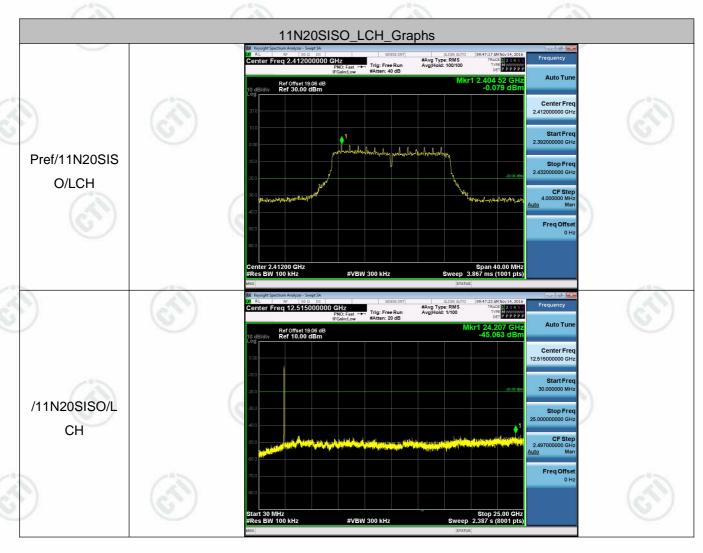
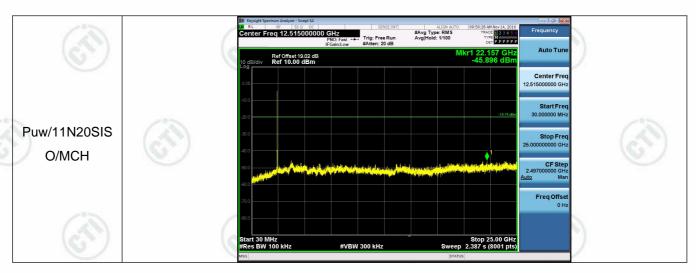


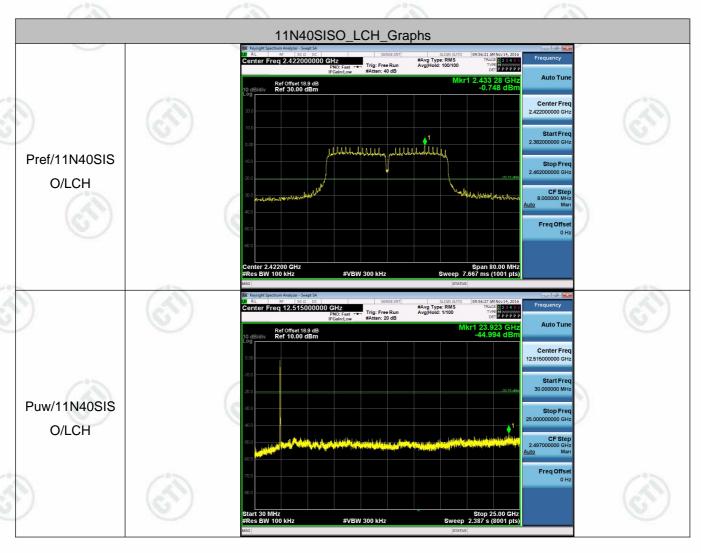
Report No. : EED32I00251303 Page 31 of 68

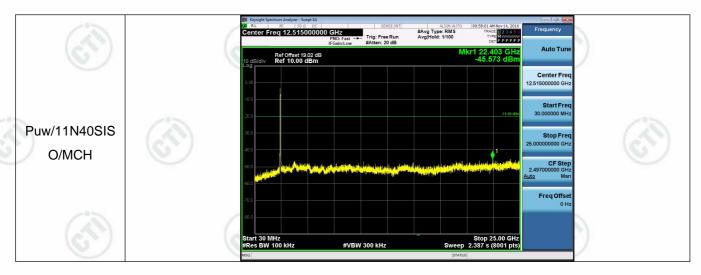
Report No. : EED32I00251303 Page 32 of 68

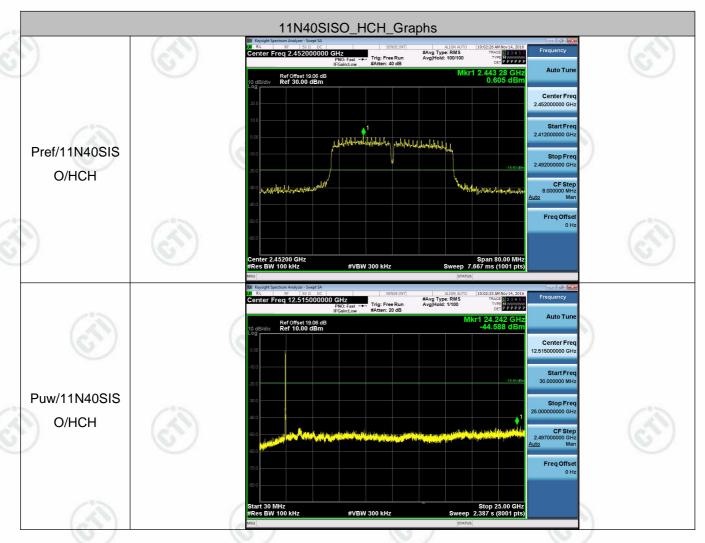


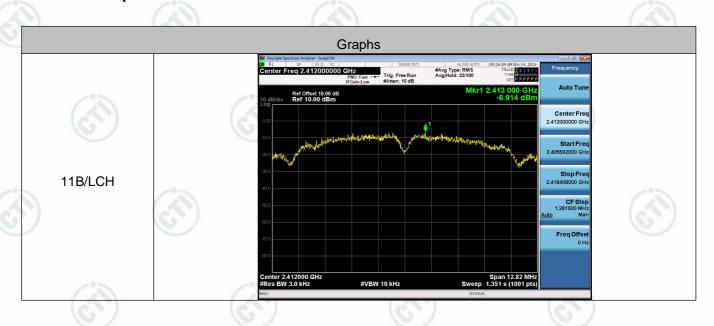

Report No. : EED32I00251303 Page 33 of 68

Report No. : EED32I00251303 Page 34 of 68




Report No. : EED32I00251303 Page 35 of 68



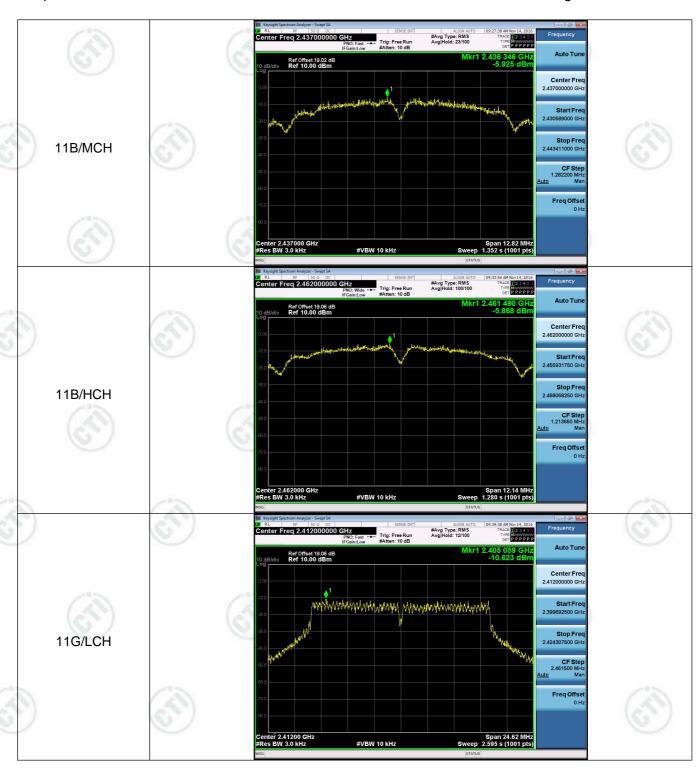


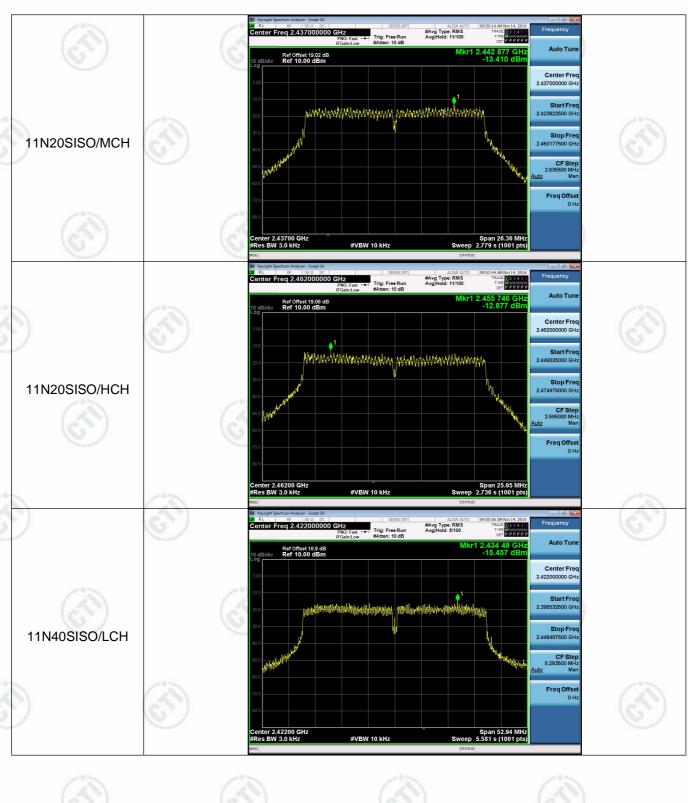
Appendix E): Power Spectral Density

Result Table

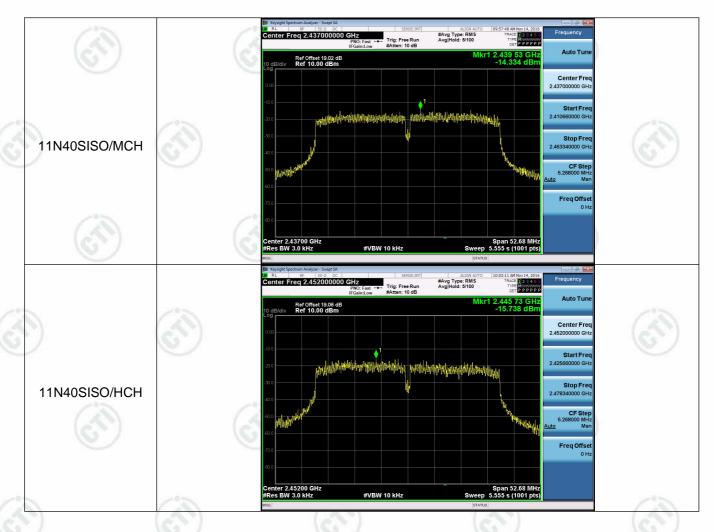
Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	LCH	-6.914	8	PASS
11B	MCH	-5.925	8	PASS
11B	HCH	-5.868	8	PASS
11G	LCH	-10.623	8	PASS
11G	MCH	-10.989	8	PASS
11G	HCH	-10.584	8	PASS
11N20SISO	LCH	-14.896	8	PASS
11N20SISO	MCH	-13.410	8	PASS
11N20SISO	HCH	-12.877	8	PASS
11N40SISO	LCH	-15.457	8	PASS
11N40SISO	MCH	-14.334	8	PASS
11N40SISO	HCH	-15.738	8	PASS

Test Graph





Report No. : EED32I00251303 Page 40 of 68



Report No. : EED32I00251303 Page 42 of 68

Appendix F): Antenna Requirement

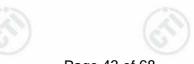
15.203 requirement:

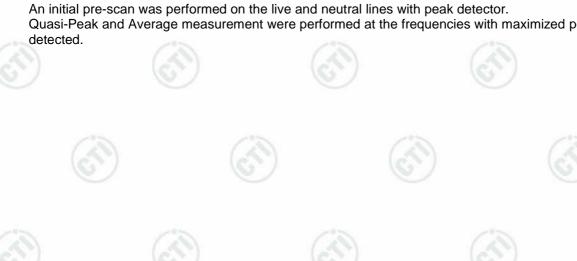
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

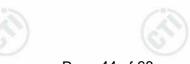

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 2dBi.



Report No.: EED32I00251303 Page 43 of 68

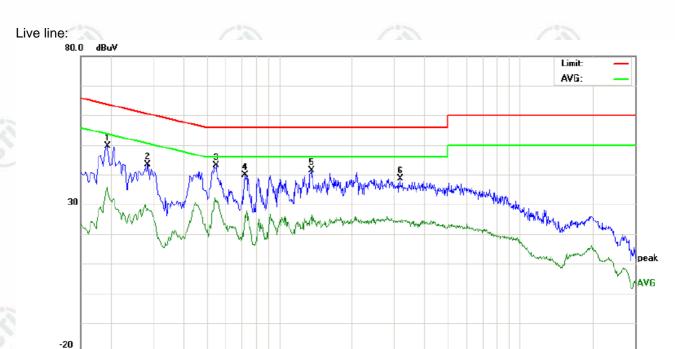
Appendix G): AC Power Line Conducted Emission

est Procedure:	Test frequency range :150Kl	Hz-30MHz					
	1)The mains terminal disturbance voltage test was conducted in a shielded room.						
	2) The EUT was connected Stabilization Network) wh						
	power cables of all other						
	which was bonded to the						
	for the unit being measu multiple power cables to a exceeded.	-	•				
	3)The tabletop EUT was pla reference plane. And for horizontal ground referen	floor-standing arrangem					
	4) The test was performed	·	eference plane. Th	ne rear of			
	EUT shall be 0.4 m from	_	-	-			
	reference plane was bon	_					
	1 was placed 0.8 m fron ground reference plane						
	nlane This distance was	between the closest no	oints of the LISN 1:	and the FI			
	1 .	between the closest po and associated equipm					
	plane. This distance was All other units of the EUT LISN 2.	•					
	All other units of the EUT LISN 2. 5) In order to find the maxim	and associated equipn um emission, the relativ	nent was at least 0 ve positions of equi	.8 m from pment and			
	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables	and associated equipn um emission, the relativ must be changed a	nent was at least 0 ve positions of equi	.8 m from pment and			
(cit)	All other units of the EUT LISN 2. 5) In order to find the maxim	and associated equipn um emission, the relativ must be changed a	nent was at least 0 ve positions of equi	.8 m from pment and			
mit:	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables conducted measurement.	and associated equipn um emission, the relativ must be changed a	nent was at least 0 ve positions of equipaccording to ANSI	.8 m from pment and			
mit:	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables	and associated equipn um emission, the relativ must be changed a	nent was at least 0 ve positions of equipaccording to ANSI	.8 m from pment and			
mit:	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables conducted measurement.	and associated equipn um emission, the relativ must be changed a	nent was at least 0 ve positions of equipoccording to ANSI	.8 m from pment and			
nit:	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables conducted measurement. Frequency range (MHz)	and associated equipn um emission, the relative must be changed a Limit (c	rent was at least 0 re positions of equipoccording to ANSI dBµV) Average	.8 m from pment and			
nit:	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5	and associated equipn um emission, the relative must be changed a Limit (conditional content of the content of	rent was at least 0 re positions of equiloccording to ANSI BBHV) Average 56 to 46*	.8 m from pment and			
mit:	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearl	Limit (c Quasi-peak 66 to 56* 56 60	nent was at least 0 ve positions of equipoccording to ANSI dBµV) Average 56 to 46* 46 50	pment and C63.10			
mit:	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearl MHz to 0.50 MHz.	Limit (continued to the continued co	nent was at least 0 ye positions of equipoccording to ANSI ABµV) Average 56 to 46* 46 50 the frequency in the	.8 m from pment and I C63.10			
mit:	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearl	Limit (continued to the continued co	nent was at least 0 ye positions of equipoccording to ANSI ABµV) Average 56 to 46* 46 50 the frequency in the	.8 m from pment and I C63.10			
easurement Data	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearl MHz to 0.50 MHz. NOTE: The lower limit is approximately approxim	Limit (continued to the continued co	nent was at least 0 re positions of equipoccording to ANSI BBµV) Average 56 to 46* 46 50 the frequency in the	.8 m from pment and I C63.10			
asurement Data initial pre-scan was	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearl MHz to 0.50 MHz. NOTE: The lower limit is appose performed on the live and neutral	Limit (continued and associated equipments) Limit (continued and and and and and and and and and an	nent was at least 0 ye positions of equipoccording to ANSI dBµV) Average 56 to 46* 46 50 the frequency in the frequency or.	pment and C63.10			
asurement Data initial pre-scan was asi-Peak and Avera	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearl MHz to 0.50 MHz. NOTE: The lower limit is approximately approxim	Limit (continued and associated equipments) Limit (continued and and and and and and and and and an	nent was at least 0 ye positions of equipoccording to ANSI dBµV) Average 56 to 46* 46 50 the frequency in the frequency or.	pment and C63.10			
easurement Data initial pre-scan was	All other units of the EUT LISN 2. 5) In order to find the maxim of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearl MHz to 0.50 MHz. NOTE: The lower limit is appose performed on the live and neutral	Limit (continued and associated equipments) Limit (continued and and and and and and and and and an	nent was at least 0 ye positions of equipoccording to ANSI dBµV) Average 56 to 46* 46 50 the frequency in the frequency or.	pment and C63.10			



0.150

0.5



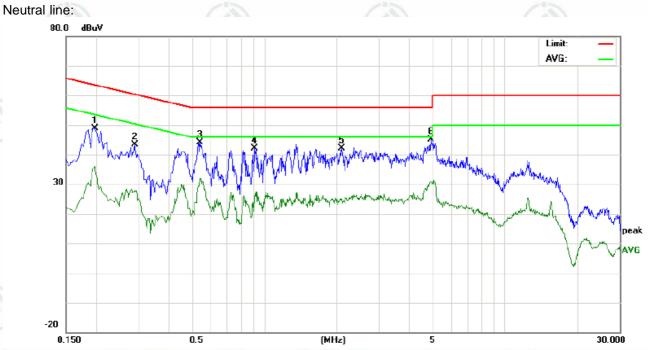
Report No.: EED32I00251303

Page 44 of 68

30.000

No.	Freq.		ling_Le dBuV)	evel	Correct Factor	M	easurer (dBuV)	3 (4)	Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1940	39.87		25.96	9.80	49.67		35.76	63.86	53.86	-14.19	-18.10	P	1
2	0.2860	33.64		18.80	9.80	43.44		28.60	60.64	50.64	-17.20	-22.04	P	
3	0.5500	33.17		21.17	9.90	43.07		31.07	56.00	46.00	-12.93	-14.93	Р	
4	0.7260	30.01		16.25	9.90	39.91		26.15	56.00	46.00	-16.09	-19.85	Р	
5	1.3619	31.47		16.52	9.81	41.28		26.33	56.00	46.00	-14.72	-19.67	P	
6	3.1860	28.73		14.12	10.00	38.73		24.12	56.00	46.00	-17.27	-21.88	P	

(MHz)



Page 45 of 68

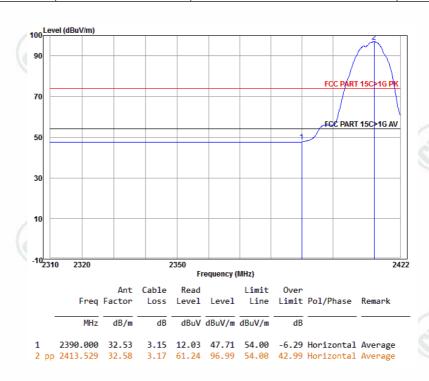
No.	Freq.		ling_Le dBuV)	evel	Correct Factor	M	easurer (dBuV)	COUNTY COURT	Lir (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1980	39.20		26.24	9.80	49.00		36.04	63.69	53.69	-14.69	-17.65	P	
2	0.2900	33.49		17.91	9.80	43.29		27.71	60.52	50.52	-17.23	-22.81	Р	
3	0.5420	34.20		22.07	9.90	44.10		31.97	56.00	46.00	-11.90	-14.03	Р	
4	0.9140	32.49		15.79	9.70	42.19		25.49	56.00	46.00	-13.81	-20.51	Р	
5	2.1060	32.16		15.17	10.00	42.16		25.17	56.00	46.00	-13.84	-20.83	Р	
6	4.9460	35.21		20.86	10.00	45.21		30.86	56.00	46.00	-10.79	-15.14	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

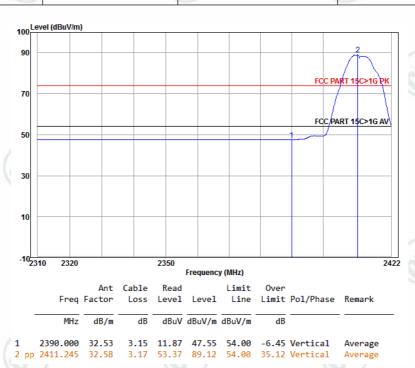
Appendix H): Restricted bands around fundamental frequency (Radiated)

(Naulaleu)	(63)	1601/		. /	63.7	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	-05
(e)	Above 1GHz	Peak	1MHz	10Hz	Average	(3)
Test Procedure:	a. The EUT was placed or at a 3 meter semi-anect determine the position of the EUT was set 3 met was mounted on the top c. The antenna height is videtermine the maximum polarizations of the antena was turned was turned from 0 degre. The test-receiver system Bandwidth with Maximum f. Place a marker at the effequency to show combands. Save the spectral	re as below: In the top of a rotation the highest racters away from the of a variable-hearied from one many value of the fielenna are set to maission, the EUT to heights from 1 to heights from	ating table to table wa diation. The interfere eight anter meter to fo ld strength make the m was arrand I meter to the to find ak Detect I the ded band co the saure any	0.8 meters rotated 3 ence-receinna tower. ur meters not both horneasurements at meters at the maximunction at losest to the emissions	rs above the 360 degrees wing antenna above the graziontal and vent. worst case and the rotate and reading. Ind Specified the transmit is in the restri	to ound erticand the able
	for lowest and highest of the spectral for lowest and highest of the spectral for lowest and highest of the spectral for lowest and highest of fully Anechoic Chamber 18GHz the distance is 18 ft. Test the EUT in the low in the radiation measurer than the spectral form of the spectral for lowest and highest of the spectral for lowest a	re as below: e is the test site, ber change form I meter and table vest channel, the nents are perforr I found the X axis	change fr table 0.8 e is 1.5 me e Highest med in X, s positioni	om Semi- meter to 1 eter). channel Y, Z axis p ng which i	Anechoic Ch .5 meter(Abo positioning for t is worse cas	ambove
Limit:	Frequency	Limit (dBµV/n	n @3m)	Rer	mark	
	30MHz-88MHz	40.0		Quasi-pe	eak Value	
	88MHz-216MHz	43.5		Quasi-pe	eak Value	
	216MHz-960MHz	46.0		Quasi-pe	eak Value	
	960MHz-1GHz	54.0	(4	Quasi-pe	eak Value	
		54.0	10	Averag	e Value	
	Above 1GHz	74.0			Value	
		1				_
				/	CO.	



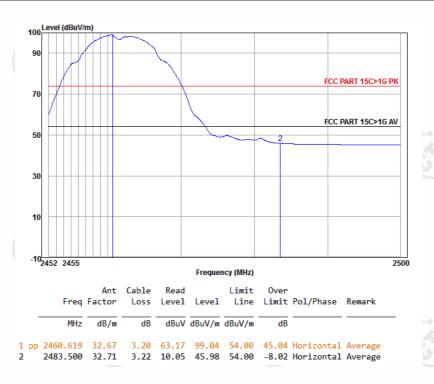
Report No.: EED32I00251303 Page 47 of 68

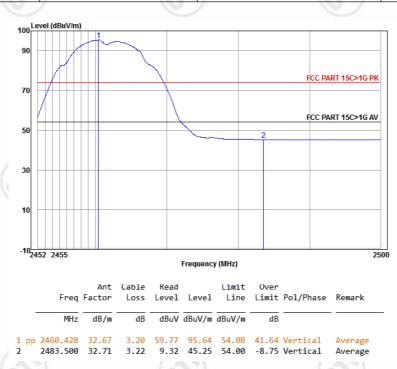
Test plot as follows:


Antenna 1

Worse case mode:	802.11b (11Mbps)	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

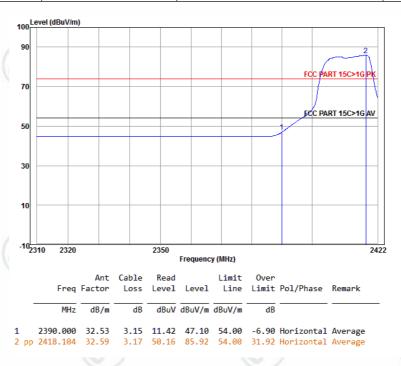
Worse case mode: 802.11b (11Mbps)

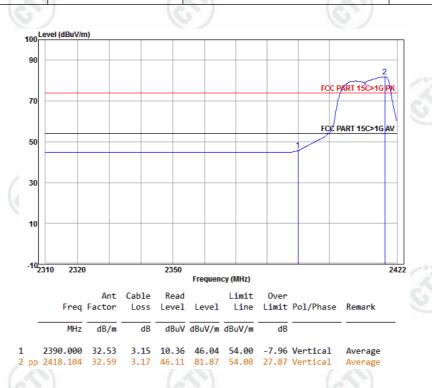

Frequency: 2390.0MHz Test channel: Lowest Polarization: Vertical Remark: Peak



Report No.: EED32I00251303 Page 48 of 68

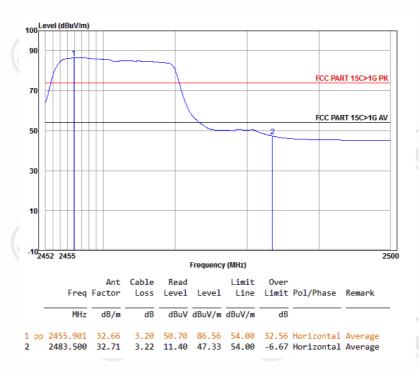
Worse case mode:	802.11b (11Mbps)	(25)	(65)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

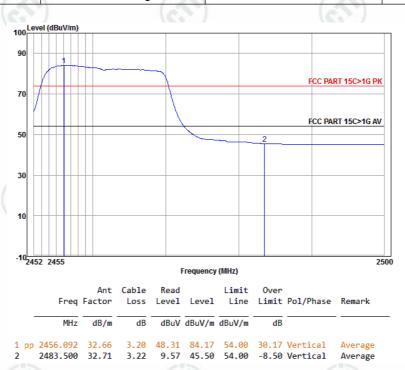

I	Worse case mode:	802.11b (11Mbps)	/2	,
١	Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Report No.: EED32I00251303 Page 49 of 68

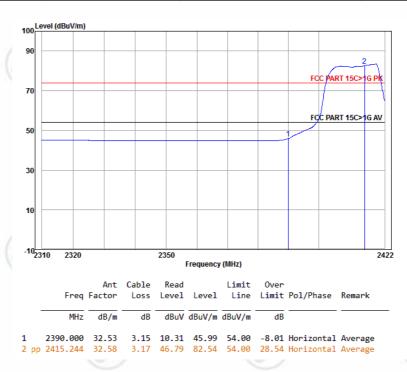
Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

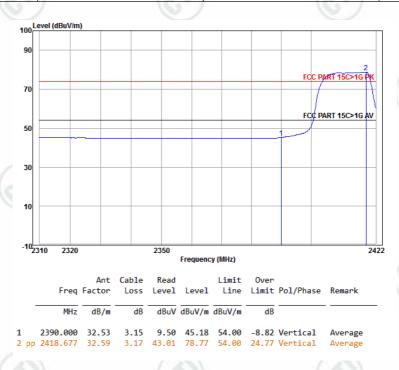

Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



Report No.: EED32I00251303 Page 50 of 68

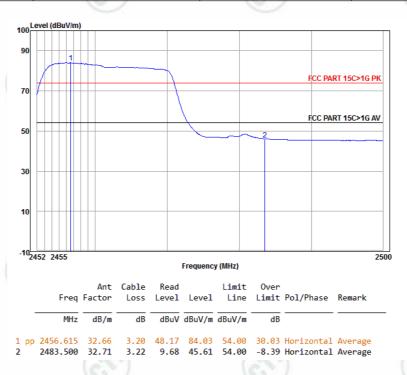
Worse case mode:	802.11g (6Mbps)	(5.5)	(5.5)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

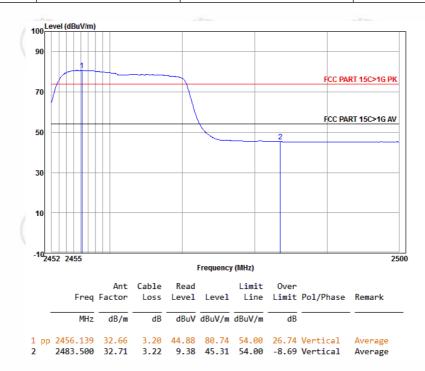

Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Report No.: EED32I00251303 Page 51 of 68

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

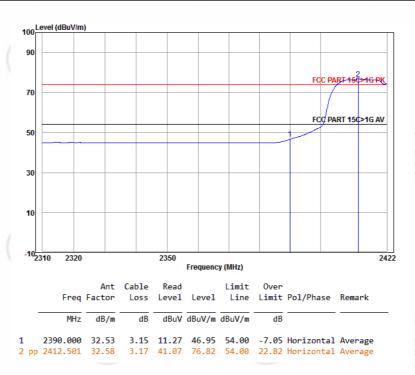

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



Page	52	Ωf	68
1 000	ω	w	UU.

Worse case mode:	802.11n(HT20) (6.5Mbps)		/3	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

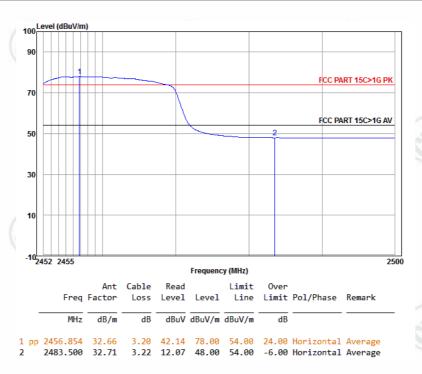
Worse case mode:	802.11n(HT20) (6.5Mb		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

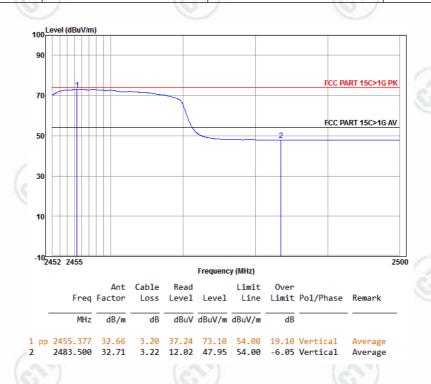




Report No. : EED32I00251303 Page 53 of 68

Worse case mode:	802.11n(HT40) (13.5Mbps	(3)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak


Worse case mode:	802.11n(HT40) (13.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



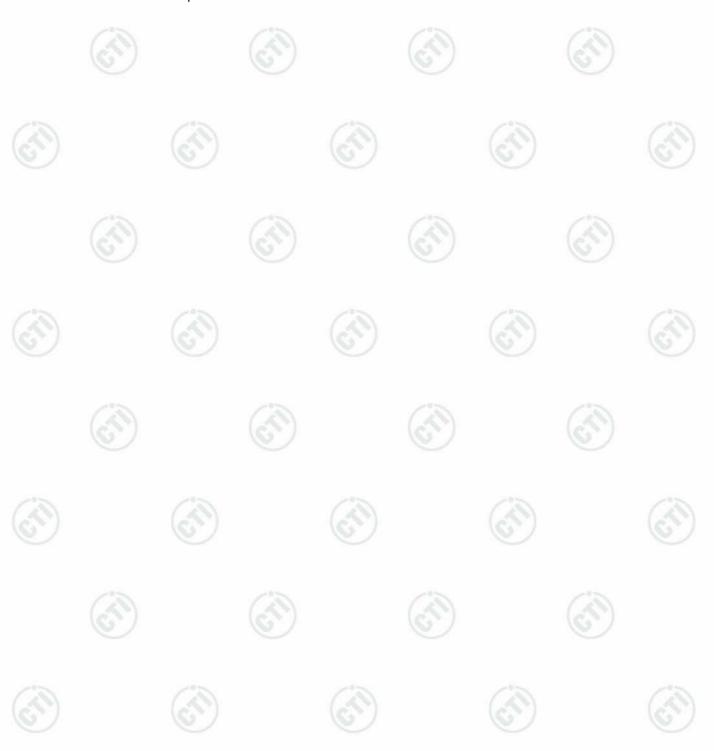
Report No.: EED32I00251303 Page 54 of 68

Worse case mode:	802.11n(HT40) (13.5Mbps		
Frequency: 2483.5MHz	Test channel:Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11n(HT40) (13.5Mbps)		
Frequency: 2483.5MHz	Test channel:Highest	Polarization: Vertical	Remark: Peak

(TI)

Report No.: EED32I00251303


Page 55 of 68

Remark:

- 1) Through Pre-scan transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
4011	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

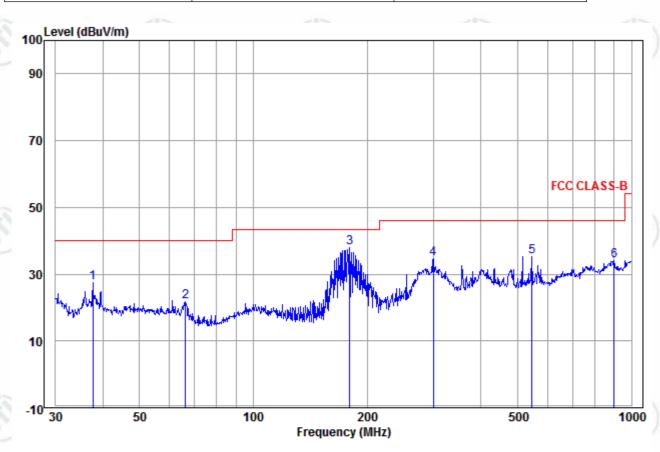
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)...
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

ı	im	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-0-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(43)	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Horizontal

	Freq		Cable Loss					Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	37.680	13.85	0.67	12.87	27.39	40.00	-12.61	Horizontal	
2	66.266	11.61	1.44	8.57	21.62	40.00	-18.38	Horizontal	
3 рр	180.017	10.90	1.98	25.12	38.00	43.50	-5.50	Horizontal	
4	299.316	13.49	2.38	18.79	34.66	46.00	-11.34	Horizontal	
5	545.183	18.58	3.20	13.60	35.38	46.00	-10.62	Horizontal	
6	900.147	22.40	4.34	7.29	34.03	46.00	-11.97	Horizontal	

Vertical Test mode: **Transmitting** 100 Level (dBuV/m) 90 70 FCC CLASS-B 50 30 10 30 50 100 200 500 1000 Frequency (MHz) Cable Read Limit 0ver Freq Factor Loss Level Level Line Limit Pol/Phase MHz dB/m dB dBuV dBuV/m dBuV/m dB 36.001 -5.71 Vertical 1 13.58 0.77 19.94 34.29 40.00

173.814

383.932

443.294

508.258

842.130

3

4

5

1.90

2.77

2.97

3.14

4.13

26.51

10.63

12.32

15.29

16.04

43.50

46.00

46.00

39.08

29.24

32.29

36.86

42.02

10.67

15.84

17.00

18.43

21.85

-4.42 Vertical

-9.14 Vertical

-3.98 Vertical

46.00 -16.76 Vertical

46.00 -13.71 Vertical

Transmitter Emission above 1GHz

Test mode:	802.11b(11	Mbps)	Test F	requency:	2412MHz	Remark: Po	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Limit		Antenna Polaxis		
1079.357	29.92	2.37	35.10	47.04	44.23	74.00	-29.77	Pass	Horizontal		
1270.334	30.39	2.59	34.89	45.88	43.97	74.00	-30.03	Pass	Horizontal		
4824.000	34.73	5.10	34.35	39.54	45.02	74.00	-28.98	Pass	Horizontal		
5821.207	35.77	7.03	34.30	41.47	49.97	74.00	-24.03	Pass	Horizontal		
7236.000	36.42	6.69	34.90	39.22	47.43	74.00	-26.57	Pass	Horizontal		
9648.000	37.93	7.70	35.07	38.63	49.19	74.00	-24.81	Pass	Horizontal		
1132.844	30.06	2.43	35.04	47.45	44.90	74.00	-29.10	Pass	Vertical		
1491.300	30.85	2.82	34.68	46.26	45.25	74.00	-28.75	Pass	Vertical		
1663.803	31.17	2.97	34.54	46.00	45.60	74.00	-28.40	Pass	Vertical		
4824.000	34.73	5.10	34.35	40.55	46.03	74.00	-27.97	Pass	Vertical		
7236.000	36.42	6.69	34.90	41.67	49.88	74.00	-24.12	Pass	Vertical		
9648.000	37.93	7.70	35.07	39.66	50.22	74.00	-23.78	Pass	Vertical		

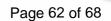
Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1079.357	29.92	2.37	35.10	47.55	44.74	74.00	-29.26	Pass	Horizontal	
1521.981	30.91	2.85	34.65	44.72	43.83	74.00	-30.17	Pass	Horizontal	
4874.000	34.84	5.09	34.33	38.94	44.54	74.00	-29.46	Pass	Horizontal	
5806.408	35.76	7.00	34.30	41.91	50.37	74.00	-23.63	Pass	Horizontal	
7311.000	36.43	6.76	34.90	40.19	48.48	74.00	-25.52	Pass	Horizontal	
9748.000	38.03	7.61	35.05	37.90	48.49	74.00	-25.51	Pass	Horizontal	
1079.357	29.92	2.37	35.10	46.75	43.94	74.00	-30.06	Pass	Vertical	
1406.496	30.68	2.74	34.76	45.47	44.13	74.00	-29.87	Pass	Vertical	
4874.000	34.84	5.09	34.33	39.56	45.16	74.00	-28.84	Pass	Vertical	
6017.064	35.91	7.41	34.31	41.83	50.84	74.00	-23.16	Pass	Vertical	
7311.000	36.43	6.76	34.90	38.35	46.64	74.00	-27.36	Pass	Vertical	
9748.000	38.03	7.61	35.05	37.26	47.85	74.00	-26.15	Pass	Vertical	

	/ 3						/°2		
Test mode:	802.11b(11	Mbps)	Test Fred	uency: 24	62MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1079.357	29.92	2.37	35.10	46.91	44.10	74.00	-29.90	Pass	Horizontal
1371.145	30.61	2.70	34.79	45.12	43.64	74.00	-30.36	Pass	Horizontal
4924.000	34.94	5.07	34.32	38.67	44.36	74.00	-29.64	Pass	Horizontal
5850.919	35.79	7.10	34.30	41.54	50.13	74.00	-23.87	Pass	Horizontal
7386.000	36.44	6.83	34.90	37.52	45.89	74.00	-28.11	Pass	Horizontal
9848.000	38.14	7.53	35.03	38.90	49.54	74.00	-24.46	Pass	Horizontal
1079.357	29.92	2.37	35.10	47.43	44.62	74.00	-29.38	Pass	Vertical
1392.247	30.65	2.72	34.77	44.01	42.61	74.00	-31.39	Pass	Vertical
1746.251	31.31	3.04	34.48	43.10	42.97	74.00	-31.03	Pass	Vertical
4924.000	34.94	5.07	34.32	38.36	44.05	74.00	-29.95	Pass	Vertical
7386.000	36.44	6.83	34.90	38.05	46.42	74.00	-27.58	Pass	Vertical
9848.000	38.14	7.53	35.03	36.87	47.51	74.00	-26.49	Pass	Vertical

Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	12MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1079.357	29.92	2.37	35.10	47.36	44.55	74.00	-29.45	Pass	Horizontal
1487.509	30.85	2.82	34.68	45.38	44.37	74.00	-29.63	Pass	Horizontal
4824.000	34.73	5.10	34.35	43.94	49.42	74.00	-24.58	Pass	Horizontal
5895.771	35.82	7.20	34.30	41.88	50.60	74.00	-23.40	Pass	Horizontal
7236.000	36.42	6.69	34.90	40.31	48.52	74.00	-25.48	Pass	Horizontal
9648.000	37.93	7.70	35.07	39.49	50.05	74.00	-23.95	Pass	Horizontal
1079.357	29.92	2.37	35.10	48.02	45.21	74.00	-28.79	Pass	Vertical
1495.101	30.86	2.82	34.68	47.54	46.54	74.00	-27.46	Pass	Vertical
4824.000	34.73	5.10	34.35	39.80	45.28	74.00	-28.72	Pass	Vertical
5703.861	35.68	6.77	34.30	41.98	50.13	74.00	-23.87	Pass	Vertical
7236.000	36.42	6.69	34.90	40.12	48.33	74.00	-25.67	Pass	Vertical
9648.000	37.93	7.70	35.07	39.19	49.75	74.00	-24.25	Pass	Vertical

1/1/3			1 10		/ 3				
Test mode:	802.11g(6M	1bps)	Test Fred	quency: 24	37MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1079.357	29.92	2.37	35.10	46.74	43.93	74.00	-30.07	Pass	Horizontal
1371.145	30.61	2.70	34.79	45.46	43.98	74.00	-30.02	Pass	Horizontal
4874.000	34.84	5.09	34.33	38.47	44.07	74.00	-29.93	Pass	Horizontal
5806.408	35.76	7.00	34.30	41.46	49.92	74.00	-24.08	Pass	Horizontal
7311.000	36.43	6.76	34.90	38.77	47.06	74.00	-26.94	Pass	Horizontal
9748.000	38.03	7.61	35.05	40.06	50.65	74.00	-23.35	Pass	Horizontal
1167.982	30.15	2.48	35.00	46.11	43.74	74.00	-30.26	Pass	Vertical
1364.182	30.60	2.69	34.80	46.07	44.56	74.00	-29.44	Pass	Vertical
1651.146	31.15	2.96	34.55	44.93	44.49	74.00	-29.51	Pass	Vertical
4874.000	34.84	5.09	34.33	42.34	47.94	74.00	-26.06	Pass	Vertical
7311.000	36.43	6.76	34.90	37.51	45.80	74.00	-28.20	Pass	Vertical
9748.000	38.03	7.61	35.05	36.93	47.52	74.00	-26.48	Pass	Vertical

Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	62MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1167.982	30.15	2.48	35.00	46.55	44.18	74.00	-29.82	Pass	Horizontal
1498.912	30.87	2.83	34.67	46.34	45.37	74.00	-28.63	Pass	Horizontal
1805.005	31.40	3.09	34.43	45.54	45.60	74.00	-28.40	Pass	Horizontal
4924.000	34.94	5.07	34.32	39.54	45.23	74.00	-28.77	Pass	Horizontal
7386.000	36.44	6.83	34.90	40.42	48.79	74.00	-25.21	Pass	Horizontal
9848.000	38.14	7.53	35.03	37.24	47.88	74.00	-26.12	Pass	Horizontal
1198.095	30.22	2.51	34.97	46.30	44.06	74.00	-29.94	Pass	Vertical
1498.912	30.87	2.83	34.67	46.34	45.37	74.00	-28.63	Pass	Vertical
4924.000	34.94	5.07	34.32	39.57	45.26	74.00	-28.74	Pass	Vertical
5821.207	35.77	7.03	34.30	41.93	50.43	74.00	-23.57	Pass	Vertical
7386.000	36.44	6.83	34.90	37.86	46.23	74.00	-27.77	Pass	Vertical
9848.000	38.14	7.53	35.03	37.54	48.18	74.00	-25.82	Pass	Vertical



/ "			/ "		/ - /	74		/ 1			
Test mode:	802.11n(HT	⁻ 20)(6.5N	(lbps)	Test Freque	ency: 2412M	Hz	Rema	ark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)		mit V/m)	Over Limit (dB)	Result	Antenna Polaxis	
1198.095	30.22	2.51	34.97	45.12	42.88	74.	.00	-31.12	Pass	Horizontal	
1495.101	30.86	2.82	34.68	44.48	43.48	74.	.00	-30.52	Pass	Horizontal	
1832.785	31.45	3.11	34.41	43.81	43.96	74.	.00	-30.04	Pass	Horizontal	
4824.000	34.73	5.10	34.35	36.94	42.42	74.	.00	-31.58	Pass	Horizontal	
7236.000	36.42	6.69	34.90	38.72	46.93	74.	.00	-27.07	Pass	Horizontal	
9648.000	37.93	7.70	35.07	37.64	48.20	74.	.00	-25.80	Pass	Horizontal	
1201.149	30.23	2.52	34.96	45.70	43.49	74.	.00	-30.51	Pass	Vertical	
1518.111	30.90	2.84	34.66	46.32	45.40	74.	.00	-28.60	Pass	Vertical	
1814.218	31.42	3.09	34.43	45.59	45.67	74.	.00	-28.33	Pass	Vertical	
4824.000	34.73	5.10	34.35	42.36	47.84	74.00		-26.16	Pass	Vertical	
7236.000	36.42	6.69	34.90	39.14	47.35	74.	.00	-26.65	Pass	Vertical	
9648.000	37.93	7.70	35.07	37.89	48.45	74.	.00	-25.55	Pass	Vertical	

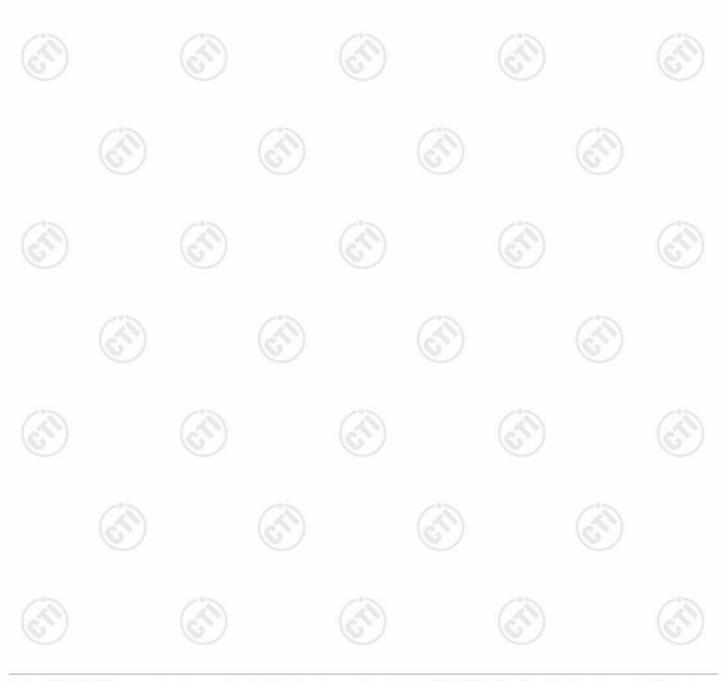
Test mode:	802.11n(HT	20)(6.5N	/lbps)	Test Frequency: 2437MHz Remark: Peak						
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)		mit V/m)	Over Limit (dB)	Result	Antenna Polaxis
1162.051	30.13	2.47	35.00	45.74	43.34	74.	.00	-30.66	Pass	Horizontal
1498.912	30.87	2.83	34.67	46.06	45.09	74.	.00	-28.91	Pass	Horizontal
4874.000	34.84	5.09	34.33	38.92	44.52	74.	.00	-29.48	Pass	Horizontal
6347.466	36.08	7.08	34.52	42.06	50.70	74.	.00	-23.30	Pass	Horizontal
7311.000	36.43	6.76	34.90	37.46	45.75	74.	.00	-28.25	Pass	Horizontal
9748.000	38.03	7.61	35.05	37.11	47.70	74.	.00	-26.30	Pass	Horizontal
1173.943	30.16	2.48	34.99	45.63	43.28	74.	.00	-30.72	Pass	Vertical
1309.737	30.48	2.64	34.85	45.12	43.39	74.	.00	-30.61	Pass	Vertical
1655.354	31.15	2.97	34.55	45.29	44.86	74.	.00	-29.14	Pass	Vertical
4874.000	34.84	5.09	34.33	39.66	45.26	74.	.00	-28.74	Pass	Vertical
7311.000	36.43	6.76	34.90	37.85	46.14	74.	.00	-27.86	Pass	Vertical
9748.000	38.03	7.61	35.05	37.57	48.16	74.	.00	-25.84	Pass	Vertical

			1.5		100					
Test mode:	802.11n(HT	02.11n(HT20)(6.5Mbps) Test Frequency: 2462MHz Remark: Peal								
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Lir (dBµ	mit V/m)	Over Limit (dB)	Result	Antenna Polaxis
1192.011	30.21	2.51	34.97	45.67	43.42	74.	.00	-30.58	Pass	Horizontal
1514.252	30.90	2.84	34.66	46.04	45.12	74.	.00	-28.88	Pass	Horizontal
1828.125	31.44	3.10	34.42	45.38	45.50	74.	.00	-28.50	Pass	Horizontal
4924.000	34.94	5.07	34.32	39.54	45.23	74.	.00	-28.77	Pass	Horizontal
7386.000	36.44	6.83	34.90	37.63	46.00	74.	.00	-28.00	Pass	Horizontal
9848.000	38.14	7.53	35.03	36.05	46.69	74.	.00	-27.31	Pass	Horizontal
1182.943	30.18	2.50	34.98	46.18	43.88	74.	.00	-30.12	Pass	Vertical
1487.509	30.85	2.82	34.68	45.40	44.39	74.	.00	-29.61	Pass	Vertical
4924.000	34.94	5.07	34.32	39.37	45.06	74.	.00	-28.94	Pass	Vertical
5821.207	35.77	7.03	34.30	41.38	49.88	74.00		-24.12	Pass	Vertical
7386.000	36.44	6.83	34.90	38.54	46.91	74.	.00	-27.09	Pass	Vertical
9848.000	38.14	7.53	35.03	37.41	48.05	74.	.00	-25.95	Pass	Vertical

Test mode: 802.11n(HT40)(13.5Mbps) Test Frequency: 2422MHz Remark: Peak										
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)		mit uV/m)	Over Limit (dB)	Result	Antenna Polaxis
1165.013	30.14	2.47	35.00	46.49	44.10	74	.00	-29.90	Pass	Horizontal
1642.761	31.13	2.95	34.56	45.72	45.24	74	.00	-28.76	Pass	Horizontal
1809.605	31.41	3.09	34.43	45.55	45.62	74	.00	-28.38	Pass	Horizontal
4844.000	34.77	5.10	34.34	39.89	45.42	74	.00	-28.58	Pass	Horizontal
7266.000	36.43	6.72	34.90	38.08	46.33	74	.00	-27.67	Pass	Horizontal
9688.000	37.97	7.66	35.06	37.41	47.98	74	.00	-26.02	Pass	Horizontal
1176.935	30.17	2.49	34.99	45.60	43.27	74	.00	-30.73	Pass	Vertical
1506.563	30.88	2.83	34.67	45.94	44.98	74	.00	-29.02	Pass	Vertical
1828.125	31.44	3.10	34.42	45.85	45.97	74	.00	-28.03	Pass	Vertical
4844.000	34.77	5.10	34.34	42.40	47.93	74	.00	-26.07	Pass	Vertical
7266.000	36.43	6.72	34.90	39.23	47.48	74	.00	-26.52	Pass	Vertical
9688.000	37.97	7.66	35.06	37.62	48.19	74	.00	-25.81	Pass	Vertical

20%		200			2100		200			
Test mode: 802.11n(HT40)(13.5Mbps)			Test Frequency: 2437MHz			Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m	Over Limit (dB)	Result	Antenna Polaxis	
1159.096	30.13	2.47	35.01	45.67	43.26	74.00	-30.74	Pass	Horizontal	
1495.101	30.86	2.82	34.68	46.77	45.77	74.00	-28.23	Pass	Horizontal	
1814.218	31.42	3.09	34.43	45.32	45.40	74.00	-28.60	Pass	Horizontal	
4874.000	34.84	5.09	34.33	41.29	46.89	74.00	-27.11	Pass	Horizontal	
7311.000	36.43	6.76	34.90	38.14	46.43	74.00	-27.57	Pass	Horizontal	
9748.000	38.03	7.61	35.05	36.08	46.67	74.00	-27.33	Pass	Horizontal	
1313.075	30.49	2.64	34.85	45.47	43.75	74.00	-30.25	Pass	Vertical	
1651.146	31.15	2.96	34.55	46.08	45.64	74.00	-28.36	Pass	Vertical	
4874.000	34.84	5.09	34.33	40.03	45.63	74.00	-28.37	Pass	Vertical	
5836.044	35.78	7.07	34.30	41.94	50.49	74.00	-23.51	Pass	Vertical	
7311.000	36.43	6.76	34.90	37.16	45.45	74.00	-28.55	Pass	Vertical	
9748.000	38.03	7.61	35.05	36.69	47.28	74.00	-26.72	Pass	Vertical	

Test mode:	802.11n(HT	40)(13.5	Mbps) T	Test Frequency: 2452MHz			Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1188.980	30.20	2.50	34.98	45.76	43.48	74.00		-30.52	Pass	Horizontal
1506.563	30.88	2.83	34.67	46.04	45.08	74.00		-28.92	Pass	Horizontal
1963.180	31.65	3.20	34.32	46.03	46.56	74.00		-27.44	Pass	Horizontal
4904.000	34.90	5.07	34.33	38.16	43.80	74.00		-30.20	Pass	Horizontal
7356.000	36.44	6.80	34.90	37.97	46.31	74.00		-27.69	Pass	Horizontal
9808.000	38.10	7.56	35.04	36.16	46.78	74.00		-27.22	Pass	Horizontal
1162.051	30.13	2.47	35.00	46.51	44.11	74.00		-29.89	Pass	Vertical
1651.146	31.15	2.96	34.55	44.77	44.33	74.00		-29.67	Pass	Vertical
4904.000	34.90	5.07	34.33	38.12	43.76	74.00		-30.24	Pass	Vertical
5718.399	35.69	6.80	34.30	42.51	50.70	74.00		-23.30	Pass	Vertical
7356.000	36.44	6.80	34.90	38.57	46.91	74.00		-27.09	Pass	Vertical
9808.000	38.10	7.56	35.04	37.99	48.61	74.00		-25.39	Pass	Vertical

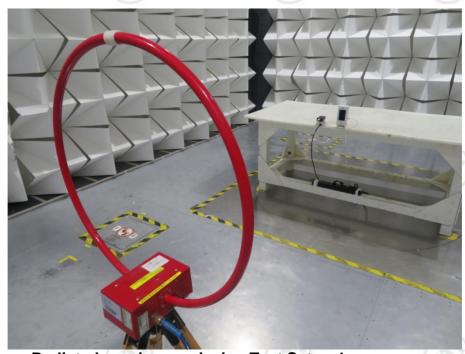

Note:

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



PHOTOGRAPHS OF TEST SETUP

Test model No.: BW-X07HD

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-1(30MHz-1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Conducted Emissions Test Setup

Report No.: EED32I00251303 Page 68 of 68

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32I00251301 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

