Report No.: AGC10084170401FE08 Page 1 of 31

FCC Test Report

Report No.: AGC10084170401FE08

FCC ID : 2AF6M3396993X501

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: 3G Smart Phone

BRAND NAME : Cellacom

MODEL NAME : X501 Prime

CLIENT : Mobile commodity corporation

DATE OF ISSUE : May. 04, 2017

STANDARD(S) FCC Part 15.247

TEST PROCEDURE(S) KDB 558074 v03r02

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC10084170401FE08 Page 2 of 31

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes		
V1.0	/	May. 04, 2017	Valid	Original Report		

TABLE OF CONTENTS

	VERIFICATION OF COMPLIANCE	_
2.	GENERAL INFORMATION2.1PRODUCT DESCRIPTION	
	2.2 RELATED SUBMITTAL(S)/GRANT(S)	
	2.3TEST METHODOLOGY	
	2.4 TEST FACILITY	
	2.5 SPECIAL ACCESSORIES	
	2.6 EQUIPMENT MODIFICATIONS	
3.	SYSTEM TEST CONFIGURATION	
٠.	3.1 CONFIGURATION OF TESTED SYSTEM	7
	3.2 EQUIPMENT USED IN TESTED SYSTEM	7
	SUMMARY OF TEST RESULTS	
	DESCRIPTION OF TEST MODESANTENNA REQUIREMENT	
٥.	6.1. STANDARD APPLICABLE	_
	6.2. TEST RESULT	. 10
7.	RADIATED EMISSION	11
	7.1 MEASUREMENT PROCEDURE	
	7.2 TEST SETUP	
	7.3 LIMITS AND MEASUREMENT RESULT	
	7.4 TEST RESULT	
8.	8.1. MEASUREMENT PROCEDURE	. 17
	8.2. TEST SET-UP	
	8.3. RADIATED TEST RESULT	
	8.4. CONDUCTED TEST RESULT	
^	6DB BANDWIDTH	
9.	9.1. TEST PROCEDURE	
	9.2. SUMMARY OF TEST RESULTS/PLOTS	
10	. CONDUCTED OUTPUT POWER	. 21
	10.1. MEASUREMENT PROCEDURE	. 21
	10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	10.3. LIMITS AND MEASUREMENT RESULT	
11	. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	
	11.1 MEASUREMENT PROCEDURE	
	11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	. 22

Report No.: AGC10084170401FE08 Page 4 of 31

11.3 LIMITS AND MEASUREMENT RESULT	22
12. FCC LINE CONDUCTED EMISSION TEST	
12.2 TEST SETUP	
12.3 PRELIMINARY PROCEDURE	24
12.4 FINAL TEST PROCEDURE	24
12.5 TEST RESULT OF POWER LINE	25
13. CONDUCTED SPURIOUS EMISSION	27
13.1. MEASUREMENT PROCEDURE	27
13.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	27
13.3. MEASUREMENT EQUIPMENT USED	27
13.4. LIMITS AND MEASUREMENT RESULT	27
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	30

Page 5 of 31

1. VERIFICATION OF COMPLIANCE

Applicant	Mobile commodity corporation
Address	20955 pathfinder road, Suite 200, Diamond bar, CA 91765,USA
Manufacturer	Cellacom Incorporation
Address	20955 pathfinder road, Suite 100, Diamond bar, CA 91765,USA
Product Designation	3G Smart Phone
Brand Name	Cellacom
Test Model	X501 Prime
Date of test	Apr. 25, 2017~May. 04, 2017
Deviation	None
Condition of Test Sample	Normal
Report Template	AGCRT-US-BLE/RF

WE HEREBY CERTIFY THAT:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with requirement of FCC Part 15 Rules requirement.

Tested By

Donjon Huang(Huang
Dongyang)

Bart Xie(Xie Xiaobin)

Approved By

Solger Zhang(Zhang Hongyi)
Authorized Officer

May. 04, 2017

May. 04, 2017

Page 6 of 31

2.GENERAL INFORMATION 2.1PRODUCT DESCRIPTION

The EUT is designed as "Tablet". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz
Bluetooth Version	V4.0
Modulation	GFSK
Number of channels	40 Channel(37 Hopping Channel,3 advertising Channel)
Antenna Designation	PIFA Antenna
Antenna Gain	1.23dBi
Hardware Version	Y813
Software Version	Cellacom_X501 Prime_V0.3_04272017
Power Supply	DC3.8V by Built-in Li-ion Battery

2.2 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for **FCC ID: 2AF6M3396993X501** filing to comply with Section 15.247of the FCC Part 15, Subpart C Rules.

2.3TEST METHODOLOGY

All measurements contained in this report were conducted with KDB 558074 D01 DTS Meas Guidance v03r02, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions. The EUT was tested in all three orthogonal planes and the worse case was showed.

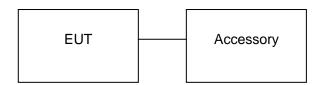
2.4 TEST FACILITY

Site Dongguan Precise Testing Service Co., Ltd.		
Location	Building D,Baoding Technology Park,Guangming Road2,Dongcheng District, Dongguan, Guangdong, China,	
FCC Registration No.	371540	
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.10:2013.	

2.5 SPECIAL ACCESSORIES

Refer to section 2.2.

2.6 EQUIPMENT MODIFICATIONS


Not available for this EUT intended for grant.

Page 7 of 31

3. SYSTEM TEST CONFIGURATION

3.1 CONFIGURATION OF TESTED SYSTEM

Configuration:

3.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model No.	ID or Specification	Note
1	3G Smart Phone	X501 Prime	2AF6M3396993X501	EUT
2	Adapter	X501 Prime	DC5V /1A	Accessory
3	Battery	X501 Prime	DC3.8V/2050mAh	Accessory
4	Earphone	N/A	N/A	Accessory
5	USB Cable	N/A	N/A	Accessory

ALL TEST EQUIPMENT LIST

FOR RADIATED EMISSION TEST (BELOW 1GHZ)

Radiated Emission Test Site						
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration	
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017	
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2017	
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017	
RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016	July 2, 2017	
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 5, 2016	June 4, 2017	
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A	
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 5, 2016	June 4, 2017	
Spectrum analyzer	Agilent	E4407B	MY46185649	June 5, 2016	June 4, 2017	
Power Probe	R&S	NRP-Z23	100323	July 24,2016	July 23,2017	
RF attenuator	N/A	RFA20db	68	N/A	N/A	

Page 8 of 31

FOR RADIATED EMISSION TEST (1GHZ ABOVE)

FOR RADIATED EW	ISSICIN TEST (TG		ted Emission	Tes	st Site				
Name of Equipme	nt Manufact		Model Numb		Serial		Last		Due
				ei	Number 101417		Calibrati		Calibration
EMI Test Receive	r Rohde & Sc	Rohde & Schwarz		ESCI			July 3, 2016		July 2, 2017
Horn Antenna (1G-18GHz)	SCHWARZI	BECK	BBHA9120	D	9120D-124	6	July 10, 2	016	July 9, 2018
Spectrum Analyze	r Agilen	Agilent			MY451145	3	July 3, 20)16	July 2, 2017
Signal Amplifier	SCHWARZI	BECK	BBV 9718		9718-269		July 6, 20	016	July 5, 2017
RF Cable	SCHWARZI	BECK	AK9515H		96220		July 7, 20	016	July 6, 2017
3m Anechoic Chamb	per CHENG	⁄U	966		PTS-001		June 5, 2	016	June 4, 2017
MULTI-DEVICE Positioning Controll	er Max-Fu	II	MF-7802		MF7802083	39	N/A		N/A
Horn Ant (18G-40GF	Hz) Schwarzb	eck	BBHA 9170)	9170-181		June 5, 2	016	June 4, 2017
Power Probe	R&S		NRP-Z23		100323		July 24,2	016	July 23,2017
RF attenuator	N/A		RFA20db		68		N/A		N/A
		Condu	cted Emission	า Te	st Site				
Name of Equipment	Manufacturer	Mo	del Number	Se	erial Number	Ca	Last alibration	Du	e Calibration
EMI Test Receiver	Rohde & Schwar	z	ESCI		101417	Ju	ly 3, 2016	J	uly 2, 2017
Artificial Mains Network	Narda		L2-16B	00	00WX31025	Ju	ly 7, 2016	J	uly 6, 2017
Artificial Mains Network (AUX)	Narda		L2-16B	00	00WX31026	Ju	ly 7, 2016	J	uly 6, 2017
RF Cable	SCHWARZBECK	(/	AK9515E		96222 July 3, 201		ly 3, 2016	J	uly 2, 2017
Shielded Room	CHENGYU		843		PTS-002 June 5,2016		June 4,2017		
		Condu	cted Emissior	ր Te	est Site				
Name of Equipment	Manufacturer	Mo	del Number	Se	erial Number	Ca	Last alibration	Du	e Calibration
EMI Test Receiver	Rohde & Schwar	z	ESCI		101417	Ju	ly 3, 2016	J	uly 2, 2017
Artificial Mains Network	Narda		L2-16B	00	00WX31025	Ju	ly 7, 2016	J	uly 6, 2017
Artificial Mains Network (AUX)	Narda		L2-16B	00	00WX31026	Ju	ly 7, 2016	J	uly 6, 2017
RF Cable	SCHWARZBECK	(/	4K9515E		96222	Ju	ly 3, 2016	J	uly 2, 2017
Shielded Room	CHENGYU	843			PTS-002 June 5,2016		J	une 4,2017	

Page 9 of 31

4. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§ 15.203	Antenna Requirement	Compliant
§15.209 §15.247(d)	Radiated Emission	Compliant
§15.247(d)	Band Edges	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247(b)	Conducted Power	Compliant
§15.247(e)	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.207	Line Conduction Emission	Compliant
§15.207	Conduction Emission	Compliant

5. DESCRIPTION OF TEST MODES

The EUT has been operated in three modulations: GFSK independently.

NO.	TEST MODE DESCRIPTION
1	Low channel TX
2	Middle channel TX
3	High channel TX
4	Normal Operating (BT)

Note:

- 1. All the test modes can be supply by Built-in Li-ion battery, only the result of the worst case was recorded in the report if no any records.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. Eut is operating at its maximum duty cycle>or equal 98%

Page 10 of 31

6. ANTENNA REQUIREMENT

6.1. STANDARD APPLICABLE

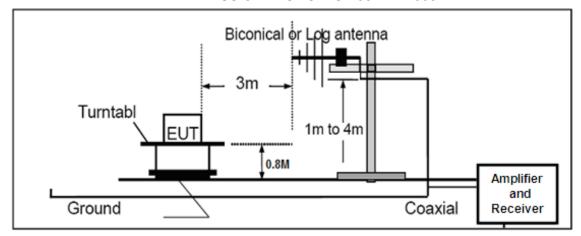
According to FCC 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

6.2. TEST RESULT

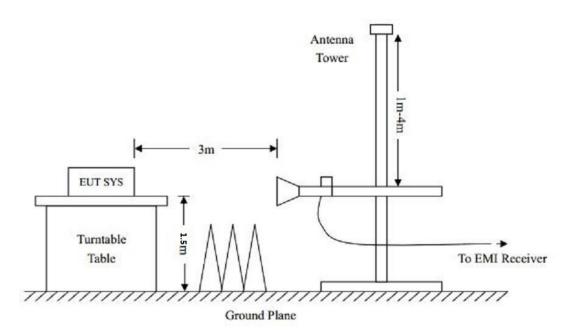
This product has a permanent antenna, fulfill the requirement of this section.

Page 11 of 31

7. RADIATED EMISSION 7.1 MEASUREMENT PROCEDURE


 Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


Page 12 of 31

7.2 TEST SETUP

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 13 of 31

7.3 LIMITS AND MEASUREMENT RESULT

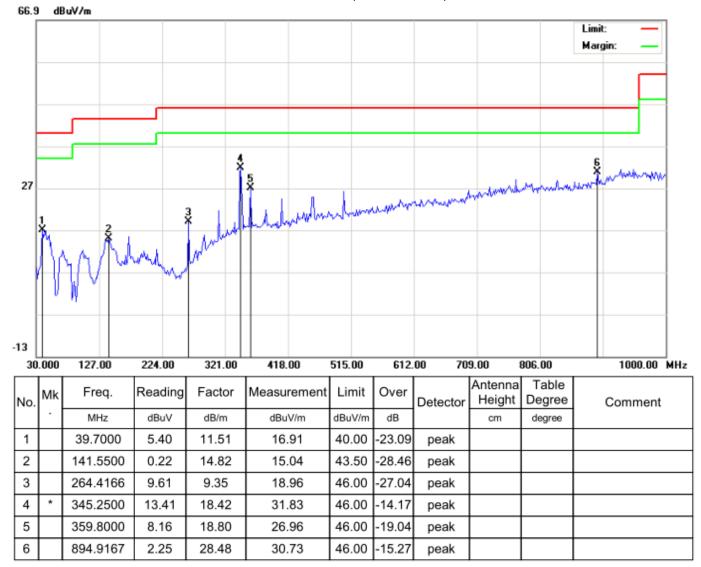
15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

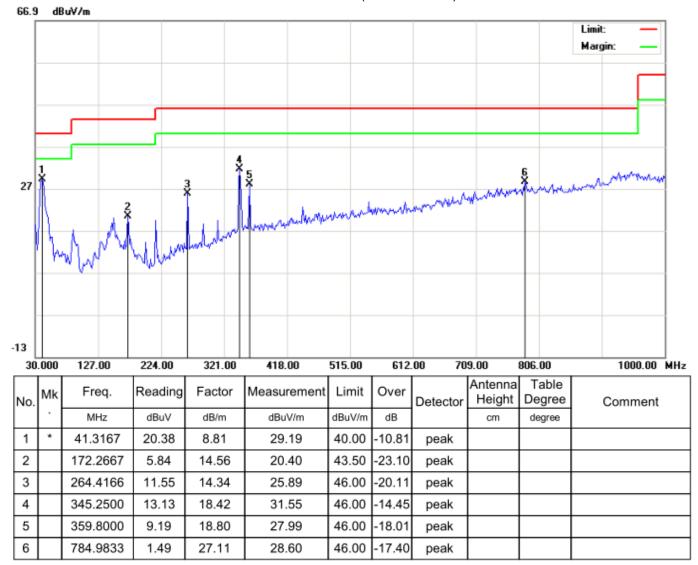
7.4 TEST RESULT


RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

Page 14 of 31

RADIATED EMISSION BELOW 1GHZ


RADIATED EMISSION TEST- (30MHZ-1GHZ) -HORIZONTAL

RESULT: PASS

Page 15 of 31

RADIATED EMISSION TEST- (30MHZ-1GHZ) -VERTICAL

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All test modes had been pre-tested. The GFSK mode at low channel is the worst case and recorded in the report.

Page 16 of 31

RADIATED EMISSION ABOVE 1GHZ

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	Comment			
Low Channel (2402 MHz)										
4804	42.02	10.44	52.46	74	-21.54	Pk	Horizontal			
4804	29.48	10.44	39.92	54	-14.08	AV	Horizontal			
7206	42.35	12.39	54.74	74	-19.26	pk	Horizontal			
7206	27.38	12.39	39.77	54	-14.23	AV	Horizontal			
4804	44.28	10.4	54.68	74	-19.32	Pk	Vertical			
4804	27.10	10.4	37.50	54	-16.50	AV	Vertical			
7206	40.92	12.75	53.67	74	-20.33	Pk	Vertical			
7206	27.76	12.75	40.51	54	-13.49	AV	Vertical			
			Mid Channel (2440	MHz)						
4880	40.22	10.4	50.62	74	-23.38	Pk	Horizontal			
4880	28.85	10.4	39.25	54	-14.75	AV	Horizontal			
7320	41.66	12.75	54.41	74	-19.59	Pk	Horizontal			
7320	30.62	12.75	43.37	54	-10.63	AV	Horizontal			
4880	44.00	10.39	54.39	74	-19.61	Pk	Vertical			
4880	27.46	10.44	37.90	54	-16.10	AV	Vertical			
7320	39.02	12.68	51.70	74	-22.30	Pk	Vertical			
7320	30.84	12.68	43.52	54	-10.48	AV	Vertical			
			High Channel (2480	MHz)						
4960	41.96	10.39	52.35	74	-21.65	pk	Horizontal			
4960	25.81	10.39	36.20	54	-17.80	AV	Horizontal			
7440	40.21	12.68	52.89	74	-21.11	pk	Horizontal			
7440	29.58	12.68	42.26	54	-11.74	AV	Horizontal			
4960	39.79	10.39	50.18	74	-23.82	pk	Vertical			
4960	26.94	10.39	37.33	54	-16.67	AV	Vertical			
7440	39.06	12.68	51.74	74	-22.26	pk	Vertical			
7440	30.93	12.68	43.61	54	-10.39	AV	Vertical			

RESULT: PASS

Note: 1~25GHz scan with GFSK. No recording in the test report at least have 20dB margin.

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Meter Reading + Factor

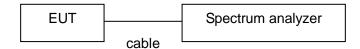
Margin = Emission - Leve Limit

Page 17 of 31

8. BAND EDGE EMISSION

8.1. MEASUREMENT PROCEDURE

1)Radiated restricted band edge measurements


The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting

- 2)Conducted Emissions at the bang edge
 - a)The transmitter output was connected to the spectrum analyzer
 - b)Set RBW=100kHz,VBW=300kHz
 - c)Suitable frequency span including 100kHz bandwidth from band edge

8.2. TEST SET-UP

Radiated same as 6.2

Conducted set up

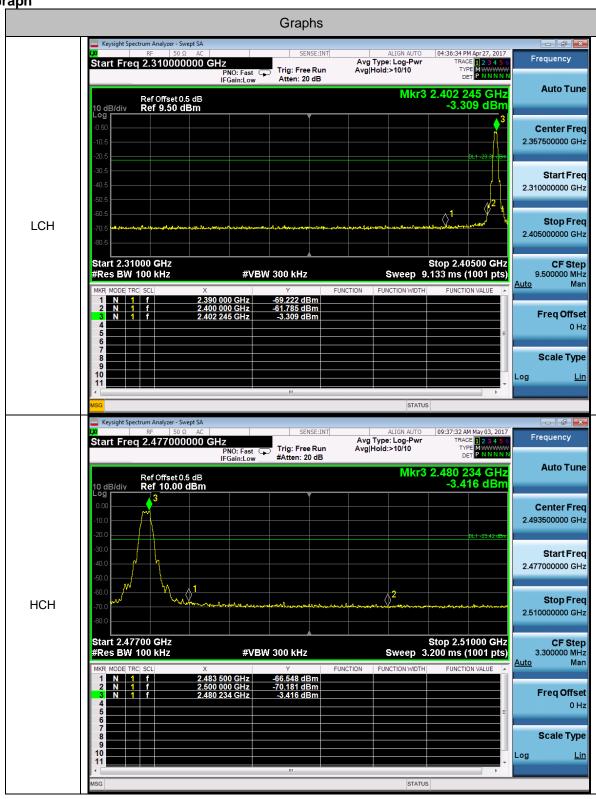
Page 18 of 31

8.3. Radiated Test Result

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type			
	Low Channel (2402 MHz)								
2399.9 65.30 -13		-13	52.30	74	-21.70	peak	Horizontal		
2399.9	54.36	-13	41.36	54	-12.64	AVG	Horizontal		
2400	65.57	-12.99	52.58	74	-21.42	peak	Horizontal		
2400	50.90	-12.99	37.91	54	-16.09	AVG	Horizontal		
2399.9	64.83	-12.97	51.86	74	-22.14	peak	Vertical		
2399.9	52.11	-12.97	39.14	54	-14.86	AVG	Vertical		
2400	65.67	-12.94	52.73	74	-21.27	peak	Vertical		
2400	53.15	-12.94	40.21	54	-13.79	AVG	Vertical		
			High Channe	l (2480 MHz)					
2483.5	67.07	-12.78	54.29	74	-19.71	peak	Horizontal		
2483.5	54.64	-12.78	41.86	54	-12.14	AVG	Horizontal		
2483.6	67.09	-12.77	54.32	74	-19.68	peak	Horizontal		
2483.6	53.58	-12.77	40.81	54	-13.19	AVG	Horizontal		
2483.5	66.32	-12.76	53.56	74	-20.44	peak	Vertical		
2483.5	52.48	-12.76	39.72	54	-14.28	AVG	Vertical		
2483.6	66.32	-12.72	53.60	74	-20.40	peak	Vertical		
2483.6	56.05	-12.72	43.33	54	-10.67	AVG	Vertical		

RESULT: PASS

Note: Factor=Antenna Factor + Cable loss - Amplifier gain,


Emission Level = Meter Reading + Factor

Margin= Emission Level -Limit.

The "Factor" value can be calculated automatically by software of measurement system.

Report No.: AGC10084170401FE08 Page 19 of 31

8.4. Conducted Test Result Test Graph

Page 20 of 31

9. 6DB BANDWIDTH

9.1. TEST PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW≥RBW.
- 4. Set SPA Trace 1 Max hold, then View.

9.2. SUMMARY OF TEST RESULTS/PLOTS

Mode	Channel	6dB Bandwidth [KHz]	Verdict
BLE	LCH	706.7	PASS
BLE	MCH	707.2	PASS
BLE	НСН	707.2	PASS

Test Graph

Page 21 of 31

10. CONDUCTED OUTPUT POWER

10.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. Use the following spectrum analyzer settings:

Set the RBW ≥ DTS bandwidth

Set the VBW ≥ 3 x RBW

Set the span \geq 3 x RBW

Detector = peak

Sweep time = auto couple

Trace mode = max hold

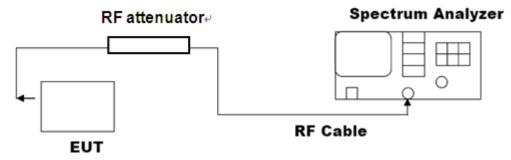
- 4. Allow the trace to stabilize. Use peak marker function to determine the peak amplitude level
- 5. Record the result form the Spectrum Analyzer.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

10.3. LIMITS AND MEASUREMENT RESULT

Channel	Peak Power (dBm)	Applicable Limits (dBm)	Pass/Fail
Low Channel	-2.554	20	Pass
Middle Channel	-2.270	20	Pass
High Channel	-2.652	20	Pass


Page 22 of 31

11. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY 11.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

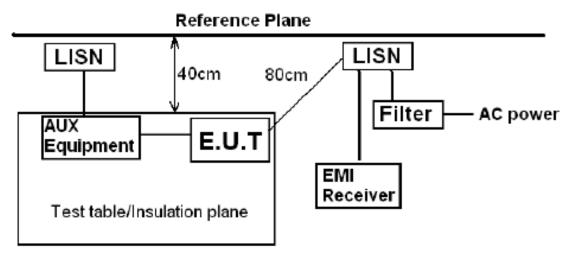
Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

11.3 LIMITS AND MEASUREMENT RESULT

Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	LCH	-18.023	8	PASS
BLE	MCH	-17.767	8	PASS
BLE	HCH	-18.218	8	PASS

Page 23 of 31


12. FCC LINE CONDUCTED EMISSION TEST

12.1 LIMITS

Fraguancy	Maximum RF Line Voltage					
Frequency	Q.P.(dBuV)	Average(dBuV)				
150kHz~500kHz	66-56	56-46				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

^{**}Note: 1. The lower limit shall apply at the transition frequency.

12.2 TEST SETUP

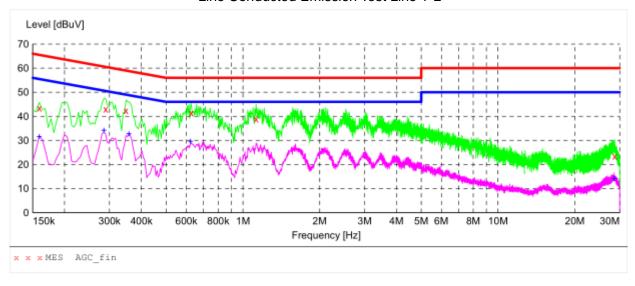
Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m

^{2.} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

Page 24 of 31

12.3 PRELIMINARY PROCEDURE

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per ANSI C63.10.
- 3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4) All support equipments received AC120V/60Hz power from a LISN, if any.
- 5) The EUT received power by adapter which received power by a LISN.
- 6) The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7) Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.
- 9) The following test mode(s) were scanned during the preliminary test. Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.


12.4 FINAL TEST PROCEDURE

- 10) EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 11) 2) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 12) 3) The test data of the worst case condition(s) was reported on the Summary Data page.

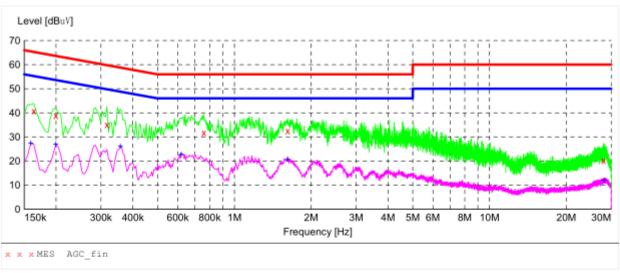
Page 25 of 31

12.5 TEST RESULT OF POWER LINE

Line Conducted Emission Test Line 1-L

MEASUREMENT RESULT: "AGC_fin"

0017	10 F 10 0	44 4 5
2017	/05/03	11:15


20	11/03/03 II	· T J							
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
									STATE
	MHz	dBuV	dB	dBuV	dB				
	0.159000	43.40	10.3	66	22.1	QP	L1	FLO	ON
	0.289500	43.00	10.3	61	17.5	QP	L1	FLO	ON
	0.348000	42.40	10.3	59	16.6	QP	L1	FLO	ON
	0.627000	41.40	10.3	56	14.6	QP	L1	FLO	ON
	1.126500	38.90	10.4	56	17.1	QP	L1	FLO	ON
	28.653000	23.50	11.8	60	36.5	QP	L1	FLO	ON

MEASUREMENT RESULT: "AGC_fin2"

2017/05/03 11:15

_ `	,1,,00,,00								
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
									STATE
	MHz	dBuV	dB	dBuV	dB				
	0.159000	31.50	10.3	56	24.0	AV	L1	FLO	ON
	0.285000	34.20	10.3	51	16.5	AV	L1	FLO	ON
	0.357000	32.70	10.3	49	16.1	AV	L1	FLO	ON
	0.622500	29.60	10.3	46	16.4	AV	L1	FLO	ON
	28.522500	14.10	11.8	50	35.9	AV	L1	FLO	ON

Line Conducted Emission Test Line 1-N

MEASUREMENT RESULT: "AGC fin"

0017	10 F 10 0	1 1 1 00
ZUII	/05/03	3 11:20

20	11//05/03 11	:20							
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
									STATE
	MHz	dBuV	dB	dBuV	dB				
	0.163500	40.80	10.3	65	24.5	QP	N	FLO	ON
	0.199500	38.80	10.3	64	24.8	QP	N	FLO	ON
	0.316500	35.10	10.3	60	24.7	QP	N	FLO	ON
	0.757500	31.80	10.3	56	24.2	QP	N	FLO	ON
	1.617000	32.50	10.4	56	23.5	QP	N	FLO	ON
	27.969000	20.20	11.8	60	39.8	QP	N	FLO	ON

MEASUREMENT RESULT: "AGC fin2"

2017/05/03 11:20

Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
								STATE
MHz	dBuV	dB	dBuV	dB				
0.159000	27.40	10.3	56	28.1	AV	N	FLO	ON
0.199500	27.00	10.3	54	26.6	AV	N	FLO	ON
0.357000	26.00	10.3	49	22.8	AV	N	FLO	ON
0.618000	22.60	10.3	46	23.4	AV	N	FLO	ON
1.617000	20.60	10.4	46	25.4	AV	N	FLO	ON
28.189500	11.90	11.8	50	38.1	AV	N	FLO	ON

Page 27 of 31

13. CONDUCTED SPURIOUS EMISSION

13.1. MEASUREMENT PROCEDURE

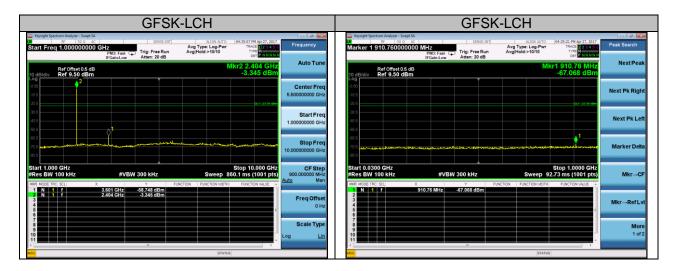
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 - RBW = 100 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

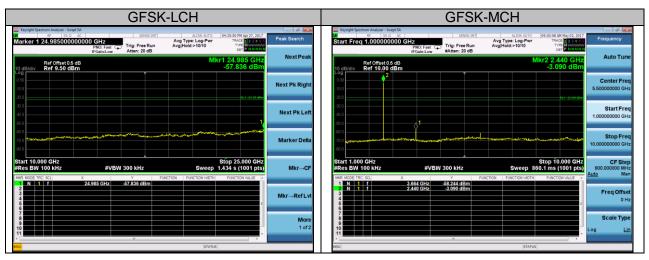
Note: The EUT was tested according to DA000705 for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW>RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW>RBW) are conform to the requirement.

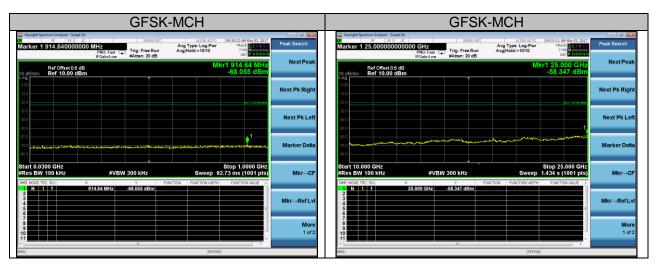
13.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2

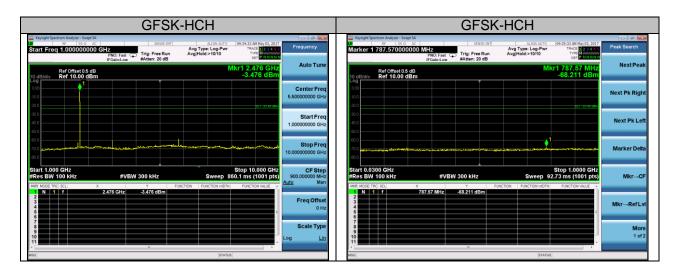
13.3. MEASUREMENT EQUIPMENT USED


The same as described in section 6

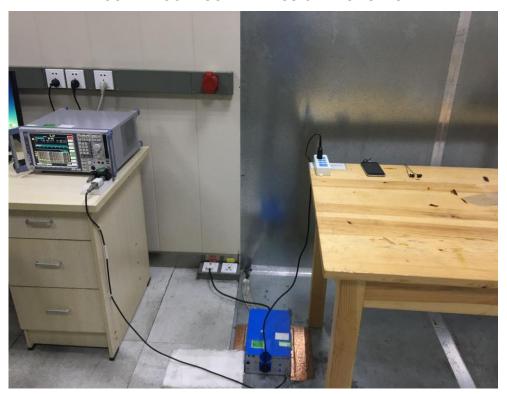

13.4. LIMITS AND MEASUREMENT RESULT


LIMITS AND MEASUREMENT RESULT		
Applicable Limits	Measurement Result	
	Test Data	Criteria
In any 100 KHz Bandwidth Outside the	At least -20dBc than the limit	PASS
frequency band in which the spread spectrum	Specified on the BOTTOM Channel	
intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS

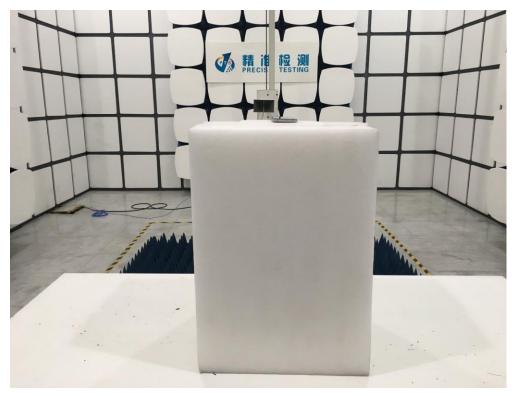
Report No.: AGC10084170401FE08 Page 28 of 31


Test Graph




Report No.: AGC10084170401FE08 Page 29 of 31

Page 30 of 31


APPENDIX A: PHOTOGRAPHS OF TEST SETUP FCC LINE CONDUCTED EMISSION TEST SETUP

FCC RADIATED EMISSION TEST SETUP

Report No.: AGC10084170401FE08 Page 31 of 31

----END OF REPORT----