

FCC RADIO TEST REPORT

FCC ID	:	2AF77-H2221540
Equipment	:	Communication Device
Brand Name	:	blink
Model Name	:	BSM00500U
Applicant	:	Immedia Semiconductor LLC.
		100 Riverpark Drive Suite 125, North Reading, MA, United States 01864
Manufacturer	:	Immedia Semiconductor LLC.
		100 Riverpark Drive Suite 125, North
		Reading, MA, United States 01864
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Aug. 07, 2023 and testing was performed from Oct. 09, 2023 to Jan. 09, 2024. We, Sporton International (USA) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International (USA) Inc., the test report shall not be reproduced except in full.

Ni Kao

Approved by: Neil Kao Sporton International (USA) Inc.

1175 Montague Expressway, Milpitas, CA 95035

Page Number: 1 of 36Issue Date: Mar. 11, 2024Report Version: 02

Table of Contents

His	tory o	f this test report	.3
Sur	nmary	of Test Result	.4
1	Gene	ral Description	.5
	1.1	Product Feature of Equipment Under Test	.5
	1.2	Modification of EUT	.5
	1.3	Testing Location	.5
	1.4	Applicable Standards	.5
2	Test	Configuration of Equipment Under Test	.6
	2.1	Carrier Frequency Channel	.6
	2.2	Test Mode	.7
	2.3	Connection Diagram of Test System	.8
	2.4	Support Unit used in test configuration and system	.8
	2.5	EUT Operation Test Setup	.9
	2.6	Measurement Results Explanation Example	.9
3	Test	Result	10
	3.1	6dB and 99% Bandwidth Measurement	10
	3.2	Output Power Measurement	15
	3.3	Power Spectral Density Measurement	16
	3.4	Conducted Band Edges and Spurious Emission Measurement	21
	3.5	Radiated Band Edges and Spurious Emission Measurement	27
	3.6	AC Conducted Emission Measurement	31
	3.7	Antenna Requirements	33
4	List o	of Measuring Equipment	34
5	Meas	urement Uncertainty	36
Арр	pendix	A. Conducted Test Results	
Арр	pendix	B. AC Conducted Emission Test Result	
Арр	pendix	C. Radiated Spurious Emission	
Арр	pendix	D. Radiated Spurious Emission Plots	
A		E. Dutu Ousla Blata	

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR230915002A	01	Initial issue of report	Mar. 08, 2024
FR230915002A	02	Revise Product Feature of Equipment Under Test This report is an updated version, replacing the report issued on Mar. 08, 2024.	Mar. 11, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth Reporting only		-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power Pass		-
3.3	15.247(e)	Power Spectral Density Pass		-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission Pass		-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	0.30 dB under the limit at 2516.00 MHz
3.6	15.207	AC Conducted Emission	AC Conducted Emission Pass	
3.7	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature						
General Specs						
Bluetooth-LE, Wi-Fi 2.4GHz 802.11b/g/n, SRD and 802.11ah.						
Antenna Type						
WLAN: Stamped Metal Antenna						
Bluetooth: Stamped Metal Antenna						
SRD: Stamped Metal Antenna						
802.11ah: Stamped Metal Antenna						
Antenna information						
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	4.2				

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International (USA) Inc.			
Test Site Location	I175 Montague Expressway, Milpitas, CA 95035 FEL : 408 9043300			
Test Site No.	Sporton Site No.			
Test Sile No.	03CH02-CA, CO01-CA, TH01-CA			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: US1250

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

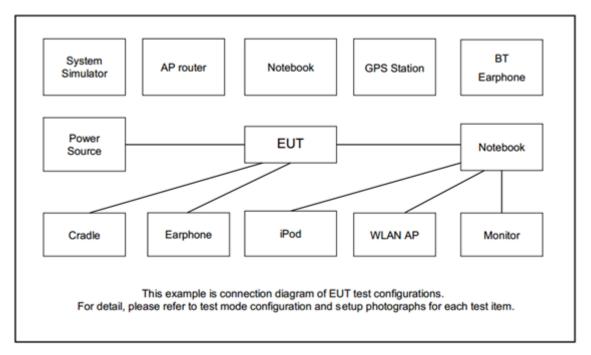
- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	(MHz)Channel((2402212240422224062322408242241025224122622414272241628224203022422312242432224253322426332243035224323622436382	2444
	1	2404	22	2446
	Channel (MHz) Channel 0 2402 21 1 2404 22 2 2406 23 3 2408 24 4 2410 25 5 2412 26 6 2414 27 7 2416 28 8 2418 29 9 2420 30 10 2422 31 11 2424 32 12 2426 33 13 2428 34 14 2430 35 15 2432 36 16 2434 37 17 2436 38 18 2438 39	2448		
	3	Channel(MHz)Channel(MHz)024022124441240422244622406232448324082424504241025245252412262454624142724567241628246092420302462102422312464112424322466122426332468132428342470142430352472152432362474162434372476182438392480192440	2450	
	4		2452	
	5		2454	
Prequency Band Channel (MHz) Cha 0 2402 2 2 1 2404 2 2 2 2406 2 2 3 2408 2 2 4 2410 2 2 6 2412 2 2 6 2414 2 2 7 2416 2 3 9 2420 3 3 10 2422 3 3 11 2424 3 3 12 2426 3 3 13 2428 3 3 14 2430 3 3 15 2432 3 3 16 2434 3 3 17 2436 3 3 18 2438 3 3	27	2456		
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	(MHz) (MHz) (MHz) 0 2402 21 2444 1 2404 22 2446 2 2406 23 2448 3 2408 24 2450 4 2410 25 2452 5 2412 26 2454 6 2414 27 2456 7 2416 28 2458 8 2418 29 2460 9 2420 30 2462 10 2422 31 2464 11 2424 32 2466 12 2426 33 2468 13 2428 34 2470 14 2430 35 2472 15 2432 36 2474 16 2434 37 2476 17 2436 38 2478 18 2438 39 2480 1	2464		
2400-2483.5 MHz	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	10 2422 31 2464 11 2424 32 2466 12 2426 33 2466 13 2428 34 2470 14 2430 35 2472	2472		
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases						
Test Item	Data Rate / Modulation						
	Bluetooth – LE / GFSK						
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps						
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps						
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps						
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps						
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps						
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps						
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps						
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps						
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps						
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps						
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps						
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps						
AC Conducted	Mode 1 - Divetesth LE Tx - LICD Cable (Charging from Adoptor)						
Emission	Mode 1: Bluetooth-LE Tx + USB Cable (Charging from Adapter)						
	liation spurious emission, the modulation and the data rate picked for testing are						
determ	ined by the Max. RF conducted power.						

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Adapter	Amazon	FANA7R	N/A	N/A	N/A
2.	USB Cable	Amazon	N/A	N/A	N/A	N/A

TEL : 408 9043300	Page Number	: 8 of 36
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Issue Date	: Mar. 11, 2024
	Report Version	: 02

2.5 EUT Operation Test Setup

Writing commands onto the SD card, inserting the SD card into the EUT, and upon powering up, the EUT will automatically transmit signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

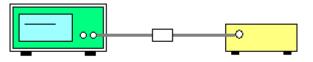
3 **Test Result**

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

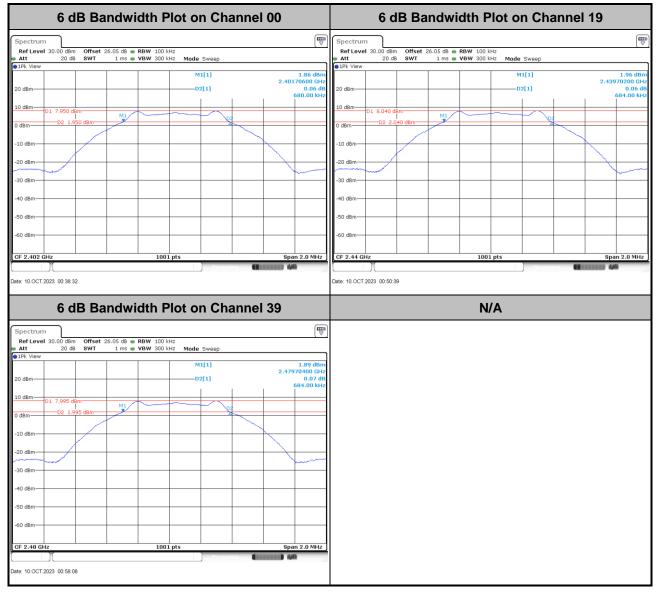
3.1.3 Test Procedures

- The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW). 1.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- Set the maximum power setting and enable the EUT to transmit continuously. 3.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 5. 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

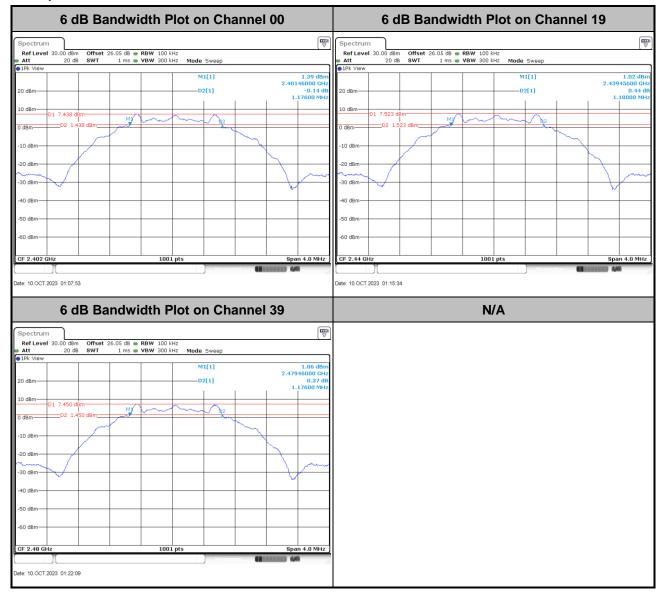
3.1.4 Test Setup

TEL: 408 9043300

EUT

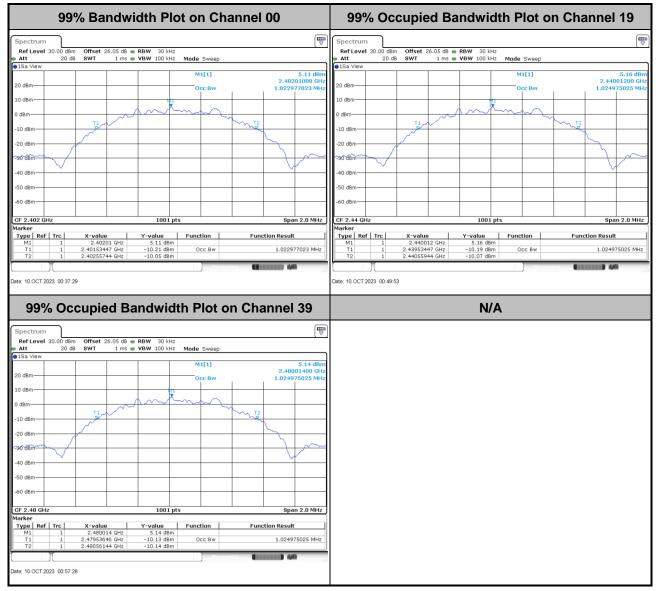

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth


Please refer to Appendix A.

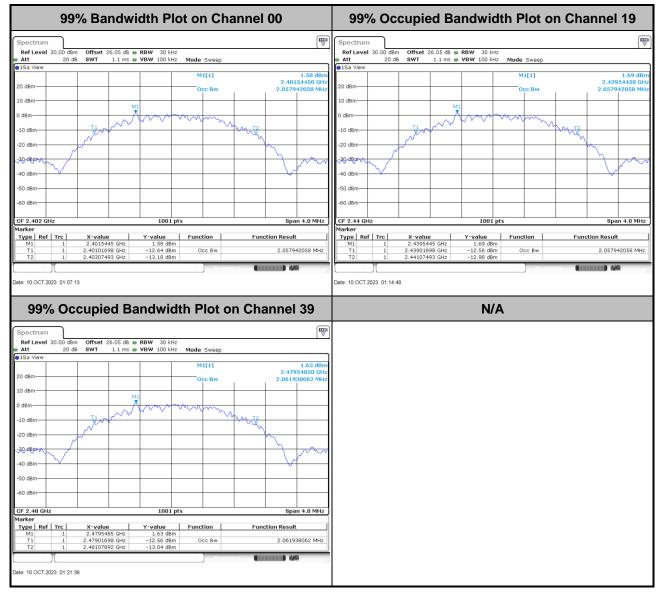
<1Mbps>

<2Mbps>



3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

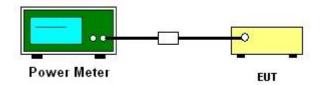
<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

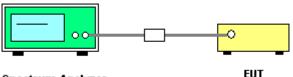
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

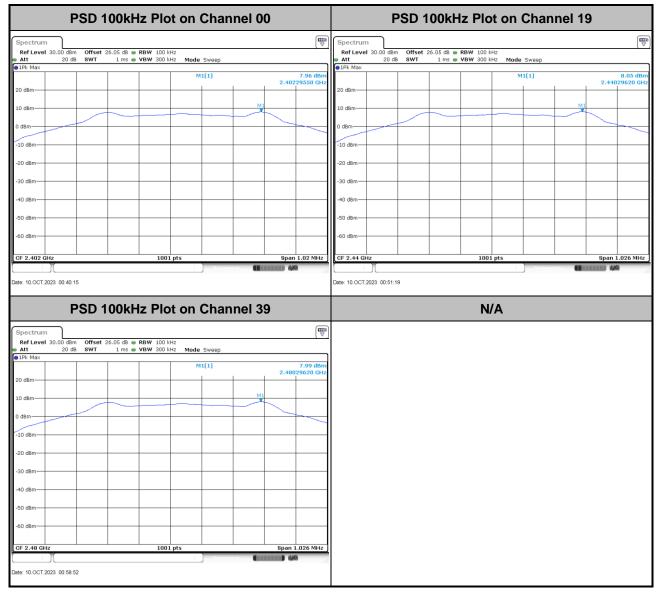
Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer


3.3.5 Test Result of Power Spectral Density

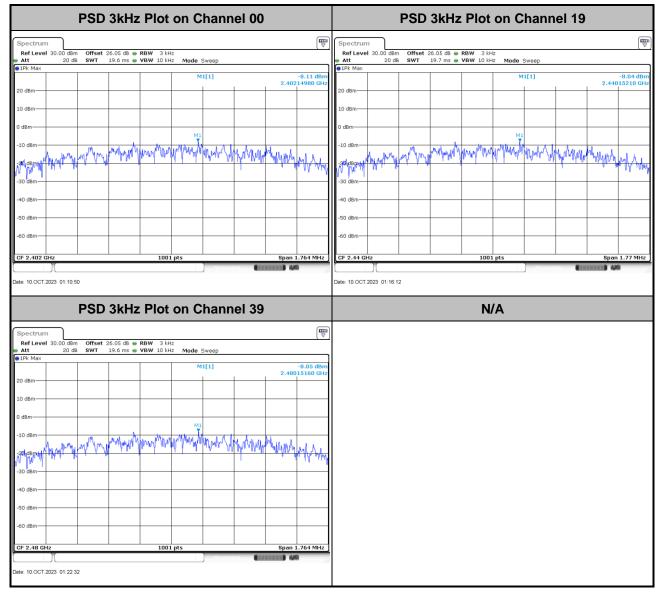
Please refer to Appendix A.

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

<1Mbps>

<2Mbps>

PSD 100kHz Plot on Channel 00				PSD 100	Hz Plot on Cł	nannel 19
Spectrum Ref Level 30.00 dBm Offse Att 20 dB SWT	t 26.05 dB • RBW 100 kHz		Spectrum Ref Level 30.	00 dBm Offset 26.05 dB 20 dB SWT 1 ms	3 ● RBW 100 kHz	(m)
Att 20 dB SWT	1 ms VBW 300 kHz Mode	Sweep 1[1] 7.43 (2.40154710	1Pk Max	20 08 5W1 1 ms	s VBW 300 kHz Mode Swe M1[1]	
20 dBm		2.40134710	20 dBm			2.43934300 GH2
10 dBm			10 dBm	MI		
0 dBm -10 dBm			0 dBm			
-20 dBm			-20 dBm			
-30 dBm			-30 dBm			
-40 dBm			-40 dBm			
-50 dBm			-50 dBm			
-60 dBm			-60 dBm			
CF 2.402 GHz	1001 pts	Span 1.764 M	Hz CF 2.44 GHz		1001 pts	Span 1.77 MHz
Date: 10.OCT.2023 01:08:44			Date: 10.0CT.2023	01:16:40		
PSD	100kHz Plot on	Channel 39			N/A	
Spectrum			₿▽			
Ref Level 30.00 dBm Offse Att 20 dB SWT 1Pk Max	t 26.05 dB RBW 100 kHz 1 ms VBW 300 kHz Mode	Sweep	_			
20 dBm-	IN	1[1] 7.46 c 2.47954890	Bm 3Hz			
10 dBm			_			
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm			-11			
-40 dBm						
-60 dBm			_			
CF 2.48 GHz	1001 pts	Span 1.764 M	Hz			
Date: 10.0CT.2023 01:23:02		Measuring.	li			


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

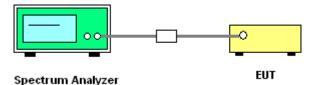
<1Mbps>

<2Mbps>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.

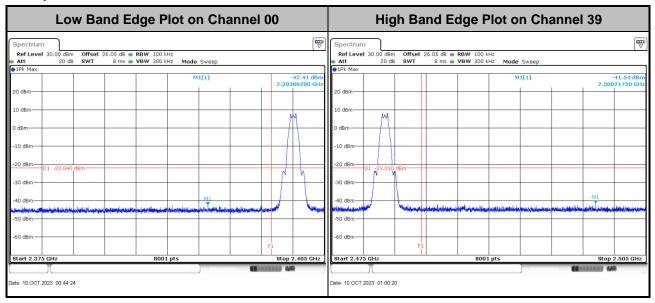

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

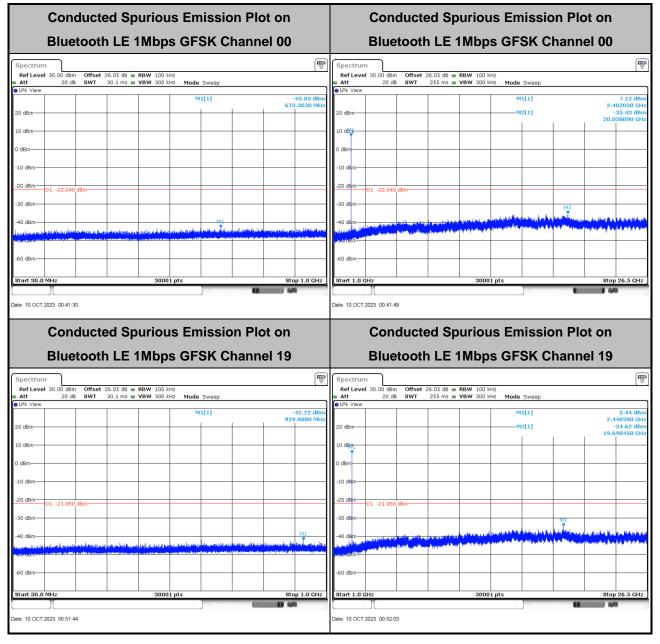


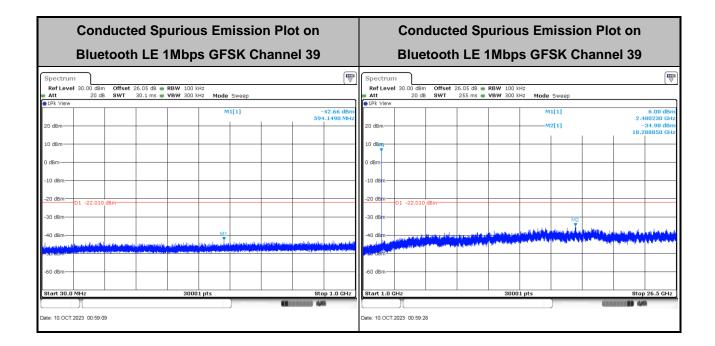
3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

<1Mbps>

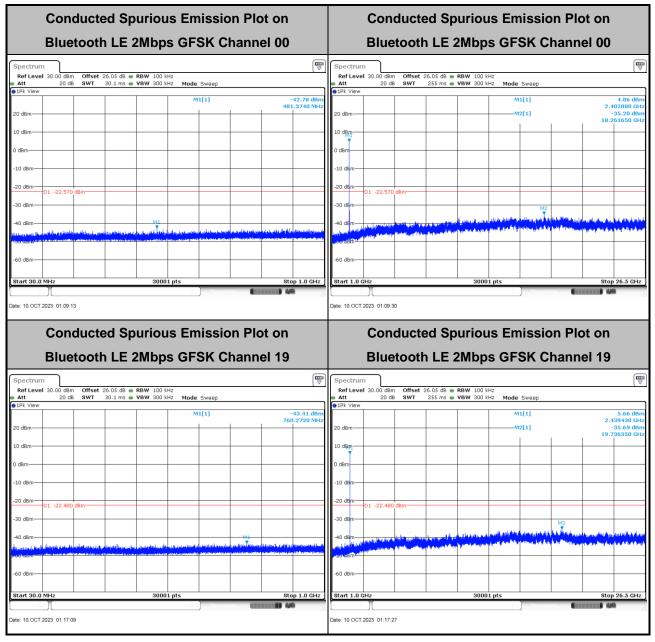
<2Mbps>

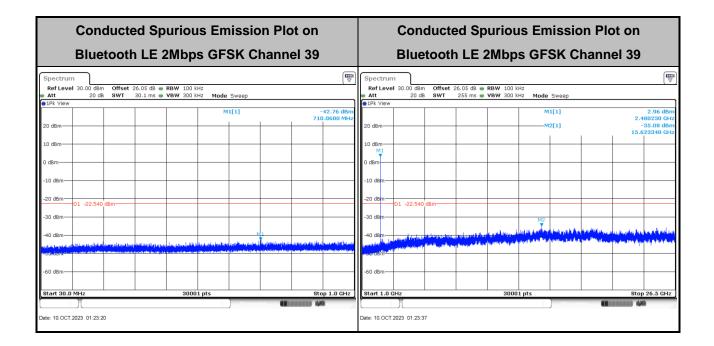

Low Band Edge Plot on Channel 00		Hig	h Ba	nd E	dge F	Plot o	n Ch	anne	I 39	
Spectrum RefLevel 30.00 dBm Offset 26.05 dB @ RBW 100 kHz # Att 20 dB \$WT 8 ms @ VBW 300 kHz	Att	30.00 dBm 20 dB		26.05 dB 👄 8 ms 👄		Hz Hz Mode	Sweep			
20 dBm	1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -50 dBm -50 dBm -50 dBm -50 dBm][]	F1		800 :		1[1]		2.49	2.505 GHz


3.4.6 Test Result of Conducted Spurious Emission Plots

Please refer to Appendix A.

<1Mbps>





<2Mbps>

3.5 Radiated Band Edges and Spurious Emission Measurement

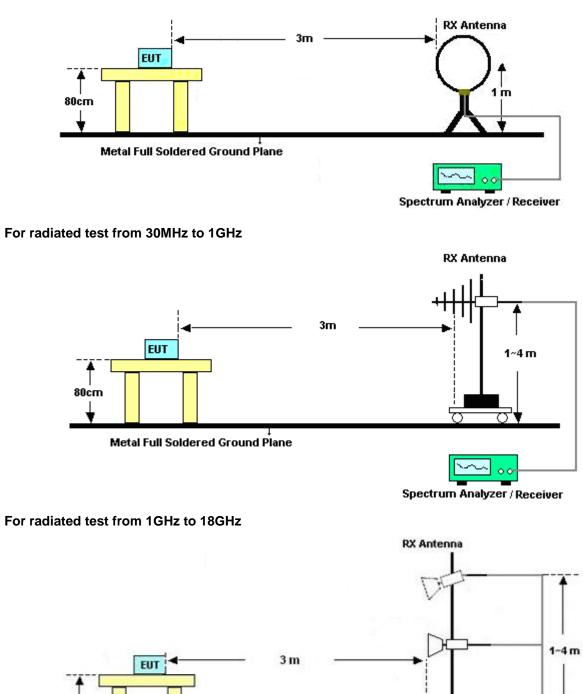
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

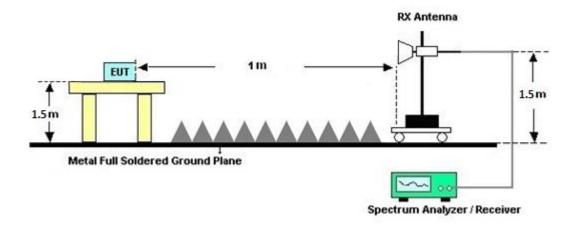
Please refer to the measuring equipment list in this test report.


3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz


Metal Full Soldered Ground Plane

Spectrum Analyzer / Receiver

1.5m

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

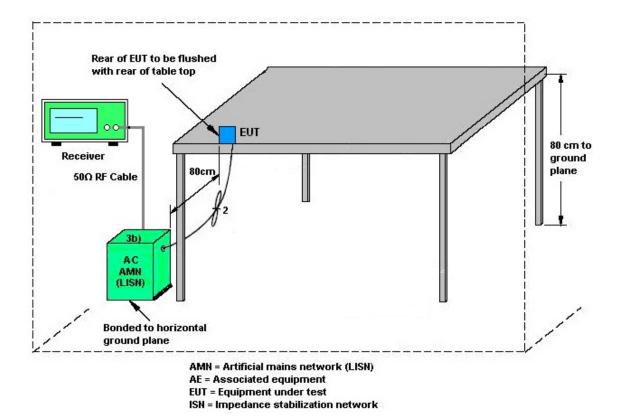
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	45141354	N/A	Jul. 26, 2023	Oct. 09, 2023	Jul. 25, 2024	Conducted (TH01-CA)
Power Sensor	DARE!!	RPR3008W	RPR8W-1901 027	10MHz-6GHz	May 01, 2023	Oct. 09, 2023	Apr. 30, 2024	Conducted (TH01-CA)
Switch Box	EM Electronics	EMSW18	1070902	N/A	Aug 25,2023	Oct. 09, 2023	Aug. 24, 2024	Conducted (TH01-CA)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101089	10Hz-40GHz	May 22, 2023	Oct. 09, 2023	May 21, 2024	Conducted (TH01-CA)
LISN	TESEQ	NNB51	47415	N/A	Jul. 31, 2023	Jan. 09, 2024	Jul. 30, 2024	Conduction (CO01-CA)
LISN	TESEQ	NNB51	47407	N/A	May 16, 2023	Jan. 09, 2024	May 15, 2024	Conduction (CO01-CA)
EMI Test Receiver	R&S	ESR7	102177	9kHz~7GHz	May 23, 2023	Jan. 09, 2024	May 22, 2024	Conduction (CO01-CA)
Pulse limiter with 10dB attenuation	R&S	VTSD 9561-F N	9561-F- N00412	N/A	Jun. 05, 2023	Jan. 09, 2024	Jun. 04, 2024	Conduction (CO01-CA)
Test Software	R&S	EMC32 V10.30.0	N/A	N/A	N/A	Jan. 09, 2024	N/A	Conduction (CO01-CA)
Loop Antenna	R&S	HFH2-Z2E	100840	9kHz~30MHz	Jun. 29, 2023	Nov. 01, 2023~ Nov. 30, 2023	Jun. 28, 2024	Radiation (03CH02-CA)
Bilog Antenna	TESEQ	6111D	50392	30MHz~1GHz	Sep. 05, 2023	Nov. 01, 2023~ Nov. 30, 2023	Sep. 04, 2024	Radiation (03CH02-CA)
Horn Antenna	SCHWARZB ECK	BBHA 9120D	02113	1GHz~18GHz	Jun. 07, 2023	Nov. 01, 2023~ Nov. 30, 2023	Jun. 06, 2024	Radiation (03CH02-CA)
Horn Antenna	SCHWARZB ECK	BBHA9170	00841	18GHz~40GHz	Aug. 22, 2023	Nov. 01, 2023~ Nov. 30, 2023	Aug. 21, 2024	Radiation (03CH02-CA)
Amplifier	SONOMA	300N	372240	N/A	May 03, 2023	Nov. 01, 2023~ Nov. 30, 2023	May 02, 2024	Radiation (03CH02-CA)
Preamplifier	Keysight	83017A	MY53270323	1GHz~26.5GHz	May 04, 2023	Nov. 01, 2023~ Nov. 30, 2023	May 03, 2024	Radiation (03CH02-CA)
Preamplifier	E-instrument	ERA-100M-18G- 56-01-A70	EC1900252	1GHz~18GHz	May 23, 2023	Nov. 01, 2023~ Nov. 30, 2023	May 22, 2024	Radiation (03CH02-CA)
Preamplifier	EMEC	EMC18G40G	060725	18GHz~40GHz	May 04, 2023	Nov. 01, 2023~ Nov. 30, 2023	May 03, 2024	Radiation (03CH02-CA)
RF Cable	HUBER+SU HNER	SUCOFLEX 102	804209/2, 802406/2, 802875/2, 802952/2	N/A	Oct. 13, 2023	Nov. 01, 2023~ Nov. 30, 2023	Oct. 12, 2024	Radiation (03CH02-CA)

Report No. : FR230915002A

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
High Pass Filter	Wainwright	WHKX12-2700- 3000-18000-60S T	SN10	8G~25G	Jun. 05, 2023	Nov. 01, 2023~ Nov. 30, 2023	Jun. 04, 2024	Radiation (03CH02-CA)
Filter	Wainwright	WLK12-1200-12 72-11000-40SS	SN2	1.2GHz Low Pass Filter	Jun. 05, 2023	Nov. 01, 2023~ Nov. 30, 2023	Jun. 04, 2024	Radiation (03CH02-CA)
Hygrometer	TESEO	608-H1	45142602	N/A	Aug. 30, 2023	Nov. 01, 2023~ Nov. 30, 2023	Aug. 29, 2024	Radiation (03CH02-CA)
Controller	ChainTek	EM-1000	060876	NA	N/A	Nov. 01, 2023~ Nov. 30, 2023	N/A	Radiation (03CH02-CA)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Nov. 01, 2023~ Nov. 30, 2023	N/A	Radiation (03CH02-CA)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Nov. 01, 2023~ Nov. 30, 2023	N/A	Radiation (03CH02-CA)
Software	Audix	E3	N/A	N/A	N/A	Nov. 01, 2023~ Nov. 30, 2023	N/A	Radiation (03CH02-CA)
High Pass Filter	Wainwright	WHKX12-2700- 3000-18000-60S T	SN10	8G~25G	Jun. 05, 2023	Nov. 01, 2023~ Nov. 30, 2023	Jun. 04, 2024	Radiation (03CH02-CA)
Filter	Wainwright	WLK12-1200-12 72-11000-40SS	SN2	1.2GHz Low Pass Filter	Jun. 05, 2023	Nov. 01, 2023~ Nov. 30, 2023	Jun. 04, 2024	Radiation (03CH02-CA)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.70 dB
of 95% (U = 2Uc(y))	2.70 08

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.50 dB
of 95% (U = 2Uc(y))	4.50 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.90 dB
of 95% (U = 2Uc(y))	4.90 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20 dB
of 95% (U = 2Uc(y))	5.20 dB

Report Number : FR230915002A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Venkata Kondepudi	Temperature:	22.3	°C
Test Date:	2023/10/9	Relative Humidity:	54.9	%

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	1.030	0.680	0.50	Pass		
BLE	1Mbps	1	19	2440	1.025	0.684	0.50	Pass		
BLE	1Mbps	1	39	2480	1.025	0.684	0.50	Pass		

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	7.96	30.00	4.20	12.16	36.00	Pass	
BLE	1Mbps	1	19	2440	8.00	30.00	4.20	12.20	36.00	Pass	
BLE	1Mbps	1	39	2480	7.95	30.00	4.20	12.15	36.00	Pass	

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	7.96	-5.77	4.20	8.00	Pass	
BLE	1Mbps	1	19	2440	8.05	-5.79	4.20	8.00	Pass	
BLE	1Mbps	1	39	2480	7.99	-5.79	4.20	8.00	Pass	

Report Number : FR230915002A

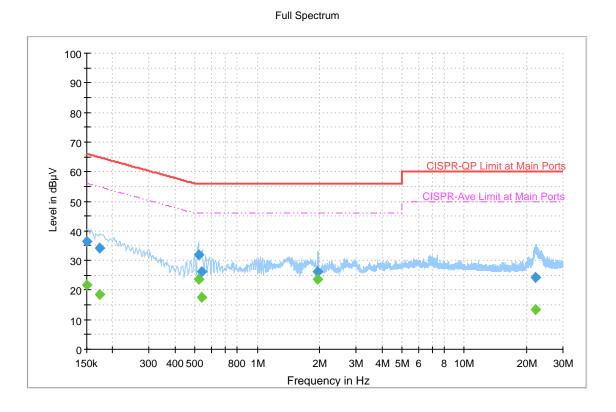
	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth									
	Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail	
	BLE	2Mbps	1	0	2402	2.058	1.176	0.50	Pass	
	BLE	2Mbps	1	19	2440	2.058	1.180	0.50	Pass	
Γ	BLE	2Mbps	1	39	2480	2.062	1.176	0.50	Pass	

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	7.97	30.00	4.20	12.17	36.00	Pass
BLE	2Mbps	1	19	2440	8.01	30.00	4.20	12.21	36.00	Pass
BLE	2Mbps	1	39	2480	7.95	30.00	4.20	12.15	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	2Mbps	1	0	2402	7.43	-8.11	4.20	8.00	Pass	
BLE	2Mbps	1	19	2440	7.52	-8.04	4.20	8.00	Pass	
BLE	2Mbps	1	39	2480	7.44	-8.05	4.20	8.00	Pass	

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

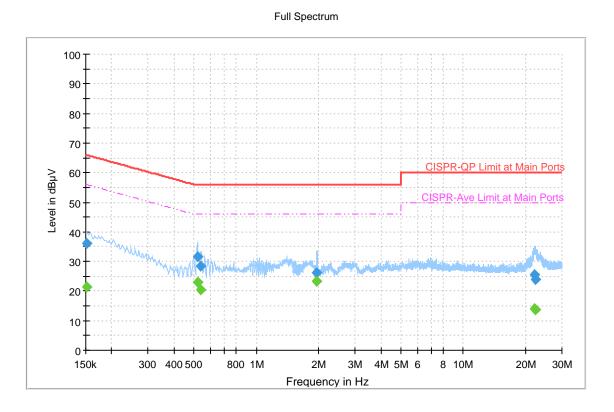


Appendix B. AC Conducted Emission Test Results

Test Engineer :	Leo Liu	Temperature :	20.5~22.6°C
Test Engineer.		Relative Humidity :	39.7~42.3%

EUT Information

Test Site Location : Project Power: Mode CO01-CA 230915002 120Vac/60Hz 1 Line



Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)			(dB)
0.150311		21.57	55.98	34.41	L1	OFF	20.2
0.150311	36.49		65.98	29.49	L1	OFF	20.2
0.172752		18.56	54.83	36.27	L1	OFF	20.3
0.172752	34.26		64.83	30.57	L1	OFF	20.3
0.519792		23.56	46.00	22.44	L1	OFF	20.3
0.519792	31.86		56.00	24.14	L1	OFF	20.3
0.538278		17.56	46.00	28.44	L1	OFF	20.3
0.538278	26.18		56.00	29.82	L1	OFF	20.3
1.964364		23.62	46.00	22.38	L1	OFF	20.3
1.964364	26.22		56.00	29.78	L1	OFF	20.3
22.133337		13.52	50.00	36.48	L1	OFF	21.2
22.133337	24.18		60.00	35.82	L1	OFF	21.2

EUT Information

Test Site Location : Project Power: Mode CO01-CA 230915002 120Vac/60Hz 1 Neutral

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)			(dB)
0.152475		21.47	55.86	34.39	Ν	OFF	20.2
0.152475	36.17		65.86	29.69	Ν	OFF	20.2
0.518658		23.06	46.00	22.94	Ν	OFF	20.2
0.518658	31.61		56.00	24.39	Ν	OFF	20.2
0.540618		20.37	46.00	25.63	Ν	OFF	20.2
0.540618	28.40		56.00	27.60	Ν	OFF	20.2
1.963329		23.24	46.00	22.76	Ν	OFF	20.3
1.963329	26.32		56.00	29.68	Ν	OFF	20.3
22.001784		14.10	50.00	35.90	Ν	OFF	21.2
22.001784	25.67		60.00	34.33	Ν	OFF	21.2
22.340661		13.76	50.00	36.24	Ν	OFF	21.2
22.340661	23.94		60.00	36.06	Ν	OFF	21.2

Appendix C. Radiated Spurious Emission

Test Engineer :		Temperature :	18.9~23.8°C
lest Engineer .	Thinh Hoang	Relative Humidity :	31.8~53.1%

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2338.455	56.72	-17.28	74	42.76	27.13	18.28	31.45	108	325	Р	Н
		2338.14	47.17	-6.83	54	33.21	27.13	18.28	31.45	108	325	Α	н
	*	2402	103.57	-	-	89.22	27.3	18.44	31.39	108	325	Р	Н
BLE	*	2402	103.26	-	-	88.91	27.3	18.44	31.39	108	325	А	Н
CH 00													Н
2402MHz		2388.435	55.61	-18.39	74	41.33	27.29	18.4	31.41	400	101	Р	V
240211112		2338.14	45.99	-8.01	54	32.03	27.13	18.28	31.45	400	101	А	V
	*	2402	97.78	-	-	83.43	27.3	18.44	31.39	400	101	Р	V
	*	2402	97.45	-	-	83.1	27.3	18.44	31.39	400	101	А	V
													V
		2366.64	57.56	-16.44	74	43.42	27.22	18.36	31.44	100	46	Р	Н
		2372.24	48.01	-5.99	54	33.81	27.25	18.37	31.42	100	46	А	Н
	*	2440	106.37	-	-	91.63	27.54	18.54	31.34	100	46	Р	Н
		2372	48.97	-5.03	54	34.77	27.25	18.37	31.42	100	46	А	Н
	*	2440	106.06	-	-	91.32	27.54	18.54	31.34	100	46	А	Н
		2508	51.2	-2.8	54	35.64	28.07	18.73	31.24	100	46	А	Н
BLE CH 19		2488.96	56.68	-17.32	74	41.39	27.9	18.68	31.29	100	46	Р	Н
2440MHz		2497.84	46.59	-7.41	54	31.15	28	18.7	31.26	100	46	А	Н
27701112		2366.16	57	-17	74	42.86	27.22	18.36	31.44	400	92	Р	V
		2372.24	47.59	-6.41	54	33.39	27.25	18.37	31.42	400	92	А	V
	*	2440	100.27	-	-	85.53	27.54	18.54	31.34	400	92	Р	V
	*	2440	99.92	-	-	85.18	27.54	18.54	31.34	400	92	А	V
		2488	56.79	-17.21	74	41.51	27.9	18.67	31.29	400	92	Ρ	V
		2496.48	47.11	-6.89	54	31.7	27.98	18.7	31.27	400	92	А	V

TEL: 408 9043300

Page Number : C1 of C16

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	106.16	-	-	90.96	27.85	18.65	31.3	100	315	Р	Н
	*	2480	105.85	-	-	90.65	27.85	28.64	31.3	100	315	А	Н
		2487.84	56.85	-17.15	74	41.57	27.9	18.67	31.29	100	315	Р	Н
		2487.68	48.05	-5.95	54	32.77	27.9	28.66	31.29	100	315	А	Н
DIE													Н
BLE													Н
CH 39 2480MHz	*	2480	102.42	-	-	87.22	27.85	18.65	31.3	400	58	Р	V
240010112	*	2480	102.11	-	-	86.91	27.85	18.65	31.3	400	58	А	V
		2493.44	57.34	-16.66	74	41.98	27.95	18.69	31.28	400	58	Р	V
		2487.96	47.33	-6.67	54	32.05	27.9	18.67	31.29	400	58	Α	V
													V
													V
	1. Nc	o other spurious	s found.										
Remark		results are PA		Peak and	Average lim	it line.							
			-		-								

2.4GHz 2400~2483.5MHz

	Ī			ſ	DLE (Hailin		-	-	ſ			Γ	
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	44.61	-29.39	74	66.62	32.34	12.43	66.78	-	-	Р	Н
		7206	46.72	-27.28	74	59.19	36.91	15.12	64.5	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													н
CH 00		4804	44.32	-29.68	74	66.33	32.34	12.43	66.78	-	-	Р	V
2402MHz		7206	46.1	-27.9	74	58.57	36.91	15.12	64.5	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													v

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		4874	44.58	-29.42	74	66.12	32.64	12.6	66.78	-	-	Р	Н
		7320	46.05	-27.95	74	59.87	36.91	15.22	65.95	-	-	Ρ	н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 19													Н
2440MHz		4874	45.05	-28.95	74	66.59	32.64	12.6	66.78	-	-	Р	V
		7320	46.07	-27.93	74	59.89	36.91	15.22	65.95	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	44.96	-29.04	74	66.12	33.01	12.82	66.99	-	-	Р	Н
		7440	45.19	-28.81	74	59.87	36.42	15.31	66.41	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													н
CH 39		4960	44.11	-29.89	74	65.27	33.01	12.82	66.99	-	-	Р	V
2480MHz		7440	45.5	-28.5	74	60.18	36.42	15.31	66.41	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													v
	1. N	o other spuriou	s found										v
		I results are PA		eak and	Averade lim	it line.							
Remark		ne emission po:					ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
		oor only.											_

Emission above 18GHz

2.4GHz BLE (SHF)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		24867	44.75	-29.25	74	35.79	39.13	18.9	49.07	-	-	Р	Н
													Н
													Н
													Н
													Н
													H
													н
													H H
													н
													н
2.4GHz													Н
BLE		24902	45.02	-28.98	74	36.01	39.18	18.94	49.11	-	-	Р	V
SHF													V
													V
													V
													V
													V
													V
													V
													V
													V V
													V
	1. No	o other spurious	s found.	1							1	I	<u> </u>
Remark	2. AI	l results are PA	SS against li	mit line.									
Remark	3. Tł	ne emission pos	sition marked	las "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin aga	inst limit	line or	noise
	flo	or only.											

Emission below 1GHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
				= .	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg) -	(P/A)	
		52.31	23.79	-16.21	40	40.98	13.98	1.26	32.43	-			н
		115.36	31.93	-11.57	43.5	44.82	17.69	1.89	32.47	-	-	P	н
		239.52	28.52	-17.48	46	40.33	17.94	2.72	32.47	-	-	P	Н
		372.41	27.07	-18.93	46	34.4	21.7	3.38	32.41	-	-	P	Н
		745.86	33.65	-12.35	46	33.42	27.52	5	32.29	-	-	Р	Н
		974.78	34.55	-19.45	54	29.1	30.6	5.66	30.81	-	-	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE													Н
LF		65.89	36.66	-3.34	40	55.75	11.91	1.43	32.43	-	-	Р	V
		98.87	36.83	-6.67	43.5	51.04	16.36	1.9	32.47	-	-	Р	V
		275.41	29.28	-16.72	46	39.43	19.3	2.93	32.38	-	-	Р	V
		445.16	28.26	-17.74	46	33.76	23.21	3.8	32.51	-	-	Р	V
		746.83	36.19	-9.81	46	35.93	27.54	5	32.28	-	-	Р	V
		975.75	34.17	-19.83	54	28.73	30.57	5.67	30.8	-	-	Р	V
													V
													V
													V
													V
													V
													V
		other spurious		<u> </u>			<u>. </u>		1	I	1	1	L
Remark		results are PA											
		e emission pos				pected em	nission foun	d and em	ission leve	el has at	t least 60	dB mai	rgin
	ag	ainst limit or er	nission is no	ise floor	only.								

2.4GHz BLE (LF)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2379.405	59.67	-14.33	74	45.42	27.29	18.38	31.42	100	309	Р	Н
		2379.93	49.62	-4.38	54	35.35	27.29	18.39	31.41	100	309	А	Н
	*	2402	104.43	-	-	90.08	27.3	18.44	31.39	100	309	Р	Н
	*	2378	49.38	-	-	35.14	27.28	18.38	31.42	100	309	А	Н
DI C		2402	103.16	49.16	54	88.81	27.3	18.44	31.39	100	309	А	Н
BLE CH 00		2426	51.67	-2.33	54	37.05	27.48	18.5	31.36	100	309	А	Н
2402MHz		2379.93	58.45	-15.55	74	44.18	27.29	18.39	31.41	300	53	Р	V
		2379.93	48.07	-5.93	54	33.8	27.29	18.39	31.41	300	53	А	V
	*	2402	100.6	-	-	86.25	27.3	18.44	31.39	300	53	Р	V
	*	2402	99.25	-	-	84.9	27.3	18.44	31.39	300	53	А	V
													V
													V
		2376.4	55.87	-18.13	74	41.64	27.27	18.38	31.42	100	307	Р	Н
		2384.4	46.72	-7.28	54	32.44	27.29	18.4	31.41	100	307	Α	Н
	*	2440	105.71	-	-	90.97	27.54	18.54	31.34	100	307	Р	Н
		2412	51.51	-2.49	54	37.08	27.35	18.46	31.38	100	307	А	Н
	*	2440	104.38	-	-	89.64	27.54	18.54	31.34	100	307	А	Н
		2474	52.64	-1.36	54	37.47	27.83	18.64	31.3	100	307	А	Н
BLE		2494.96	57.79	-16.21	74	42.41	27.96	18.69	31.27	100	307	Р	Н
CH 19		2494.72	48.76	-5.24	54	33.38	27.96	18.69	31.27	100	307	А	Н
2440MHz		2384.08	55.99	-18.01	74	41.72	27.29	18.39	31.41	400	89	Р	V
2		2384.08	45.98	-8.02	54	31.71	27.29	18.39	31.41	400	89	Α	V
	*	2440	102.16	-	-	87.42	27.54	18.54	31.34	400	89	Ρ	V
		2412	49.52	-4.48	54	35.09	27.35	18.46	31.38	400	89	Α	V
	*	2440	100.86	-	-	86.12	27.54	18.54	31.34	400	89	Α	V
		2468	50.93	-3.07	54	35.82	27.8	18.62	31.31	400	89	Α	V
		2486.4	56.98	-17.02	74	41.72	27.89	18.67	31.3	400	89	Ρ	V
		2494.56	47.69	-6.31	54	32.31	27.96	18.69	31.27	400	89	Α	V

TEL: 408 9043300

Page Number : C8 of C16

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	107.19	-	-	91.99	27.85	18.65	31.3	200	32	Р	Н
		2444	52.57	-1.43	54	37.77	27.58	18.55	31.33	200	32	А	н
	*	2480	105.86	-	-	90.66	27.85	18.65	31.3	200	32	А	н
		2516	53.7	-0.3	54	38.08	28.1	18.75	31.23	200	32	А	Н
		2485.24	58.17	-15.83	74	42.92	27.88	18.67	31.3	200	32	Р	Н
BLE CH 39		2483.52	49.48	-4.52	54	34.25	27.87	18.66	31.3	200	32	А	Н
2480MHz	*	2480	101.92	-	-	86.72	27.85	18.65	31.3	400	72	Р	V
24001112	*	2480	100.59	-	-	85.39	27.85	18.65	31.3	400	72	А	V
		2497.48	57.36	-16.64	74	41.93	27.99	18.7	31.26	400	72	Р	V
		2483.52	47.43	-6.57	54	32.2	27.87	18.66	31.3	400	72	А	V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	results are PA	SS against F	eak and	l Average lim	it line.							

2.4GHz 2400~2483.5MHz

	ſ	-		-	DLE (Harrin		-	-	ſ	Ē	F	ſ	1
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	43.9	-30.1	74	65.91	32.34	12.43	66.78	-	-	Р	Н
		7206	46.03	-27.97	74	58.5	36.91	15.12	64.5	-	-	Р	Н
													Н
													н
													н
													н
													н
													Н
													н
													Н
BLE													Н
CH 00													Н
2402MHz		4804	44.22	-29.78	74	66.23	32.34	12.43	66.78	-	-	Р	V
		7206	45.69	-28.31	74	58.16	36.91	15.12	64.5	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		4874	44.14	-29.86	74	65.68	32.64	12.6	66.78	-	-	P	H
		7320	45.57	-28.43	74	59.39	36.91	15.22	65.95	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 19													Н
2440MHz		4874	45.11	-28.89	74	66.65	32.64	12.6	66.78	-	-	Р	V
		7320	46.06	-27.94	74	59.88	36.91	15.22	65.95	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		4960	43.62	-30.38	74	64.78	33.01	12.82	66.99	-	-	Р	Н
		7440	45.09	-28.91	74	59.77	36.42	15.31	66.41	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
D 1 E													Н
BLE													н
CH 39 2480MHz		4960	43.5	-30.5	74	64.66	33.01	12.82	66.99	-	-	Р	V
240010112		7440	44.83	-29.17	74	59.51	36.42	15.31	66.41	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	lo other spuriou	s found.										
Remark	2. A	II results are PA	.SS against F	Peak and	l Average lim	it line.							
	3. Т	he emission po	sition marked	las"-"m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	fl	oor only.											

Emission above 18GHz

2.4GHz BLE (SHF)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		24797	44.7	-29.3	74	35.8	39.08	18.82	49	-	-	Р	Н
													Н
													Н
													Н
												-	н
													н
													Н
													Н
													Н
													Н
0.4011-													н
2.4GHz													н
BLE		24615	44.89	-29.11	74	36.45	39.04	18.62	49.22	-	-	Р	V
SHF													V
													V
													V
													V
													V
													V
												<u> </u>	V
													V
													V
													V
													V
	1. N	o other spuriou	s found.	1					I	ı	ı		
	2. AI	I results are PA	SS against li	mit line.									
Remark	3. Tł	ne emission pos	sition marked	las "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
		oor only.								-			
		,											

Emission below 1GHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		49.4	23.47	-16.53	40	39.32	15.36	1.23	32.44	-	-	P	H H
		116.33	31.47	-12.03	43.5	44.45	17.6	1.89	32.47	-	-		
		236.61	27.32	-18.68	46	39.51	17.59	2.69	32.47	-	-	P	н
		544.1	27.27	-18.73	46	31.21	24.55	4.09	32.58	-	-	P	Н
		746.83	31.87	-14.13	46	31.61	27.54	5	32.28	-	-	Р	Н
		974.78	33.23	-20.77	54	27.78	30.6	5.66	30.81	-	-	Р	Н
												<u> </u>	Н
												<u> </u>	Н
													Н
													Н
2.4GHz													Н
BLE													Н
LF		52.31	33.75	-6.25	40	50.94	13.98	1.26	32.43	-	-	Р	V
		94.99	34.42	-9.08	43.5	49.45	15.6	1.83	32.46	-	-	Р	V
		288.99	29.08	-16.92	46	38.85	19.66	3.01	32.44	-	-	Р	V
		566.41	26.47	-19.53	46	28.89	25.92	4.16	32.5	-	-	Р	V
		746.83	31.12	-14.88	46	30.86	27.54	5	32.28	-	-	Р	V
		973.81	33.31	-20.69	54	27.89	30.58	5.66	30.82	-	-	Р	V
													V
													V
													V
													V
													V
													V
Remark	2. All	o other spurious results are PA e emission pos	SS against li		leans no sus	nected er	nission foun	d and em	ission law		least 6	- 	rain
		e emission pos ainst limit or er				peciea en	iission toun	u and em	IISSION IEVE	ei nas ai	i ieast 60	ma שג	rgin

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
exceed the level of the fundamental frequency.	
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

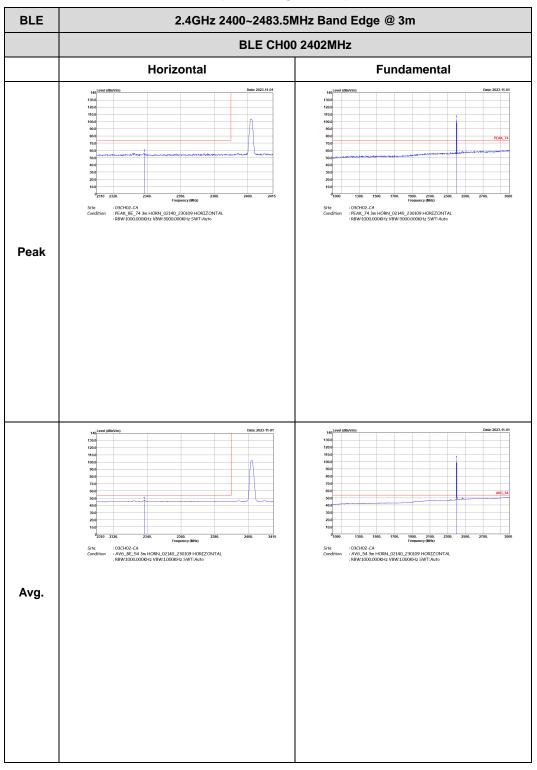
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

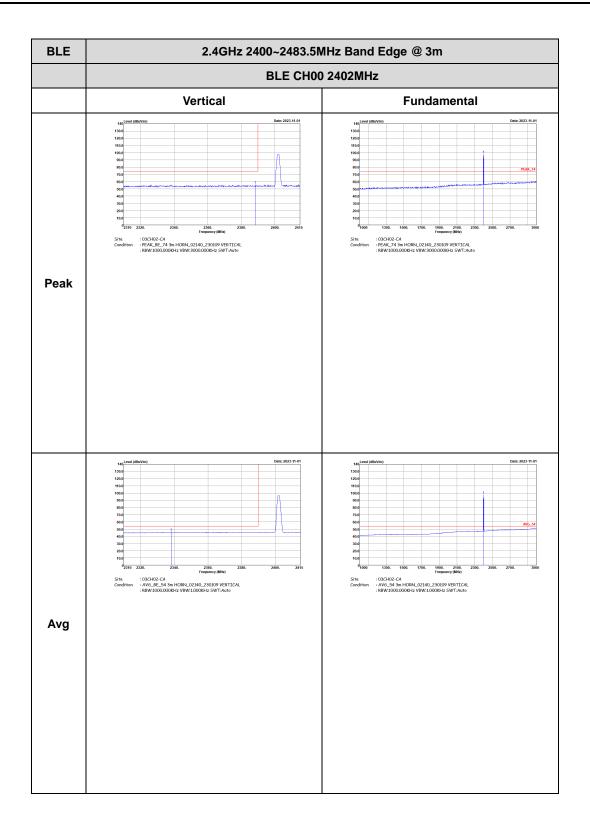
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

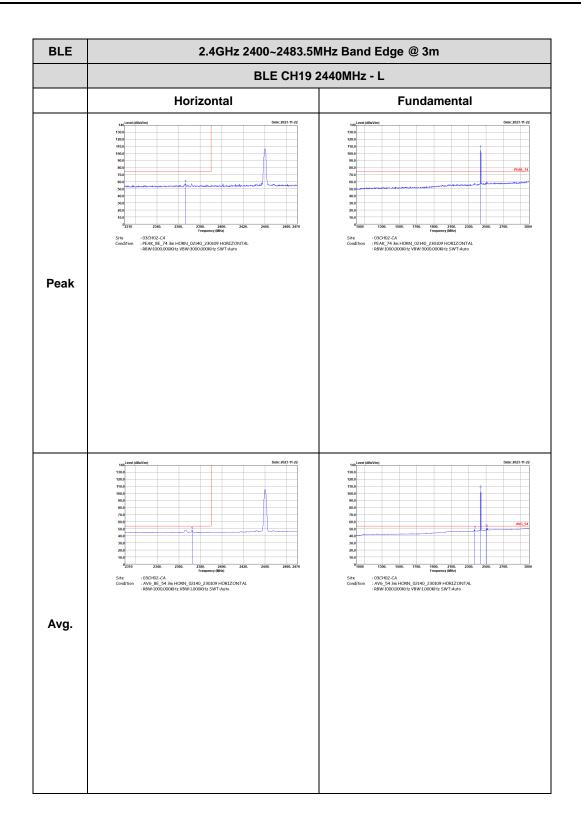
Tost Engineer		Temperature :	18.9~23.8°C
Test Engineer :	Thinh Hoang	Relative Humidity :	31.8~53.1%

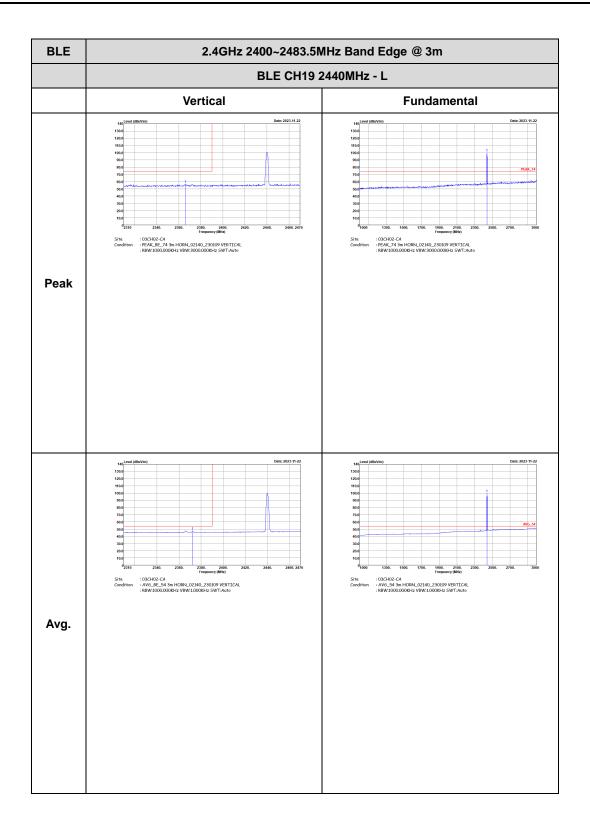
Note symbol


-L	Low channel location
-R	High channel location

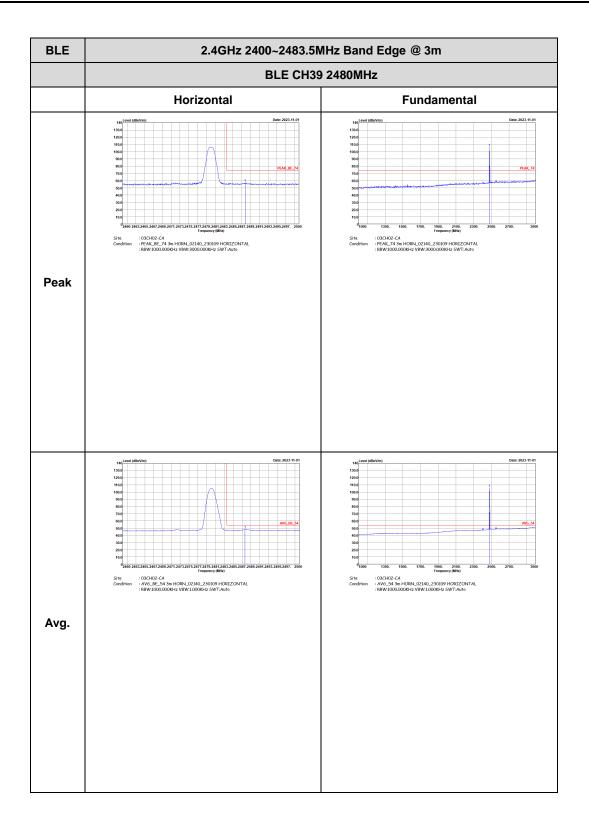

<1Mbps>

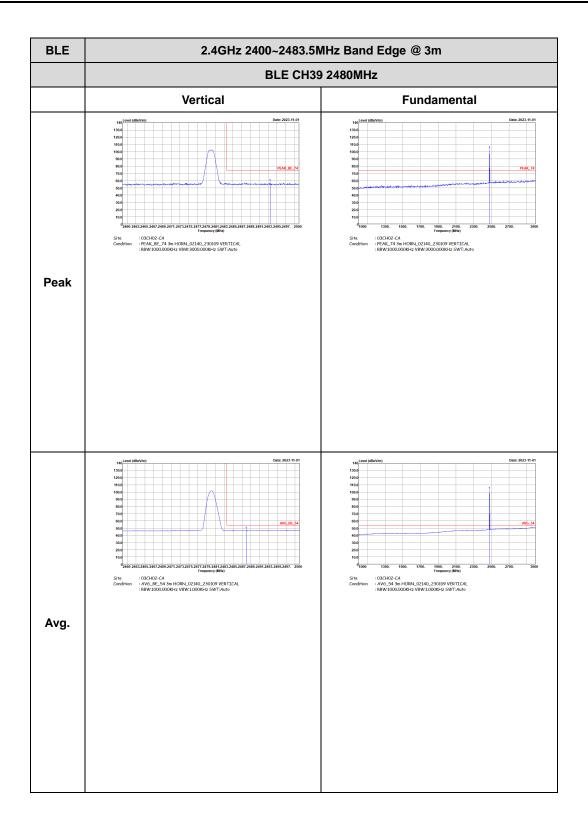
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

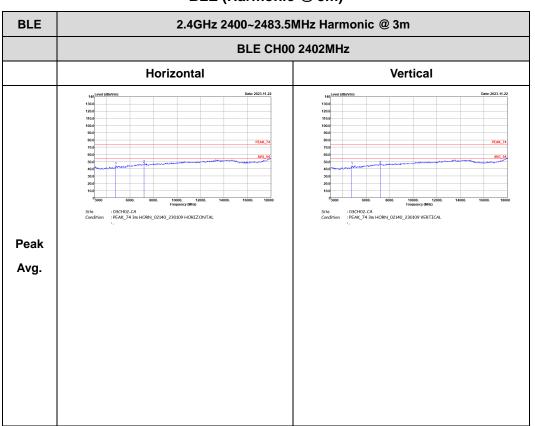


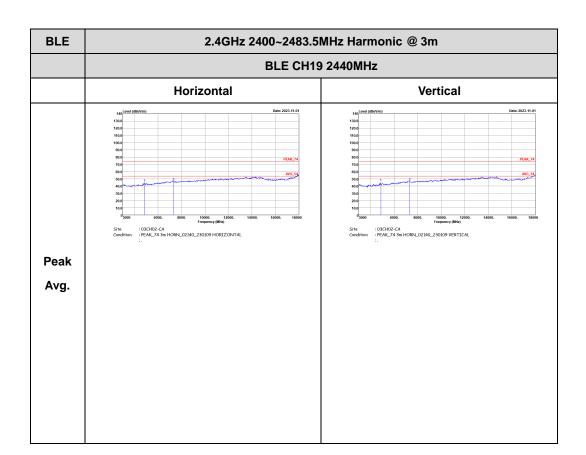
BLE	2.4GHz 2400~2483.5M	1Hz Band Edge @ 3m
	BLE CH19 2	2440MHz - R
	Horizontal	Fundamental
Peak	exercision Device 11 of the second secon	Left blank
Avg.	<pre>image: image: imag</pre>	Left blank

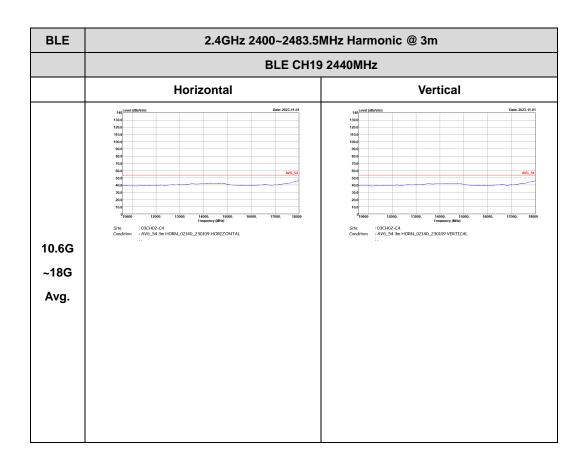




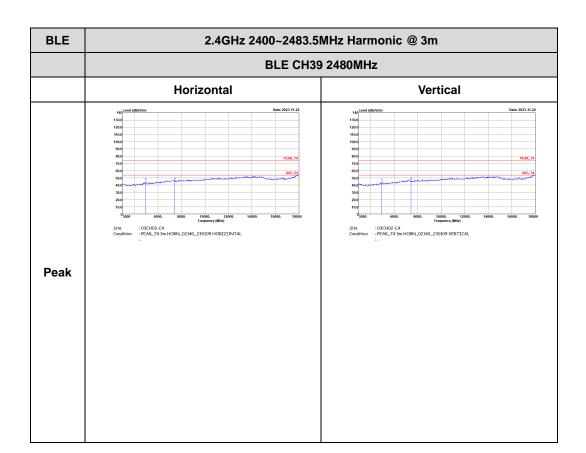
BLE	2.4GHz 2400~2483.5N	IHz Band Edge @ 3m
	BLE CH19 2	2440MHz - R
	Vertical	Fundamental
Peak	<pre>equitation</pre>	Left blank
Avg.	<pre>image content of the second seco</pre>	Left blank

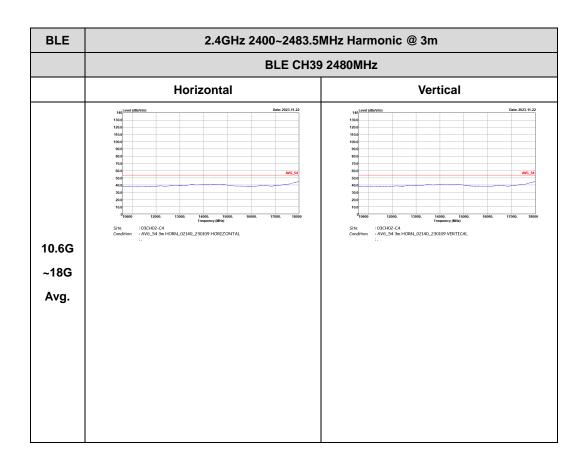


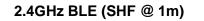

2.4GHz 2400~2483.5MHz

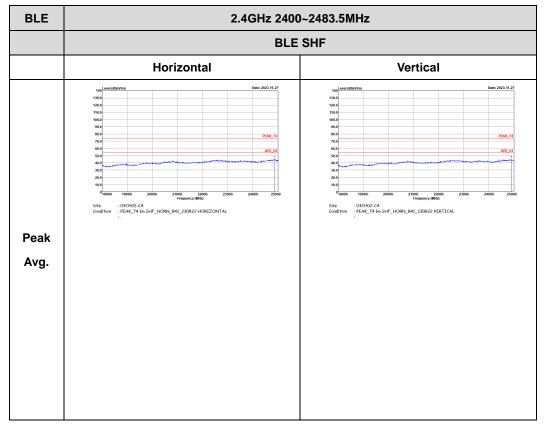


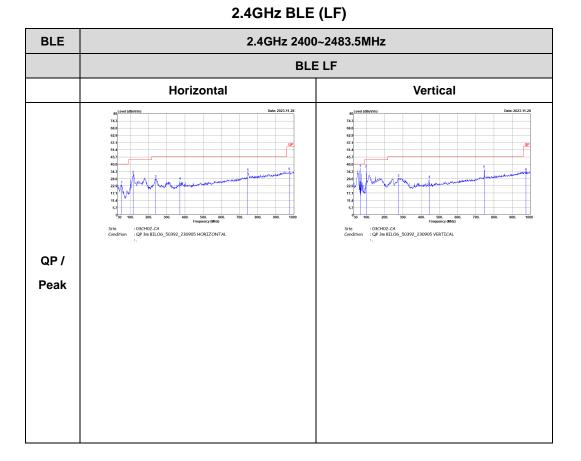
BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m							
	BLE CH00 2402MHz							
	Horizontal	Vertical						
10.6G ~18G Avg.	image: end the second	<pre>interview interview i</pre>						



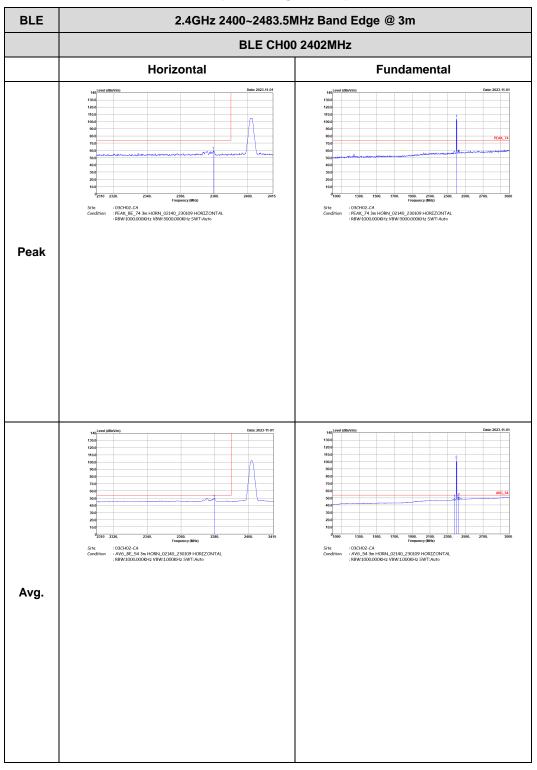


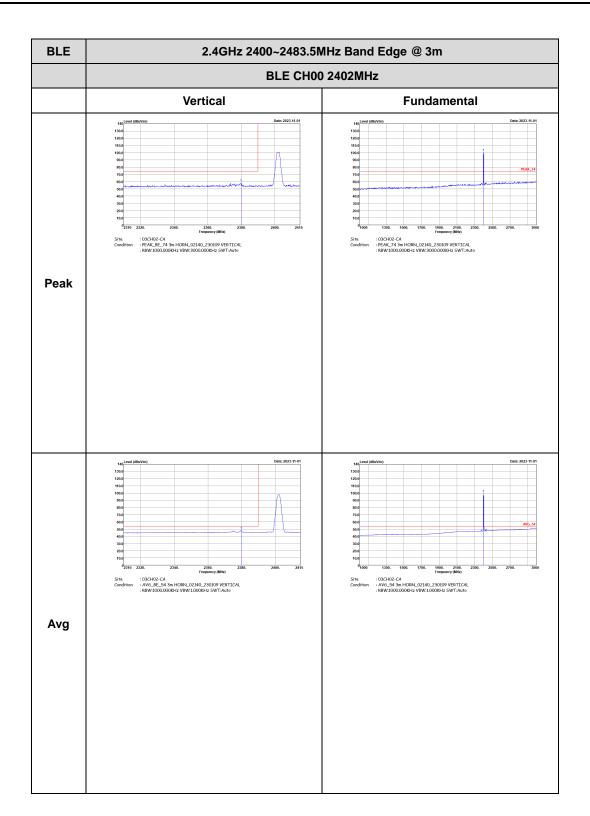




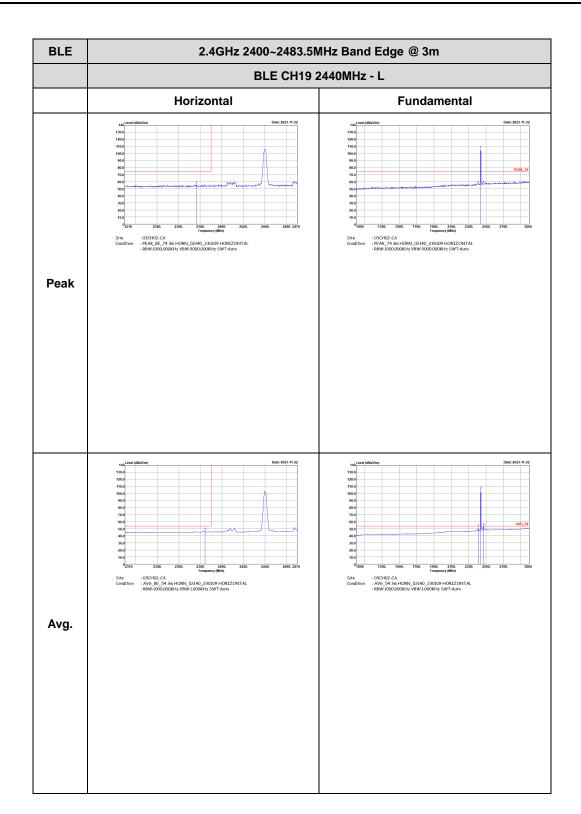

Emission above 18GHz

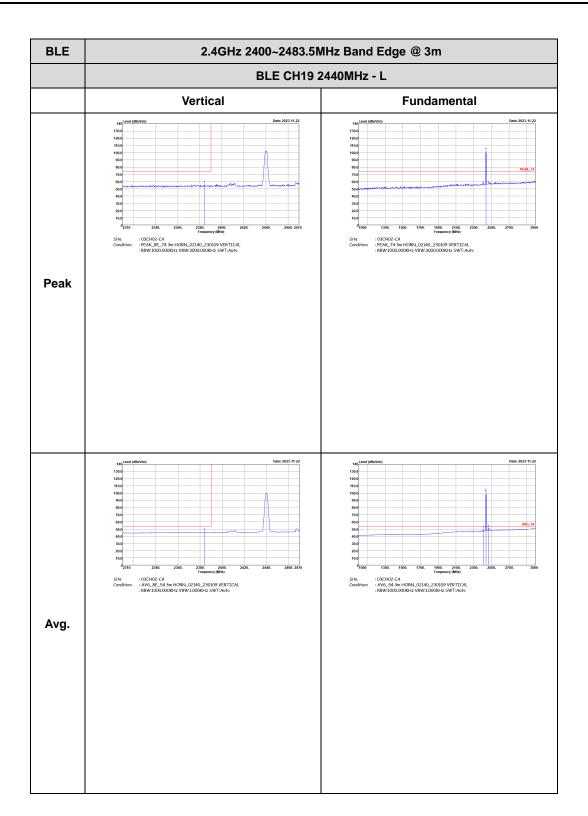
Emission below 1GHz



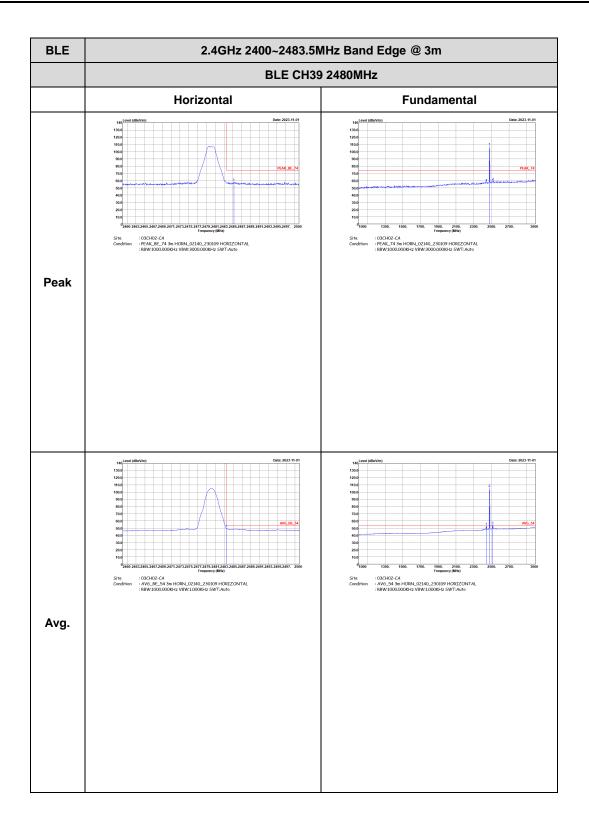

<2Mbps>

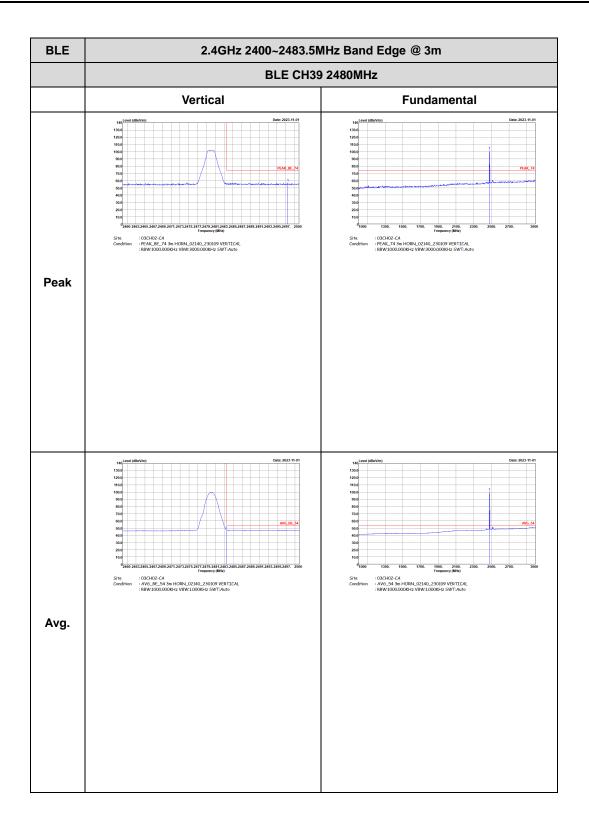
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

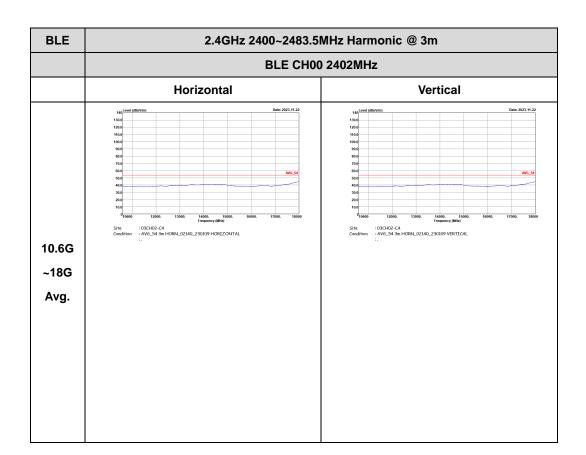


BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Horizontal	Fundamental				
Peak	(e)	Left blank				
Avg.	<pre>image: contract contract</pre>	Left blank				

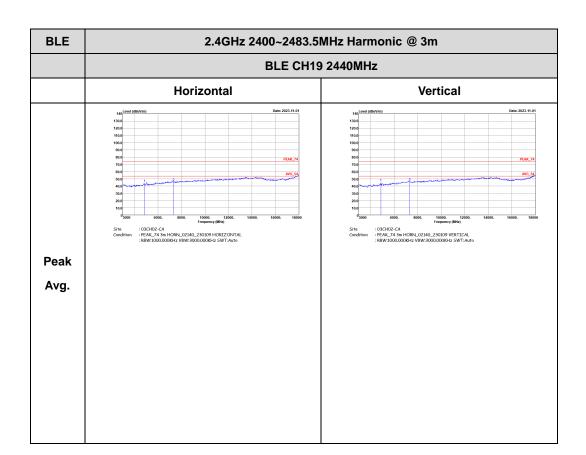




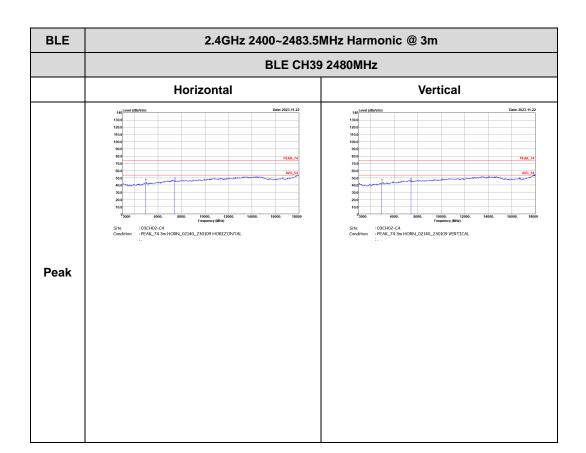
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Vertical	Fundamental				
Peak	<pre>temp temp temp temp temp temp temp temp</pre>	Left blank				
Avg.	<pre>image: image: imag</pre>	Left blank				

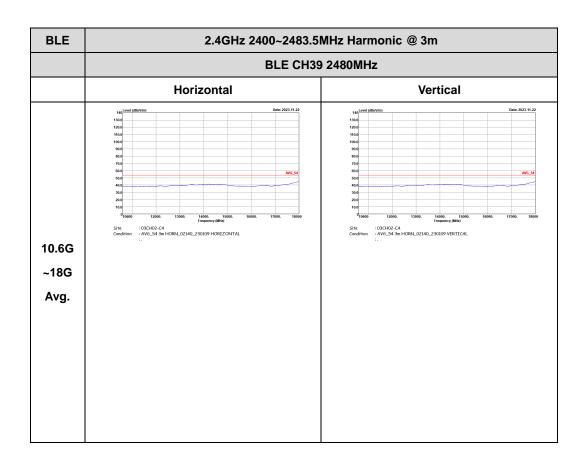


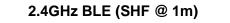
2.4GHz 2400~2483.5MHz

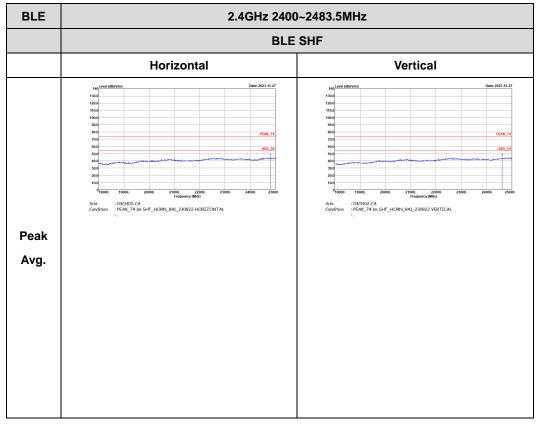

BLE 2.4GHz 2400~2483.5MHz Harmonic @ 3m BLE CH00 2402MHz Horizontal Vertical Date: 2023-11-22 Date: 2023-11-2 140 130.0 120.0 110.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 140 130.0 120.0 110.0 90.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 PEAK_74 PEAK_7 AVG_5 AVG_5 Site : 03CH02-CA Condition : PEAK_74 3m HORN_02140_230109 VERTICAL Site : 03CH02-CA Condition : PEAK_74 3m HORN_02140_230109 HORIZONTAL Peak Avg.

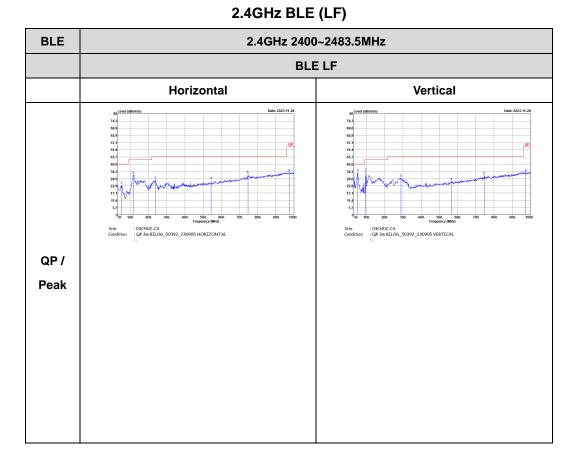
BLE (Harmonic @ 3m)










Emission above 18GHz

Emission below 1GHz

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE for 1Mbps	85.60	2140	0.47	1kHz
Bluetooth - LE for 2Mbps	42.80	1070	0.93	1kHz

------THE END------