FCC Test Report

Report No.: AGC01576160805FE04

FCC ID : 2AF8P-D304

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: IP CAMERA

BRAND NAME : N/A

MODEL NAME : D304

CLIENT : Wuunet Technology Co., Ltd

DATE OF ISSUE : Sept.21, 2016

STANDARD(S) : FCC Part 15 Rules KDB 558074 v03r04

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC01576160805FE04 Page 2 of 54

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Sept.21, 2016	Valid	Original Report

TABLE OF CONTENTS

	VERIFICATION OF COMPLIANCE	
2.	GENERAL INFORMATION	
	2.2. TABLE OF CARRIER FREQUENCYS	
	2.3 RELATED SUBMITTAL(S)/GRANT(S)	
	2.4TEST METHODOLOGY	
	2.5 SPECIAL ACCESSORIES	
	2.6 EQUIPMENT MODIFICATIONS	
2	MEASUREMENT UNCERTAINTY	
4.	DESCRIPTION OF TEST MODES	8
5.	5.1 CONFIGURATION OF TESTED SYSTEM	9
	5.2 EQUIPMENT USED IN TESTED SYSTEM	
_	5.3. SUMMARY OF TEST RESULTS	
	PEAK OUTPUT POWER	
	7.1. MEASUREMENT PROCEDURE	
	7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	.11
	7.3. LIMITS AND MEASUREMENT RESULT	12
8.	6 DB BANDWIDTH	
	8.1. MEASUREMENT PROCEDURE	
	8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	8.3. LIMITS AND MEASUREMENT RESULTS	
9.	9.1. MEASUREMENT PROCEDURE	
	9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	9.3. MEASUREMENT EQUIPMENT USED	
	9.4. LIMITS AND MEASUREMENT RESULT	
1(D. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	22
	10.1 MEASUREMENT PROCEDURE	22
	10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	22
	10.3 MEASUREMENT EQUIPMENT USED	
	10.4 LIMITS AND MEASUREMENT RESULT	
11	I. RADIATED EMISSION	24
	11.1. MEASUREMENT PROCEDURE	
	11.2. TEST SETUP	25

Report No.: AGC01576160805FE04 Page 4 of 54

11.3. LIMITS AND MEASUREMENT RESULT	26
11.4. TEST RESULT	26
12. BAND EDGE EMISSION	32
12.1. MEASUREMENT PROCEDURE	32
12.2. TEST SET-UP	32
12.3. TEST RESULT	33
13. FCC LINE CONDUCTED EMISSION TEST	
13.1. LIMITS OF LINE CONDUCTED EMISSION TEST	41
13.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	41
13.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	42
13.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	42
13.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	43
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	45
APPENDIX B: PHOTOGRAPHS OF EUT	

Page 5 of 54

1. VERIFICATION OF COMPLIANCE

Applicant	Wuunet Technology Co., Ltd			
Address	7F, No. 209, Bldg. B, Sec. 1, Nangang Rd. Nangang Dist. Taipei City, Taiwan			
Manufacturer	Shenzhen Qiwo SmartLink Technology Ltd.			
Address	No.12F, Block A, Guanghao International Center, Meilong Rroad, Longhua District, Shenzhen City, China			
Product Designation	IP CAMERA			
Brand Name	N/A			
Test Model	D304			
Date of test	Sept.10, 2016 to Sept.21, 2016			
Deviation	None			
Condition of Test Sample	Normal			
Test Result	Pass			
Report Template	AGCRT-US-BLE/RF			

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

Reviewed by

Reviewed by

Rock Huang(Huang Dinglue)

Sept.24, 2016

Approved by

Solger Zhang(Zhang Hongyi)
Authorized Officer

Sept.24, 2016

Page 6 of 54

2.GENERAL INFORMATION

2.1PRODUCT DESCRIPTION

The EUT is "IP CAMERA" designed as a "Communication Device". It is designed by way of utilizing the GFSK technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz		
RF Output Power	4.075dBm(Max)		
Bluetooth Version	BT 4.0 incl. EDR/LE		
Modulation	GFSK		
Number of channels	40 Channel(37 Hopping Channel,3 advertising Channel)		
Antenna Designation	PIFA Antenna		
Antenna Gain	2dBi		
Hardware Version	D304		
Software Version	D304		
Power Supply	DC 5V by adapter		

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency		
	0	2402MHZ		
	1	2404MHZ		
2400~2483.5MHZ	:	:		
	38	2478 MHZ		
	39	2480 MHZ		

Page 7 of 54

2.3 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for **FCC ID**: 2AF8P-D304 filing to comply with Section 15.247of the FCC Part 15, Subpart C Rules.

2.4TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

Others testing (listed at item 5.3) was performed according to the procedures in FCC Part 15.247 rules KDB 558074 D01 DTS Meas Guidance v03r04.

2.5 SPECIAL ACCESSORIES

Refer to section 2.2.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 8 of 54

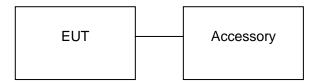
3. MEASUREMENT UNCERTAINTY

Conducted measurement: +/- 3.18dB Radiated measurement: +/- 3.91dB

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Low channel TX
2	Middle channel TX
3	High channel TX
4	Normal Operating (BT)

Note:


- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

Page 9 of 54

5. SYSTEM TEST CONFIGURATION

5.1 CONFIGURATION OF TESTED SYSTEM

Configuration:

5.2 EQUIPMENT USED IN TESTED SYSTEM

Item Equipment		Mfr/Brand	Model/Type No.	Remark
1	IP CAMERA	/	D304	EUT
2	Adapter	/	S0500100-3C-U1	Marketed
3	PHONE	/	PE-UL00	Support

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Output Power	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247	Conducted Spurious Emission	Compliant
§15.247	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Line Conduction Emission	Compliant

Report No.: AGC01576160805FE04 Page 10 of 54

6. TEST FACILITY

Site	Dongguan Precise Testing Service Co., Ltd.
Location	Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China.
FCC Registration No.	371540
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:2014.

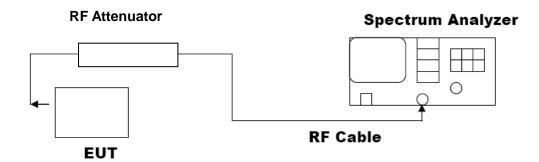
ALL TEST EQUIPMENT LIST

Radiated Emission Test Site						
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration	
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017	
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2017	
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017	
RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016	July 2, 2017	
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 3, 2016	June 2, 2017	
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A	
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 3, 2016	June 2, 2017	
Spectrum analyzer	Agilent	E4407B	MY46185649	June 3, 2016	June 2, 2017	
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	June 3, 2016	June 2, 2017	
Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 3, 2016	June 2, 2017	

Conducted Emission Test Site						
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration	
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017	
Artificial Mains Network	Narda	L2-16B	000WX31025	July 3, 2016	July 2, 2017	
Artificial Mains Network (AUX)	Narda	L2-16B	000WX31026	July 3, 2016	July 2, 2017	
RF Cable	SCHWARZBECK	AK9515E	96222	July 3, 2016	July 2, 2017	
Shielded Room	CHENGYU	843	PTS-002	June 3, 2016	June 2, 2017	

Page 11 of 54

7. PEAK OUTPUT POWER


7.1. MEASUREMENT PROCEDURE

For peak power test:

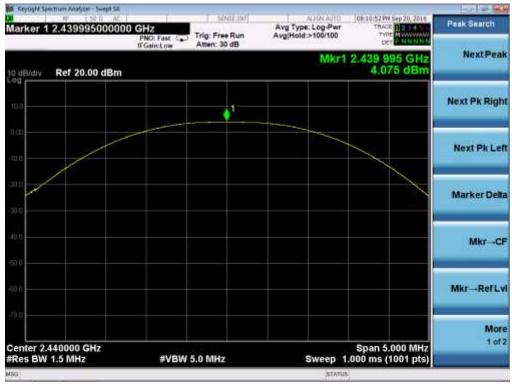
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. RBW ≥ DTS bandwidth
- 3. VBW≥3*RBW.
- 4. SPAN≥VBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) PEAK POWER TEST SETUP

Page 12 of 54

7.3. LIMITS AND MEASUREMENT RESULT


	PEAK OUTPUT POWER MEASUREMENT RESULT					
	FOR GFSK MOUDULAT	ION				
Frequency	Peak Power	Applicable Limits	Dage on Fail			
(GHz)	(dBm)	(dBm)	Pass or Fail			
2.402	4.050	30	Pass			
2.441	4.075	30	Pass			
2.480	2.640	30	Pass			

Report No.: AGC01576160805FE04 Page 13 of 54

Page 14 of 54

8. 6 DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

8.3. LIMITS AND MEASUREMENT RESULTS

LIMITS AND MEASUREMENT RESULT					
Applicable Limits					
Applicable Limits	Test Data (kHz) Criteria				
	Low Channel	708.6	PASS		
>500KHZ	Middle Channel	700.3	PASS		
	High Channel	688.5	PASS		

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Page 15 of 54

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 16 of 54

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

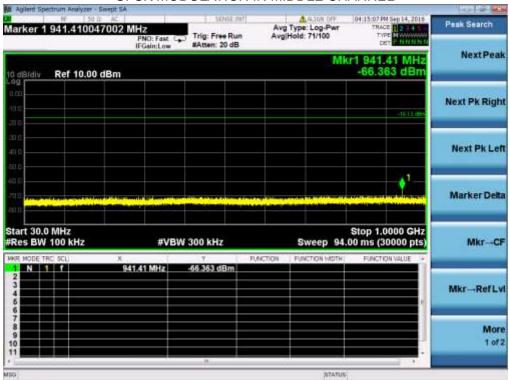
9.3. MEASUREMENT EQUIPMENT USED

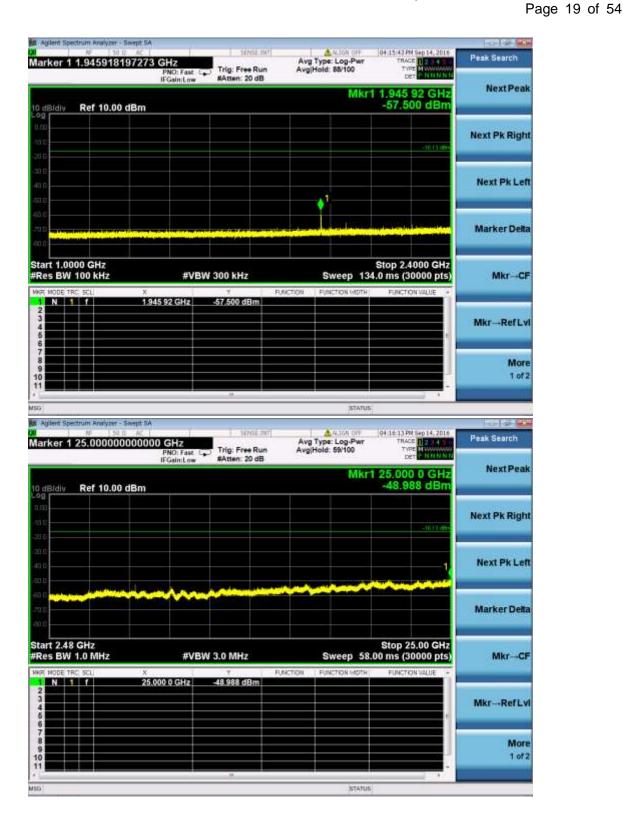
The same as described in section 6.

9.4. LIMITS AND MEASUREMENT RESULT

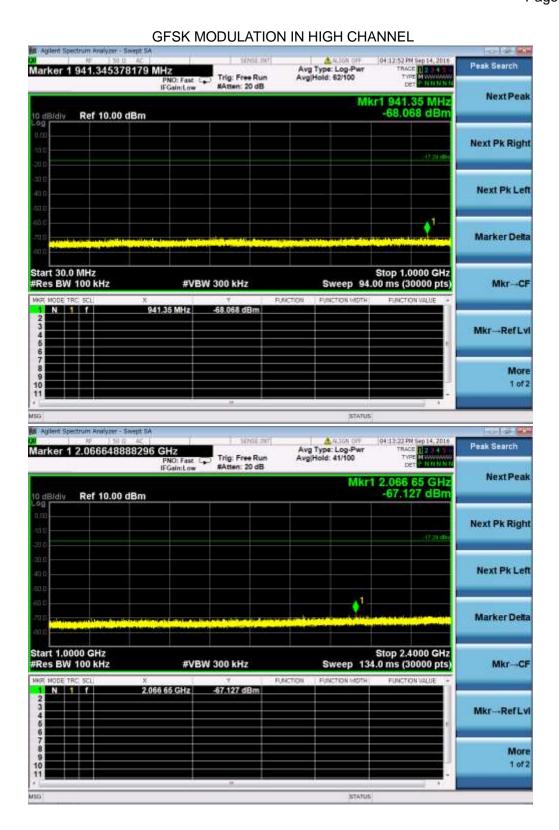
LIMITS AND MEASUREMENT RESULT					
Annilla abda di insita	Measurement Result				
Applicable Limits	Test Data	Criteria			
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power.	At least -20dBc than the reference level	PASS PASS			

Page 17 of 54

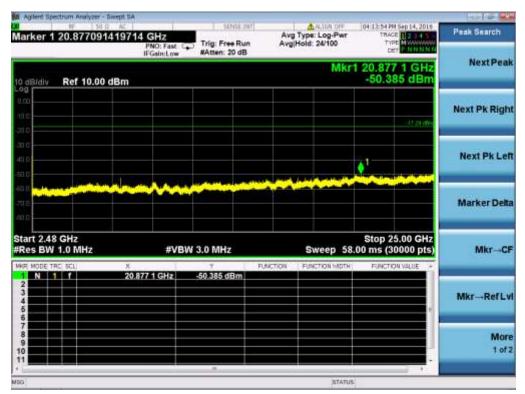

GFSK MODULATION IN LOW CHANNEL Avg Type: Log-Pwr Avg|Hold:>100/100 Peak Search Marker 1 941.345378179 MHz PNO: Fast (p) Trig: Free Run IFGsin:Low #Atten: 20 dB **NextPeak** Mkr1 941.35 MHz -65.954 dBm Ref 10.00 dBm **Next Pk Right** Next Pk Left Marker Delta Start 30.0 MHz #Res BW 100 kHz Stop 1.0000 GHz Sweep 94.00 ms (30000 pts) Mkr-CF **#VBW 300 kHz** -65.954 dBm Mkr---RefLvI More -cn-s-Agilent Spectrum Analyzer - Swept SA Avg Type: Log-Pwr Avg Hold: 39/100 Type: Log-Pwr Peak Search Marker 1 2.399253308444 GHz PNO: Fast (Trig: Free Run IFGain:Low #Atten: 20 dB **NextPeak** Mkr1 2.399 25 GHz -56,169 dBm Ref 10.00 dBm **Next Pk Right** Next Pk Left Marker Delta Start 1.0000 GHz #Res BW 100 kHz Stop 2.4000 GHz **#VBW 300 kHz** Sweep 134.0 ms (30000 pts) Mkr-CF **FUNCTION** 2.399 25 GHz Mkr-RefLvI More 1 of 2


MIG

Report No.: AGC01576160805FE04 Page 18 of 54



GFSK MODULATION IN MIDDLE CHANNEL



Page 20 of 54

Page 21 of 54

Note: The 100kHz RBW used in the conducted spurious test from 2.4835GHz to 25GHz may result in long measuring times, To avoid such long measuring times, the 1MHz RBW can be used for pre-test. If the emission level exceeded the limit at one or more frequencies, the 100kHz RBW would be used for final test at the special frequency.

Page 22 of 54

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of PKPSD in the KDB 558074 item 10.2 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 7.2.

10.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.

10.4 LIMITS AND MEASUREMENT RESULT

Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low Channel	-9.243	8	Pass
Middle Channel	-9.481	8	Pass
High Channel	-10.562	8	Pass

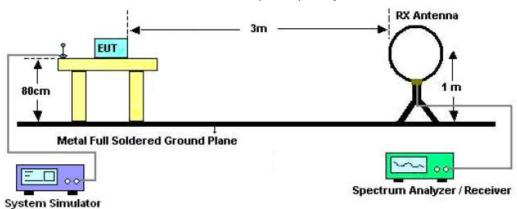
Page 23 of 54

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

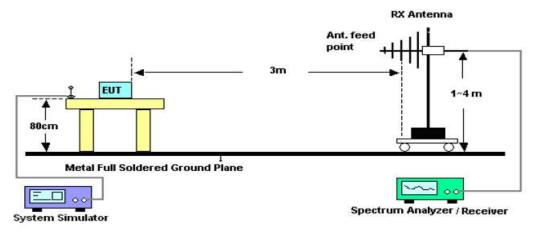
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

Page 24 of 54

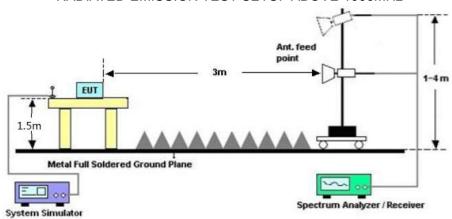
11. RADIATED EMISSION


11.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


Page 25 of 54

11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 26 of 54

11.3. LIMITS AND MEASUREMENT RESULT

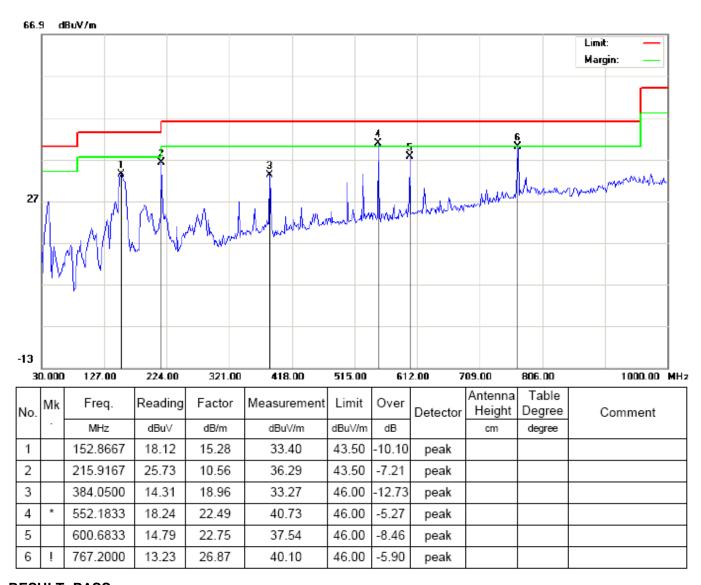
15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

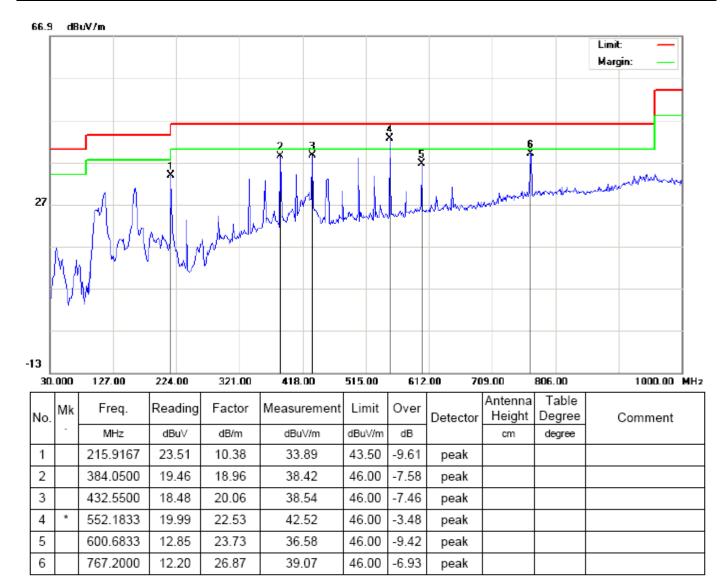
11.4. TEST RESULT


RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

Page 27 of 54

RADIATED EMISSION BELOW 1GHZ


EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Horizontal

RESULT: PASS

Page 28 of 54

EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Vertical

RESULT: PASS Note:

- 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.
- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All test modes had been pre-tested. The mode 4 is the worst case and recorded in the report.

Page 29 of 54

EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.035	48.65	3.74	52.39	74	-21.61	peak
4804.035	42.77	3.74	46.51	54	-7.49	AVG
7206.021	43.34	8.14	51.48	74	-22.52	peak
7206.021	35.21	8.14	43.35	54	-10.65	AVG
Remark:						
Factor = Anten	Factor = Antenna Factor + Cable Loss – Pre-amplifier.					

EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4804.071	46.33	3.74	50.07	74	-23.93	peak	
4804.071	40.75	3.74	44.49	54	-9.51	AVG	
7206.033	41.53	8.14	49.67	74	-24.33	peak	
7206.033	35.1	8.14	43.24	54	-10.76	AVG	
Remark:							
Factor = Antenna Factor + Cable Loss – Pre-amplifier							

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 30 of 54

EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4880.034	47.55	3.76	51.31	74	-22.69	peak
4880.034	42.16	3.76	45.92	54	-8.08	AVG
7320.055	42.78	8.17	50.95	74	-23.05	peak
7320.055	36.5	8.17	44.67	54	-9.33	AVG
Remark:						
Factor = Anten	Factor = Antenna Factor + Cable Loss – Pre-amplifier.					

EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4880.031	45.24	3.76	49	74	-25	peak
4880.031	39.95	3.76	43.71	54	-10.29	AVG
7320.045	41.55	8.17	49.72	74	-24.28	peak
7320.045	36.34	8.17	44.51	54	-9.49	AVG
Remark:						
actor = Anter	nna Factor + Cable	Loss – Pre-	amplifier.			

Page 31 of 54

EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.012	46.77	3.83	50.6	74	-23.4	peak
4960.012	40.2	3.83	44.03	54	-9.97	AVG
7440.054	44.52	8.21	52.73	74	-21.27	peak
7440.054	38.4	8.21	46.61	54	-7.39	AVG
Remark:						
Factor = Anten	Factor = Antenna Factor + Cable Loss – Pre-amplifier.					

EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.550	44.89	3.83	48.72	74	-25.28	peak
4960.550	38.7	3.83	42.53	54	-11.47	AVG
7440.045	40.87	8.21	49.08	74	-24.92	peak
7440.045	33.98	8.21	42.19	54	-11.81	AVG
Remark:						
actor = Anter	nna Factor + Cabl	e Loss – Pre-	amplifier.			

RESULT: PASS

Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report.

Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been pre-tested. The GFSK modulation is the worst case and recorded in the report.

Page 32 of 54

12. BAND EDGE EMISSION

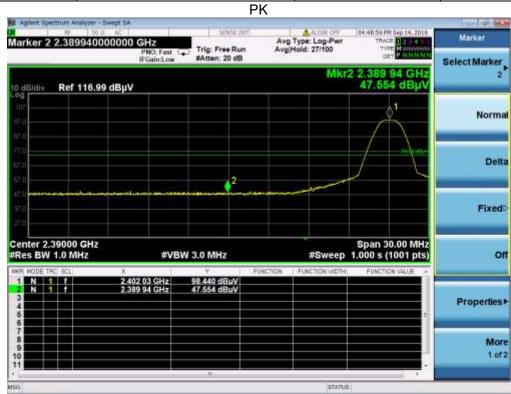
12.1. MEASUREMENT PROCEDURE

Radiated restricted band edge measurements

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting

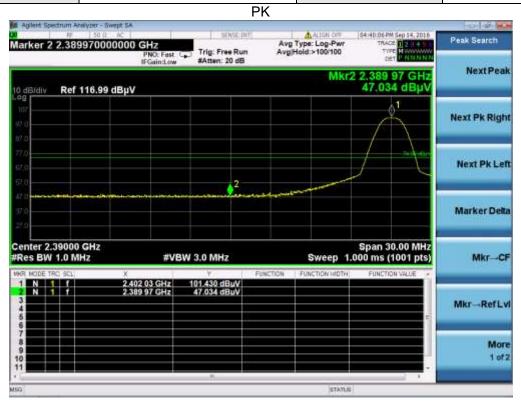
12.2. TEST SET-UP

same as 11.2

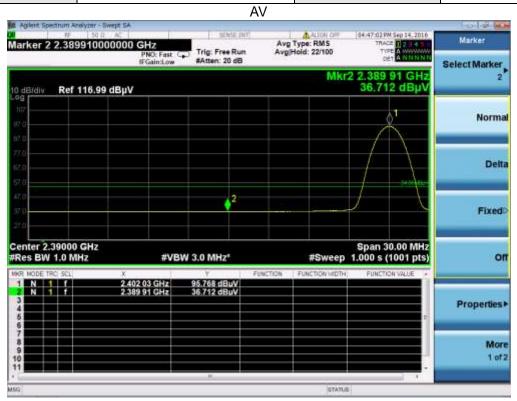

Note:

- 1. Factor=Antenna Factor + Cable loss Amplifier gain. Field Strength=Factor + Reading level
- 2. The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

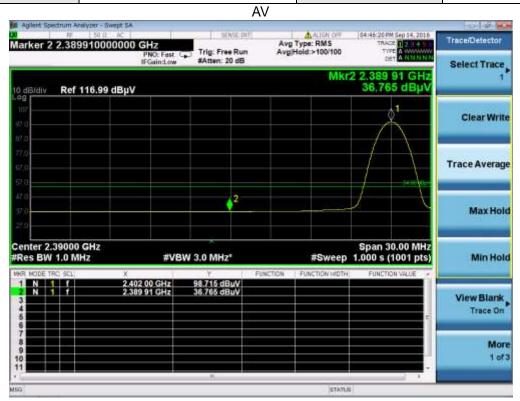
Page 33 of 54


12.3. TEST RESULT

EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal


Page 34 of 54

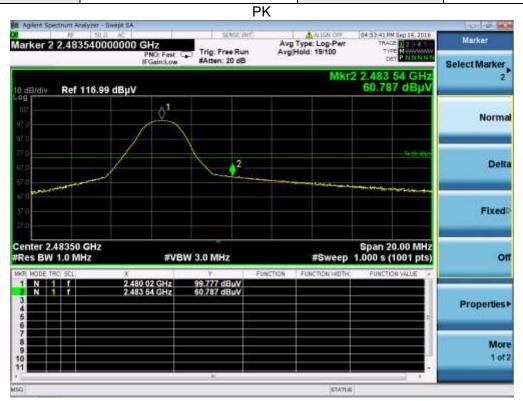
EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical


Page 35 of 54

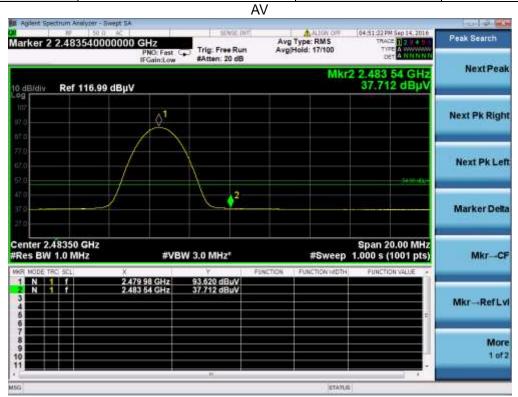
EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal


Page 36 of 54

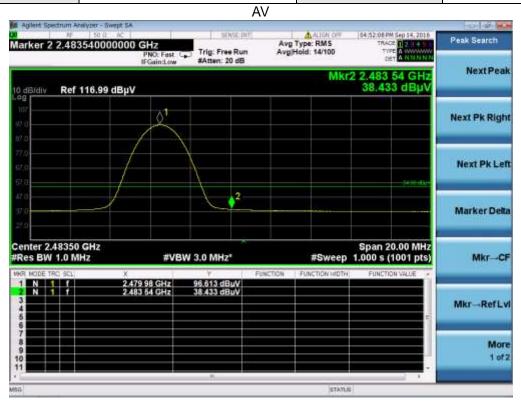
EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical


Report No.: AGC01576160805FE04 Page 37 of 54

EUT	IP CAMERA	Model Name	D304	
Temperature	25° C	Relative Humidity	55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage	
Test Mode	Mode 3	Antenna	Horizontal	


Page 38 of 54

EUT	IP CAMERA	Model Name	D304	
Temperature	25° C	Relative Humidity	55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage	
Test Mode	Mode 3	Antenna	Vertical	


Page 39 of 54

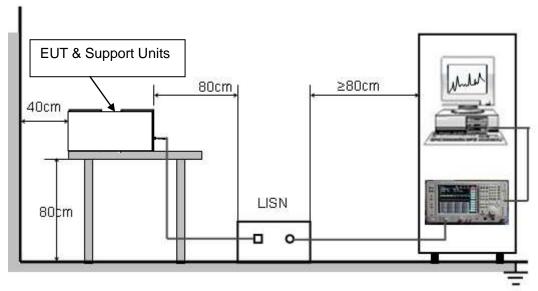
EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Page 40 of 54

EUT	IP CAMERA	Model Name	D304
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Page 41 of 54

13. FCC LINE CONDUCTED EMISSION TEST


13.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Francis	Maximum RF Line Voltage						
Frequency	Q.P.(dBuV)	Average(dBuV)					
150kHz~500kHz	66-56	56-46					
500kHz~5MHz	56	46					
5MHz~30MHz	60	50					

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

13.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

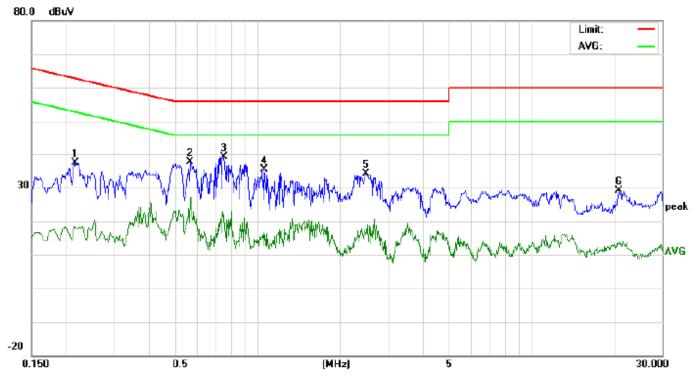
Page 42 of 54

13.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received charging voltage by adapter which received 120V/60Hzpower by a LISN..
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

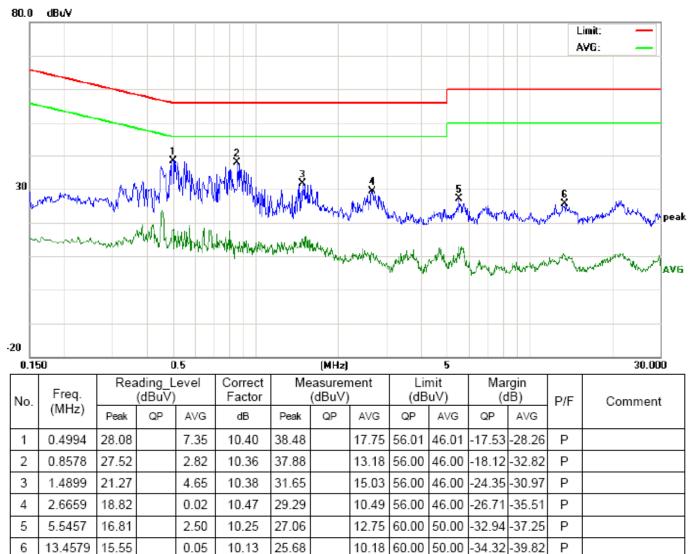
Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.


13.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

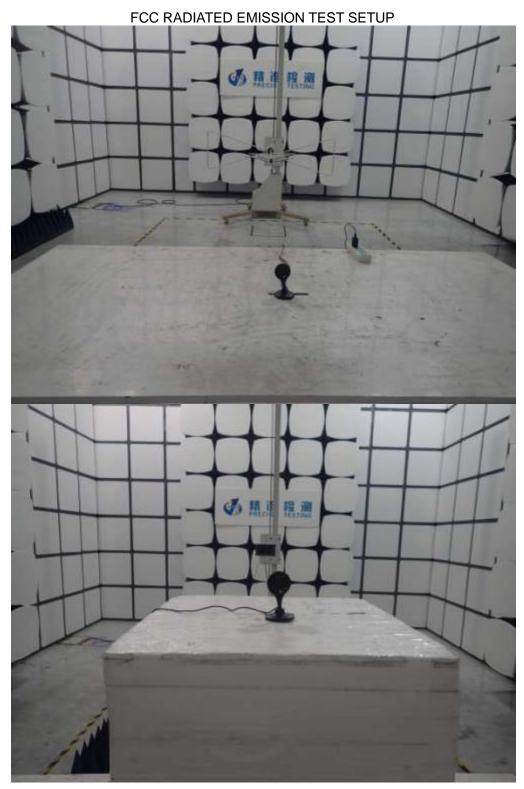
- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

Page 43 of 54

13.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST


LINE CONDUCTED EMISSION TEST LINE 1-L

No. Freq.		Reading_Level (dBuV)			Correct Measurement Factor (dBuV)		Limit (dBuV)		Margin (dB)		P/F	Comment		
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.2162	27.13		7.93	10.23	37.36		18.16	62.96	52.96	-25.60	-34.80	Р	
2	0.5695	27.33		16.73	10.34	37.67		27.07	56.00	46.00	-18.33	-18.93	Р	
3	0.7580	28.74		11.49	10.31	39.05		21.80	56.00	46.00	-16.95	-24.20	Р	
4	1.0620	24.98		5.73	10.37	35.35		16.10	56.00	46.00	-20.65	-29.90	Р	
5	2.4940	23.63		5.62	10.43	34.06		16.05	56.00	46.00	-21.94	-29.95	Р	
6	20.8140	19.12		3.49	10.13	29.25		13.62	60.00	50.00	-30.75	-36.38	Р	

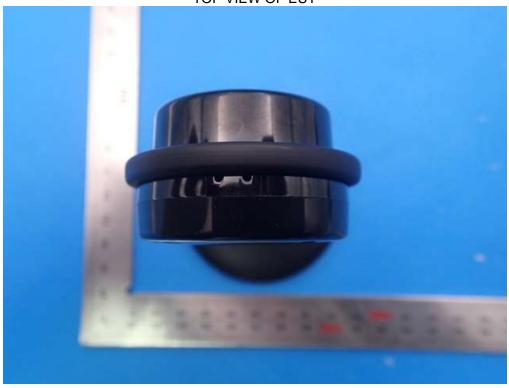

Page 44 of 54

Line Conducted Emission Test Line 2-N

Report No.: AGC01576160805FE04 Page 45 of 54

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Report No.: AGC01576160805FE04 Page 46 of 54


Page 47 of 54

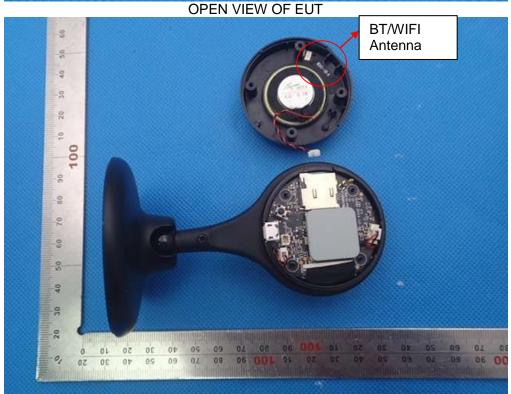
APPENDIX B: PHOTOGRAPHS OF EUT

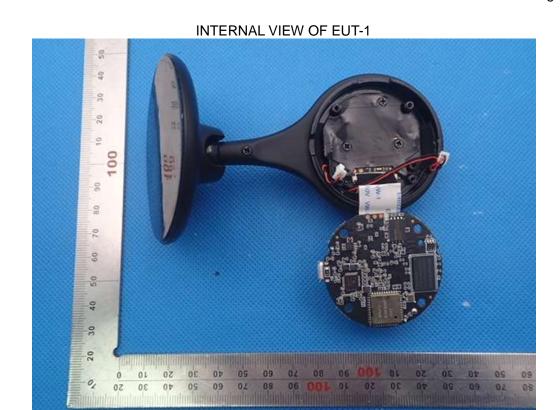
ALL VIEW OF EUT

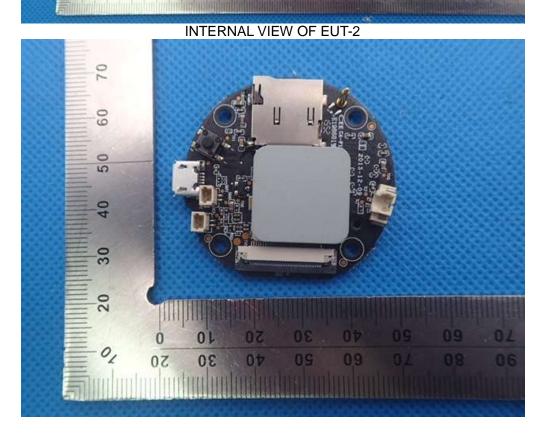
TOP VIEW OF EUT

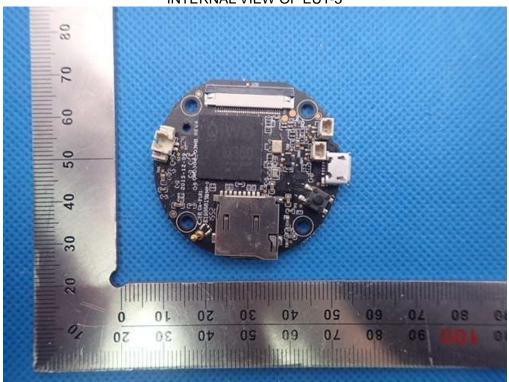
Report No.: AGC01576160805FE04 Page 48 of 54

Report No.: AGC01576160805FE04 Page 49 of 54

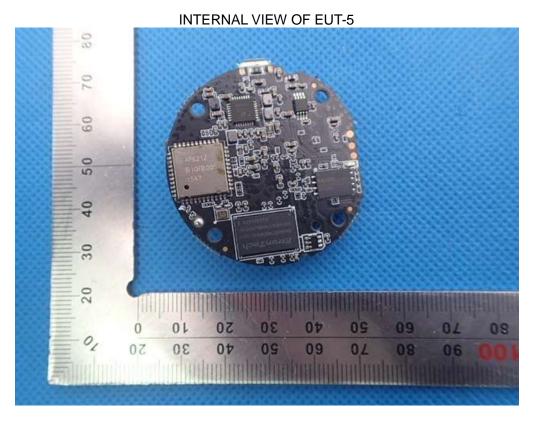


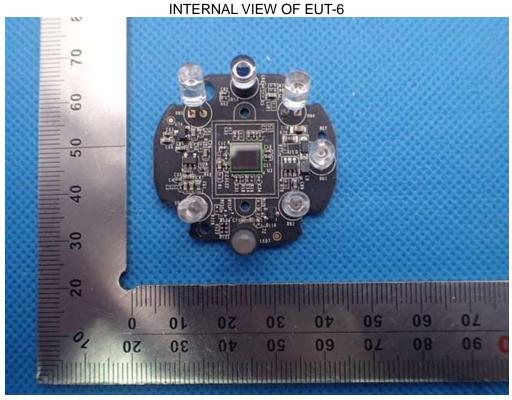

Page 50 of 54



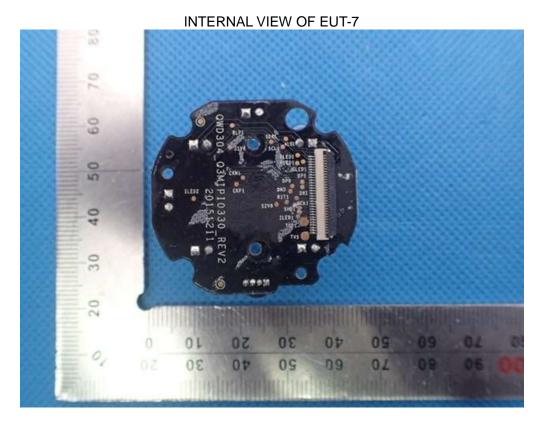

Report No.: AGC01576160805FE04 Page 51 of 54

Page 52 of 54





INTERNAL VIEW OF EUT-4



Page 53 of 54

Page 54 of 54

----END OF REPORT----