11, 2020	1 year		
EMI Test Receiver	Rohde & Schwarz	ESR7	101754	Dec. 17, 2019	1 year		
Loop Antenna	ETS lindgren	6502	00213440	Dec. 19, 2019	1 year		
Trilog- Broadband Antenna with 5dB Attenuator	Schwarzbeck & EMCI	VULB 9168 & N-6-05	774 & AT- N0538	Jan. 3, 2020	1 year		
Horn Antenna (1-18 GHz)	Schwarzbeck	BBHA 9120 D	01690	Jan. 3, 2020	1 year		
Horn Antenna (18-40 GHz)	Schwarzbeck	BBHA 9170	781	Dec. 27, 2019	1 year		
Preamplifier (30-1000 MHz)	EMCI	EMC330E	980405	Jun. 9, 2020	1 year		
Preamplifier (1-18 GHz)	EMCI	EMC051835BE	980406	Feb. 4, 2020	1 year		
Preamplifier (18-40GHz)	EMCI	EMC184040SEE	980426	May 19, 2020	1 year		
Cables	Hanyitek	K1K50-UP0264- K1K50-2500	170214-4 & 170425-2	Jul. 2, 2020	1 year		
Cables	Hanyitek	K1K50-UP0264- K1K50-2500	170214-1 & 170214-2	Jan. 8, 2020	1 year		

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Page : 15 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

		Test Equipm	nent List					
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval			
Antenna Port Conducted Measurement								
Spectrum Analyzer	Keysight	N9010A	MAY56070818	Apr. 20, 2020	1 year			
Pulse Power Sensor	Anritsu	MA2411B	1531202	Dec. 23, 2019	1 year			
Power Meter	Anritsu	ML2495A	1645002	Dec. 23, 2019	1 year			
Temperature &Humidity Test Chamber	GIANT FORCE	GTH-150- 40-CP-AR	MAA1701-010	Mar. 23,2020	1 year			
	AC po	wer Line Con	ducted Emission					
EMI Test Receiver	Rohde & Schwarz	ESR7	101754	Dec. 17, 2019	1 year			
Two-Line V- Network	Rohde & Schwarz	ENV216	102136	Aug. 19, 2020	1 year			
Impuls-Begrenzer Pulse Limiter	Rohde & Schwarz	ESH3-Z2	102219-Qt	Aug. 12, 2020	1 year			
Cables	HARBOUR INDUSTRIES	LL142	170205-5000-1	Feb. 5, 2020	1 year			

UL Software						
Description Name Version						
Radiated measurement	EZ_EMC	1.1.4.2				
Conducted measurement	Keysight.TestSystem	1.0.0.0				
AC power Line Conducted Emission	EZ_EMC	1.1.4.2				

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

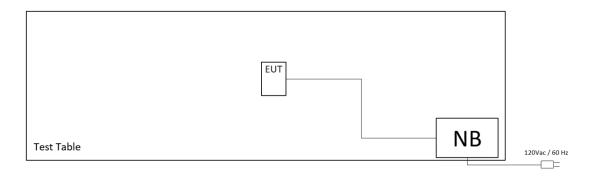
Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 16 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

8. Description of Test Setup


Support Equipment

Equipment	Brand Name	Model Name	S/N	Remark
Notebook	Acer	Aspire 4820T	04403277025	N/A

Test Setup

Controlled using a bespoke application (Qualcomm Radio Control Toolkit v4.0 Version 4.0.00172.0) on a test Notebook. The application was used to enable a continuous transmission mode and to select the test channels, data rates, modulation schemes and power setting as required.

Setup Diagram for Test

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 17 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

9. Test Results

9.1. 6dB Bandwidth


Requirements

The minimum 6 dB bandwidth shall be at least 500 kHz.

Test procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

Test Setup

The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 18 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

Test Data

802.11a

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
149	5745	16.08	0.5	Pass
157	5785	15.03	0.5	Pass
165	5825	16.29	0.5	Pass

802.11ac (VHT20)

Channel	Frequency (MHz)		ndwidth Hz)	Minimum Limit (MHz)	Pass / Fail	
	(14112)	Chain 0	Chain 1	(141112)		
149	5745	14.82	16.53	0.5	Pass	
157	5785	1752	15.09	0.5	Pass	
165	5825	15.72	15.12	0.5	Pass	

802.11ac (VHT40)

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)		Minimum Limit (MHz)	Pass / Fail	
	(141112)	Chain 0	Chain 1	(141112)		
151	5755	36.18	35.04	0.5	Pass	
159	5795	35.28	35.7	0.5	Pass	

802.11ac (VHT80)

Channel Frequency (MHz)		6 dB Bandwidth (MHz)		Minimum Limit (MHz)	Pass / Fail	
	(MIZ)		Chain 1	(141112)		
155	5775	75	73.92	0.5	Pass	

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 19 of 95

Issued date : Dec. 1, 2020

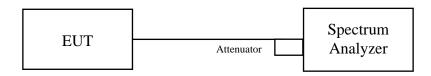
FCC ID : 2AFB3M-MPD100

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 20 of 95

Issued date : Dec. 1, 2020


FCC ID : 2AFB3M-MPD100

9.2. 26dB Bandwidth

Test procedure

- a. Set RBW = approximately 1% of the emission bandwidth.
- b. Set the VBW > RBW.
- c. Detector = Peak.
- d. Trace mode = max hold.
- e. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Test Setup

The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 21 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

Test Data

802.11a

CHANNEL	CHANNEL FREQUENCY (MHz)	26 dB Bandwidth (MHz)	PASS / FAIL
36	5180	24.91	PASS
44	5220	23.12	PASS
48	5240	23.81	PASS

802.11ac (VHT20)

CHANNEL	CHANNEL FREQUENCY	26 dB Bandy	PASS / FAIL	
CHANNEL	(MHz)	CHAIN 0	CHAIN 1	PASS / FAIL
36	5180	24.05	24.71	PASS
44	5220	23.9	24.92	PASS
48	5240	25.12	24.78	PASS

802.11ac (VHT40)

CHANNEL FREQUENCY		26 dB Band	PASS / FAIL	
CHANNEL	(MHz)	CHAIN 0	CHAIN 1	FASS / FAIL
38	5190	42.39	41.59	PASS
46	5230	41.27	41.83	PASS

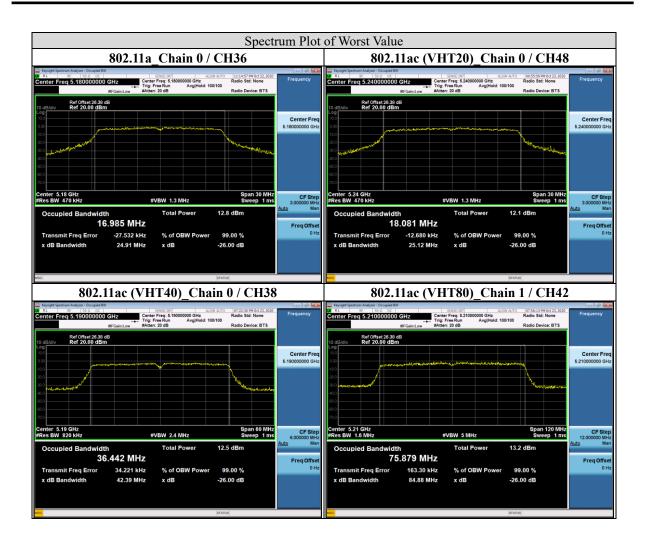
802.11ac (VHT80)

CHANNEL	CHANNEL	26 dB Bandy	26 dB Bandwidth (MHz)	
CHANNEL	FREQUENCY (MHz)	CHAIN 0	CHAIN 1	PASS / FAIL
42	5210	84.58	84.88	PASS

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948



Doc No: 17-EM-F0878 / 5.0

Page : 22 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Page : 23 of 95 Issued date : Dec. 1, 2020 FCC ID : 2AFB3M-MPD100

9.3. Occupied Bandwidth

Test procedure

- a. Set center frequency to the nominal EUT channel center frequency.
- b. Set span = 1.5 times to 5.0 times the OBW.
- c. Set RBW = 1% to 5% of the OBW
- d. Set $VBW \ge 3 \times RBW$
- e. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f. Use the 99% power bandwidth function of the instrument (if available).
- g. If the instrument does not have a 99% power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

Test Setup

The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 24 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

Test Data

802.11a

00201100		
Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)
36	5180	16.735
44	5220	16.696
48	5240	16.773
149	5745	16.69
157	5785	16.736
165	5825	16.725

802.11ac (VHT20)

502.11ac (111120)						
Channel	Channel Frequency	Occupied Bandwidth (MHz)				
	(MHz)	CHAIN 0	CHAIN 1			
36	5180	17.946	17.899			
44	5220	17.939	17.863			
48	5240	17.923	17.918			
149	5745	17.878	17.941			
157	5785	17.996	17.861			
165	5825	17.976	17.891			

802.11ac (VHT40)

Channel	Channel Frequency	Occupied Ban	dwidth (MHz)
Channel	(MHz)	CHAIN 0	CHAIN 1
38	5190	36.287	36.332
46	5230	36.337	36.373
151	5755	36.324	36.3
159	5795	36.31	36.303

802.11ac (VHT80)

Channel	Channel Frequency	Occupied Ban	dwidth (MHz)
Channel	(MHz)	CHAIN 0	CHAIN 1
42	5210	75.84	75.993
155	5775	76.043	75.906


Underwriters Laboratories Taiwan Co., Ltd.

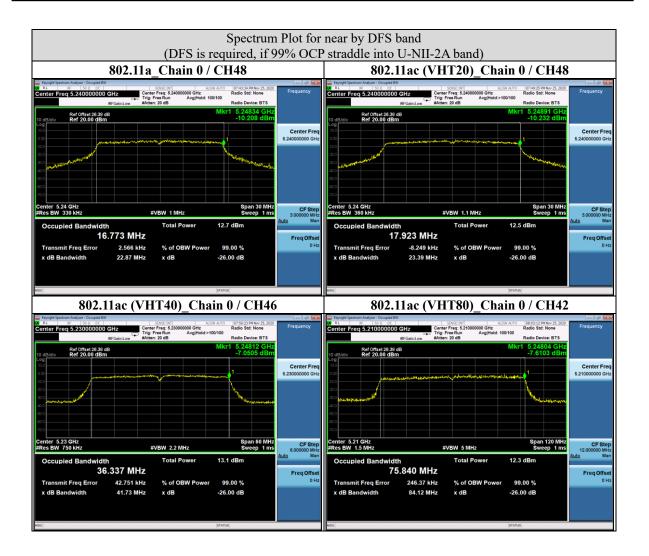
Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948 Doc No: 17-EM-F0878 / 5.0

Page : 25 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948



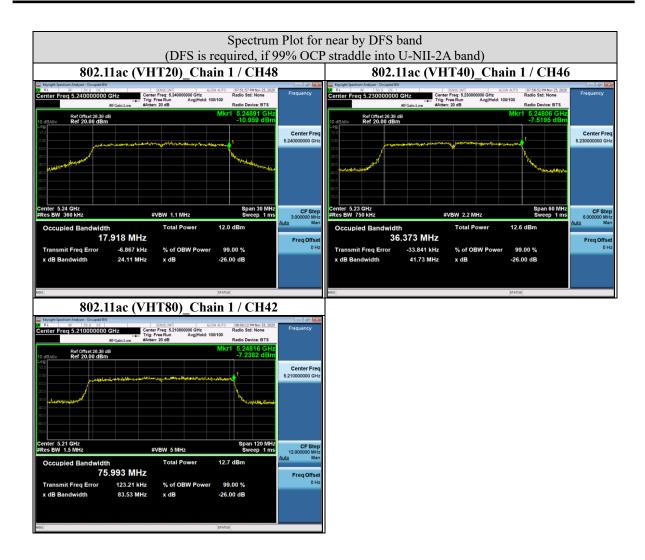
Doc No: 17-EM-F0878 / 5.0

Page : 26 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan



Doc No: 17-EM-F0878 / 5.0

Page : 27 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Page : 28 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

9.4. Conducted output power

Requirements

Operation Band		EUT Category	Limit
		Outdoor Access Point	1 Watt (30 dBm) Max. e.i.r.p \leq 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$
U-NII-1		Fixed point-to-point Access Point	1 Watt (30 dBm) If $G_{TX} > 23$ dBi, then $P_{Out} = 30 - (G_{TX} - 23)$
		Indoor Access Point	1 Watt (30 dBm) If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$
	V	Client device	250mW (24 dBm) If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$
U-NII-2A			250mW (24 dBm) or 11 dBm+10 log B* If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$
U-NII-2C			250mW (24 dBm) or 11 dBm+10 log B* If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$
U-NII-3			For Point-to-multipoint systems (P2M): 1 Watt (30 dBm). If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ For Point-to-point systems (P2P): 1 Watt (30 dBm)

Note:

- 1. $P_{Out} = maximum conducted output power in dBm,$
- 2. G_{TX} = the maximum transmitting antenna directional gain in dBi.
- 3. Directional Gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{Gn/20})^2 / \text{Nant}] \text{ dBi}.$

Nant: Number of Transmit Antennas

G1, G2,..., Gn: Gain of Individual Antennas

4. B is the 26 dB emission bandwidth in megahertz

Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT} ;

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less for 20-MHz channel widths with $N_{ANT} \ge 5$.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 29 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

Test Procedure

For Average Power Measurement

Test method PM-G

For 802.11a, 802.11ac (VHT20), 802.11ac (VHT40)

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst and set the detector to AVERAGE. Duty factor is not added to measured value.

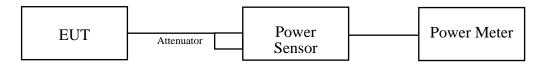
Test method SA-1

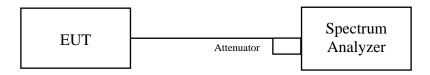
For 802.11ac (VHT80)

- a. Set span to encompass the entire 26 dB EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- b. Set sweep trigger*.
- c. Set RBW = 1 MHz.
- d. Set $VBW \ge 3 \text{ MHz}$
- e. Number of points in sweep ≥ 2 Span / RBW.
- f. Sweep time \leq (number of points in sweep) * T
- g. Using emission bandwidth to determine the frequency span for integration the channel bandwidth.
- h. Detector = RMS.
- i. Trace mode = max hold.
- j. Allow max hold to run for at least 60 seconds, or longer as needed to allow the trace to stabilize.
- * If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan


Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948


Page : 30 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

Test Setup

For Average Power Measurement

The loss between RF output port of the EUT and the input port of the Power Meter has been taken into consideration.

The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948 Doc No: 17-EM-F0878 / 5.0

Doc No: 17-EM-F0878 / 5.0

Page : 31 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

Test Data

802.11a

002.114					
CHANNEL	CHANNEL FREQUENCY (MHz)	MAXIMUM CONDUCTED POWER (mW)	MAXIMUM CONDUCTED POWER (dBm)	POWER LIMIT (dBm)	PASS/FAIL
36	5180	8.128	9.10	24	PASS
44	5220	8.204	9.14	24	PASS
48	5240	8.63	9.36	24	PASS
149	5745	8.67	9.38	30	PASS
157	5785	8.337	9.21	30	PASS
165	5825	7.413	8.70	30	PASS

802.11ac (VHT20)

CHAN.	FREQ. (MHz) MAXIMUM CONDUCTED POV (dBm)		ED POWER	TOTAL POWER	TOTAL POWER	POWER LIMIT	PASS / FAIL
	()	chain 0	chain 1	(mW) (dBm)		(dBm)	
36	5180	8.15	8.78	14.082	11.49	24	PASS
44	5220	8.42	8.82	14.571	11.63	24	PASS
48	5240	8.32	8.87	14.501	11.61	24	PASS
149	5745	7.34	8.29	12.165	10.85	30	PASS
157	5785	7.24	8.6	12.541	10.98	30	PASS
165	5825	7.15	8.53	12.317	10.91	30	PASS

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Doc No: 17-EM-F0878 / 5.0

Page : 32 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

802.11ac (VHT40)

CHAN.	FREQ. (MHz)	MAXIMUM CONDUCTED POWER (dBm)		TOTAL POWER	TOTAL POWER	POWER LIMIT	PASS / FAIL	
	(1/1111)	chain 0	chain 1	(mW)	(dBm)	(dBm)		
38	5190	7.97	8.69	13.662	11.36	24	PASS	
46	5230	8.46	8.81	14.618	11.65	24	PASS	
151	5755	7.22	8.45	12.27	10.89	30	PASS	
159	5795	7.07	8.73	12.557	10.99	30	PASS	

802.11ac (VHT80)

CHAN.	CHAN. FREQ. (MHz)	MAXIMUM CONDUCTED POWER (dBm)		TOTAL POWER	TOTAL POWER	POWER LIMIT	PASS / FAIL
		chain 0	chain 1	(mW)	(dBm)	(dBm)	
42	5210	8.04	8.45	13.366	11.26	24	PASS
155	5775	7.14	8.41	12.11	10.83	30	PASS

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Page : 33 of 95 Issued date : Dec. 1, 2020 FCC ID : 2AFB3M-MPD100

9.5. Power Spectral Density

Requirements

Operation Band		EUT Category	Limit
		Outdoor Access Point	17 dBm/MHz If $G_{TX} > 6 dBi$, then $PSD = 17 - (G_{TX} - 6)$
II NIII 1		Fixed point-to-point Access Point	17 dBm/MHz If $G_{TX} > 23 dBi$, then $PSD = 17 - (G_{TX} - 23)$
U-NII-1		Indoor Access Point	17 dBm/MHz If $G_{TX} > 6 dBi$, then $PSD = 17 - (G_{TX} - 6)$
	V	Client device	11 dBm/MHz If $G_{TX} > 6 dBi$, then $PSD = 11 - (G_{TX} - 6)$
U-NII-2A			11 dBm/MHz If $G_{TX} > 6 dBi$, then $PSD = 11 - (G_{TX} - 6)$
U-NII-2C			11 dBm/MHz If $G_{TX} > 6 dBi$, then $PSD = 11 - (G_{TX} - 6)$
U-NII-3			For Point-to-multipoint systems (P2M): $30dBm/500kHz$. If $G_{TX} > 6$ dBi, then PSD = $30 - (G_{TX} - 6)$ For Point-to-point systems (P2P): $30dBm/500kHz$

- 1. PSD = power spectral density that he same method as used to determine the conducted output power shall be used to determine the power spectral density. And power spectral density in dBm/MHz
- 2. G_{TX} = the maximum transmitting antenna directional gain in dBi. 3. Directional Gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{Gn/20})^2 / Nant]$ dBi.

Nant: Number of Transmit Antennas G1, G2,..., Gn: Gain of Individual Antennas

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 34 of 95

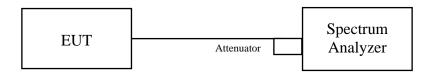
Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

Test procedure

For U-NII-1 band:

Using method SA-2_with Duty cycle <98 %


- a. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b. Set RBW = 1 MHz, Set VBW \geq 3 RBW, Detector = RMS
- c. Sweep time = auto, trigger set to "free run".
- d. Trace average at least 100 traces in power averaging mode.
- e. Record the max value and add 10 log (1/duty cycle)

For U-NII-3 band:

with Duty cycle <98 %

- a. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b. Set RBW = 300 kHz, Set VBW $\geq 1 \text{ MHz}$, Detector = RMS
- c. Use the peak marker function to determine the maximum power level in any 300 kHz band segment within the fundamental EBW.
- d. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log(500 kHz/300kHz)
- e. Sweep time = auto, trigger set to "free run".
- f. Trace average at least 100 traces in power averaging mode.
- g. Record the max value and add 10 log (1/duty cycle)

Test Setup

The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 35 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

Test Data

802.11a

CHANNEL	FREQUENCY (MHz)	PSD (dBm)	TOTAL PSD with duty factor (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
36	5180	-3.28	-3.09	10.6	PASS
44	5220	-3.43	-3.24	10.6	PASS
48	5240	-3.26	-3.07	10.6	PASS

Note: Refer to section 6.6 for duty cycle spectrum plot.

802.11ac (VHT20)

	FREQ.	PSD ((dBm)	TOTAL PSD	MAX.	PASS /
CHAN.	(MHz)	CHAIN 0	CHAIN 1	with duty factor (dBm)	LIMIT (dBm)	FAIL
36	5180	-4.41	-3.94	-0.93	10.6	PASS
44	5220	-4.72	-3.93	-1.07	10.6	PASS
48	5240	-4.41	-4.40	-1.17	10.6	PASS

Note:

- 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.
- 2. Directional gain = 6.4 dBi > 6 dBi, so the limit shall be reduced.
- 3. Refer to section 6.6 for duty cycle spectrum plot.

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 36 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

802.11ac (VHT40)

	FREQ.	PSD ((dBm)	TOTAL PSD	MAX.	PASS /	
CHAN.	(MHz)			with duty factor (dBm)	LIMIT (dBm)	FAIL	
38	5190	-8.00	-7.22	-4.16	10.6	PASS	
46	5230	-7.50	-7.18	-3.90	10.6	PASS	

Note:

- 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.
- 2. Directional gain = 6.4 dBi > 6 dBi, so the limit shall be reduced.
- 3. Refer to section 6.6 for duty cycle spectrum plot.

802.11ac (VHT80)

	FREQ.	PSD ((dBm)	TOTAL PSD	MAX.	PASS /
CHAN.	(MHz)	CHAIN 0	CHAIN 1	with duty factor (dBm)	LIMIT (dBm)	FAIL
42	5210	-11.19	-11.19 -11.16		10.6	PASS

Note:

- 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.
- 2. Directional gain = 6.4 dBi > 6 dBi, so the limit shall be reduced.
- 3. Refer to section 6.6 for duty cycle spectrum plot.

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 37 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 38 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

For U-NII-3 Band

802.11a

Channel	Frequency (MHz)	PSD w/o BWCF (dBm/300 kHz)	10 * Log (500kHz/ 300 kHz)	PSD with BWCF (dBm/500 kHz)	Total PSD with Duty Factor (dBm/500 kHz)	Limit (dBm/500 kHz)	Pass / Fail
149	5745	-9.008	2.22	-6.79	-6.6	29.6	Pass
157	5785	-8.212	2.22	-5.99	-5.8	29.6	Pass
165	5825	-8.914	2.22	-6.69	-6.5	29.6	Pass

Note:

- 1. Refer to section 6.6 for duty cycle spectrum plot.
- 2. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log(500 kHz/300kHz).
- 3. PSD with BWCF (dBm/500 kHz) = PSD with BWCF (dBm/300 kHz) + 10*Log (500/300)

802.11ac (VHT20)

TX Chain	Channel	Frequency (MHz)	PSD w/o BWCF (dBm/300 kHz)	10 * Log (500kHz/ 300 kHz)	PSD with BWCF (dBm/500 kHz)	10 log (N=2) dB	Total PSD with Duty Factor (dBm/500 kHz)	Limit (dBm/500 kHz)	Pass / Fail
	149	5745	-10.915	2.22	-8.70	3.01	-5.46	29.6	Pass
0	157	5785	-10.678	2.22	-8.46	3.01	-5.22	29.6	Pass
	165	5825	-11.73	2.22	-9.51	3.01	-6.27	29.6	Pass
	149	5745	-9.556	2.22	-7.34	3.01	-4.1	29.6	Pass
1	157	5785	-9.657	2.22	-7.44	3.01	-4.2	29.6	Pass
	165	5825	-9.807	2.22	-7.59	3.01	-4.35	29.6	Pass

Note:

- 1. Directional gain = 6.4 dBi > 6 dBi, so the limit shall be reduced.
- 2. Refer to section 6.6 for duty cycle spectrum plot.
- 3. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where $BWCF = 10\log(500 \text{ kHz/}300\text{kHz})$.
- 4. PSD with BWCF (dBm/500 kHz) = PSD with BWCF (dBm/300 kHz) + 10*Log (500/300)

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Doc No: 17-EM-F0878 / 5.0

Page : 39 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

802.11ac (VHT40)

TX Chair		Frequency (MHz)	PSD w/o BWCF (dBm/300 kHz)	10 * Log (500kHz/300 kHz)	PSD with BWCF (dBm/500 kHz)	10 log (N=2) dB	Total PSD with Duty Factor (dBm/500 kHz)	Limit (dBm/500 kHz)	Pass / Fail
0	151	5755	-13.669	2.22	-11.45	3.01	-8.02	29.6	Pass
0	159	5795	-13.89	2.22	-11.67	3.01	-8.24	29.6	Pass
1	151	5755	-12.411	2.22	-10.19	3.01	-6.76	29.6	Pass
	159	5795	-11.977	2.22	-9.76	3.01	-6.33	29.6	Pass

Note:

- 1. Directional gain = 6.4 dBi > 6 dBi, so the limit shall be reduced.
- 2. Refer to section 6.6 for duty cycle spectrum plot.
- 3. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where $BWCF = 10\log(500 \text{ kHz/}300\text{kHz})$.
- 4. PSD with BWCF (dBm/500 kHz) = PSD with BWCF (dBm/300 kHz) + 10*Log (500/300)

802.11ac (VHT80)

TX Chain	Channel	Frequency (MHz)	PSD w/o BWCF (dBm/300 kHz)	10 * Log (500kHz/300 kHz)	PSD with BWCF (dBm/500 kHz)	10 log		Limit (dBm/500 kHz)	Pass / Fail
0	155	5775	-17.053	2.22	-14.83	3.01	-11.07	29.6	Pass
1	155	5775	-15.728	2.22	-13.51	3.01	-9.75	29.6	Pass

Note:

- 1. Directional gain = 6.4 dBi > 6 dBi, so the limit shall be reduced.
- 2. Refer to section 6.6 for duty cycle spectrum plot.
- 3. Scale the observed power level to an equivalent value in 500 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log(500 kHz/300kHz).
- 4. PSD with BWCF (dBm/500 kHz) = PSD with BWCF (dBm/300 kHz) + 10*Log (500/300)

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Doc No: 17-EM-F0878 / 5.0

Page : 40 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

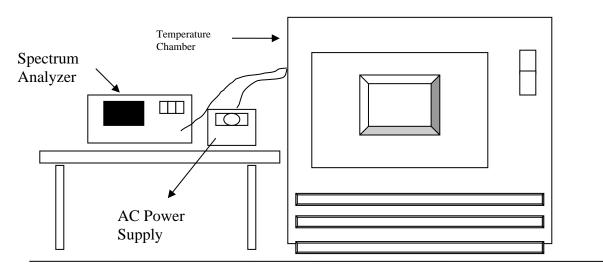
Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Page : 41 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

9.6. Frequency Stability


Requirements

The frequency of the carrier signal shall be maintained within band of operation.

Test procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turn the EUT on and couple its output to a spectrum analyzer.
- c. Turn the EUT off and set the chamber to the highest temperature specified.
- d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 Minutes.
- e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 Minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

Test Setup

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Doc No: 17-EM-F0878 / 5.0

Page : 42 of 95
Issued date : Dec. 1, 2020
FCC ID : 2AFB3M-MPD100

Test Data

	Frequency Stability Versus Temp.												
	Operating Frequency: 5180 MHz												
	Power	0 Mi	inute	2 Mi	inute	5 Mi	inute	10 M	inute				
TEMP. (°C)	Supply (Vac)	Measured Frequency (MHz)	Freq. Drift (ppm)										
35	120	5179.991	-1.74	5180.009	1.74	5179.995	-0.97	5180.002	0.39				
30	120	5179.979	-4.05	5179.999	-0.19	5179.994	-1.16	5180.025	4.83				
25	120	5179.993	-1.35	5180	0.00	5180.021	4.05	5180.005	0.97				
20	120	5180.02	3.86	5179.993	-1.35	5180.02	3.86	5180.019	3.67				
15	120	5180.02	3.86	5179.997	-0.58	5179.975	-4.83	5179.981	-3.67				
10	120	5179.995	-0.97	5179.983	-3.28	5179.981	-3.67	5179.976	-4.63				
	D	0 Mi	inute	2 Mi	inute	5 Mi	inute	10 M	inute				
TEMP. (°C)	Power Supply (Vac)	Measured Frequency (MHz)	Freq. Drift (ppm)										
20	102	5179.971	-5.52	5180.021	4.02	5180.019	3.61	5180.036	6.98				
20	138	5180.027	5.23	5180.05	9.73	5180.041	7.95	5180.05	9.67				

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Page : 43 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

9.7. Radiated Spurious Emission

Requirements

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequency(MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Page : 44 of 95

Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

Limits of unwanted emission out of the restricted bands

Applicable To		Limit	
789033 D02 General UNII Test Procedure New Rules v02r01		Field Strength at 3m	
		PK:74 (dBμV/m)	AV:54 (dBμV/m)
Frequency Band	Applicable To	EIRP Limit	Equivalent Field Strength at 3m
5150~5250 MHz	15.407(b)(1)		
5250~5350 MHz	15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)
5470~5725 MHz	15.407(b)(3)		
5725~5850 MHz	15.407(b)(4)(i)	PK:-27 (dBm/MHz) *1 PK:10 (dBm/MHz) *2 PK:15.6 (dBm/MHz) *3 PK:27 (dBm/MHz) *4	PK: 68.2(dBμV/m) *1 PK:105.2 (dBμV/m) *2 PK: 110.8(dBμV/m) *3 PK:122.2 (dBμV/m) *4

^{*1} beyond 75 MHz or more above of the band edge.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Page : 45 of 95 Issued date : Dec. 1, 2020 FCC ID : 2AFB3M-MPD100

Test Procedures

[For $9 \text{ kHz} \sim 30 \text{ MHz}$]

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. For measurement below 30MHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

[For above 30 MHz]

- a. The EUT was placed on the top of a rotating table 0.8 meters (for $30\text{MHz} \sim 1\text{GHz}) / 1.5$ meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948

Page : 46 of 95

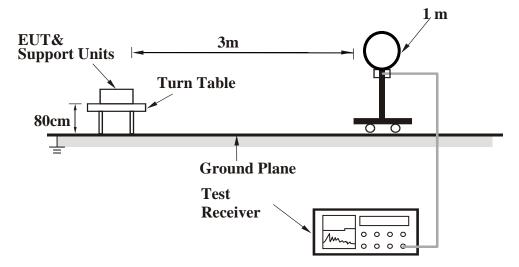
Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

Note:

a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.

- b. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.


Configuration	Average	
	RBW	VBW
802.11a	1MHz	1 kHz
802.11n (HT20)		1 kHz
802.11n (HT40)		2 kHz
802.11ac (VHT80)		3 kHz

Note: Refer to section 6.6 for duty cycle.

d. All modes of operation were investigated (includes all external accessories) and the worst-case emissions are reported.

Test Setup

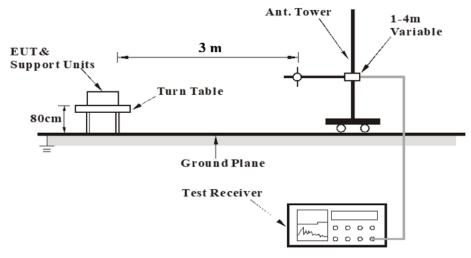
<Frequency Range 9 kHz ~ 30 MHz>

Underwriters Laboratories Taiwan Co., Ltd.

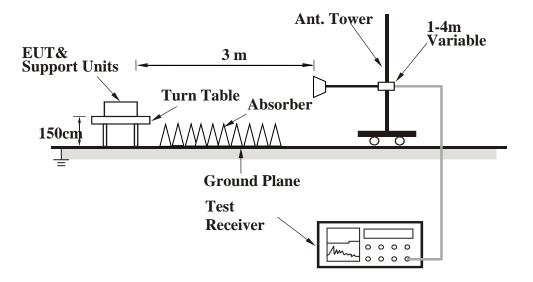
Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000

Facsimile (FAX) :+886-3-583-7948 Doc No: 17-EM-F0878 / 5.0



Page : 47 of 95


Issued date : Dec. 1, 2020

FCC ID : 2AFB3M-MPD100

<Frequency Range 30 MHz ~ 1 GHz >

<Frequency Range above 1 GHz>

For the actual test configuration, please refer to the Setup Configurations.

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948