

FCC Test Report

Report No.: AGC01475180507FE03

FCC ID : 2AF8Q-X1

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: WATERPROOF Sports wireless headset

BRAND NAME : N/A

MODEL NAME : X1, X1S

CLIENT: Shenzhen Na Yin Technology Co.,Ltd.

DATE OF ISSUE : June 11, 2018

STANDARD(S)

TEST PROCEDURE(S)

: FCC Part 15 Subpart C Section 15.249

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

AGC 3

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results spowed this jest eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a transfer o

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 59

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	plience / © Marie	June 11, 2018	Valid	Initial release

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.2. TABLE OF CARRIER FREQUENCYS	5
3. MEASUREMENT UNCERTAINTY	
4. DESCRIPTION OF TEST MODES	
5. SYSTEM TEST CONFIGURATION	8
5.1. CONFIGURATION OF EUT SYSTEM	8
6. TEST FACILITY	10
7. TEST METHOD	11
8. TEST EQUIPMENT LIST	
9. RADIATED EMISSION	12
9.1. TEST LIMIT 9.2. MEASUREMENT PROCEDURE 9.3. TEST SETUP 9.4. TEST RESULT	12 13 15
10. BAND EDGE EMISSION	38
10.1. MEASUREMENT PROCEDURE	38 39
11. 20DB BANDWIDTH	43
11.1. MEASUREMENT PROCEDURE	43
12. FCC LINE CONDUCTED EMISSION TEST	50
12.1. LIMITS OF LINE CONDUCTED EMISSION TEST	50 51 51
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	52
ADDENING BY BUOTOGRAPHS OF FUT	54

Page 4 of 59

1. VERIFICATION OF CONFORMITY

Applicant	Shenzhen Na Yin Technology Co.,Ltd.		
Address	6F, Building A, De Bao Li Industrial park, Ji Hua Road No.312 Bantian, Longgang District, Shenzhen City, China		
Manufacturer	Shenzhen Na Yin Technology Co.,Ltd.		
Address	6F, Building A, De Bao Li Industrial park, Ji Hua Road No.312 Bantian, Longgang District, Shenzhen City, China		
Product Designation	WATERPROOF Sports wireless headset		
Brand Name	N/A		
Test Model	X1		
Series Model	X1S C		
Difference description	All the same except for the appearance structure and color		
Date of test	June 06, 2018 to June 09, 2018		
Deviation	None None		
Condition of Test Sample	Normal		
Report Template	AGCRT-US-BR/RF		

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 15.249. The test results of this report relate only to the tested sample identified in this report.

Tested By	Henry Zha	ng Market Market
Coobal Complaines	Henry Zhang(Zhang Zhuorui)	June 09, 2018
Reviewed By	and change	
® Manual Complant	Cool Cheng(Cheng Mengguo)	June 11, 2018
Approved By	Formesto ei	
Marros ® Fill and the state of	Forrest Lei(Lei Yonggang) Authorized Officer	June 11, 2018

Page 5 of 59

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz
RF Output Power	3.36dBm(Max EIRP Power=Max radiation field-95.2)
Bluetooth Version	V4.1
Modulation	BR ⊠GFSK, EDR ⊠π /4-DQPSK, ⊠8DPSK BLE □GFSK
Number of channels	79
Hardware Version	V3
Software Version	V1
Antenna Designation	Ceramic Antenna
Antenna Gain	2dBi
Power Supply	DC 3.7V by battery

- The USB port only used for charging and can't be used to transfer data with PC.
- 2. The BT function of EUT isn't work when charging.

2.2. TABLE OF CARRIER FREQUENCYS

BR/EDR Channel List

Frequency Band	Channel Number	Frequency
極測	OF Godden	2402MHz
	CO 1	2403MHz
	: :	The state of the s
	38	2440 MHz
2400~2483.5MHz	39	2441 MHz
	40	2442 MHz
		A Branch State of Sta
	77	2479 MHz
	78	2480 MHz

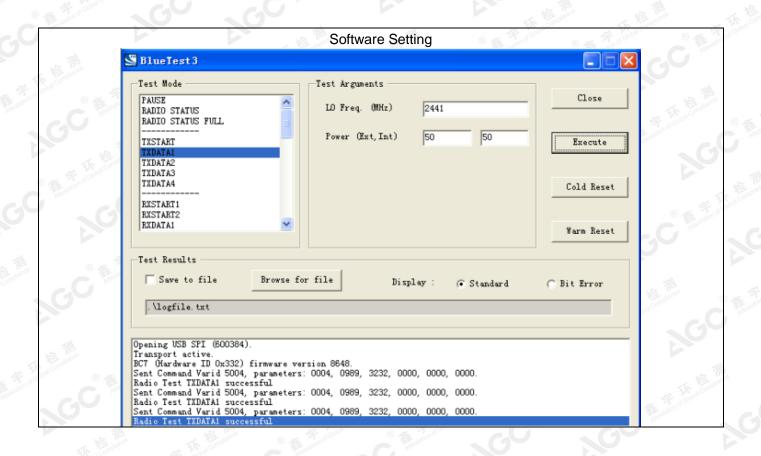
Page 6 of 59

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB

4. DESCRIPTION OF TEST MODES


NO. TEST MODE DESCRIPTION		
1 The Accomplance	Low channel GFSK	
© 2	Middle channel GFSK	
3	High channel GFSK	
4	Low channel π /4-DQPSK	
5 T. T.	Middle channel π /4-DQPSK	
© 6 6 m	High channel π /4-DQPSK	
7	Low channel 8DPSK	
8	Middle channel 8DPSK	
9 @ A Handrack	High channel 8DPSK	
10	BT Link	

Note:

- 1. All the test modes can be supply by battery, only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. The EUT used fully-charged battery when tested.

Report No.: AGC01475180507FE03 Page 7 of 59

Page 8 of 59

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Configure 1: (Normal hopping)

EUT

Configure 2: (Control continuous TX)

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Equipment Mfr/Brand Model/		/Type No. Remark	
dC	WATERPROOF Sports wireless headset	Na yin	X1 X1	EUT	
2	Battery	HHX	500930	Accessory	
3	PC PC	APPLE	A1465	A.E	
4	Control box	CSR	USB_SPI_TOOLS	A.E	
5	USB Cable	N/A	1m unshielded	A.E	
6	IPOD	APPLE	A1367	A.E	

Page 9 of 59

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.249(a) §15.209	Radiated Emission	Compliant
§15.249(d)	Band Edges	Compliant
§15.207	Conduction Emission	N/A
§15.215	Bandwidth	Compliant

Note: N/A means it's not applicable to this item.

Page 10 of 59

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd		
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Bldg.12, Baoan Bldg Materials Center, No.1 of Xixiang Inner Ring Road, Baoan District, Shenzhen 518012		
NVLAP Lab Code	600153-0		
Designation Number	CN5028		
Test Firm Registration Number	682566		
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0		

Page 11 of 59

7. TEST METHOD

All measurements contained in this report were conducted with ANSI C63.10-2013

8. TEST EQUIPMENT LIST

TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun.20, 2017	Jun.19, 2018
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec.08, 2017	Dec.07, 2018
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep.20, 2017	Sep.19, 2018
preamplifier	ChengYi	EMC184045SE	980508	Sep.15, 2017	Sep.14, 2018
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May 18, 2017	May 17, 2019
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun.20, 2017	Jun.19, 2018
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep.28, 2017	Sep.27, 2018
Radiation Cable 1	MXT	RS1	R005	June 6, 2018	June 5, 2019
Radiation Cable 2	MXT	RS1	R006	June 6, 2018	June 5, 2019
Loop Antenna	A.H.Systems,Inc	SAS-562B	alation of Country	Mar. 01, 2018	Feb. 28, 2019
Filter (2.4-2.483GHz)	Micro-tronics	087		Jun.20, 2017	Jun.19, 2018

Page 12 of 59

9. RADIATED EMISSION

9.1. TEST LIMIT

Standard FCC15.249

Fundamental	Field Strength of Fundamental	Field Strength of Harmonics
Frequency	(millivolts/meter)	(microvolts/meter)
900-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Standard FCC 15.209

Frequency	Distance	Field Str	rengths Limit
(MHz)	Meters	μ V/m	dB(μV)/m
0.009 ~ 0.490	300	2400/F(kHz)	2
0.490 ~ 1.705	30	24000/F(kHz)	校訓
1.705 ~ 30	30	30 ()	(a) A Clobal Co.
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3 F. T.	Other:74.0 dB(µV)/m (Average)	(Peak) 54.0 dB(μV)/m

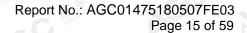
Remark:

- (1) Emission level dB μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Page 13 of 59

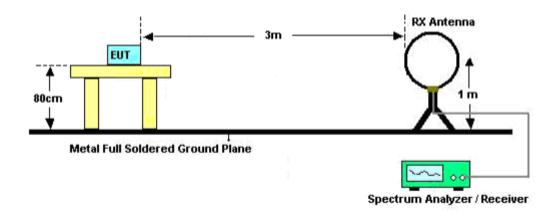
9.2. MEASUREMENT PROCEDURE

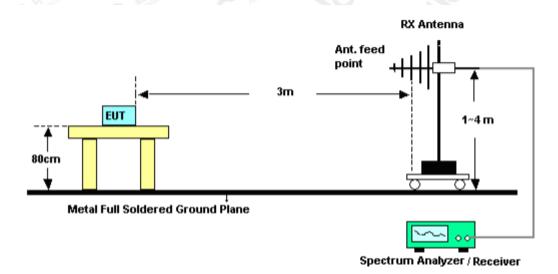
- 1. The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- 2. The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5. All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform(Below 1GHz)
- 6. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak & AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 14 of 59

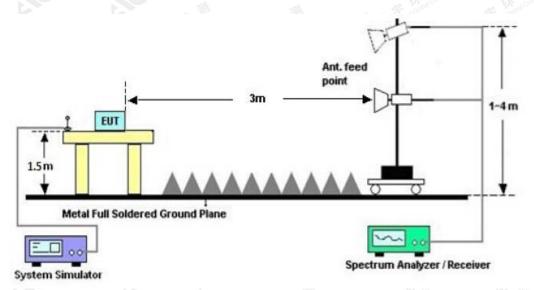
The following table is the setting of spectrum analyzer and receiver.


Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	Fundamental: 2.4~2.483GHz RBW 2MHz/ VBW 6MHz for Peak, RBW 2MHz/ VBW 10Hz for Average Harmonics: 1GHz~25GHz RBW 1MHz/ VBW 3MHz for Peak, RBW 1MHz/ VBW 10Hz for Average
Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP



9.3. TEST SETUP

RADIATED EMISSION TEST-SETUP FREQUENCY BELOW 30MHz


RADIATED EMISSION TEST SETUP 30MHz-1000MHz

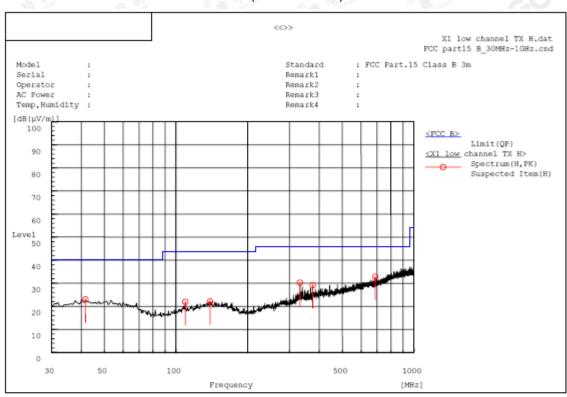
Page 16 of 59

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at although the confirmed at although the confirmed at all the confirme

age 17 of 59

9.4. TEST RESULT


(Worst modulation: GFSK)

RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

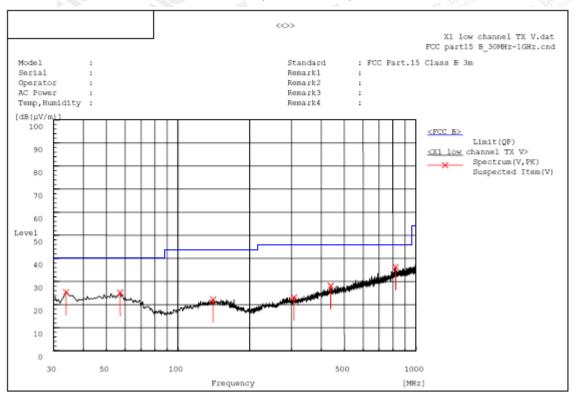
RADIATED EMISSION BELOW 1GHz

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL-HORIZONTAL

A. Suspected List:

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Marqin dB	Pass/Fail	Height cm	Angle deg
41.640	Н	5.6	17.4	23.0	40.0	17.0	Pass	150.0	213.7
109.540	Н	7.5	14.5	22.0	43.5	21.5	Pass	200.0	358.2
139.125	H	5.5	16.6	22.1	43.5	21.4	Pass	200.0	358.2
332.155	Н	12.0	18.2	30.2	46.0	15.8	Pass	200.0	268.4
375.805	Н	9.3	19.9	29.2	46.0	16.8	Pass	200.0	160.9
687.175	Н	6.7	26.1	32.8	46.0	13.2	Pass	150.0	319.8

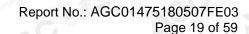
RESULT: PASS


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

IGC 8

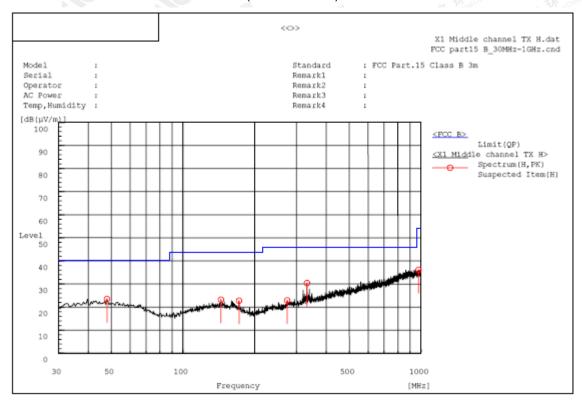
Page 18 of 59

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL -VERTICAL


A. Suspected List:

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Marqin dB	Pass/Fail	Height cm	Angle deg
33.880	v	9.5	16.0	25.5	40.0	14.5	Pass	150.0	328.1
57.160	v	8.7	16.5	25.2	40.0	14.8	Pass	150.0	73.3
140.580	v	5.6	16.6	22.2	43.5	21.3	Pass	150.0	328.1
307.420	v	5.7	17.5	23.2	46.0	22.8	Pass	200.0	107.7
438.370	v	6.2	21.9	28.1	46.0	17.9	Pass	150.0	255.4
822.975	v	7.1	29.2	36.3	46.0	9.7	Pass	150.0	109.4

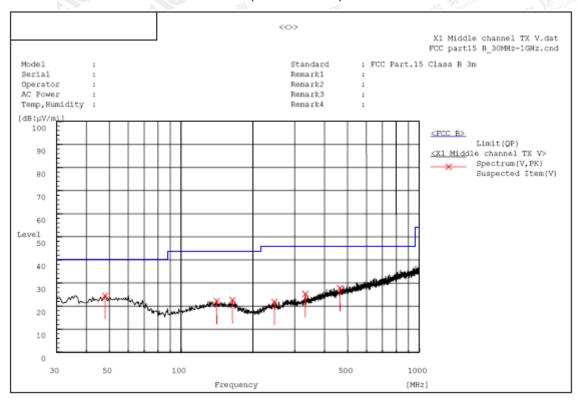
RESULT: PASS


Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

RADIATED EMISSION TEST- (30MHz-1GHz)-MIDDLE CHANNEL-HORIZONTAL

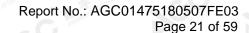
A. Suspected List:


Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Marqin dB	Pass/Fail	Height cm	Angle deg
47.945	H	6.3	17.2	23.5	40.0	16.5	Pass	200.0	72.1
144.460	Н	6.6	16.6	23.2	43.5	20.3	Pass	150.0	215.4
172.105	H	7.2	15.6	22.8	43.5	20.7	Pass	100.0	266.9
273.955	Н	5.6	17.3	22.9	46.0	23.1	Pass	100.0	122.7
332.155	Н	12.2	18.2	30.4	46.0	15.6	Pass	100.0	232.6
977.205	Н	5.2	30.9	36.1	54.0	17.9	Pass	200.0	144.3

RESULT: PASS

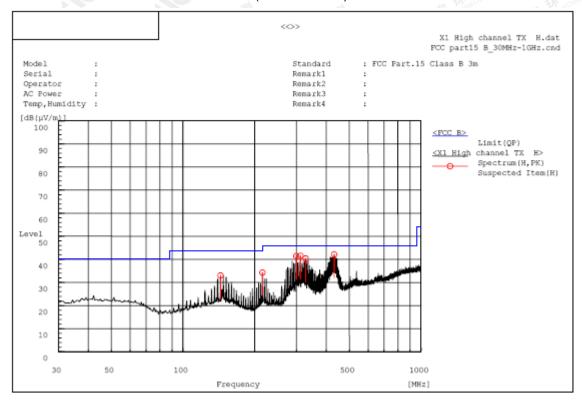
Page 20 of 59

RADIATED EMISSION TEST- (30MHz-1GHz)-MIDDLE CHANNEL -VERTICAL


A. Suspected List:

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Marqin dB	Pass/Fail	Height cm	Angle deg
47.945	V	7.3	17.2	24.5	40.0	15.5	Pass	150.0	72.2
141.065	V	5.6	16.6	22.2	43.5	21.3	Pass	150.0	249.9
164.345	V	6.2	16.4	22.6	43.5	20.9	Pass	150.0	286.0
246.310	V	5.7	16.1	21.8	46.0	24.2	Pass	150.0	249.9
332.155	v	7.1	18.2	25.3	46.0	20.7	Pass	200.0	88.8
464.075	V	5.5	22.3	27.8	46.0	18.2	Pass	200.0	266.8

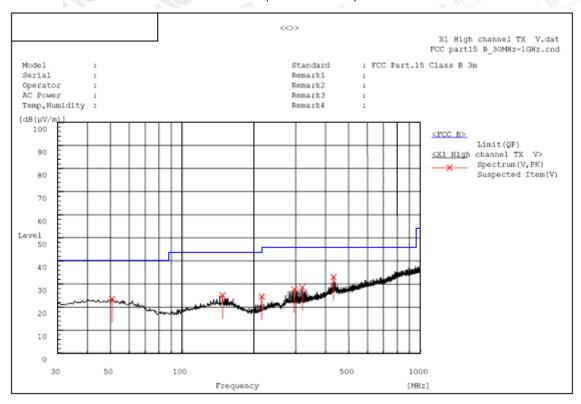
RESULT: PASS


Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL-HORIZONTAL

A. Suspected List:


Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(u√/m) PK	Limit dB(uV/m) QP	Marqin dB	Pass/Fail	Height cm	Angle deg
143.975	H	16.4	16.6	33.0	43.5	10.5	Pass	200.0	161.9
215.755	Н	20.0	14.3	34.3	43.5	9.2	Pass	150.0	229.2
299.660	Н	24.0	17.4	41.4	46.0	4.6	Pass	100.0	101.8
311.785	Н	23.9	17.6	41.5	46.0	4.5	Pass	100.0	285.9
327.790	Н	22.3	18.1	40.4	46.0	5.6	Pass	100.0	61.2
432.065	Н	20.4	21.7	42.1	46.0	3.9	Pass	100.0	137.4

RESULT: PASS

Page 22 of 59

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL -VERTICAL

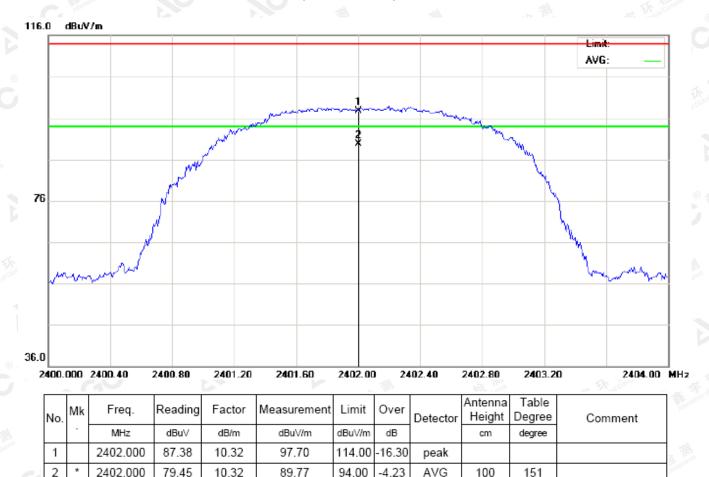
A. Suspected List:

	uency Hz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Marqin dB	Pass/Fail	Height cm	Angle deg
50.	.855	V	6.5	17.0	23.5	40.0	16.5	Pass	200.0	96.9
147	.855	V	8.5	16.6	25.1	43.5	18.4	Pass	150.0	117.4
215	.755	V	10.2	14.3	24.5	43.5	19.0	Pass	150.0	152.4
295	.780	V	10.3	17.4	27.7	46.0	18.3	Pass	150.0	152.4
320	.030	V	10.7	17.8	28.5	46.0	17.5	Pass	150.0	171.2
432	.065	V	11.3	21.7	33.0	46.0	13.0	Pass	200.0	195.0

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

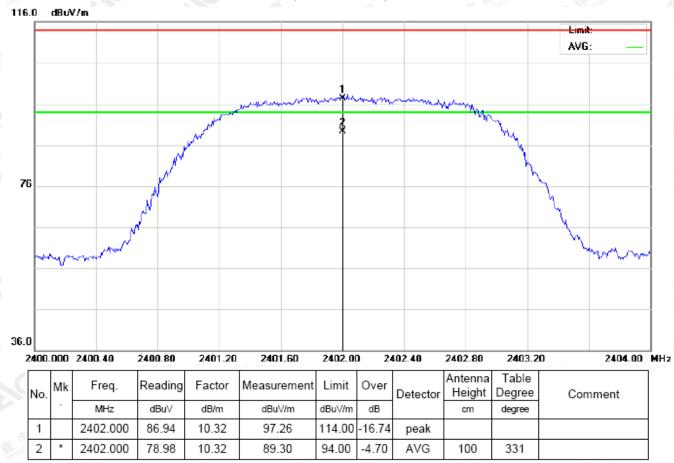

age 23 of 59

RADIATED EMISSION ABOVE 1GHz

(Worst modulation: GFSK)

For Fundamental

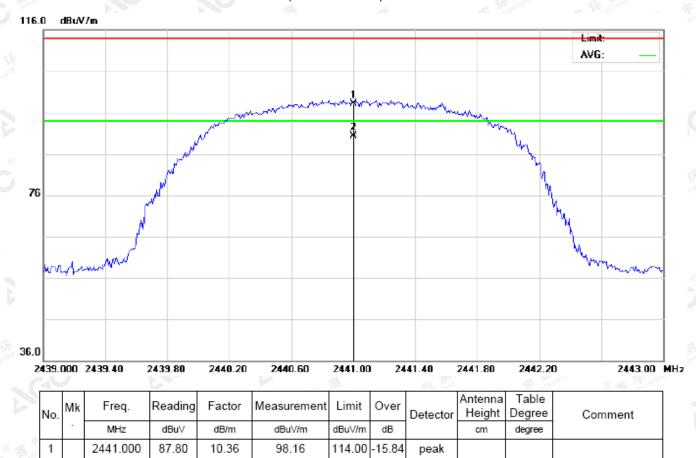
RADIATED EMISSION TEST- (ABOVE 1GHz)-LOW CHANNEL-HORIZONTAL



RESULT. PASS

Page 24 of 59

RADIATED EMISSION TEST- (ABOVE 1GHz)-LOW CHANNEL- VERTICAL


RESULT: PASS

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 25 of 59

RADIATED EMISSION TEST- (ABOVE 1GHz)-MIDDLE CHANNEL-HORIZONTAL

94.00

AVG

100

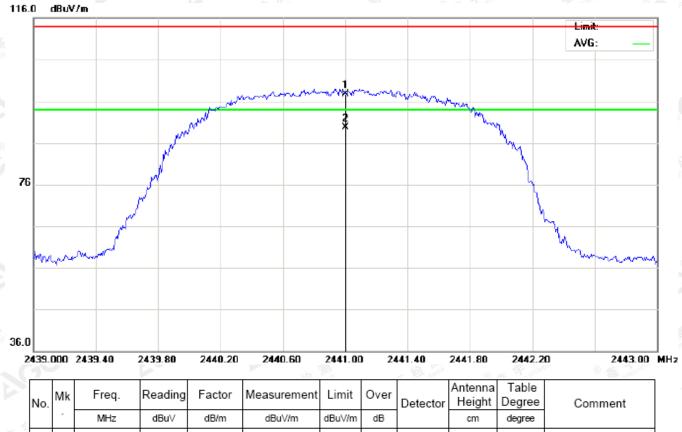
153

RESULT: PASS

2441.000

79.90

10.36


90.26

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 26 of 59

RADIATED EMISSION TEST- (ABOVE 1GHz)-MIDDLE CHANNEL- VERTICAL

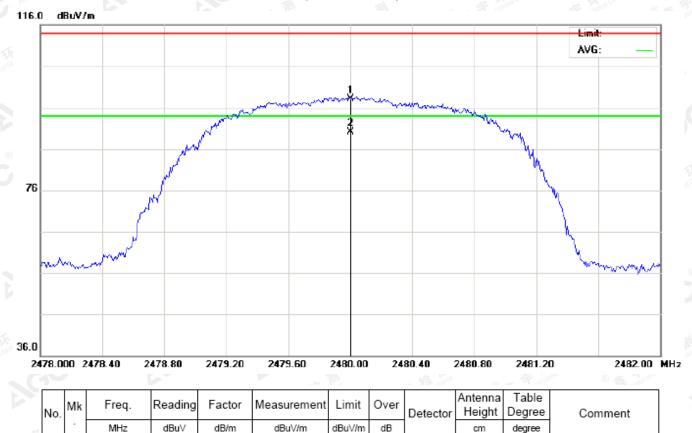
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Height	Degree	Comment
	-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1		2441.000	87.31	10.36	97.67	114.00	-16.33	peak			
2	*	2441.000	79.30	10.36	89.66	94.00	-4.34	AVG	100	332	
	No.	No	No. MHz 1 2441.000	No. ∴ MHz dBu√ 1 2441.000 87.31	No. MHz dBuV dB/m 1 2441.000 87.31 10.36	No. MHz dBuV dB/m dBuV/m 1 2441.000 87.31 10.36 97.67	No. MHz dBuV dB/m dBuV/m dBuV/m 1 2441.000 87.31 10.36 97.67 114.00	No. MHz dBuV dB/m dBuV/m dBuV/m dB 1 2441.000 87.31 10.36 97.67 114.00 -16.33	No. MHz dBuV dB/m dBuV/m dBuV/m dB 1 2441.000 87.31 10.36 97.67 114.00 -16.33 peak	No. MHz dBuV dB/m dBuV/m dBuV/m dB Detector Height cm	No. No.


RESULT: PASS

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KCE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com.

Page 27 of 59

RADIATED EMISSION TEST- (ABOVE 1GHz)-HIGH CHANNEL-HORIZONTAL


	No.	IVIK	r req.	rteading	i actor	Measurement	Liiiiii	0	Detector	Height	Degree	Comment
-			MHz	dBu∀	dB/m	dBu\//m	dBu∀/m	dB		cm	degree	
in state	1		2480.000	88.15	10.41	98.56	114.00	-15.44	peak			
Ton.	2	*	2480.000	80.22	10.41	90.63	94.00	-3.37	AVG	100	157	
							1 70	"D//o	- 1	W. 405.	(0.	- O

RESULT: PASS

Page 28 of 59

RADIATED EMISSION TEST- (ABOVE 1GHz)-HIGH CHANNEL- VERTICAL

RESULT: PASS

2

2480.000

2480.000

87.73

79.65

10.41

10.41

Note: Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.

98.14

90.06

The "Factor" value can be calculated automatically by software of measurement system.

114.00

94.00

-15.86

-3.94

peak

AVG

100

336

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

age 29 of 59

Field strength of the fundamental signal

1Mbps Result:

Peak value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	87.38	10.32	97.70	114	-16.30	Horizontal
2402	86.94	10.32	97.26	114	-16.74	Vertical
2441	87.80	10.36	98.16	114	-15.84	Horizontal
2441	87.31	10.36	97.67	114	-16.33	Vertical
2480	88.15	10.41	98.56	114	-15.44	Horizontal
2480	87.73	10.41	98.14	114	-15.86	Vertical

Average value

Frequency	ncy Reading Fa		Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	79.45	10.32	89.77	94	-4.23	Horizontal
2402	78.98	10.32	89.30	94	-4.70	Vertical
2441	79.90	10.36	90.26	94	-3.74	Horizontal
2441	79.30	10.36	89.66	94	-4.34	Vertical
2480	80.22	10.41	90.63	94	-3.37	Horizontal
2480	79.65	10.41	90.06	94	-3.94	Vertical

Page 30 of 59

2Mbps Result:

Peak value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	86.92	10.32	97.24	114	-16.76	Horizontal
2402	86.53	10.32	96.85	114	-17.15	Vertical
2441	87.35	10.36	97.71	114	-16.29	Horizontal
2441	86.86	10.36	97.22	114	-16.78	Vertical
2480	87.69	10.41	98.10	114	-15.90	Horizontal
2480	87.24	10.41	97.65	114	-16.35	Vertical

Average value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	79.04	10.32	89.36	94	-4.64	Horizontal
2402	78.40	10.32	88.72	94	-5.28	Vertical
2441	79.41	10.36	89.77	94	-4.23	Horizontal
2441	78.88	10.36	89.24	94	-4.76	Vertical
2480	79.75	10.41	90.16	94	-3.84	Horizontal
2480	79.31	10.41	89.72	94	-4.28	Vertical

Page 31 of 59

3Mbps Result:

Peak value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	86.52	10.32	96.84	114	-17.16	Horizontal
2402	86.09	10.32	96.41	114	-17.59	Vertical
2441	86.86	10.36	97.22	114	-16.78	Horizontal
2441	86.39	10.36	96.75	114	-17.25	Vertical
2480	87.19	10.41	97.60	114	-16.40	Horizontal
2480	86.77	10.41	97.18	114	-16.82	Vertical

Average value

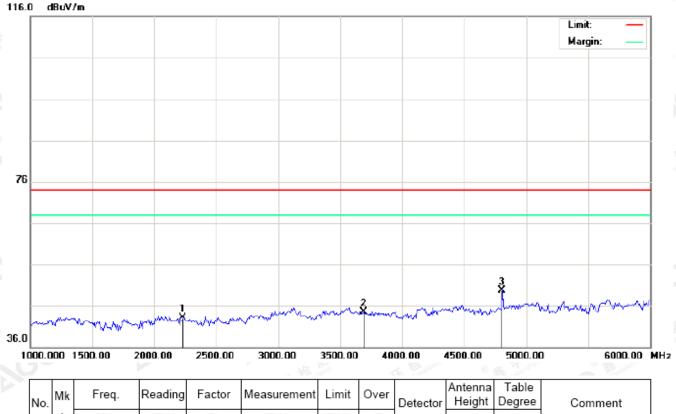
Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	78.58	10.32	88.90	94	-5.10	Horizontal
2402	77.93	10.32	88.25	94	-5.75	Vertical
2441	78.97	10.36	89.33	94	-4.67	Horizontal
2441	78.39	10.36	88.75	94	-5.25	Vertical
2480	79.32	10.41	89.73	94	-4.27	Horizontal
2480	78.86	10.41	89.27	94	-4.73	Vertical

Page 32 of 59

(Worst modulation: GFSK)

For Harmonics

RADIATED EMISSION TEST- (ABOVE 1GHz)-LOW CHANNEL-HORIZONTAL

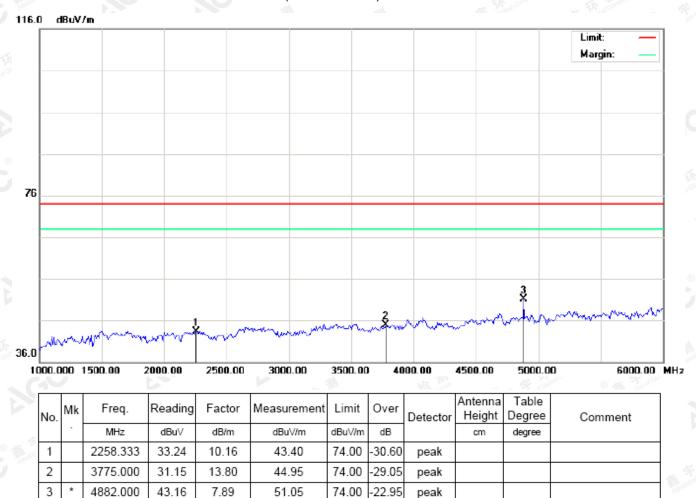

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBuV/m	dBu∀/m	dB		cm	degree	
1		2175.000	32.00	10.07	42.07	74.00	-31.93	peak			
2		3766.667	30.59	13.75	44.34	74.00	-29.66	peak			
3	*	4804.000	42.21	7.69	49.90	74.00	-24.10	peak			

RESULT: PASS

Page 33 of 59

RADIATED EMISSION TEST- (ABOVE 1GHz)-LOW CHANNEL- VERTICAL

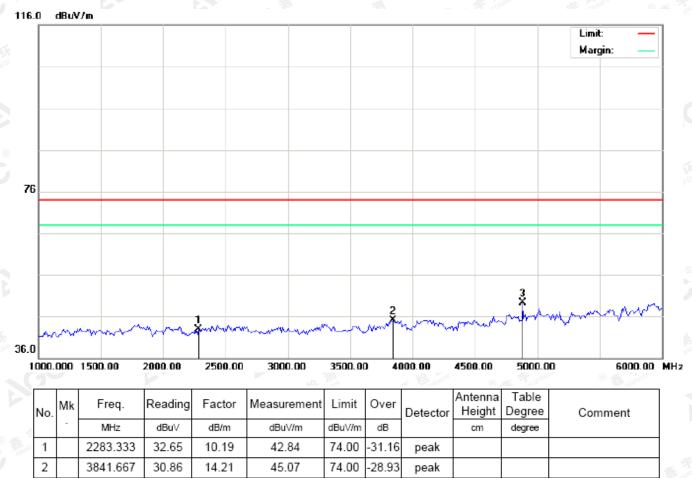
	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
ă		-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
a ³	1		2233.333	33.05	10.14	43.19	74.00	-30.81	peak			
	2		3691.667	31.21	13.29	44.50	74.00	-29.50	peak			
	3	*	4804.000	42.05	7.69	49.74	74.00	-24.26	peak			


RESULT: PASS

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 34 of 59

RADIATED EMISSION TEST- (ABOVE 1GHz)-MIDDLE CHANNEL-HORIZONTAL


RESULT: PASS

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 35 of 59

RADIATED EMISSION TEST- (ABOVE 1GHz)-MIDDLE CHANNEL- VERTICAL

74.00

-24.72

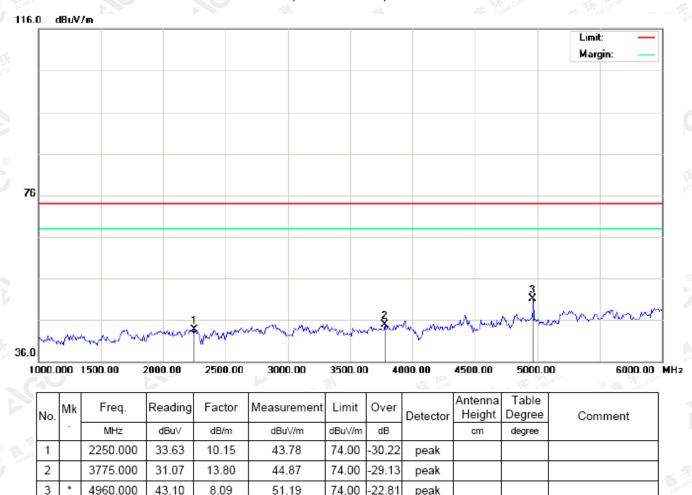
peak

RESULT: PASS

4882.000

41.39

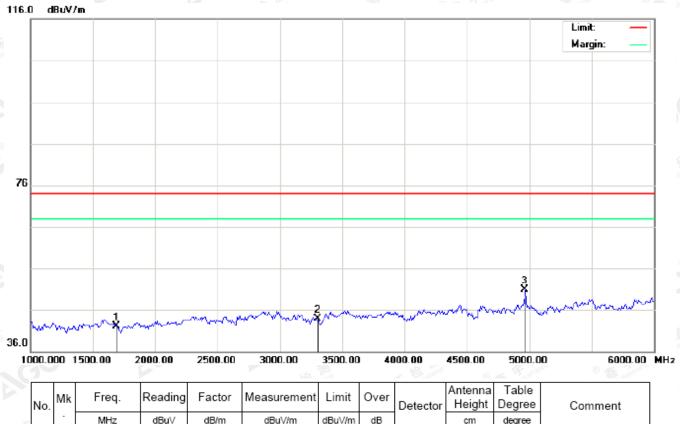
7.89


49.28

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 36 of 59

RADIATED EMISSION TEST- (ABOVE 1GHz)-HIGH CHANNEL-HORIZONTAL


RESULT: PASS

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Page 37 of 59

RADIATED EMISSION TEST- (ABOVE 1GHz)-HIGH CHANNEL- VERTICAL

	Vo.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
3		-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree]
ati	1		1691.667	35.55	6.64	42.19	74.00	-31.81	peak			
ſ	2		3300.000	31.97	11.92	43.89	74.00	-30.11	peak			
ſ	3	*	4960.000	42.91	8.09	51.00	74.00	-23.00	peak			

RESULT: PASS

Note: 6~25GHz at least have 20dB margin. No recording in the test report.

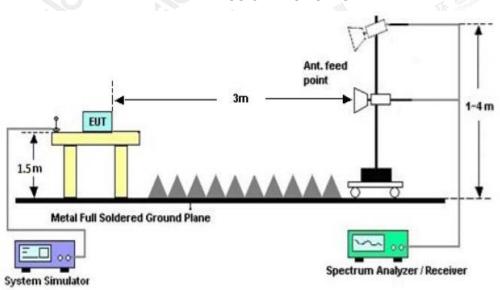
Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 38 of 59

10. BAND EDGE EMISSION


10.1. MEASUREMENT PROCEDURE

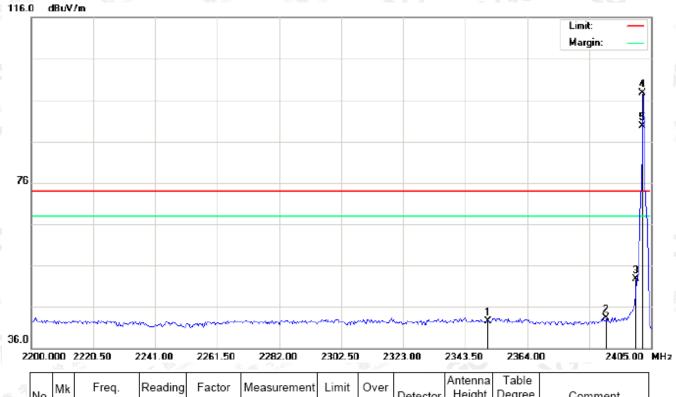
- 1. The EUT operates at hopping-off test mode. The lowest or highest channels are tested to verify the largest transmission and spurious emissions power at the continuous transmission mode.
- 2. Max hold the trace of the setup 1, and the EUT operates at hopping-on test mode to verify the largest spurious emissions power.
- 3. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission.

	Start frequenc	y(MHz)		Stop frequency(MHz)				
	2200	Kimplence	The Committee	® A station of G	2405	100		
(S) ### (1)	2478	3lobal C	Allestation of Glob	-,0 "	2500			

10.2 TEST SETUP

RADIATED EMISSION TEST SETUP

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.



age 39 of 59

10.3 RADIATED TEST RESULT

(Worst modulation: GFSK)

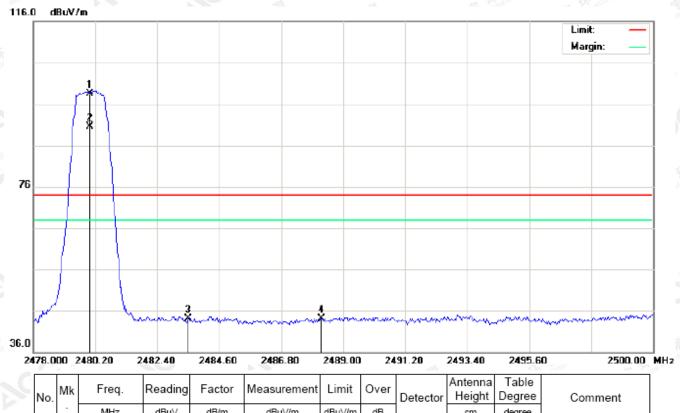
TEST PLOT OF BAND EDGE FOR LOW CHANNEL-Horizontal

No	. Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
2.	-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1		2351.017	32.27	10.27	42.54	74.00	-31.46	peak			
2		2390.000	33.00	10.31	43.31	74.00	-30.69	peak			
3		2400.000	42.47	10.32	52.79	74.00	-21.21	peak			
4	*	2402.000	87.42	10.32	97.74	74.00	23.74	peak			
5	Х	2402.000	79.48	10.32	89.80	74.00	15.80	AVG	100	154	

The results showed the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by (SC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago-gent.com.

Page 40 of 59

TEST PLOT OF BAND EDGE FOR LOW CHANNEL -Vertical


	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		-	MHz	dBu∀	dB/m	dBuV/m	dBu∀/m	dB		cm	degree	
2	1		2353.408	32.10	10.27	42.37	74.00	-31.63	peak			
	2		2390.000	31.21	10.31	41.52	74.00	-32.48	peak			
	3		2400.000	37.06	10.32	47.38	74.00	-26.62	peak			
	4	*	2402.000	86.98	10.32	97.30	74.00	23.30	peak			
	5	Х	2402.000	79.01	10.32	89.33	74.00	15.33	AVG	100	330	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 41 of 59

TEST PLOT OF BAND EDGE FOR HIGH CHANNEL -Horizontal

No.	lo.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
ŝ	1	*	2480.000	88.19	10.41	98.60	74.00	24.60	peak			
gr.	2	Х	2480.000	80.18	10.41	90.59	74.00	16.59	AVG	100	155	
Г	3		2483.500	33.69	10.41	44.10	74.00	-29.90	peak			
	4		2488.230	33.66	10.42	44.08	74.00	-29.92	peak			

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 42 of 59

TEST PLOT OF BAND EDGE FOR HIGH CHANNEL-Vertical

No.	Mk -	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1	*	2480.000	87.75	10.41	98.16	74.00	24.16	peak			
2	Х	2480.000	79.69	10.41	90.10	74.00	16.10	AVG	100	337	
3		2483.500	33.26	10.41	43.67	74.00	-30.33	peak			
4		2488.193	33.37	10.42	43.79	74.00	-30.21	peak			

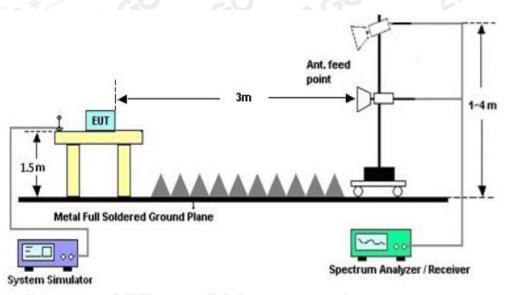
RESULT: PASS

Note: Factor=Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

Hopping on mode and Hopping off mode have been tested, but only worst case reported.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Page 43 of 59

11. 20DB BANDWIDTH

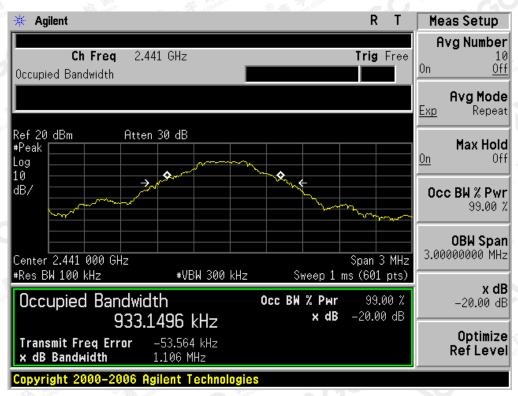
11.1. MEASUREMENT PROCEDURE

- 1. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 2. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ 3RBW; Sweep = auto; Detector function = peak
- 3. Set SPA Trace 1 Max hold, then View.

11.2. TEST SET-UP

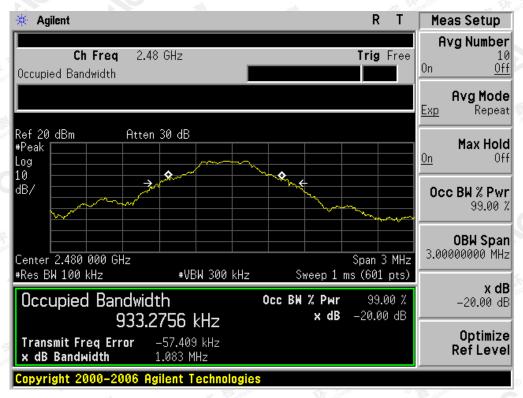
11.3. LIMITS AND MEASUREMENT RESULTS

		VD2 " -6	The salls	6101							
BLUET	BLUETOOTH 1MBPS LIMITS AND MEASUREMENT RESULT										
		Measurement Result									
Applicable Limits											
		99%OBW (MHz)	-20dB BW(MHz)	Result							
The State of the S	Low Channel	0.935	1.081	PASS							
N/A	Middle Channel	0.933	1.106	PASS							
100	High Channel	0.933	1.083	PASS							


The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

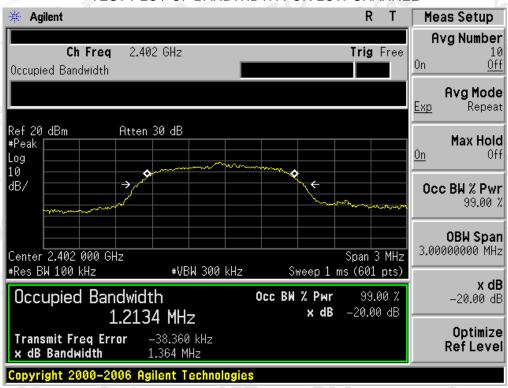
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL



The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

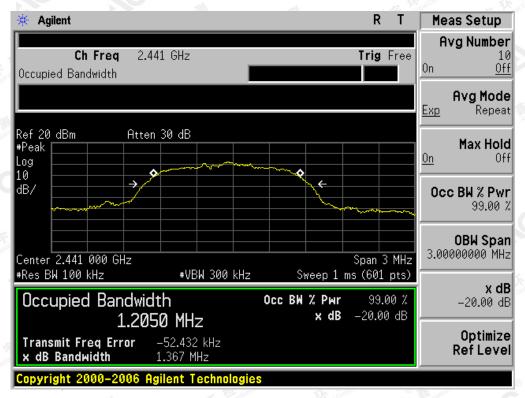
Page 45 of 59

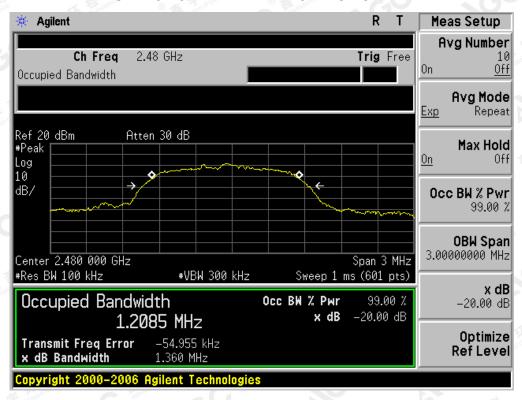
TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL


The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 46 of 59

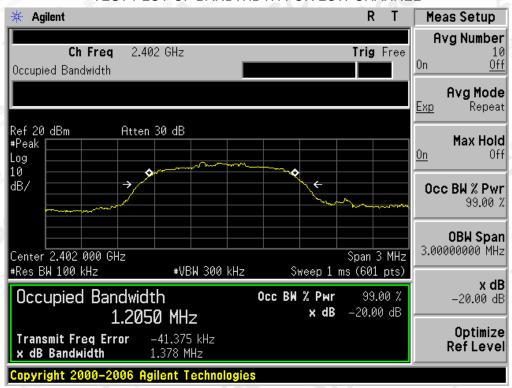
BLUETOOTH 2MBPS LIMITS AND MEASUREMENT RESULT								
	Measurement Result							
Applicable Limits		Dec. 16						
		99%OBW (MHz) -20dB BW(MHz)		Result				
T. Bandone T. Bandone	Low Channel	1.213	1.364	PASS				
N/A	Middle Channel	1.205	1.367	PASS				
CC "	High Channel	1.209	1.360	PASS				


TEST PLOT OF BANDWIDTH FOR LOW CHANNEL


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

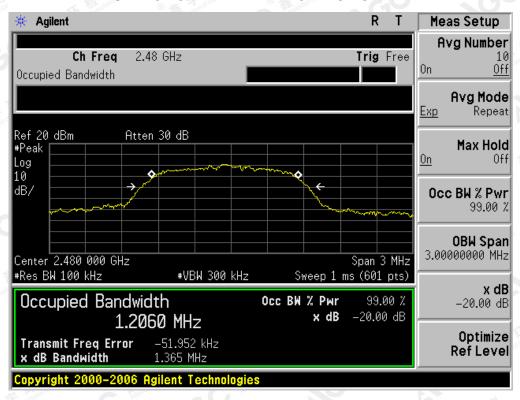
TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL


The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 48 of 59

BLUETOOTH 3MBPS LIMITS AND MEASUREMENT RESULT									
	Measurement Result								
Applicable Limits		Donalf.							
		99%OBW (MHz)	-20dB BW(MHz)	Result					
The fill of the fi	Low Channel	1.205	1.378	PASS					
N/A	Middle Channel	1.214	1.360	PASS					
CO "	High Channel	1.206	1.365	PASS					

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

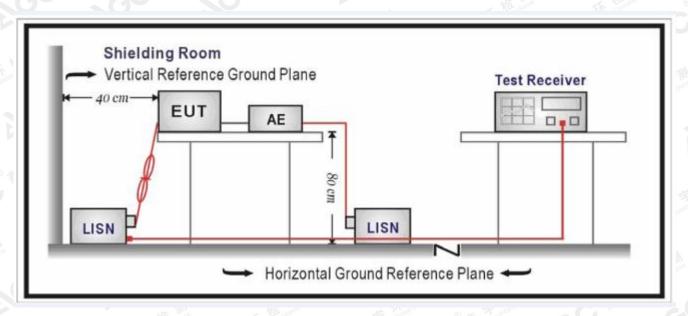
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 50 of 59

12. FCC LINE CONDUCTED EMISSION TEST


12.1. LIMITS OF LINE CONDUCTED EMISSION TEST

F	Maximum RF Line Voltage							
Frequency	Q.P.(dBuV)	Average(dBuV)						
150kHz~500kHz	66-56	56-46						
500kHz~5MHz	56	46/						
5MHz~30MHz	60	50						

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

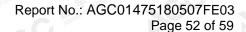
Page 51 of 59

12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by adapter or PC which received 120V/60Hzpower by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

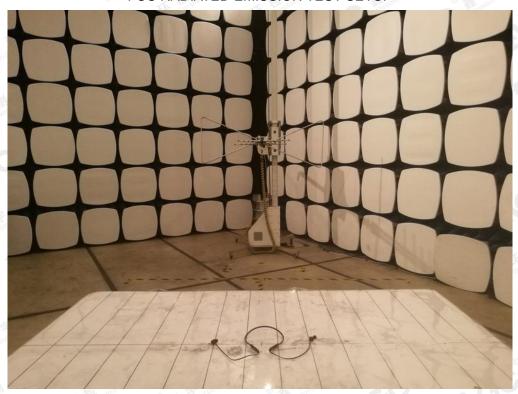
12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

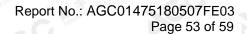

- EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- The test data of the worst case condition(s) was reported on the Summary Data page.

12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

N/A

Note: The BT function of EUT isn't work when charging.


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


APPENDIX A: PHOTOGRAPHS OF TEST SETUP

FCC RADIATED EMISSION TEST SETUP

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.goalt.com.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

APPENDIX B: PHOTOGRAPHS OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (CC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

FRONT VIEW OF EUT

BACK VIEW OF EUT

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

LEFT VIEW OF EUT

RIGHT VIEW OF EUT

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

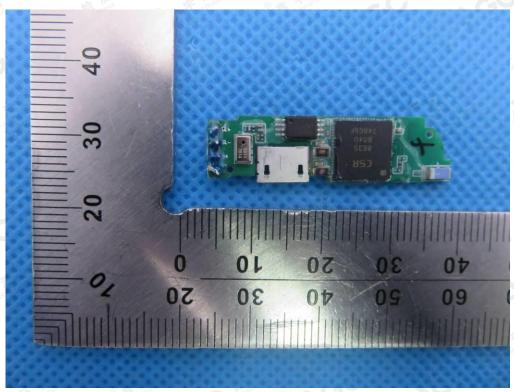
Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

VIEW OF EUT (PORT)

OPEN VIEW OF EUT

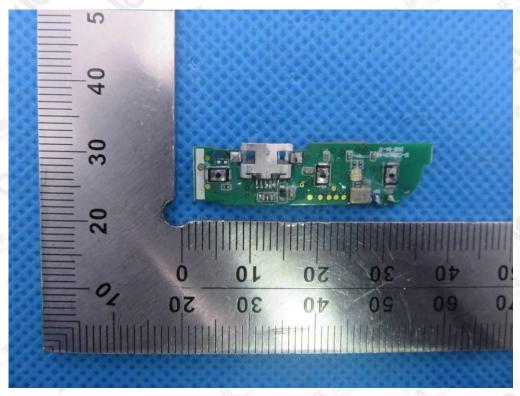
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

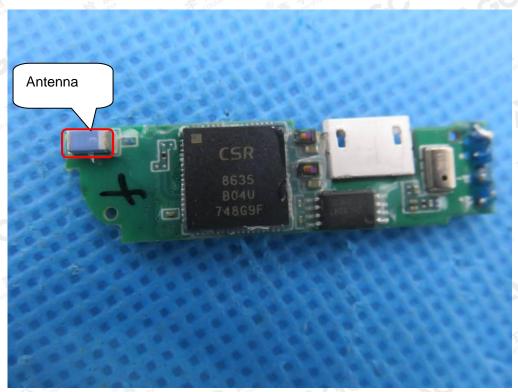

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

VIEW OF BATTERY

INTERNAL VIEW OF EUT-1


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a step www.agc.goalt.com.

Attestation of Global Compliance


Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F. , Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

INTERNAL VIEW OF EUT-2

INTERNAL VIEW OF EUT-3

----END OF REPORT----

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.