@ 400 089 2118

SAR Test Report

Report No.: AGC03175180502FH01

2AF6M3396993S51 FCC ID

APPLICATION PURPOSE **Original Equipment**

PRODUCT DESIGNATION MOBILE PHONE

BRAND NAME Cellacom

MODEL NAME S51_lite, S51_pro

CLIENT Mobile Commodity Corporation

DATE OF ISSUE June 26, 2018

IEEE Std. 1528:2013

FCC 47CFR § 2.1093 STANDARD(S)

IEEE/ANSI C95.1:2005

REPORT VERSION

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results spown this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 €, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 119

Report Revise Record

Report Version Revise Time		Issued Date	Valid Version	Notes	
4	V1.0	NO THE STREET OF COMMENT	June 26, 2018	Valid	Initial Release

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 3 of 119

	Test Report Certification
Applicant Name	Mobile Commodity Corporation
Applicant Address	20955 Pathfinder Road, Suite 200, Diamond Bar, CA 91765, USA
Manufacturer Name	Cellacom Incorporation
Manufacturer Address	20955 Pathfinder Road, Suite 100, Diamond Bar, CA 91765, USA
Product Designation	MOBILE PHONE
Brand Name	Cellacom
Model Name	S51_lite, S51_pro
Different Description	All the same, except for the model name. The test model is S51_lite.
EUT Voltage	DC3.8V by battery
Applicable Standard	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005
Test Date	June 14,2018 to June 21,2018
Report Template	AGCRT-US-4G/SAR (2018-01-01)

Note: The results of testing in this report apply to the product/system which was tested only.

Tested By

Eric Zhou(Zhou Yongkang)

June 21,2018

Angela Li(Li Jiao)

June 26, 2018

Forrest Lei(Lei Yonggang)

Authorized Officer

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 4 of 119

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	8
3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. COMOSAR E-FIELD PROBE	9 10 10
4. SAR MEASUREMENT PROCEDURE	
4.1. SPECIFIC ABSORPTION RATE (SAR)	13 15
5. TISSUE SIMULATING LIQUID	
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	17 18
6. SAR SYSTEM CHECK PROCEDURE	
6.1. SAR SYSTEM CHECK PROCEDURES	21
7. EUT TEST POSITION	23
7.1. DEFINE TWO IMAGINARY LINES ON THE HANDSET. 7.2. CHEEK POSITION	24 24 25
8. SAR EXPOSURE LIMITS	
9. TEST FACILITY	
10. TEST EQUIPMENT LIST	
11. MEASUREMENT UNCERTAINTY	29
12. CONDUCTED POWER MEASUREMENT	
13. TEST RESULTS	
13.1. SAR TEST RESULTS SUMMARY	
APPENDIX A. SAR SYSTEM CHECK DATA	
APPENDIX B. SAR MEASUREMENT DATA	
APPENDIX C. TEST SETUP PHOTOGRAPHS	112
ADDENDIY D. CALIBRATION DATA	110

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KCe, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 5 of 119

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Francisco Band	Highest Reporte	SAR Toot Limit (W/V a)	
Frequency Band	Head	Body-worn	SAR Test Limit (W/Kg)
GSM 850	0.370	0.672	测
PCS 1900	0.226	0.666	The transfer of the state of th
UMTS Band II	0.315	1.163	Complie Co
UMTS Band V	0.308	0.495	1.6
LTE Band 4	0.434	1.211	1.0
WIFI 2.4G	0.454	0.365	
Simultaneous Reported SAR	1.5	576	Total Company of the Management of the Managemen
SAR Test Result	大 地	PASS	metalion o

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01
- KDB 941225 D06 Hotspot Mode v02r01
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02
- KDB 941225 D05 SAR for LTE Devices v02r05

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 6 of 119

2. GENERAL INFORMATION

2.1. EUT Description

General Information					
Product Designation	MOBILE PHONE				
Test Model	S51_lite				
Hardware Version	L71_M_V3.0				
Software Version	S51_Lite_V1.0				
Device Category	Portable				
RF Exposure Environment	Uncontrolled				
Antenna Type	Internal				
GSM and GPRS& EGPRS					
Support Band					
GPRS & EGPRS Type	Class B				
GPRS & EGPRS Class	Class 12(1Tx+4Rx, 2Tx+3Rx, 3Tx+2Rx, 4Tx+1Rx)				
TX Frequency Range	GSM 850 : 820-850MHz; PCS 1900: 1850-1910MHz;				
RX Frequency Range	GSM 850 : 869~894MHz; PCS 1900: 1930~1990MHz				
Release Version	R99				
Type of modulation	GMSK for GSM/GPRS; GMSK & 8-PSK for EGPRS				
Antenna Gain	GSM850:1.25dBi; PCS1900: 1.15dBi;				
Max. Average Power	GSM850: 31.12dBm; PCS1900: 28.77dBm				
WCDMA	CO CO				
Support Band	☐UMTS FDD Band II ☐UMTS FDD Band V ☐UMTS FDD Band IV ☐UMTS FDD Band I ☐UMTS FDD Band VIII				
HS Type	HSPA(HSUPA/HSDPA)				
TX Frequency Range	FDD Band II: 1850-1910MHz; FDD Band V: 820-850MHz				
RX Frequency Range	FDD Band II: 1930-1990MHz; FDD Band V: 869-894MHz				
Release Version	Rel-6				
Type of modulation	HSDPA:QPSK/16QAM; HSUPA:BPSK; WCDMA:QPSK				
Antenna Gain	Band II: 1.10dBii; Band V: 1.14dBi				
Max. Average Power	Band II: 22.69dBm; Band V: 21.72dBm				

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

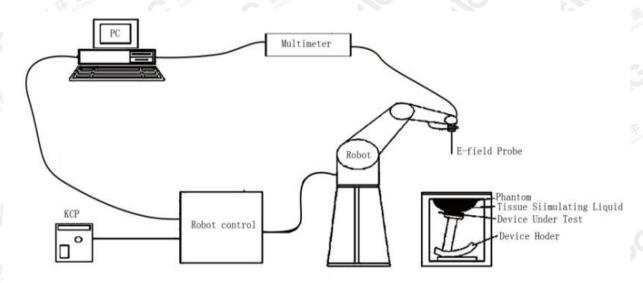
Page 7 of 119

LTE	
lite: little	☐FDD Band 2 ☐FDD Band 5 ☐FDD Band 12
	☐FDD Band 17 ☐FDD Band 25 ☐FDD Band 26
Support Band	TDD Band 41 (U.S. Bands)
CC ME	☐FDD Band 1 ☐FDD Band 3 ☐FDD Band 7 ☐FDD Band 8
	FDD Band 20 TDD Band 33 TDD Band 34 TDD Band 38
TX Frequency Range	☐FDD Band 40 ☐FDD Band 42 ☐FDD Band 43 (Non-U.S. Bands) Band 4:1710 to 1754.9 MHz
RX Frequency Range	Band 4: 1710 to 1754:9 MHz
Release Version	Rel-8
Type of modulation	QPSK, 16QAM
Antenna Gain	Band 4:1.17dBi
Max. Average Power	Band 4: 1: 17dBi Band 4: 23.14dBm
Bluetooth	Danu 4, 25, 140biii
Bluetooth Version	\textstyle
Operation Frequency	2402~2480MHz
Type of modulation	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
Peak Power	4.970dBm
Antenna Gain	1.0dBi
WIFI	1.OUDI
WIFI Specification	☐802.11a ☐802.11b ☐802.11g ☐802.11n(20) ☐802.11n(40)
Operation Frequency	2412~2472MHz
Avg. Burst Power	11b: 16.61dBm,11g:14.33dBm,11n(20):14.31dBm,11n(40):14.51dBm
Antenna Gain	1.0dBi
Accessories	
© Manager of Carbon Car	Brand name: Cellacom
Battery	Model No. : S51_lite
	Voltage and Capacitance: 3.8 V &2000mAh Brand name: N/A
	Dianu name. N/A

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Production unit

Product


Identical Prototype

Page 8 of 119

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC03175180502FH01 Page 9 of 119

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE2
Manufacture	MVG
Identification No.	SN 08/16 EPGO282
Frequency	0.7GHz-6GHz Linearity:±0.06dB(700MHz-6GHz)
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.06dB
Dimensions	Overall length:330mm Length of individual dipoles:2mm Maximum external diameter:8mm Probe Tip external diameter:2.5mm Distance between dipoles/ probe extremity:1mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:

☐ High precision (repeatability 0.02 mm)

☐ High reliability (industrial design)

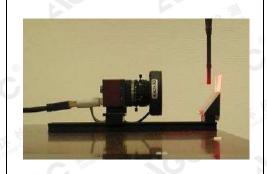
☐ Jerk-free straight movements

□ Low ELF interference (the closed metallic

construction shields against motor control fields)

□ 6-axis controller

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

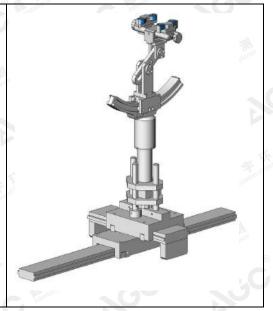

Page 10 of 119

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link.

During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.



3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 11 of 119

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

□ Left head

□ Right head

□ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 12 of 119

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;
E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
σ is the conductivity of the tissue in siemens per metre;
ρ is the density of the tissue in kilograms per cubic metre;

ch is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Page 13 of 119

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528 and IEC62209 standards, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 14 of 119

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

			TA COM			
Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*		
	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz	Zoom(n-1)		
Minimum zoom scan volume	x, y, z		3 - 4 GHz: ≥ 28 ≥ 30 mm 4 - 5 GHz: ≥ 25 5 - 6 GHz: ≥ 22			

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

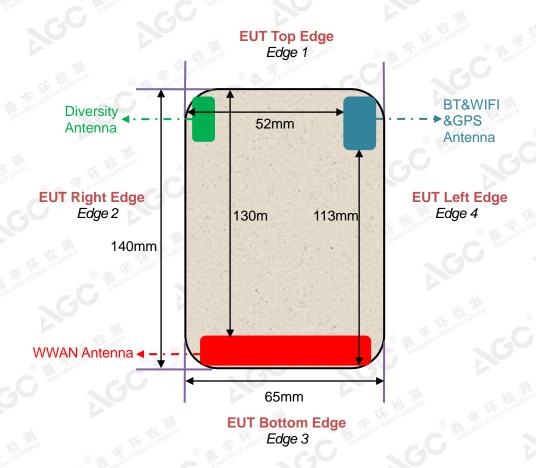
The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago-gent.com.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 15 of 119

4.3. RF Exposure Conditions


Test Configuration and setting:

The EUT is a model of GSM Portable Mobile Station (MS). It supports GSM/GPRS/EGPRS, WCDMA/HSPA, LTE, BT, WIFI, and support hot spot mode.

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command.

Antenna Location: (the back view)

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC03175180502FH01 Page 16 of 119

For WWAN mode:

Test Configurations	Antenna to edges/surface	SAR required	Note
Head			
Left Touch	CC M	Yes	· · · · · · · · · · · · · · · · · · ·
Left Tilt		Yes	111
Right Touch		Yes	during the state of the state o
Right Tilt		Yes	0 # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Body	The Compliant	Attestan	
Back	<25mm	Yes	· · · · · · · · · · · · · · · · · · ·
Front	<25mm	Yes	The state of the s
Hotspot	MI THE	₹K	
Back	<25mm	Yes	CO . GO
Front	<25mm	Yes	1
Edge 1 (Top)	130mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR
Edge 2 (Right)	2mm	Yes	Eminator CO -GO
Edge 3 (Bottom)	1mm	Yes	· · · · · · · · · · · · · · · · · · ·
Edge 4 (Left)	2mm	Yes	I Burney I I Section

For WLAN mode:

Test Configurations	Antenna to edges/surface	SAR required	Note
Head	Hior of Global	Attes	
Left Touch		Yes	11 - KB 150
Left Tilt		Yes	The state of the s
Right Touch	W 7	Yes	F. John C. C. The C. C. The C. C. C. The Control of the C.
Right Tilt	The Comment	Yes	
Body	Attestation		
Back	<25mm	Yes	· ill Find Comme
Front	<25mm	Yes	The State of the S
Hotspot	The Manual Compliance	The Compliant	@ A The down C A C
Back	<25mm	Yes	C - CO - NO
Front	<25mm	Yes	
Edge 1 (Top)	2mm	Yes	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Edge 2 (Right)	52mm	No.	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR
Edge 3 (Bottom)	113mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR
Edge 4 (Left)	1mm	Yes	The Townson of the second of t

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 17 of 119

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

3.1. The composition of	ภ เมษ แออน	e Silliula	ung nquiu			
Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
835 Head	50.36	1.25	48.39	0.0	0.0	0.0
835 Body	54.00	TE SCHOOL	0.0	15	0.0	30
1750 Head	52.64	0.36	0.0	47	0.0	0.0
1750 Body	70	1	0.0	9	a 0.0	20
1900 Head	54.9	0.18	0.0	44.92	0.0	0.0
1900 Body	70	111	0.0	9 4 00000	0.0	20
2450 Head	71.88	0.16	0.0	7.99	0.0	19.97
2450 Body	70	1	0.0	9	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

parameters specified in	ILLL 1320.	20 3W "JOO.	: Glob	Atte
Target Frequency	he	ad		body
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
750	41.9	0.89	55.5	0.96
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1750	40.1	1.37	53.4	1.49
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

($\varepsilon r = relative permittivity, \sigma = conductivity and \rho = 1000 kg/m3)$

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a trp://www.ago.go.tt.com.

Page 18 of 119

5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

		Tissue Stimulant M	leasurement for 835MHz		
	Fr.	Dielectric Par	Tissue		
	(MHz)	εr 41.5 (39.425-43.575)	δ[s/m] 0.90(0.855-0.945)	Temp [°C]	Test time
	824.2	42.15	0.88	litte:	私
Head	826.4	41.67	0.89	The poliance	
	835	41.21	0.90	22.5	June
	836.6	40.88	0.90	22.5	19,2018
	846.6	40.35	0.91		
	848.8	39.97	0.92		
	Fr.	Dielectric Pa	Tissue	Compliance	
	(MHz)	εr 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [oC]	Test time
	824.2	56.71	0.93	0	
Body	826.4	56.22	0.94		
(B) 4	835	55.89	0.95	22.0	June
	836.6	55.43	0.96	22.8	19,2018
	846.6	54.97	0.97		
	848.8	54.52	0.98	100	

		Tissue Stimulant M	easurement for 1750MHz		
Fr.		Dielectric Pa	Tissue	(B) Altestation	
	(MHz)	εr 40.1 (38.095-42.105)	δ[s/m]1.37(1.3015-1.439)	Temp [°C]	Test time
Head	1720	41.52	1.32		W. 711
	1732.5	40.99	1.35	21.5	June
	1745	40.44	1.37	21.5	21,2018
	1750	39.95	1.40	-00	
K Kinpliance	® Fr. Janon of G	Dielectric Pa	rameters (±5%)	Tissue	
	(MHz)	εr 53.4(50.73-56.07)	δ[s/m] 1.49(1.4155-1.5645)	Temp [oC]	Test time
Body	1720	55.16	1.44	F Clobal Comb	Attestation
Zedy	1732.5	54.67	1.46	21.7	June
	1745	54.22	1.48	21.7	21,2018
	1750	53.58	1.50		

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

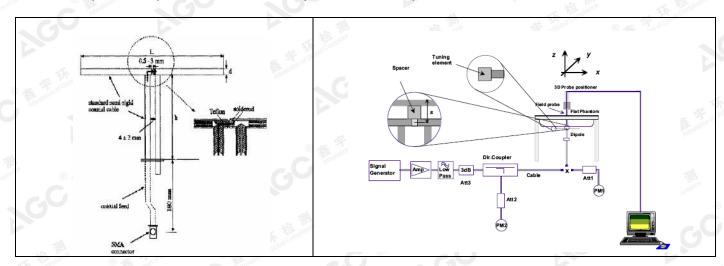
Page 19 of 119

		Tissue Stimulant Me	easurement for 1900MHz		
Attes	Fr.	Dielectric Para	Tissue	om ¹ 8 # 10	
	(MHz)	εr40.00(38.00-42.00)	δ[s/m]1.40(1.33-1.47)	Temp [°C]	Test time
	1850.2	41.56	1.36		
Head	1852.4	41.02	1.37		ALT THE
	1880	40.88	1.38	24.0	June
	1900	40.24	1.40	21.8	14,2018
	1907.6	39.75	1.42		- G
	1909.8	39.33	1.44		
The station of Control	Fr. valon of	Dielectric Para	ameters (±5%)	Tissue	
	(MHz)	εr53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [oC]	Test time
	1850.2	55.13	1.46	non of Glov	
Body	1852.4	54.71	1.48		
® #	1880	54.22	1.50	22.0	June
	1900	53.65	1.52	22.0	14,2018
	1907.6	53.07	1.53	环	Sal Compilar.
	1909.8	52.59	1.55	® # clation of Gil	20

196° at 10	SIL (V	Tissue Stimulant M	easurement for 2450MHz				
CO.	Fr.	Dielectric Pa	Dielectric Parameters (±5%)				
	(MHz)	εr39.2(37.24-41.16)	δ[s/m]1.80(1.71-1.89)	Temp [°C]	Test time		
Head	2412	40.85	1.73				
Tioud	2437 40.36 2450 39.77		1.75	24.2	June		
			1.77	21.3	16,2018		
	2462	39.12	® Figure of Globe				
	Fr.	Dielectric Pa	Tissue	60			
	(MHz)	εr52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [oC]	Test time		
Body	2412	54.63	1.88	:JIII]	EK Complian		
Zouy	2437	54.08	1.90	24 5	June		
	2450	53.49	1.92	21.5	16,2018		
	2462	52.95	1.94				

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 20 of 119

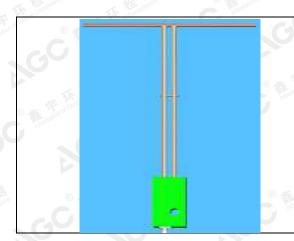

6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.



The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 21 of 119

6.2. SAR System Check 6.2.1. Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6
1800MHz	71.6	41.7	3.6
1900MHz	68	39.5	3.6
2450MHz	51.5	30.4	3.6

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 22 of 119

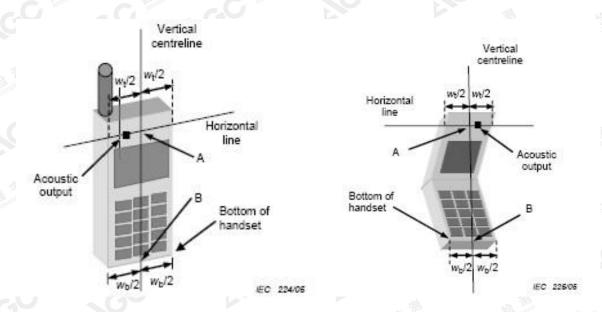
6.2.2. System Check Result

			t 835MHz &1800 6835-383& SN29/					39& SN 29/15DII	
Frequency	Target Value(W/Kg)		Reference (± 1		sted (W/Kg)	Tissue Temp.	Test time		
[MHz]	1g	10g	1g 10g		1g	1g 10g) The station of	
835	10.04	6.43	9.036-11.044	5.787 -7.073	9.69	6.18	22.5	June 19,2018	
1800	37.43	19.88	33.687-41.173	17.892-21.868	36.73	19.04	21.5	June 21,2018	
1900	41.44	21.33	37.296-45.584	19.197-23.463	39.15	19.68	21.8	June 14,2018	
2450	54.53	24.30	49.077-59.983	21.87-26.730	53.98	23.26	21.3	June 16,2018	
System Per	formance	Check a	t 835MHz &1800	MHz &1900MHz	&2450M	Hz for Bo	ody		
Frequency	Tar Value(get W/Kg)	Reference Result (± 10%)		Tested Value(W/Kg)		Tissue Temp.	Test time	
[MHz]	1g	10g	1g	10g	1g	10g	[°C]		
835	9.85	6.45	8.865-10.835	5.805-7.095	9.35	5.98	22.8	June 19,2018	
1800	36.53	19.80	32.877-40.183	17.82-21.780	36.41	18.88	21.7	June 21,2018	
1900	39.38	20.86	35.442-43.318	18.774-22.946	37.17	18.82	22.0	June 14,2018	
2450	49.92	23.16	44.928-54.912	20.844-25.476	50.41	21.74	21.5	June 16,2018	

Note:

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

⁽¹⁾ We use a CW signal of 18dBm for system check, and then all SAR value are normalized to 1W forward power. The result must be within $\pm 10\%$ of target value.


Page 23 of 119

7. EUT TEST POSITION

This EUT was tested in Right Cheek, Right Tilted, Left Cheek, Left Tilted, Body back, Body front and 4 edges.

7.1. Define Two Imaginary Lines on the Handset

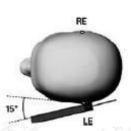
- (1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 24 of 119

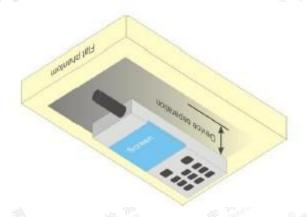
7.2. Cheek Position

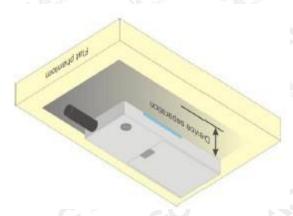
- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost



7.3. Tilt Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.



Page 25 of 119

7.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 5mm.

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

Page 26 of 119

8. SAR EXPOSURE LIMITS

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (SC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 27 of 119

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 28 of 119

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date	
SAR Probe	MVG	SN 08/16 EPGO282	Aug. 08,2017	Aug. 07,2018	
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	SATIMO	· 环境测 · · · · · · · · · · · · · · · · · · ·	Validated. No cal required.	Validated. No cal required.	
Comm Tester	Agilent-8960	GB46310822	Mar. 01,2018	Feb. 28,2019	
Comm Tester	R&S- CMW500	S/N121209	Jul. 13,2017	Jul. 12,2018	
Multimeter	Keithley 2000	1188656	Mar. 01,2018	Feb. 28,2019	
Dipole	SATIMO SID835	SN29/15 DIP 0G835-383	Jul. 05,2016	Jul. 04,2019	
Dipole	SATIMO SID1800	SN29/15 DIP 1G800-387	Jul. 05,2016	Jul. 04,2019	
Dipole	SATIMO SID1900	SN 29/15 DIP 1G900-389	Jul. 05,2016	Jul. 04,2019	
Dipole	SATIMO SID2450	SN29/15 DIP 2G450-393	Jul. 05,2016	Jul. 04,2019	
Signal Generator	Agilent-E4438C	US41461365	Mar. 01,2018	Feb. 28,2019	
Vector Analyzer	Agilent / E4440A	US41421290	Mar. 01,2018	Feb. 28,2019	
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	Mar. 01,2018	Feb. 28,2019	
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A	
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A	
Amplifier	EM30180	SN060552	Mar. 01,2018	Feb. 28,2019	
Directional Couple	Werlatone/ C5571-10	SN99463	Jun. 12,2018	Jun. 11,2019	
Directional Couple	Werlatone/ C6026-10	SN99482	Jun. 12,2018	Jun. 11,2019	
Power Sensor	NRP-Z21	1137.6000.02	Oct. 12,2017	Oct. 11,2018	
Power Sensor	NRP-Z23	US38261498	Mar. 01,2018	Feb. 28,2019	
Power Viewer	R&S	V2.3.1.0	N/A	N/A	

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

IGC 8

Page 29 of 119

11 MEASUREMENT UNCERTAINTY

Measure	ement un	certainty for	r Dipole	averaged o	over 1 gran	n / 10 gran	า.		
а	b	С	d	e f(d,k)	f	g	h cxf/e	i cxg/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System			LITT:		all	- 31/		五年	omplian
Probe calibration	E.2.1	5.831	N	1 派 检	1	1:1 Kill Compiler	5.83	5.83	00
Axial Isotropy	E.2.2	0.695	R 🛚	$\sqrt{3}$	√0.5	√0.5	0.28	0.28	00
Hemispherical Isotropy	E.2.2	1.045	R	$\sqrt{3}$	√0.5	√0.5	0.43	0.43	00
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1 -11	1	0.58	0.58	œ
Linearity	E.2.4	0.685	R	$\sqrt{3}$	15/ 10 compliant	1 4	0.40	0.40	8
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	1	1 Allestand	0.58	0.58	8
Modulation response	E2.5	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	oo
Readout Electronics	E.2.6	0.021	N	1	1	1 , 1	0.021	0.021	oo
Response Time	E.2.7	0 ::	R	$\sqrt{3}$	1 %	1 bal Companie	0	0	00
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	oo
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1 A Lation of	0.81	0.81	oo
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1 6	1	0.81	0.81	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	00
Test sample Related	litte		利	ompliance	The Storm	lina.	® # Jajion of Gl	Opp.	Mestall
Test sample positioning	E.4.2	2.6	N	1	estation of 1	1	2.6	2.6	8
Device holder uncertainty	E.4.1	3	N	1	1	1	3	3	8
Output power variation—SAR drift measurement	E.2.9	5	R	√3	1	1	2.89	2.89	00
SAR scaling	E.6.5	5	R	√3	1	The compi	2.89	2.89	∞
Phantom and tissue parameters		FI Tomphace	® #	G1000	© ###	station of GIO	60		(6)
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	39	1	2.31	2.31	œ
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1 1 1 T	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4	N	1 %	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	© 5,000 of Green	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	00
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	00
Combined Standard Uncertainty	# V	V Ost Combined	RSS	coal Coal	Altesta		9.79	9.59	
Expanded Uncertainty (95% Confidence interval)	Alle station of	-C	K=2	100			19.58	19.18	- 1

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 30 of 119

System	check und	certainty fo	or Dipole	averaged	over 1 grai	m / 10 gran	n.		
а	b	С	d	e f(d,k)	f	g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System		2.G	le						lig:
Probe calibration drift	E.2.1.3	0.5	N	1	1	1 🧌	0.50	0.50	oo
Axial Isotropy	E.2.2	0.695	R	√3	10 arros 0	0	0.00	0.00	00
Hemispherical Isotropy	E.2.2	1.045	R	$\sqrt{3}$	0	0	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	0	0	0.00	0.00	oo
Linearity	E.2.4	0.685	R	$\sqrt{3}$	0 :	0	0.00	0.00	00
System detection limits	E.2.4	1.0	R	√3	1 0	0 🧳	0.00	0.00	œ
Modulation response	E2.5	3.0	R	√3	0	0	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	59	0	0	0.00	0.00	00
Response Time	E.2.7	0	R	$\sqrt{3}$	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	√3	0 🧠	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	√3	O liestatio	0	0.00	0.00	00
RF ambient conditions-reflections	E.6.1	3.0	R	√3	0	0	0.00	0.00	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	oo
Probe positioning with respect to phantom shell	E.6.3	1.4	R	$\sqrt{3}$	Compliance 1	® \$1 station of	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	œ
System check source (dipole)				:1111	Jz.	-And	£K	Compliance	20
Deviation of experimental dipoles	E.6.4	2	N	hpliance 1	The Man	1	2 2 mol G	2	8
Input power and SAR drift measurement	8,6.6.4	5	R	$\sqrt{3}$	A lestation of	15	2.89	2.89	00
Dipole axis to liquid distance	8,E.6.6	2	R	$\sqrt{3}$	1	1	1.15	1.15	00
Phantom and tissue parameters					litte:	D. 7	Till -	江 环。	Compile
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	$\sqrt{3}$	ornaliance 1	TI Ja Compil	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	39	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty			RSS	ha		The Manage	5.564	5.205	(
Expanded Uncertainty (95% Confidence interval)		KE JULIO	K=2	Compliance Miles	(C) ###	ou of Glopal Co.	11.128	10.410	r,C

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 31 of 119

System Va	alidation u	ıncertainty	for Dipo	le average	ed over 1 gr	ram / 10 gr	am.		
a	b	С	d	e f(d,k)	f	g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (±%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System	, A.	2.G F	les						IIII:
Probe calibration	E.2.1	5.831	N	1	1	1	5.83	5.83	00
Axial Isotropy	E.2.2	0.695	R	$\sqrt{3}$	plance 1	Th 1 complian	0.40	0.40	00
Hemispherical Isotropy	E.2.2	1.045	R	$\sqrt{3}$	0	ion of O	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	94	1	0.58	0.58	00
Linearity	E.2.4	0.685	R	$\sqrt{3}$	1 -	1	0.40	0.40	00
System detection limits	E.2.4	1.0	R	√3	Th Tomphan	1 %	0.58	0.58	00
Modulation response	E2.5	3.0	R	√3	0	0	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	G	1.0	1	0.021	0.021	00
Response Time	E.2.7	0.0	R	$\sqrt{3}$	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	√3	(B) Attestation	1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	o
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	mpliance 1	® #1 station of	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	8
System check source (dipole)	0			-311		:1111	4	KET Whisuce	-4
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	hpliance 1	The Confi	1	5.00	5.00	8
Input power and SAR drift measurement	8,6.6.4	5.0	R	$\sqrt{3}$	A lestation of	1	2.89	2.89	00
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	00
Phantom and tissue parameters					lin:	J. 7	TII.	II IN DO	Combine
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	$\sqrt{3}$	m liance 1	F Mar Compli	2.31	2.31	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	estation of 1		0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4.0	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5.0	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	00
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty			RSS	- A		在 Palance	9.718	9.517	(
Expanded Uncertainty (95% Confidence interval)		KEL JULI	K=2	KE Tholance	© ##	Jot Global Co.	19.437	19.035	,C

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 32 of 119

12. CONDUCTED POWER MEASUREMENT GSM BAND

Mode Frequency(MHz)		Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)	
Maximum Power <1	> <u>C</u>	Allester		:11	
(R) Attestation of	824.2	31.07	-9	22.07	
GSM 850	836.6	31.12	-9 ·	22.12	
	848.8	31.11	-9	22.11	
GPRS 850	824.2	31.03	-9	22.03	
(1 Slot)	836.6	31.05	-9	22.05	
(1 3101)	848.8	31.07	-9	22.07	
0000 050	824.2	28.99	The complete -6 Francis	22.99	
GPRS 850 (2 Slot)	836.6	28.46	-6	22.46	
(2 Slot)	848.8	28.85	-6	22.85	
2000 050	824.2	26.14	-4.26	21.88	
GPRS 850 (3 Slot)	836.6	26.46	-4.26	22.20	
(3 3101)	848.8	26.48	-4.26	22.22	
GPRS 850	824.2	25.25	-3	22.25	
	836.6	25.28	-3	22.28	
(4 Slot)	848.8	25.34	-3	22.34	
EGPRS 850 (1 Slot)	824.2	25.59	-9 F of Citabal Co	16.59	
	836.6	25.45	-9	16.45	
(1 3101)	848.8	25.34	-9	16.34	
FORDO OFO	824.2	22.11	-6	16.11	
EGPRS 850	836.6	22.34	-6	16.34	
(2 Slot) 848.	848.8	22.18	-6 ®	16.18	
®	824.2	21.52	-4.26	17.26	
EGPRS 850	836.6	21.16	-4.26	16.90	
(3 Slot)	848.8	21.49	-4.26	17.23	
0	824.2	19.27	-3, the property of	16.27	
EGPRS 850	836.6	19.14	-3	16.14	
(4 Slot)	848.8	19.33	-3	16.33	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 33 of 119

Mode Frequency(MHz)		Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)	
Maximum Power <2	2> If (50mm)	arce K Compliance	Niestation (S)	Attest	
極加加	824.2	30.51	-9	21.51	
GSM 850	836.6	30.75	-9	21.75	
Alfestation of	848.8	30.62	-9	21.62	
CDDC 050	824.2	30.41	-9 tempero	21.41	
GPRS 850 (1 Slot)	836.6	30.33	9	21.33	
(TOIOL)	848.8	30.15	-9 V	21.15	
GPRS 850 (2 Slot)	824.2	28.96	-6	22.96	
	836.6	28.43	₩ -6	22.43	
(2 3101)	848.8	28.82	-9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -4.26 -4.26 -4.26 -3 -3	22.82	
0000.050	824.2	26.11	-4.26	21.85	
GPRS 850 (3 Slot)	836.6	26.43	-4.26	22.17	
(3 5101)	848.8	26.41	-4.26	22.15	
	824.2	25.20	-3 minutes	22.20	
GPRS 850 (4 Slot)	836.6	25.25	® ## dallor de -3	22.25	
(4 301)	848.8	25.31	-3	22.31	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 34 of 119

GSM BAND CONTINUE

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)	
Maximum Power <1	(8) Mary and Caloban	(e) The state of Global	10 20 °	×60	
oal Comme	1850.2	28.77	-9	19.77	
PCS1900	1880	28.69	-9	19.69	
	1909.8	28.59	-9 to the	19.59	
GPRS1900	1850.2	27.11	-9	18.11	
(1 Slot)	1880	27.46	-9 C	18.46	
() Olot)	1909.8	27.53	-9	18.53	
GPRS1900	1850.2	24.34	<i>₹</i> -6	18.34	
(2 Slot)	1880	24.49	The complete of the things	18.49	
(2 300)	1909.8	24.52	-6 Marsallon o	18.52	
ODD04000	1850.2	23.58	-4.26	19.32	
GPRS1900 (3 Slot)	1880	23.79	-4.26	19.53	
(3 301)	1909.8	23.73	-4.26	19.47	
00004000	1850.2	22.69	® 4 4 -3 ® 4	19.69	
GPRS1900 (4 Slot)	1880	22.77	-3	19.77	
(4 301)	1909.8	22.64	-3	19.64	
- O S A TESTATION OF	1850.2	24.22	-9	15.22	
EGPRS1900	1880	24.36	-9 # John 100 mm	15.36	
(1 Slot)	1909.8	24.41	-9	15.41	
T Tomphanos	1850.2	21.28	-6	15.28	
EGPRS1900 (2 Slot)	1880	21.49	-6	15.49	
(2 3101)	1909.8	21.28	-6	15.28	
E00001000	1850.2	21.77	-4.26	17.51	
EGPRS1900	1880	21.64	-4.26	17.38	
(3 Slot)	1909.8	21.49	-4.26	17.23	
Allestates	1850.2	20.35	-3	17.35	
EGPRS1900	1880	20.46	-3	17.46	
(4 Slot)	1909.8	20.64	-3	17.64	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 35 of 119

Mode	Mode Frequency(MHz)		Duty cycle Factor(dBm)	Frame Power(dBm)	
Maximum Power <2	2> <u>I</u>	Artico T. Compliance	Altestation & Saltesta	Attestall	
松 神	1850.2	28.31	-9	19.31	
PCS1900	1880	28.29	-9	19.29	
	1909.8	28.16	-9	19.16	
ODD04000	1850.2	27.06	-9 templane	18.06	
GPRS1900 (1 Slot)	1880	27.35	® 44 -9°	18.35	
(1 300)	1909.8	27.50	-9	18.50	
The state of the s	1850.2	24.31	-6	18.31	
GPRS1900 (2 Slot)	1880	24.42	-6	18.42	
(2 3101)	1909.8	24.47	-6 = 300 de constante	18.47	
(i)	1850.2	23.40	-4.26	19.14	
GPRS1900 (3 Slot)	1880	23.72	-4.26	19.46	
(3 3101)	1909.8	23.70	-4.26	19.44	
	1850.2	22.62	-3	19.62	
GPRS1900 (4 Slot)	1880	22.75	© #	19.75	
(4 3101)	1909.8	22.61	-3	19.61	

Note 1:

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) - 9 dB

Frame Power = Max burst power (2 Up Slot) - 6 dB

Frame Power = Max burst power (3 Up Slot) - 4.26 dB

Frame Power = Max burst power (4 Up Slot) - 3 dB

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.agc.gett.com.

Page 36 of 119

UMTS BAND HSDPA Setup Configuration:

- •The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- •The RF path losses were compensated into the measurements.
- ·A call was established between EUT and Based Station with following setting:
- (1) Set Gain Factors(β c and β d) parameters set according to each
- (2) Set RMC 12.2Kbps+HSDPA mode.
- (3) Set Cell Power=-86dBm
- (4) Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
- (5) Select HSDPA Uplink Parameters
- (6) Set Delta ACK, Delta NACK and Delta CQI=8
- (7) Set Ack Nack Repetition Factor to 3
- (8) Set CQI Feedback Cycle (k) to 4ms
- (9) Set CQI Repetition Factor to 2
- (10) Power Ctrl Mode=All Up bits
- ·The transmitted maximum output power was recorded.

Table C.10.2.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc (Note5)	βd	βd (SF)	βc/βd	βHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
Attestation 1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15(Note 4)	15/15(Note 4)	64	12/15(Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with $\beta_{hs} = 30/15 * \beta_c$.

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause

5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .

Note 3: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the c/d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 11/15 and d = 15/15.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the sample (s) are retained for 30 days only. The document is issued by AGC, this document to an action of the sample (s) are retained for 30 days only. The document is issued by AGC, this document to an action of the sample (s) are retained for 30 days only. The document is issued by AGC, this document is a sample (s) are retained for 30 days only. The document is issued by AGC, this document to an action of the sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are reta

Page 37 of 119

HSUPA Setup Configuration:

- · The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- · The RF path losses were compensated into the measurements.
- · A call was established between EUT and Base Station with following setting *
- (1) Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
- (2) Set the Gain Factors (βc and βd) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
- (3) Set Cell Power = -86 dBm
- (4) Set Channel Type = 12.2k + HSPA
- (5) Set UE Target Power
- (6) Power Ctrl Mode= Alternating bits
- (7) Set and observe the E-TFCI
- (8) Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- · The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βα	βd	βd (SF)	βc/βd	βHS (Note 1)	βес	βed (Note 4) (Note 5)	βed (SF)	βed (Code s)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E-TF CI
15	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/22 5	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	K Taplance	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	βed1: 47/15 βed2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	- W	_	5/15	5/15	47/15	4	1%	1.0	0.0	12	67

Note 1: For sub-test 1 to 4, \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, \triangle ACK, \triangle NACK and \triangle CQI = 5/15 with β_{hs} = 5/15 * β_c .

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the c/d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 10/15 and d = 15/15.

Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 5: βed cannot be set directly; it is set by Absolute Grant Value.

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

The results show this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gott.com.

Report No.: AGC03175180502FH01 Page 38 of 119

UMTS BAND II

Made	Frequency	Avg. Burst Power
Mode	(MHz)	(dBm)
WCDMA 1900	1852.4	22.69
RMC	1880	22.44
RIVIC	1907.6	22.49
WCDMA 4000	1852.4	22.11
WCDMA 1900	1880	22.13
AMR	1907.6	22.25
CHOPPA	1852.4	21.11
HSDPA	1880	21.16
Subtest 1	1907.6	21.24
LIODDA STATE	1852.4	20.36
HSDPA	1880	20.49
Subtest 2	1907.6	20.77
LIOPPA	1852.4	20.11
HSDPA	1880	20.25
Subtest 3	1907.6	20.17
© Maria Co	1852.4	20.23
HSDPA	1880	20.42
Subtest 4	1907.6	20.28
The House M. Series	1852.4	20.46
HSUPA	1880	20.33
Subtest 1	1907.6	20.18
LIQUIDA	1852.4	21.00
HSUPA	1880	21.36
Subtest 2	1907.6	21.25
HOUDA	1852.4	21.22
HSUPA	1880	21.13
Subtest 3	1907.6	21.19
LICUIDA COMPANION OF THE PROPERTY OF THE PROPE	1852.4	21.20
HSUPA	1880	22.19
Subtest 4	1907.6	22.07
LICUDA	1852.4	21.16
HSUPA	1880	21.66
Subtest 5	1907.6	21.85

Page 39 of 119

UMTS BAND V

MTS BAND V		· · · · · · · · · · · · · · · · · · ·
Mode	Frequency (MHz)	Avg. Burst Power (dBm)
WCDMA 850	826.4	21.58
RMC	836.6	21.11
TAINIU INIU	846.6	21.72
WCDMA 950	826.4	21.18
WCDMA 850 AMR	836.6	21.33
AIVIR	846.6	21.15
HSDPA	826.4	20.14
	836.6	19.88
Subtest 1	846.6	20.27
HODDA	826.4	19.95
HSDPA	836.6	20.07
Subtest 2	846.6	20.03
HODDA	826.4	20.62
HSDPA	836.6	20.26
Subtest 3	846.6	20.50
® # 110pps 60 5	826.4	20.62
HSDPA	836.6	20.37
Subtest 4	846.6	20.51
LIQUIDA (S. S. S	826.4	20.53
HSUPA	836.6	21.52
Subtest 1	846.6	20.97
LIQUIDA	826.4	20.85
HSUPA	836.6	20.99
Subtest 2	846.6	21.47
LIQUIDA C	826.4	20.87
HSUPA	836.6	20.61
Subtest 3	846.6	20.66
III LIQUIDATA ACCORDANCE TO THE TANK OF THE PARTY OF THE	826.4	20.78
HSUPA	836.6	20.32
Subtest 4	846.6	20.87
	826.4	20.93
HSUPA	836.6	20.51
Subtest 5	846.6	21.26

Page 40 of 119

According to 3GPP 25.101 sub-clause 6.2.2 , the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)
For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)
Note: CM=1 for β $_{o}/\beta$ $_{d}$ =12/15, β $_{hs}/\beta$ $_{c}$ =24/15.For all	other combinations of D	PDCH, DPCCH, HS-DPCCH,
E-DPDCH and E-DPCCH the MPR is based on the r	elative CM difference.	

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC03175180502FH01 Page 41 of 119

D 1 1 1 1 1 1	Modulation	·	RB	T / 1100	Channel	Channel	Channe
Bandwidth		RB size	offset	Target MPR	19957	20175	20393
			0 🐀	0	23.14	22.94	22.86
	ini	1	3	10 0	23.13	22.75	22.69
	The Completion	(S) Atteste	5	The state of the s	23.09	22.81	22.38
	QPSK	C	0	0	22.81	22.35	22.33
	Alles	3	2	0	22.74	22.29	22.37
	7111	litte:	3	0 # 1	22.98	22.78	22.41
4 48811-	A A Compliance	6	7.0°0	1 Allestation	21.97	21.71	21.46
1.4MHz	® Milestation of Control	Alle Marie	0	0 1	22.27	22.26	21.59
	GO	1	3	. 1	22.24	22.16	21.62
		A THE	5	The first of the second	22.28	22.20	21.60
	16QAM	The Global Company	0	or Clobal 1	22.12	21.54	21.32
	Global Compile	3	2	1	22.15	21.49	21.28
		100	3	1	22.01	21.64	21.46
		6	0	2 Compliance	20.86	20.69	20.58
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channe
Danawiatii	Modulation	ND 3120	offset	rarget iiii ix	19965	20175	20385
	Alles		0	0	22.47	22.37	22.32
		1	7	Complete O	22.54	22.15	22.08
	KE Alling	Compliance	14 °	O The state of the	22.37	22.45	22.36
	QPSK	3000	0	64	21.06	21.52	21.39
	~ GO "	8	4	1	21.11	21.44	21.43
	liti:	, la	7	The Compliance	21.60	21.60	21.48
3MHz	The Compliance	15	0	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21.60	21.55	21.43
SIVII 1Z	The station of Glob	Attestation of	0	1 0	21.75	21.67	21.65
	" GC	1	7	1	21.53	21.50	21.55
		-5111	14	1 1	21.66	21.73	21.68
	16QAM	Compliance	0	2 Alleganion of C	20.34	20.58	20.22
	® Managaran of Gir	8	4	2	20.19	20.17	20.18
	GO	CO	7	2	20.60	20.63	20.47
						7,10	3.2

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 42 of 119

Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
bandwidth	Wodulation	RD SIZE	offset	rarget WIPK	19975	20175	20375
	100	\G	0	0	22.51	22.49	22.41
		1	13	0,	22.47	22.41	22.43
	The same	R AL	24	0	22.35	22.24	22.47
	QPSK	C Milesto	0	American 1	21.36	21.02	21.45
	Attestation of Gui	12	6	1	21.55	21.06	21.44
			13	1	21.41	21.11	21.50
CMU-	· 塔里。	25	0	· (0)	21.24	21.19	21.44
5MHz	lopal co.	Count	0	a C1 Alles	21.82	21.90	21.40
	Allestation	1	13	1	21.58	21.59	21.61
	G	CO .	24	- TIII 1	21.74	21.71	21.41
	16QAM	KI TOTAL	0	2 ®	20.12	20.18	20.41
	The fill the second sec	12	6	2	20.32	20.15	20.16
	(Glopal con	Altestand	13	2	20.51	20.22	20.53
	10	25	0	2	20.22	20.14	20.40
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channe
Danawiani	Wodulation	KD SIZE	offset	Target WIPK	20000	20175	20350
	© Manager of Glob	30	0	0	21.88	22.36	21.59
		1	25	1 0	21.93	22.25	22.20
	:1111	LIFE STA	49	0	22.05	21.19	22.32
	QPSK	lobal Complian	0	1 37	21.53	20.48	21.25
	Da Alfastation of	25	13	9 1	21.34	20.69	21.23
	~GO		25	1 1	21.29	20.71	21.27
40001-	· 100	50	0	FA TO Compliance	21.20	21.04	20.93
10MHz	The Compilar	O F F of Global Con	0	The station of 1	21.11	21.69	20.85
	Attestation of Co.	Alles 12 II	25	1.0	21.42	20.77	20.16
	Co		49	1	21.39	20.51	21.71
	16QAM	Light .	0	2	20.21	19.67	20.26
	新	25	13	2	20.19	19.58	20.18
	® Martestation of Colf	(0)	25	2	20.24	19.69	20.21
					Land American	.	******

Page 43 of 119

5 1 141	Modulation		RB	T (MDD	Channel	Channel	Channe
Bandwidth		RB size	offset	Target MPR	20025	20175	20325
		. G	0	0	22.08	22.28	21.65
		1	38	0	22.19	22.56	21.52
	1997	0 m	74	0	22.23	21.21	22.42
	QPSK	Allesta	0	Arrestation 1	21.25	20.15	20.88
	Attestation of Chil	36	18	1	21.53	20.57	20.79
			39	1	21.32	20.56	20.96
458811-	拉测	75	0	1	21.25	21.00	20.67
15MHz	Nobel Com	County ®	0	-G1	21.34	21.58	20.80
	Allesation	1	38	1	21.41	21.47	20.49
	16QAM		74	- 1111 1	21.53	20.55	21.70
		To the Things	0	2 8	20.20	19.69	19.96
	The Thingson Co.	36	18	2	20.19	19.87	19.88
	Aglobal Confe	Attestan	39	2	20.24	19.53	19.96
		75	0	2	20.19	19.95	19.64
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channe
Danuwium	Wodulation	KD SIZE	offset	Target WFK	20050	20175	20300
	© The latter of Gibb		0	0	22.72	22.96	22.37
		1	50	0	22.30	21.96	22.15
	-Till	1111 S	99	beat Compilar O	22.08	21.07	22.30
	QPSK	lopal Complian	0	A Altesallo	21.15	20.11	20.59
	Nulse italion of	50	25	01	21.62	20.14	20.18
	CO		50	1 1	21.32	20.37	20.71
20MHz		100	0	FA TE Complained	21.29	20.93	20.55
ΖυΙνίΠΖ	The Compliant	The state of the s	0	Attestation of 1	21.37	21.50	21.03
	Attestation of	1	50	1	21.18	20.56	21.56
	100		99	1	21.24	20.26	21.66
	16QAM	- FIELD	0	2	20.11	19.56	19.58
	五五	50	25	2	20.15	19.47	19.47
	@ Attestation of Ch		50	2	20.23	19.31	19.72
		100	0	2	20.22	19.86	19.51

Page 44 of 119

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3.3-1 of the 3GPP TS36.101.

Table 6.2.3.3-1 Maximum Power Reduction (MPR) for Power class3

Modulation		MPR(dB)					
Modulation	1.4MHz	3MHz	5MHz	10MHz	15MHz	20MHz	WIPK(UD)
QPSK	>5	>4 94	>8	>12	>16	>18	≤1
16QAM	≤5	≤4	≤8	≤12	≤16	≤18	≤1
16QAM	>5	>4	>8	>12	>16	>18	≤2

The allowed A-MPR values specified below in Table 6.2.4.3-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".3

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 45 of 119

Table 6.2.4.3-1: Additional Maximum Power Reduction (A-MPR) / Spectrum Emission requirements

Network Signaling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)	
NS_01	6.6.2.1.1	Table 5.2-1	1.4,3,5,10,15,20	Table 5.4.2-1	N/A	
o Figliotic			3	>5	≤1,	
		0.4.40.00	5	>6	≤ 1	
NS_03	6.6.2.2.3.1	2,4,10, 23,	10	>6	o ⊿ ≤ 1	
	liti:	25,35,36	15	- ** .	≤1	
	Kingliance	® Mestation of ®	20	>10	≤1	
NC 04	000000	44 6 0	5	>6	≤1	
NS_04	6.6.2.2.3.2	41	10, 15, 20	Table 6	5.2.4.3-4	
NS_05	6.6.3.3.3.1	1	10,15,20	≥ 50	≤ 1	
NS_06	6.6.2.2.3.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.4.2-1	N/A	
NS_07	6.6.2.2.3.3 6.6.3.3.3.2	13	10	Table 6.2.4.3-2	Table 6.2.4.3-2	
NS_08	6.6.3.3.3.3	19	10, 15	> 44	≤ 3	
	000004	24	10.45	> 40	≤1	
NS_09	6.6.3.3.3.4	21	10, 15	> 55	≤ 2	
NS_10		20	15, 20	Table 6.2.4.3-3	Table 6.2.4.3-3	
NS_11	6.6.2.2.1 6.6.3.3.13	231	1.4, 3, 5, 10,15,20	Table 6.2.4.3-5	Table 6.2.4.3-5	
NS_12	6.6.3.3.5	26	1.4, 3, 5	Table 6.2.4.3-6	Table 6.2.4.3-6	
NS_13	6.6.3.3.6	26	5	Table 6.2.4.3-7	Table 6.2.4.3-7	
NS_14	6.6.3.3.7	26	10, 15	Table 6.2.4.3-8	Table 6.2.4.3-8	
NS_15	6.6.3.3.8	26	1 1 2 5 10 15	Table 6.2.4.3-9	Table 6.2.4.3-9	
143_15	0.0.3.3.0	© 45 20	1.4, 3, 5, 10, 15	Table 6.2.4.3-10	Table 6.2.4.3-10	
NS_16	6.6.3.3.9	27	3, 5, 10	Table 6.2.4.3-11, Table 6.	Table 6.2.4.3-12 2.4.3-13	
NC 17	6.6.3.3.10	28	5, 10	Table 5.4.2-1	N/A	
NS_17	6.6.3.3.11	28	5 John	≥ 2	≤1	
NS_18	K-ollence The Con	Jiance ® A talion of Ch	10, 15, 20	≥ 1	≤ 4	
NS_19	(S) And and all clops	ALC: Alle	10, 15, 20	Table 6.2.4.3-15	Table 6.2.4.3-1	
NS_20	Artesta		5, 10, 15, 20	Table 6.2.4.3-14	Table 6.2.4.3-14	
	G		III		Ellopal Comp.	
NS 20	-01	-37 <u>1</u>	Will mallance	The Compilar	® station of	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 46 of 119

WIFI

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Avg. Burst Power(dBm)
THE THE	R F Clobal	01	2412	16.22
802.11b	1 Mariostatus	06	2437	16.61
	100 1C	11	2462	16.57
0		01	2412	12.04
802.11g	6	06	2437	14.33
	The compliance (8)	station 11 market autonom	2462	14.22
E Holosofic (S) E H	of Global	01	2412	12.33
802.11n(20)	6.5	06	2437	14.31
		11	2462	14.22
不 橙	100 100 100 100 100 100 100 100 100 100	03	2422	14.51
802.11n(40)	13.5	06	2437	14.16
	(B) Milestation of	09	2452	13.71

Bluetooth_V4.0-BR/EDR

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
Compliance Toologic	O Allestellon	2402	3.603
GFSK	39	2441	2.899
	78	2480	4.391
	0	2402	2.769
π /4-DQPSK	39	2441	2.105
	78	2480	3.312
Autostanio E G All	0	2402	2.642
8-DPSK	39	2441	1.920
	78	2480	3.129

Bluetooth_V4.0-BLE

Modulation	Channel	F	Frequency(MHz)	Peak Power (dBm)
C Ze	0	1117:	2402	3.655
GFSK	19	Compliance	2440	3.382
	39 / 4		2480	4.970

Page 47 of 119

13. TEST RESULTS

13.1. SAR Test Results Summary

13.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2013, Body-worn SAR was performed with the device 5mm from the phantom, and 4 Edges SAR was performed with the device 10mm from the phantom.

13.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is ≥0.8W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- 4. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- 5. Per KDB 248227 D01v02r02,for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/kg.
- Per KDB 941225 D06 V02r01, When the same wireless mode transmission configurations for voice and data are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations.
- 7. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:

 Maximum Scaling SAR, tested SAR (Max.) × [maximum turn un neuter (max)] maximum massurement.
 - Maximum Scaling SAR =tested SAR (Max.) \times [maximum turn-up power (mw)/ maximum measurement output power(mw)]
- Proximity sensor, just for avoiding the wrong operation in the phone screen when call, and has no influence on output power or SAR result
- 8. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1RB allocation using the RB offset and required test channel combination with highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 9. Per KDB 941125 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 10. Per KDB 941125 D05v02r03. For QPSK with 100% RB allocation. SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

IGC 8

Page 48 of 119

1RB allocation and the highest reported SAR is >1.45 W/Kg, the remaining required test channels must also be tested.

- 11. Per KDB 941125 D05v02r03. 16QAM output power for each RB allocation configuration is not 1/2 dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤1.45W/Kg, Per KDB 941225 D05v02r02, 16QAM SAR testing is not required.
- 12. Per KDB 941125 D05v02r03. Smaller bandwidth output power for each RB allocation configuration is >not 1/2 dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤1.45W/Kg. Per KDB 941125 D05v02r03, smaller bandwidth SAR testing is not required.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 49 of 119

13.1.3. Test Result

SAR MEASURE	MENT								
Depth of Liquid (d	cm):>15			Relative H	lumidity (%): 64.9			
Product: MOBILE	PHONE								
Test Mode: GSM	850 with GMSK r	nodulatio	on						
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card	The designation		Altestall		Altestation	a.G Alles	10		
Left Cheek	voice	190	836.6	-0.12	0.339	31.50	31.12	0.370	1.6
Left Tilt	voice	190	836.6	0.25	0.166	31.50	31.12	0.181	1.6
Right Cheek	voice	190	836.6	-0.23	0.261	31.50	31.12	0.285	1.6
Right Tilt	voice	190	836.6	-0.16	0.176	31.50	31.12	0.192	1.6
Body back	voice	190	836.6	0.08	0.555	31.50	31.12	0.606	1.6
Body front	voice	190	836.6	-0.17	0.414	31.50	31.12	0.452	1.6
0	G				1100		Ki Compliance	The Acomplia	(8)
Body back	GPRS-2 slot	190	836.6	-0.13	0.593	29.00	28.46	0.672	1.6
Body front	GPRS-2 slot	190	836.6	0.06	0.516	29.00	28.46	0.584	1.6
Edge 2(Right)	GPRS-2 slot	190	836.6	-0.18	0.304	29.00	28.46	0.344	1.6
Edge 3(Bottom)	GPRS-2 slot	190	836.6	-0.21	0.132	29.00	28.46	0.149	1.6

Note:

Edge 4(Left)

• When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

0.33

0.430

29.00

28.46

•The test separation for body back and body front is 5mm of all above table.

190

·The test separation for 4 Edges is 10mm of all above table.

GPRS-2 slot

Measurements for SIM Card 2 are not conducted since SIM Card 1 show the highest output power

836.6

Page 50 of 119

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 40.1

Product: MOBILE PHONE

Test Mode: PCS1900 with GMSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card	Wife 2		R. F.	of Global C	- F Global C	® 45.	on of Globa	C ATTO	-0
Left Cheek	voice	661	1880.0	-0.17	0.163	29.00	28.69	0.175	1.6
Left Tilt	voice	661	1880.0	-0.22	0.085	29.00	28.69	0.091	1.6
Right Cheek	voice	661	1880.0	-0.13	0.210	29.00	28.69	0.226	1.6
Right Tilt	voice	661	1880.0	0.06	0.096	29.00	28.69	0.103	1.6
Body back	voice	661	1880.0	-0.28	0.620	29.00	28.69	0.666	1.6
Body front	voice	661	1880.0	0.17	0.434	29.00	28.69	0.466	1.6
CG M	a.C.		0				:1111	AS AM	<u>A</u>
Body back	GPRS-4 slot	661	1880	-0.09	0.605	23.00	22.77	0.638	1.6
Body front	GPRS-4 slot	661	1880.0	0.33	0.448	23.00	22.77	0.472	1.6
Edge 2(Right)	GPRS-4 slot	661	1880.0	0.15	0.176	23.00	22.77	0.186	1.6
Edge 3(Bottom)	GPRS-4 slot	661	1880.0	-0.01	0.161	23.00	22.77	0.170	1.6
Edge 4(Left)	GPRS-4 slot	661	1880.0	-0.17	0.044	23.00	22.77	0.046	1.6

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
- •The test separation for body back and body front is 5mm of all above table.
- •The test separation for 4 Edges is 10mm of all above table.
- -Measurements for SIM Card 2 are not conducted since SIM Card 1 show the highest output power

Page 51 of 119

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 40.1

Product: MOBILE PHONE

Test Mode: WCDMA Band II with QPSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)				
Left Cheek	RMC 12.2kbps	9400	1880	-0.35	0.273	22.70	22.44	0.290	1.6				
Left Tilt	RMC 12.2kbps	9400	1880	0.18	0.142	22.70	22.44	0.151	1.6				
Right Cheek	RMC 12.2kbps	9400	1880	-0.05	0.297	22.70	22.44	0.315	1.6				
Right Tilt	RMC 12.2kbps	9400	1880	0.26	0.150	22.70	22.44	0.159	1.6				
Body back	RMC 12.2kbps	9262	1852.4	-0.07	1.157	22.70	22.69	1.160	1.6				
Body back	RMC 12.2kbps	9400	1880	0.04	1.095	22.70	22.44	1.163	1.6				
Body back	RMC 12.2kbps	9538	1907.6	0.13	0.986	22.70	22.49	1.035	1.6				
Body front	RMC 12.2kbps	9400	1880	-0.21	0.744	22.70	22.44	0.790	1.6				
Edge 2(Right)	RMC 12.2kbps	9400	1880	-0.05	0.316	22.70	22.44	0.335	1.6				
Edge 3(Bottom)	RMC 12.2kbps	9400	1880	-0.11	0.238	22.70	22.44	0.253	1.6				
Edge 4(Left)	RMC 12.2kbps	9400	1880	0.03	0.059	22.70	22.44	0.063	1.6				

Note:

- When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498. The test separation for body back and body front is 5mm of all above table.
- The test separation for 4 Edges is 10mm of all above table.

Page 52 of 119

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 64.9

Product: MOBILE PHONE

Test Mode: WCDMA Band V with QPSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	RMC 12.2kbps	4183	836.6	-0.31	0.263	21.80	21.11	0.308	1.6
Left Tilt	RMC 12.2kbps	4183	836.6	0.25	0.144	21.80	21.11	0.169	1.6
Right Cheek	RMC 12.2kbps	4183	836.6	-0.16	0.246	21.80	21.11	0.288	1.6
Right Tilt	RMC 12.2kbps	4183	836.6	-0.08	0.178	21.80	21.11	0.209	1.6
Body back	RMC 12.2kbps	4183	836.6	0.17	0.422	21.80	21.11	0.495	1.6
Body front	RMC 12.2kbps	4183	836.6	-0.22	0.310	21.80	21.11	0.363	1.6
Edge 2(Right)	RMC 12.2kbps	4183	836.6	0.16	0.225	21.80	21.11	0.264	1.6
Edge 3(Bottom)	RMC 12.2kbps	4183	836.6	-0.08	0.065	21.80	21.11	0.076	1.6
Edge 4(Left)	RMC 12.2kbps	4183	836.6	0.13	0.310	21.80	21.11	0.363	1.6

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
- The test separation for body back and body front is 5mm of all above table.
- •The test separation for 4 Edges is 10mm of all above table.

Page 53 of 119

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 58.7

Product: MOBILE PHONE

Test Mode: LTE Band IV

ВМ			Test M	lode		Freq.	Power	SAR	Max. Tuneu	Meas.	Scaled	Limit
MHz	MOD	Position	UL RB Allocation	UL RB START	Ch.	(MHz)	Drift (<±5%)	(1g) (W/kg)	Power (dBm)	Power (dBm)	SAR (W/Kg)	(W/kg)
	15	Left Cheek	1	© O monor	20175	1732.5	-0.17	0.393	23.14	22.96	0.410	1.6
4	FY Coubi	Left Tilt	1	0	20175	1732.5	0.22	0.208	23.14	22.96	0.217	1.6
Allestati	V 01	Right Cheek	1	0	20175	1732.5	0.13	0.416	23.14	22.96	0.434	1.6
	- 6	Right Tilt	1	0	20175	1732.5	-0.05	0.266	23.14	22.96	0.277	1.6
		Body back	1 -111	0	20050	1720	-0.16	0.893	23.14	22.72	0.984	1.6
		Body back	Tompliance	0	20175	1732.5	-0.08	1.162	23.14	22.96	1.211	1.6
20	QPSK	Body back	on of Globba 1	O station	20300	1745	0.19	0.995	23.14	22.37	1.188	1.6
	S Aller	Body front	1	0	20050	1720	0.07	0.846	23.14	22.72	0.932	1.6
		Body front	1	0	20175	1732.5	-0.22	0.885	23.14	22.96	0.922	1.6
		Body front	1	10 O	20300	1745	-0.36	0.852	23.14	22.37	1.017	1.6
		Edge 2(Right)	1 4 3	inpal Co. O	20175	1732.5	0.13	0.355	23.14	22.96	0.370	1.6
obal Compliant	® 4%	Edge 3(Bottom)	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	20175	1732.5	-0.22	0.339	23.14	22.96	0.353	1.6
	G Atte	Edge 4(Left)	1	0	20175	1732.5	-0.06	0.106	23.14	22.96	0.110	1.6

Note:

When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

The test separation for body back and body front is 5mm of all above table.

•The test separation for 4 Edges is 10mm of all above table.

Page 54 of 119

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 49.9

Product: MOBILE PHONE

Test Mode:802.11b

				Power	SAR	Max.	Meas. output	Scaled		
Position	Mode	Ch.	Fr. (MHz)	Drift (<±5%)	(1g) (W/kg)	Tune-up Power (dBm)	Power (dBm)	SAR (W/Kg)	Limit (W/kg)	
Left Cheek	DTS	6	2437	-0.14	0.168	16.61	16.61	0.168	1.6	
Left Tilt	DTS	6	2437	0.05	0.091	16.61	16.61	0.091	1.6	
Right Cheek	DTS	6	2437	-0.26	0.454	16.61	16.61	0.454	1.6	
Right Tilt	DTS	6	2437	0.32	0.289	16.61	16.61	0.289	1.6	
Body back	DTS	6	2437	-0.28	0.365	16.61	16.61	0.365	1.6	
Body front	DTS	6	2437	-0.03	0.189	16.61	16.61	0.189	1.6	
Edge 1 (Top)	DTS	6	2437	0.08	0.046	16.61	16.61	0.046	1.6	
Edge 4(Left)	DTS	6	2437	0.21	0.125	16.61	16.61	0.125	1.6	

Note:

- -According to KDB248227, ,for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- All of above "DTS" means data transmitters.
- •The test separation for body back and body front is 5mm of all above table.
- •The test separation for 4 Edges is 10mm of all above table.

Repeated SAR

Product: MOBILE PHONE

Test Mode: WCDMA Band II with QPSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	Once SAR (1g) (W/kg)	Power Drift (<±5%)	Twice SAR (1g) (W/kg)	Power Drift (<±5%)	Third SAR (1g) (W/kg)	Limit W/kg
Body back	RMC 12.2kbps	9262	1852.4	0.12	1.098			-		1.6

Repeated SAR

Product: MOBILE PHONE

Test Mode: LTE Band IV with QPSK modulation

ВМ	BM MOD Position		Test N	Test Mode		Freq.	Power Drift	SAR (1g)	Max. Tuneu	Meas.	Scaled	Limit
MHz		Position	UL RB Allocation	UL RB START	Ch.	(MHz)	Orift (<±5%)	(1g) (W/kg)	Power (dBm)	Power (dBm)	SAR (W/Kg)	(W/kg)
20	QPSK	Body back	1	0	20175	1732.5	0.09	1.041	- F	lopsi Cours	-	1.6

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

\GC 8

Page 55 of 119

Simultaneous Multi-band Transmission Evaluation:

NO	Simultaneous state		Portable Handse	et
NO	Simultaneous state	Head	Body-worn	Hotspot
14.2 July	GSM(voice)+WLAN 2.4GHz (data)	Yes	Yes	69-
2	WCDMA(voice)+WLAN 2.4GHz (data)	Yes	Yes	- 5111
3	GSM(voice)+Bluetooth(data)	-	Yes	The compliance
4	WCDMA(voice)+Bluetooth(data)	H2 100 -	Yes	ion of Global -
5	GSM (Data) + Bluetooth(data)	FA Comy	Yes	
6	GSM (Data) + WLAN 2.4GHz (data)	Yes	Yes	Yes
7	WCDMA (Data) + Bluetooth(data)	(D)	Yes	
8	WCDMA (Data) + WLAN 2.4GHz (data)	Yes	Yes	Yes
9	LTE + Bluetooth(data)	The Mariane	Yes	Attestation a
10	LTE + WLAN 2.4GHz (data)	Yes	Yes	Yes

NOTE:

- 1. WIFI and BT share the same antenna, and cannot transmit simultaneously.
- 2. Simultaneous with every transmitter must be the same test position.
- 3. KDB 447498 D01, BT SAR is excluded as below table.
- 4. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR, 5mm for body-worn SAR.
- 5. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow:
 - For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:
 - [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] [$\sqrt{(GHz)}$] ≤ 3.0 for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR³⁰, where
 - f(GHz) is the RF channel transmit frequency in GHz
 - Power and distance are rounded to the nearest mW and mm before calculation³¹
 - The result is rounded to one decimal place for comparison
 - The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 6. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 7. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]· $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

Page 56 of 119

8. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion

	Estimated SAR		Max Power incl Toler		Separation Distance (mm)	Estimated SAR (W/kg)
			dBm	mW	Distance (IIIIII)	(VV/Kg)
® The station of Glob	® 49	Head	5	3.162	0	0.133
B1		Pody	E	2.162	1 5	0.133
		Body	5	3.162	10	0.066

Page 57 of 119

Sum of the SAR for GSM 850 &Wi-Fi & BT:

RF Exposure	Test	Simultaneo	ous Transmissio	on Scenario	Σ1-g SAR	SPLSR
Conditions	Position	GSM 850	WI-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
obal Compile	Left Touch	0.370	0.168		0.538	No
Head	Left Tilt	0.181	0.091		0.272	No
(voice)	Right Touch	0.285	0.454		0.739	No
	Right Tilt	0.192	0.289		0.481	No
The Compliance	Rear	0.606	0.365		0.971	No
Body-worn		0.606		0.133	0.739	No
(voice)	Front	0.452	0.189		0.641	No
		0.452		0.133	0.585	No
	根型	0.672		0.133	0.805	No
Body-worn	Rear	0.672	0.365		1.037	No
(Data)	Front	0.584		0.133	0.717	- No
Body-worn	Front	0.584	0.189		0.773	No
	Edge 4	0.487	0.125		0.612	No
(Hotspot)	Edge 4	0.487		0.066	0.553	No

Note:

According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

⁻SPLSR mean is "The SAR to Peak Location Separation Ratio

Page 58 of 119

Sum of the SAR for GSM 1900 &Wi-Fi & BT:

RF Exposure	Test	Simultaneo	ous Transmission	on Scenario	Σ1-g SAR	SPLSR
Conditions	Position	PCS 1900	WI-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
bal Complia	Left Touch	0.175	0.168		0.343	No
Head	Left Tilt	0.091	0.091		0.182	No
(voice)	Right Touch	0.226	0.454		0.680	No
	Right Tilt	0.103	0.289		0.392	No
The Compliance	Rear	0.666	0.365		1.031	No
Body-worn		0.666		0.133	0.799	No
(voice)	Front	0.466	0.189		0.655	No
		0.466		0.133	0.599	No
	A THE	0.638		0.133	0.771	No
Body-worn	Rear	0.638	0.365		1.003	No
(Data)	Front	0.472		0.133	0.605	- No
Body-worn	Front	0.472	0.189		0.661	No
	Edge 4	0.046	0.125		0.171	No
(Hotspot)	Edge 4	0.046		0.066	0.112	No

Note:

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

[·]SPLSR mean is "The SAR to Peak Location Separation Ratio"

Page 59 of 119

Sum of the SAR for WCDMA Band II &Wi-Fi & BT:

RF Exposure	Test	Simultaneo	ous Transmissio	on Scenario	Σ1-g SAR	SPLSR
Conditions	Position	WCDMA Band II	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
bal Compile	Left Touch	0.290	0.168		0.458	No
Head	Left Tilt	0.151	0.091		0.242	No
	Right Touch	0.315	0.454		0.769	No
	Right Tilt	0.159	0.289		0.448	No
EX Compliance	Rear	1.163	0.365		1.528	No
	Front	0.790	0.189		0.979	No
Da du vivani	Edge 4	0.063	0.125		0.188	No 🌏
Body-worn	Rear	1.163		0.133	1.296	No
	Front	0.790		0.133	0.923	No
	Edge 4	0.063	of	0.066	0.129	No

Note:

·SPLSR mean is "The SAR to Peak Location Separation Ratio "

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

Page 60 of 119

Sum of the SAR for WCDMA Band V &Wi-Fi & BT:

DE Evnocuro	Test	Simultaneo	ous Transmissio	on Scenario	Σ1-g SAR	SPLSR
RF Exposure Conditions	Position	WCDMA Band V	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
Head	Left Touch	0.308	0.168		0.476	No
	Left Tilt	0.169	0.091		0.260	No
	Right Touch	0.288	0.454		0.742	No
	Right Tilt	0.209	0.289		0.498	No
The All Districts	Rear	0.495	0.365		0.860	No
	Front	0.363	0.189		0.552	No
De de company	Edge 4	0.363	0.125		0.488	No
Body-worn	Rear	0.495		0.133	0.628	No
	Front	0.363		0.133	0.496	No
	Edge 4	0.363	୍ଦ	0.066	0.429	No

Note:

·SPLSR mean is "The SAR to Peak Location Separation Ratio "

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

Page 61 of 119

Sum of the SAR for LTE Band IV &Wi-Fi & BT:

DE Evnacura	Test	Simultaneo	us Transmissio	on Scenario	Σ1-g SAR	SPLSR
RF Exposure Conditions	Position	LTE Band IV	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
bal Compile	Left Touch	0.410	0.168		0.578	No
(S) Stallon of Cl	Left Tilt	0.217	0.091		0.308	No
Head	Right Touch	0.434	0.454		0.888	No
	Right Tilt	0.277	0.289		0.566	No
EX Compliance	Rear	1.211	0.365		1.576	No
	Front	1.017	0.189		1.206	No
Da du vivani	Edge 4	0.110	0.125		0.235	No
Body-worn	Rear	1.211		0.133	1.344	No
	Front	1.017		0.133	1.150	No
	Edge 4	0.110		0.066	0.176	No

Note:

·SPLSR mean is "The SAR to Peak Location Separation Ratio "

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

Page 62 of 119

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: June 19,2018

System Check Head 835 MHz

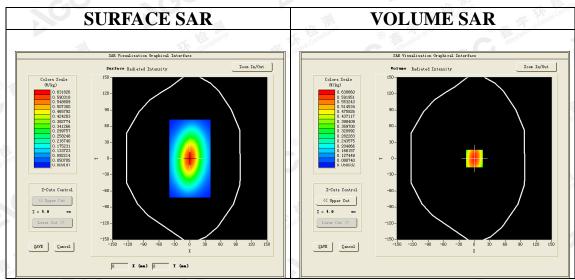
DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.74 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.90$ mho/m; $\epsilon r = 41.21$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):23.3, Liquid temperature (°C): 22.5

SATIMO Configuration:


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

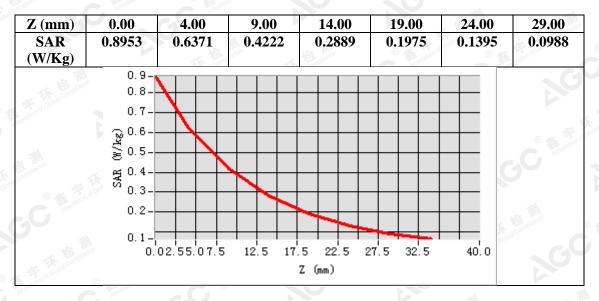
· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=0.00, Y=0.00 SAR Peak: 0.90 W/kg

SAR 10g (W/Kg)	0.390125
SAR 1g (W/Kg)	0.611547


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC

Page 63 of 119

Date: June 19,2018

Page 64 of 119

Test Laboratory: AGC Lab System Check Body 835 MHz

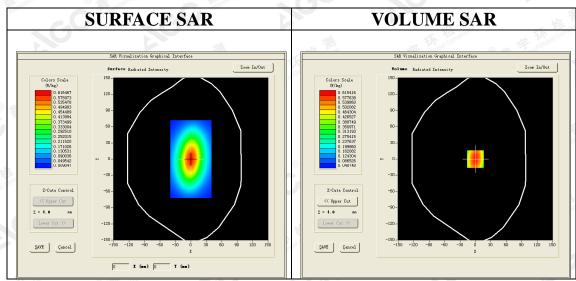
DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.81 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.95$ mho/m; $\epsilon = 55.89$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):23.3, Liquid temperature (°C): 22.8

SATIMO Configuration:


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

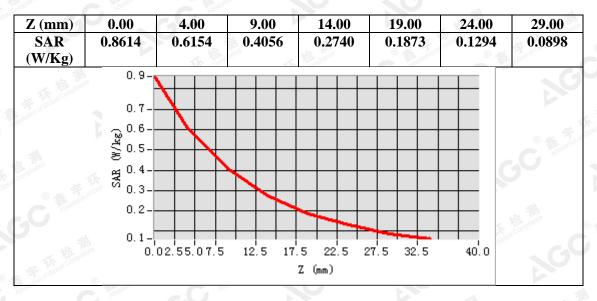
· Phantom: SAM twin phantom

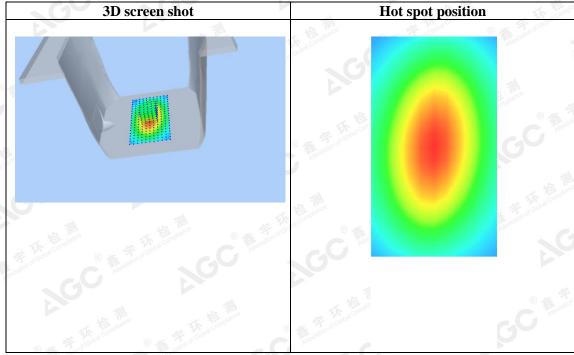
Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=0.00, Y=0.00 SAR Peak: 0.86 W/kg

SAR 10g (W/Kg)	0.377520
SAR 1g (W/Kg)	0.590207


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC 8

Page 65 of 119

Date: June 21,2018

Page 66 of 119

Test Laboratory: AGC Lab System Check Head 1750MHz

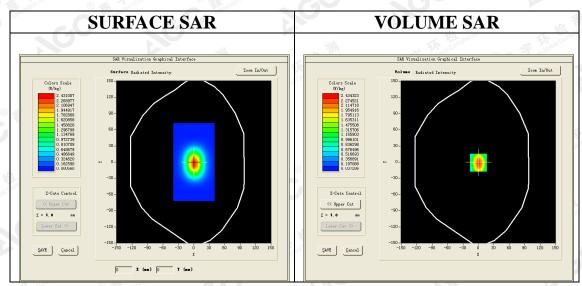
DUT: Dipole 1800 MHz; Type: SID 1800

Communication System: CW; Communication System Band: D1700 (1750.0 MHz); Duty Cycle:1:1; Conv.F=2.03 Frequency: 1750 MHz; Medium parameters used: f = 1750 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon = 39.95$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration:


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

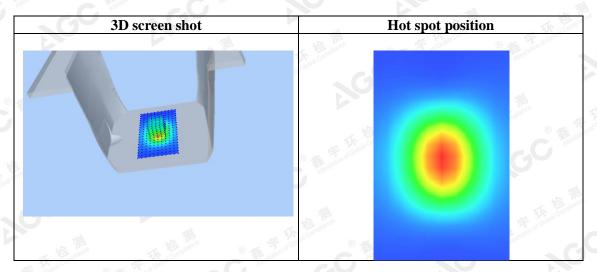
Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1750MHz Head/Area Scan: Measurement grid: dx=8mm,dy=8mm Configuration/System Check 1750MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=1.00, Y=-1.00 SAR Peak: 3.90 W/kg


SAR 10g (W/Kg) 1.201534
SAR 1g (W/Kg) 2.317458

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Report No.: AGC03175180502FH01 Page 67 of 119

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	3.8953	2.4471	1.3426	0.7685	0.4401	0.2599	0.1523
	3.9- 3.5- 3.0-						
	(2) 2.5 (€ 2.0	\mathbf{A}					
	が 器 1.5 1.0						
	0.5- 0.1- 0.	02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0	
				Z (mm)			

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document to confirmed at attp://www.agc.gett.com.

Date: June 21,2018

Page 68 of 119

Test Laboratory: AGC Lab System Check Body 1750MHz

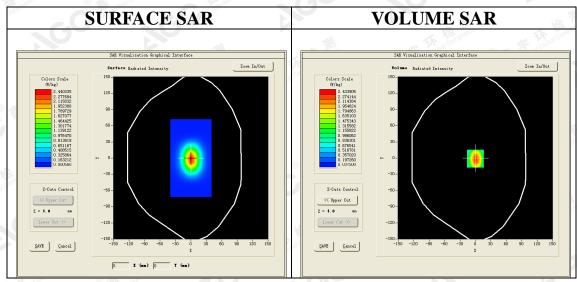
DUT: Dipole 1800 MHz; Type: SID 1800

Communication System: CW; Communication System Band: D1700 (1750.0 MHz); Duty Cycle:1:1; Conv.F=2.07 Frequency: 1750MHz; Medium parameters used: f = 1750MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon r = 53.58$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section: Input Power=18dBm

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.7

SATIMO Configuration:


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

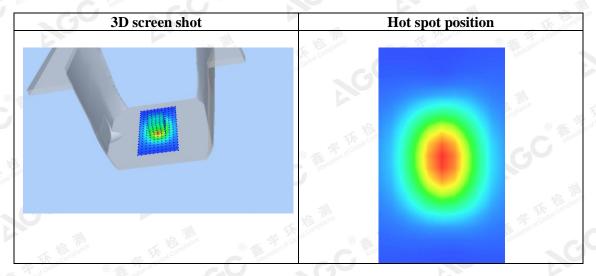
Phantom: SAM twin phantom

Measurement SW: OpenSAR V4 02 32

Configuration/System Check 1750MHz Body/Area Scan: Measurement grid: dx=8mm,dy=8mm Configuration/System Check 1750MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=1.00, Y=-1.00

SAR Peak: 3.88 W/kg


SAR 10g (W/Kg)	1.191053
SAR 1g (W/Kg)	2.297540

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 €, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 69 of 119

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	3.8953	2.4442	1.3401	0.7688	0.4395	0.2575	0.1511
	3.9- 3.5-						
	3.0-						
	(2) 2.5- ≱(2.0-	$+ \mathcal{N}$					
	∯ 1.5- 1.0-						
	0.5- 0.1-			+++			
		02.55.07.5	12.5 17.	5 22.5 2 (mm)	27.5 32.5	40.0	

Date: June 14,2018

Page 70 of 119

Test Laboratory: AGC Lab System Check Head 1900MHz

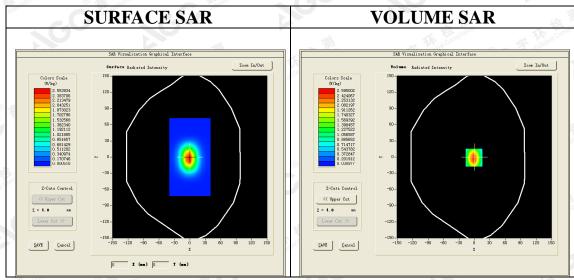
DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=2.32 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.40$ mho/m; $\epsilon r = 40.24$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.5, Liquid temperature (°C): 21.8

SATIMO Configuration:


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

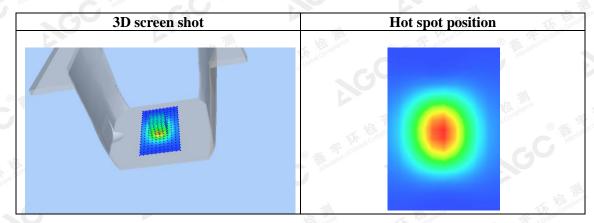
Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1900MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=-1.00, Y=-1.00 SAR Peak: 4.20 W/kg


SAR 10g (W/Kg)	1.241863	estation
SAR 1g (W/Kg)	2.470319	

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 71 of 119

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	4.1953	2.6033	1.3895	0.7681	0.4301	0.2455	0.1418
10 m	4.2-						
	3.5-	\longrightarrow		+++			
	3.0-	\longrightarrow		+++			
	(2.5- (8) 2.0-	+		+++			
	2.0-	+		+++			
	∯ X 1.5-	++		+++			
	1.0-						
	0.5-			+++		1	
	0.1- 0.	02.55.07.5	12.5 17.5	5 22.5	27.5 32.5	40.0	
			Z	(mm)			
162011	107 Star	Min					

Date: June 14,2018

Page 72 of 119

Test Laboratory: AGC Lab
System Check Body 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=2.39 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\epsilon = 53.65$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.5, Liquid temperature (°C): 22.0

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

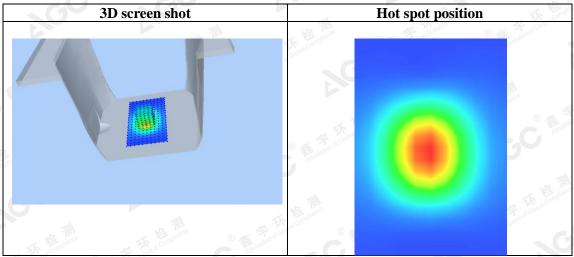
Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1900MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=-2.00, Y=-2.00 SAR Peak: 3.99 W/kg

Diki cak. 3.55 Wikg					
SAR 10g (W/Kg)	1.187209				
SAR 1g (W/Kg)	2.345375				

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

IGC 8

Page 73 of 119

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Date: June 16,2018

Page 74 of 119

Test Laboratory: AGC Lab System Check Head 2450 MHz

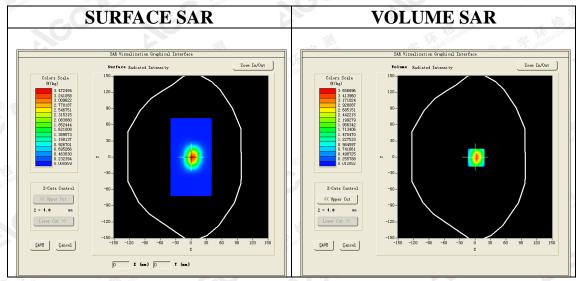
DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=2.52 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.77$ mho/m; $\epsilon r = 39.77$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):22.0, Liquid temperature ($^{\circ}$ C): 21.3

SATIMO Configuration

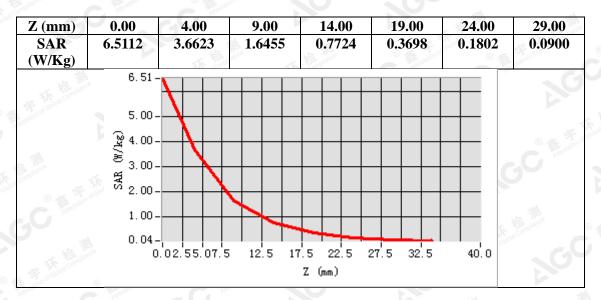

· Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

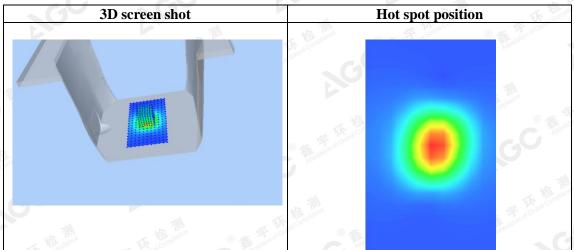
Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 2450MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Head/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm


Maximum location: X=2.00, Y=-2.00 SAR Peak: 6.49 W/kg


SAR 10g (W/Kg)	1.467518
SAR 1g (W/Kg)	3.405942

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 75 of 119

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Date: June 16,2018

Page 76 of 119

Test Laboratory: AGC Lab System Check Body 2450 MHz

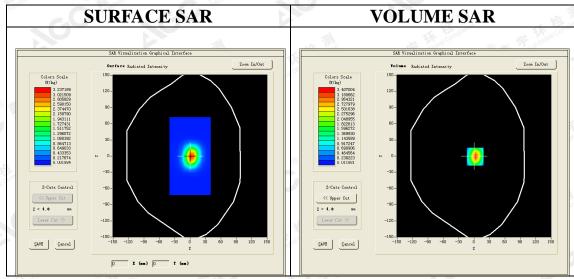
DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=2.58 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.92$ mho/m; $\epsilon r = 53.49$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.0, Liquid temperature (°C): 21.5

SATIMO Configuration


· Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

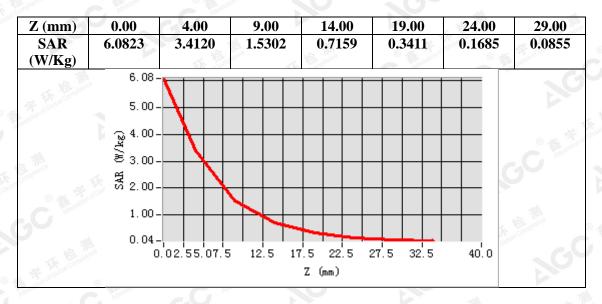
· Phantom: SAM twin phantom

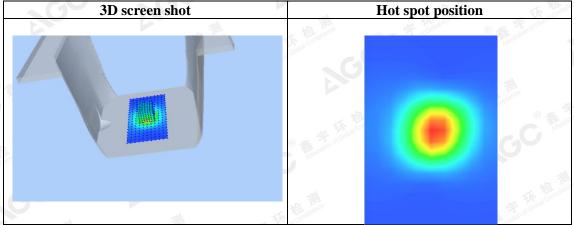
Measurement SW: OpenSAR V4_02_32

Configuration/System Check 2450MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Body/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Maximum location: X=2.00, Y=-2.00 SAR Peak: 6.05 W/kg

SAR 10g (W/Kg)	1.371425
SAR 1g (W/Kg)	3.180781


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC 8

Page 77 of 119

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 78 of 119

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: June 19,2018

GSM 850 Mid-Touch-Left <SIM 1> DUT: MOBILE PHONE; Type: S51_lite

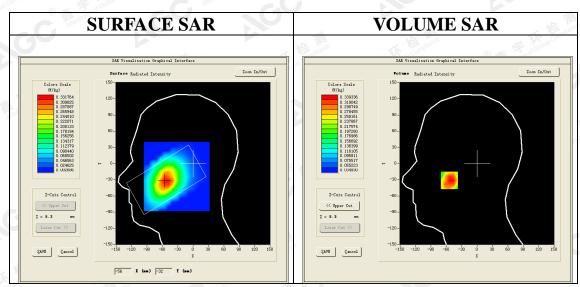
Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=1.74; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.90$ mho/m; $\epsilon r = 40.88$; $\rho = 1000$ kg/m³;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 23.3, Liquid temperature ($^{\circ}$ C): 22.5

SATIMO Configuration

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

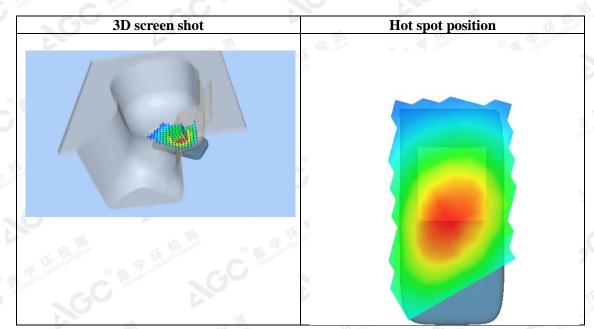
Configuration/GSM 850 Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GSM 850 Mid-Touch-Left/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Area Scan sam_direct_droit2_surf8mm.txt			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Left head		
Device Position	Cheek		
Band	GSM 850		
Channels	Middle		
Signal TDMA (Crest factor: 8.0)			

Maximum location: X=-54.00, Y=-31.00

SAR Peak: 0.50 W/kg

SAR 10g (W/Kg)	0.229362
SAR 1g (W/Kg)	0.338779


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

GC

Report No.: AGC03175180502FH01 Page 79 of 119

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.4787	0.3393	0.2460	0.1890	0.1623	0.1158	0.0871
	0.48-	\leftarrow					
	0.40-	\rightarrow					
	ون 0.35 – من 0.35 –	-					
	0.35- (%) (%) (%) (%) (%)						
	% % 0.20-						
	0. 15 –		+++				
	0.07-					Ciops X	
	0.	02.55.07.5	12.5 17	.5 22.5 : Z (mm)	27.5 32.5	40. 0	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Date: June 19,2018

Page 80 of 119

Test Laboratory: AGC Lab

GSM 850 Mid- Body- Back (MS)<SIM 1> DUT: MOBILE PHONE; Type: S51_lite

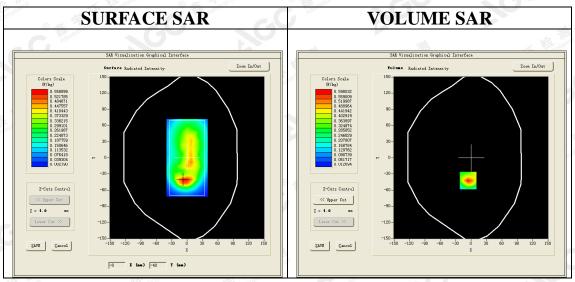
Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=1.81; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 55.43$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 23.3, Liquid temperature (°C): 22.8

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

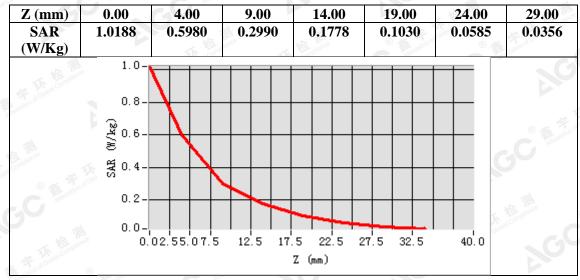

Sensor-Surface: 4mm (Mechanical Surface Detection)

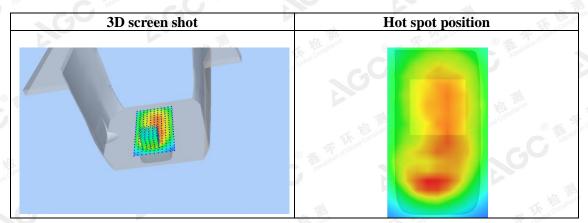
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GSM 850 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete			
Phantom	Validation plane			
Device Position	Body Back			
Band GSM 850				
Channels Middle				
Signal	TDMA (Crest factor: 8.0)			


Maximum location: X=-6.00, Y=-42.00 SAR Peak: 1.00 W/kg


SAR 10g (W/Kg)	0.278951			
SAR 1g (W/Kg)	0.555225			

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 81 of 119

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Date: June 19,2018

Page 82 of 119

Test Laboratory: AGC Lab
GPRS 850 Mid- Body- Back (2up)

DUT: MOBILE PHONE; Type: S51_lite

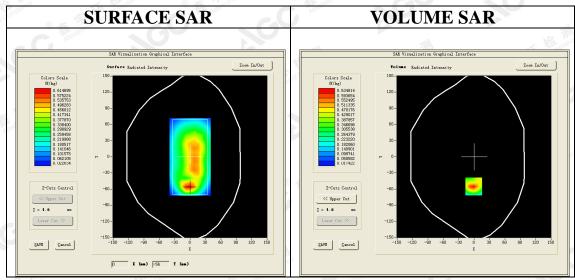
Communication System: GPRS-2 Slot; Communication System Band: GSM 850; Duty Cycle: 1:4.2; Conv.F=1.81; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 55.43$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 23.3, Liquid temperature (°C): 22.8

SATIMO Configuration:

· Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


Sensor-Surface: 4mm (Mechanical Surface Detection)

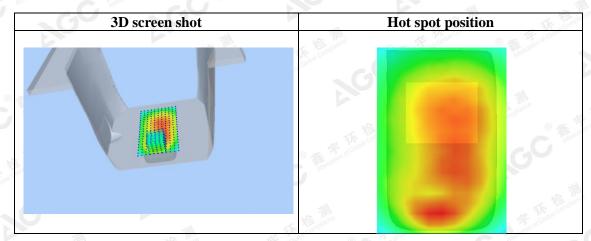
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GPRS 850 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS 850 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete			
Phantom	Validation plane			
Device Position	Body Back			
Band GSM 850				
Channels Middle				
Signal	TDMA (Crest factor: 4.0)			

Maximum location: X=-1.00, Y=-55.00 SAR Peak: 1.05 W/kg


SAR 10g (W/Kg)	0.307169
SAR 1g (W/Kg)	0.592658

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 83 of 119

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	1.0499	0.6348	0.3362	0.1998	0.1244	0.0751	0.0464
	1.0-	ackslash					
	0.8- %	\top					
	- 8.0 (#/kg)						
	0.2-						
	0.0-			+++	+++	(100)	
	^{ко} О.	02.55.07.5	12.5 17.5 Z		27.5 32.5	40.0	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 84 of 119

Test Laboratory: AGC Lab Date: June 14,2018

PCS 1900 Mid-Touch-Right <SIM 1> DUT: MOBILE PHONE; Type: S51_lite

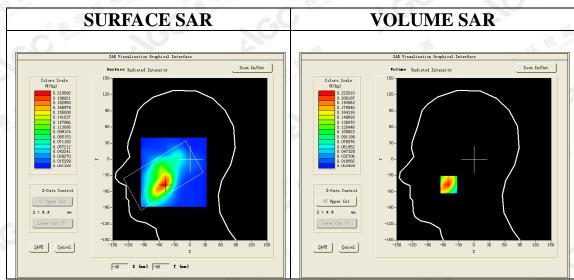
Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=2.32; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon = 40.88$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C): 22.5, Liquid temperature (°C): 21.8

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


· Sensor-Surface: 4mm (Mechanical Surface Detection)

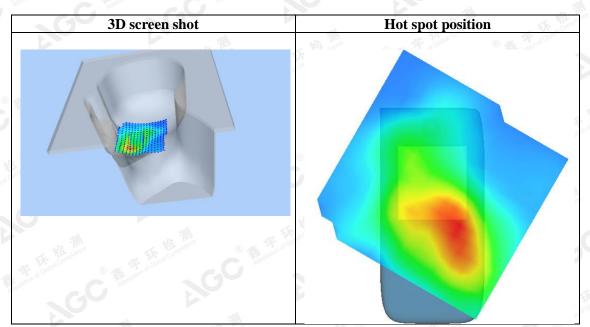
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/PCS1900 Mid-Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/PCS1900 Mid-Touch-Right/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam direct droit2 surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Right head		
Device Position	Cheek		
Band	PCS 1900		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=-49.00, Y=-47.00 SAR Peak: 0.33 W/kg


SAR 10g (W/Kg)	0.122155		
SAR 1g (W/Kg)	0.210206		

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 85 of 119

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.3285	0.2228	0.1347	0.0890	0.0528	0.0346	0.0221
Mile San	0.33-						~(
	0.30-	+					
	0.25-	\rightarrow	++-				
	- S						
	(%) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,						
	0.15-	++	++-				
	్ల్లో 0.10-		N				
	0.10-						
	0.05-						
	0.01-		1 1			Clops	
	e 0	.02.55.07.5			27.5 32.5	40.0	
				Z (mm)			
- 650M		Vin					

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Date: June 14,2018

Page 86 of 119

Test Laboratory: AGC Lab

PCS 1900 Mid-Body-Back (MS)<SIM 1> DUT: MOBILE PHONE; Type: S51_lite

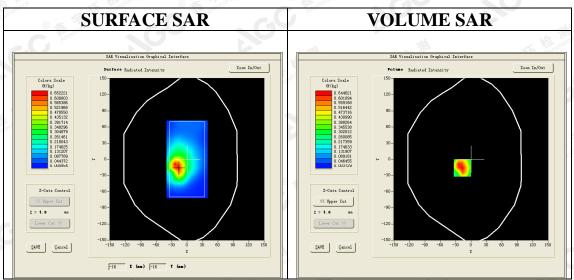
Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=2.39; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 54.22$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 22.5, Liquid temperature (°C): 22.0

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

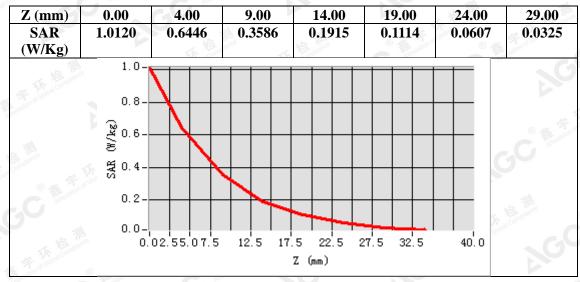

· Sensor-Surface: 4mm (Mechanical Surface Detection)

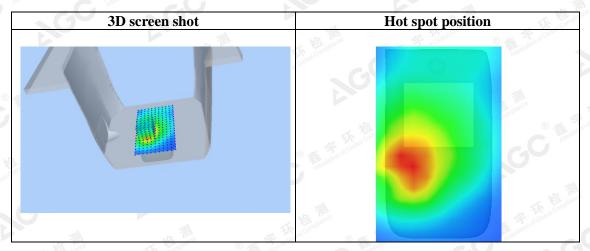
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/PCS1900 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/PCS1900 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

sam_direct_droit2_surf8mm.txt		
5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Validation plane		
Body Back		
PCS 1900		
Middle		
TDMA (Crest factor: 8.0)		


Maximum location: X=-17.00, Y=-16.00 SAR Peak: 1.07 W/kg


SAR 10g (W/Kg)	0.327030		
SAR 1g (W/Kg)	0.620278		

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 87 of 119

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 88 of 119

Test Laboratory: AGC Lab

Date: June 14,2018

GPRS 1900 Mid-Body-Back (4up)

DUT: MOBILE PHONE; Type: S51_lite

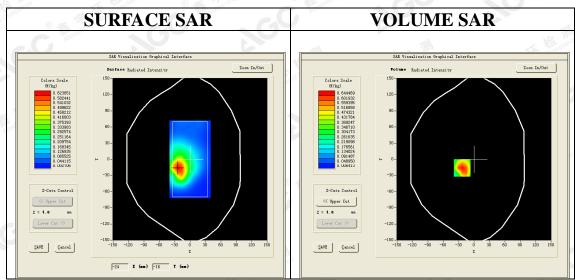
Communication System: GPRS-4Slot; Communication System Band: PCS 1900; Duty Cycle: 1:2.1; Conv.F=2.39; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 54.22$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 22.5, Liquid temperature (°C): 22.0

SATIMO Configuration:

· Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

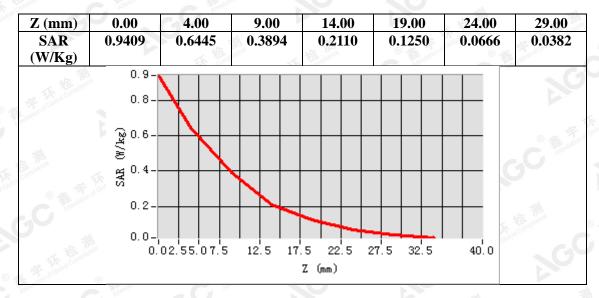

Sensor-Surface: 4mm (Mechanical Surface Detection)

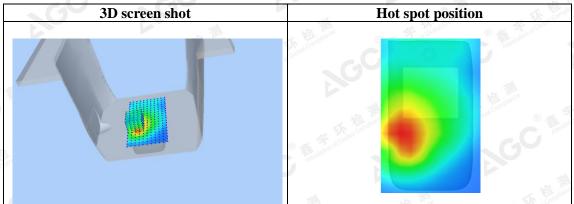
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GPRS1900 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS1900 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	PCS 1900		
Channels	Middle		
Signal	TDMA (Crest factor: 2.0)		


Maximum location: X=-23.00, Y=-16.00 SAR Peak: 1.01 W/kg


SAR 10g (W/Kg) 0.330482 SAR 1g (W/Kg) 0.605333

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 89 of 119

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 90 of 119

Test Laboratory: AGC Lab Date: June 14,2018

WCDMA Band II Mid-Touch-Right (RMC) DUT: MOBILE PHONE; Type: S51_lite

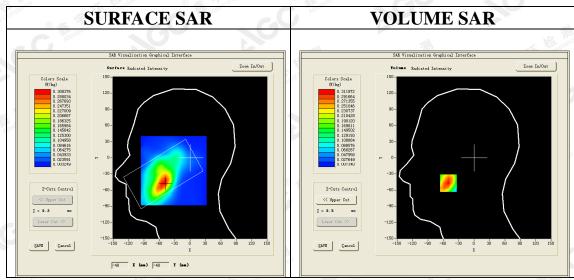
Communication System: UMTS; Communication System Band: Band II UTRA/FDD ;Duty Cycle:1:1; Conv.F=2.32; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ mho/m; $\epsilon r = 40.88$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C): 22.5, Liquid temperature (°C): 21.8

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


Sensor-Surface: 4mm (Mechanical Surface Detection)

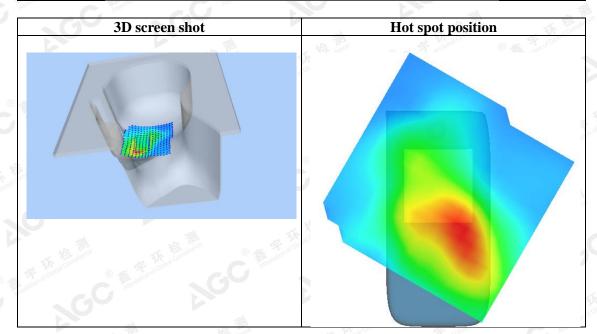
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/WCDMA band II Mid-Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/WCDMA band II Mid-Touch-Right/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Right head		
Device Position	Cheek		
Band	WCDMA band II		
Channels	Middle		
Signal	CDMA (Crest factor: 1.0)		

Maximum location: X=-50.00, Y=-47.00 SAR Peak: 0.45 W/kg


SAR 10g (W/Kg)	0.177432
SAR 1g (W/Kg)	0.296683

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC03175180502FH01 Page 91 of 119

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.4504	0.3120	0.1959	0.1280	0.0820	0.0512	0.0341
100	0.5-						< 6
The Property of the Property o	0.4-	\longrightarrow					
estation of G		$\mathbf{N} \sqcup \mathbf{I}$					
	(≝/kg) (≝/kg)	+					
TIME -	€	-1/N					
Combilance	€ 8 0.2-						
8 A 7	ofGio						
LC MILES	0.1-						
	0.0-				┿┷┷	A Globa	
大大		02.55.07.5	12.5 17.	5 22.5 2	7.5 32.5	40.0	
F F of Global Co.				Z (mm)			

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 92 of 119

Test Laboratory: AGC Lab Date: June 14,2018

WCDMA Band II Low-Body-Towards Grounds (RMC 12.2kbps)

DUT: MOBILE PHONE; Type: S51_lite

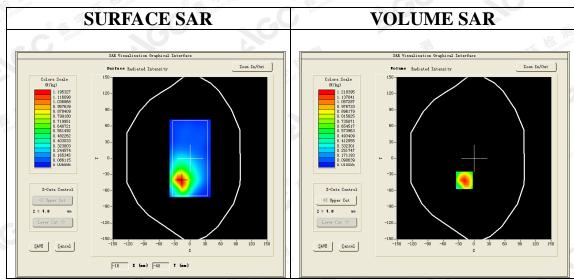
Communication System: UMTS; Communication System Band: Band II UTRA/FDD; Duty Cycle:1:1; Conv.F=2.39; Frequency: 1852.4 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.48 \text{ mho/m}$; $\epsilon = 54.71$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 22.5, Liquid temperature (°C): 22.0

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

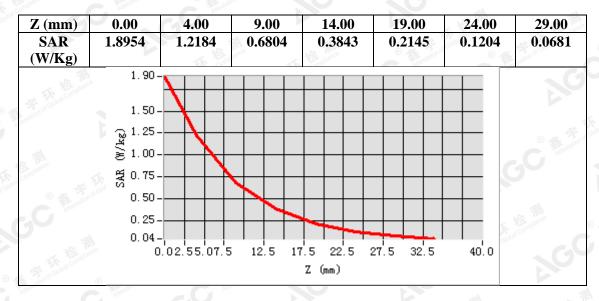

· Sensor-Surface: 4mm (Mechanical Surface Detection)

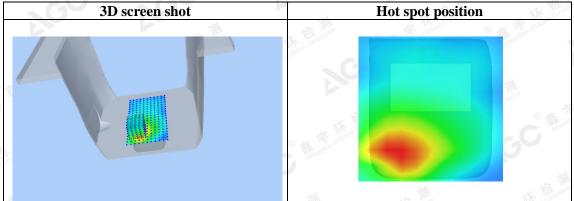
· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_32

Configuration/ WCDMA band II Low-Body-back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA band II Low-Body-back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	WCDMA band II		
Channels	Low Low		
Signal	CDMA (Crest factor: 1.0)		


Maximum location: X=-19.00, Y=-41.00 SAR Peak: 1.91 W/kg


SAR 10g (W/Kg)	0.625495
SAR 1g (W/Kg)	1.156704

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 93 of 119

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc.gett.com.

Page 94 of 119

Test Laboratory: AGC Lab Date: June 14,2018

WCDMA Band II Mid-Body-Towards Grounds (RMC 12.2kbps)

DUT: MOBILE PHONE; Type: S51_lite

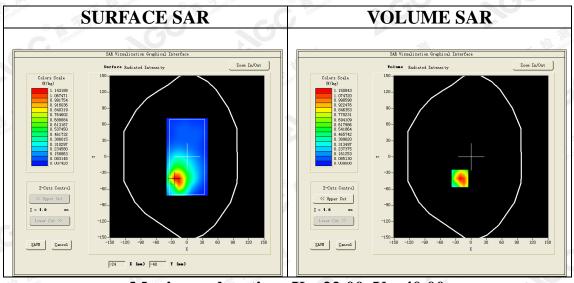
Communication System: UMTS; Communication System Band: Band II UTRA/FDD ;Duty Cycle:1:1; Conv.F=2.39; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon r = 54.22$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 22.5, Liquid temperature (°C): 22.0

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

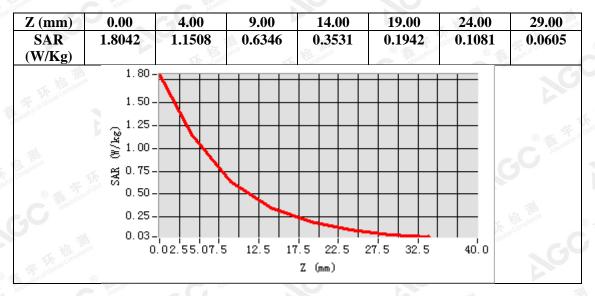

Sensor-Surface: 4mm (Mechanical Surface Detection)

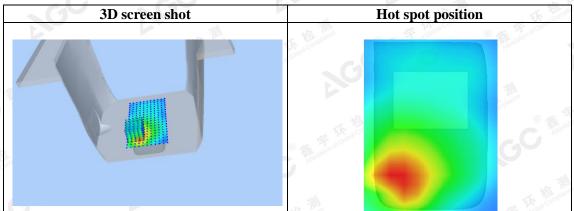
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/ WCDMA band II Mid-Body-back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA band II Mid-Body-back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5m;

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	WCDMA band II		
Channels	Middle		
Signal	CDMA (Crest factor: 1.0)		


Maximum location: X=-22.00, Y=-40.00 SAR Peak: 1.81 W/kg


SAR 10g (W/Kg) 0.593474 SAR 1g (W/Kg) 1.095097

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 95 of 119

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 96 of 119

Test Laboratory: AGC Lab Date: June 19,2018

WCDMA Band V Mid-Touch-Left (RMC)
DUT: MOBILE PHONE; Type: S51_lite

Communication System: UMTS; Communication System Band: BAND V UTRA/FDD; Duty Cycle:1: 1; Conv.F=1.74;

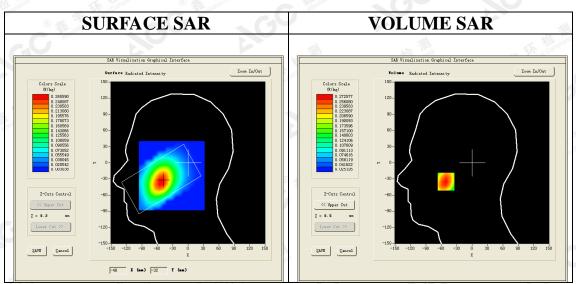
Frequency: 836.6 MHz; Medium parameters used: f = 835MHz; $\sigma=0.90$ mho/m; $\epsilon r = 40.88$; $\rho=1000$ kg/m³;

Phantom section: Left Section

Ambient temperature (°C): 23.3, Liquid temperature (°C): 22.5

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

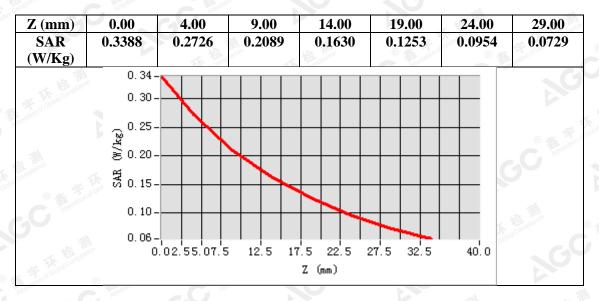
Measurement SW: OpenSAR V4_02_32

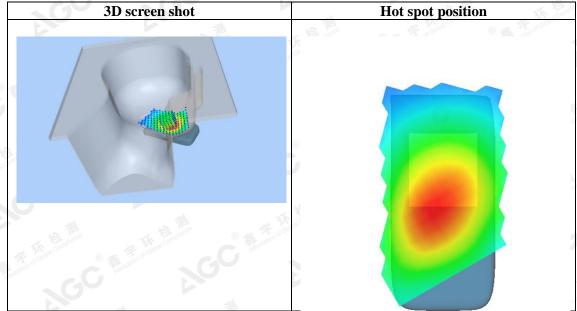
Configuration/ WCDMA Band V Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA Band V Mid-Touch-Left/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Area Scan	sam_direct_droit2_surf8mm.txt	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete	
Phantom	Left head	
Device Position	Cheek	
Band	WCDMA Band V	
Channels	Middle	
Signal	CDMA (Crest factor: 1.0)	

Maximum location: X=-51.00, Y=-35.00 SAR Peak: 0.34 W/kg

SAR 10g (W/Kg)	0.189093
SAR 1g (W/Kg)	0.263242


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC

Page 97 of 119

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a titp://www.agc.gatt.com.

Page 98 of 119

Test Laboratory: AGC Lab Date: June 19,2018

WCDMA Band V Mid-Body-Towards Grounds (RMC)

DUT: MOBILE PHONE; Type: S51_lite

Communication System: UMTS; Communication System Band: BAND V UTRA/FDD; Duty Cycle:1: 1; Conv.F=1.81;

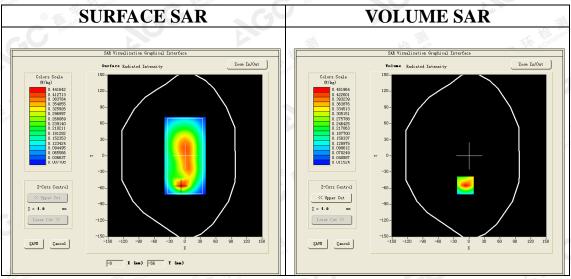
Frequency: 836.6 MHz; Medium parameters used: f = 835MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 55.43$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 23.3, Liquid temperature (°C): 22.8

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

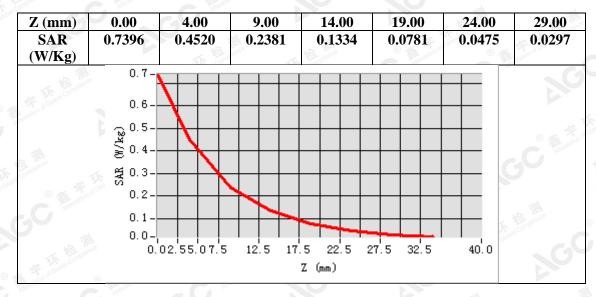
Measurement SW: OpenSAR V4_02_32

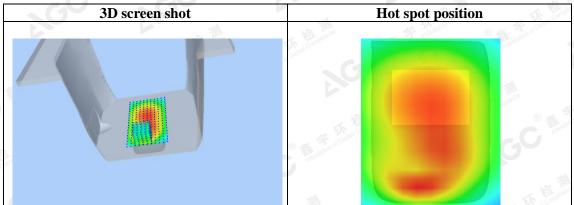
Configuration/ WCDMA Band V Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA Band V Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	WCDMA Band V		
Channels	Middle		
Signal	CDMA (Crest factor: 1.0)		

Maximum location: X=-7.00, Y=-55.00 SAR Peak: 0.73 W/kg

SAR 10g (W/Kg)	0.218612
SAR 1g (W/Kg)	0.422059


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC

Page 99 of 119

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago-gott.com.

Page 100 of 119

Test Laboratory: AGC Lab Date: June 21,2018

LTE Band IV Mid-Touch-Right (1 RB#0) DUT: MOBILE PHONE; Type: S51_lite

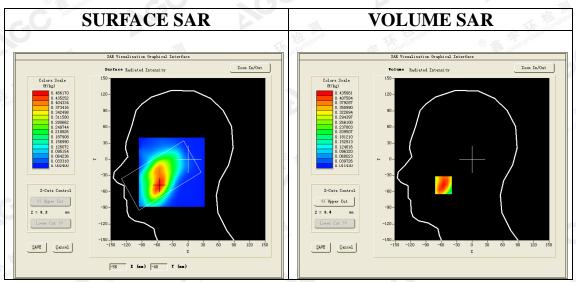
Communication System: LTE; Communication System Band: LTE Band IV; Duty Cycle:1:1; Conv.F=2.03; Frequency:1732.5 MHz; Medium parameters used: f = 1750 MHz; $\sigma = 1.35$ mho/m; $\epsilon r = 40.99$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration:

· Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

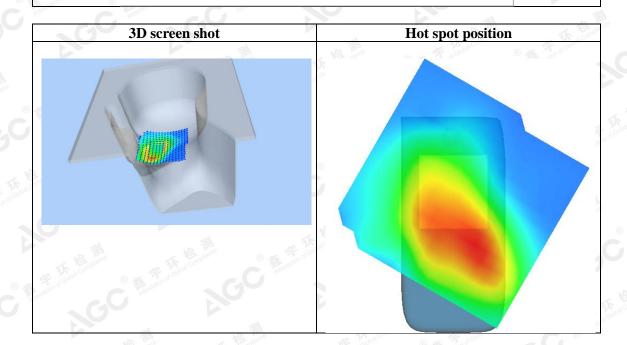
Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band IV Mid-Touch-Right /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band IV Mid-Touch-Right /Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Phantom	Right head		
Device Position	Cheek		
Band	LTE Band IV		
Channels	Middle		
Signal	OFDM (Crest factor: 1.0)		

Maximum location: X=-56.00, Y=-48.00 SAR Peak: 0.61 W/kg

SAR 10g (W/Kg)	0.261367
SAR 1g (W/Kg)	0.415592


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

GC

Report No.: AGC03175180502FH01 Page 101 of 119

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.5906	0.4359	0.2897	0.1878	0.1203	0.0768	0.0524
是 Katobal Compiler	0.6-						NG
Atestation of	- 4 .0 (%//kg) 0 .4 -	-					
TIM Compliance		++					
(S) The state	ੂੰ ਕੇ 0.2-						
GO .	0.1- 0.0-				+++	X.	
The William	0.	02.55.07.5	12.5 17	.5 22.5 7. (mm.)	27.5 32.5	40.0	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 102 of 119

Test Laboratory: AGC Lab Date: June 21,2018

LTE Band IV Mid-Body-Back (1 RB#0)
DUT: MOBILE PHONE; Type: S51_lite

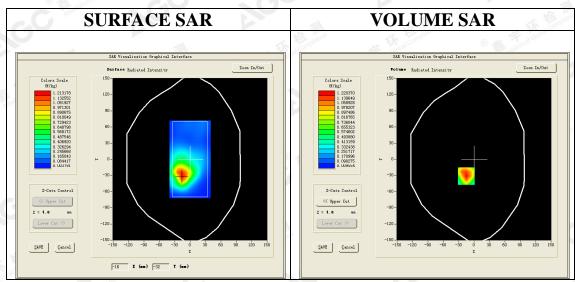
Communication System: LTE; Communication System Band: LTE Band IV; Duty Cycle:1:1; Conv.F=2.07; Frequency:1732.5 MHz; Medium parameters used: f = 1750 MHz; σ= 1.46 mho/m; εr =54.67; ρ= 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.7

SATIMO Configuration:

· Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


Sensor-Surface: 4mm (Mechanical Surface Detection)

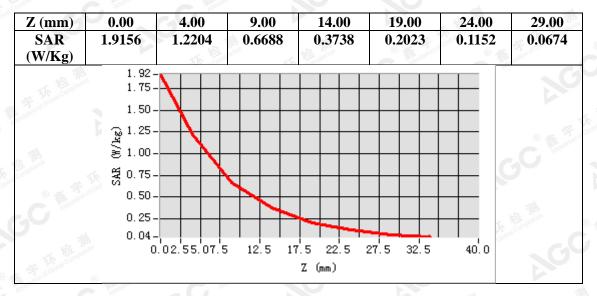
Phantom: SAM twin phantom

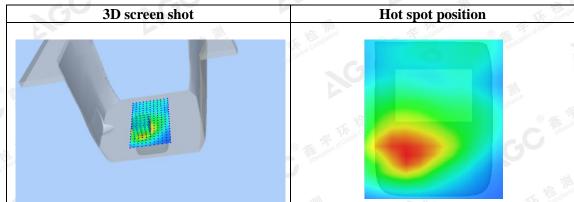
Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band IV Mid-Body-back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ LTE Band IV Mid-Body-back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5m;

Area Scan	sam_direct_droit2_surf8mm.txt			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Validation plane			
Device Position	Body Back			
Band	LTE Band IV			
Channels	Middle			
Signal	OFDM (Crest factor: 1.0)			

Maximum location: X=-15.00, Y=-31.00 SAR Peak: 1.93 W/kg


SAR 10g (W/Kg)	0.638179
SAR 1g (W/Kg)	1.162094


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

GC

Page 103 of 119

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 104 of 119

WIFI MODE

Test Laboratory: AGC Lab Date: June 16,2018

802.11b Mid-Touch-Right

DUT: MOBILE PHONE; Type: S51_lite

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.52;

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.75$ mho/m; $\epsilon r = 40.36$ $\rho = 1000$ kg/m³;

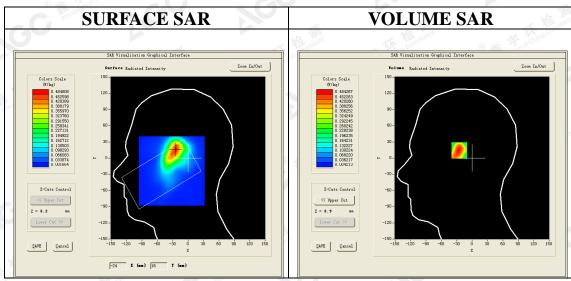
Phantom section: Right Section

Ambient temperature ($^{\circ}$):22.0, Liquid temperature ($^{\circ}$): 21.3

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

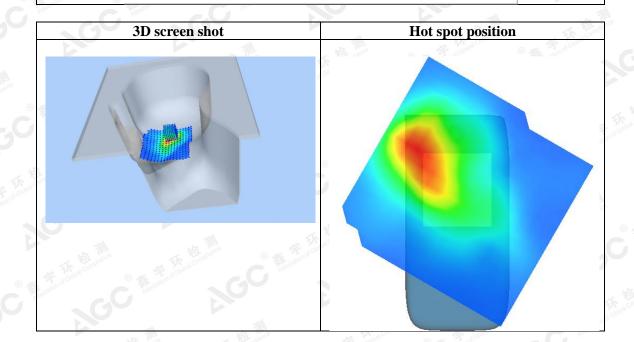
Configuration/802.11b Mid- Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/802.11b Mid- Touch-Right/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Area Scan	sam_direct_droit2_surf8mm.txt			
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm			
Phantom	Right head			
Device Position	Cheek			
Band	2450MHz			
Channels	Middle			
Signal	Crest factor: 1.0			

Maximum location: X=-24.00, Y=16.00 SAR Peak: 0.77 W/kg

SAR 10g (W/Kg)	0.242789
SAR 1g (W/Kg)	0.454426


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

GC

Report No.: AGC03175180502FH01 Page 105 of 119

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.7747	0.4843	0.2563	0.1331	0.0679	0.0350	0.0188
(W/Kg)		· 林克	ance	Kil normaliance	® Milestation o	® 5	Station of
W. 31	0.8-						~ G
The Complian	0.7-	$\overline{}$	+++-	$\overline{}$	+		
The Lation of Globe	0.6-	\rightarrow		++++			
Pres	≎0.5-						
de la companya de la	(2) 0.5- ≱/∕≨ 0.4-						
151							
Combin	₹ 0.3-	 					
® A Iguid	0.2-	-		$\overline{}$	$\overline{}$		
Alles Alles	0.1-						
	0.0-					N.	
12 T		02.55.07.5	12.5 17	.5 22.5	27.5 32.5	40.0	
The Stopal Compile				Z (mm)			

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 106 of 119

Test Laboratory: AGC Lab

Date: June 16,2018

802.11b Mid-Body-Worn- Back

DUT: MOBILE PHONE; Type: S51_lite

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.58;

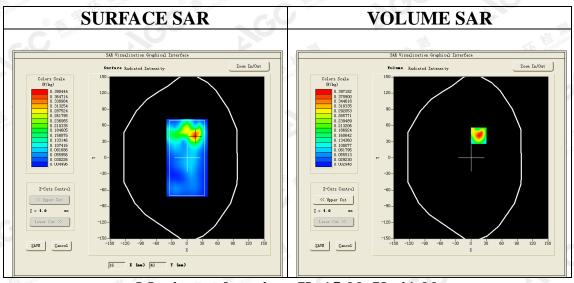
Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90 \text{mho/m}$; $\epsilon r = 54.08$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):22.0, Liquid temperature (°C): 21.5

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

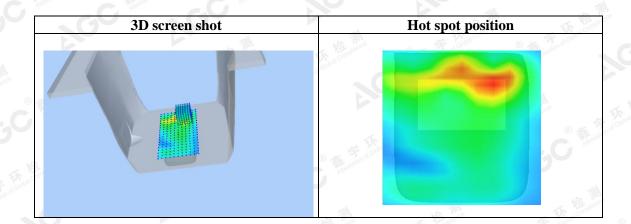
Measurement SW: OpenSAR V4_02_32

Configuration/802.11b Mid- Body- Back /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11b Mid- Body- Back /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

	F 1 1 10 10 11		
Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm		
Phantom	Validation plane		
Device Position	Body Back		
Band	2450MHz		
Channels	Middle		
Signal	Crest factor: 1.0		

Maximum location: X=15.00, Y=41.00

SAR Peak: 0.65 W/kg


SAR 10g (W/Kg)	0.171397		
SAR 1g (W/Kg)	0.364946		

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC03175180502FH01 Page 107 of 119

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.6501	0.3972	0.2029	0.0995	0.0493	0.0250	0.0129
1000	0.7-						(C
F of Global Company							
Mestallon	0.5-						
- M	(% 0.4- (%//€)	$\dashv \forall \vdash$					
Tompliance	11.5-	+					
00 th 12	∯ W 0.2-		+++				
Allestall	0.1-						
6	0.0-			$\uparrow + \downarrow \downarrow$	<u>-</u>	X	
极		.'02.'55.'07.'5	12.5 17	7.5 22.5	27.5 32.5	40.0	

Z (mm)

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document to confirmed at attp://www.agc.gett.com.

Page 108 of 119

Test Laboratory: AGC Lab Date: June 14,2018

WCDMA Band II Low-Body-Towards Grounds (RMC 12.2kbps)

DUT: MOBILE PHONE; Type: S51_lite

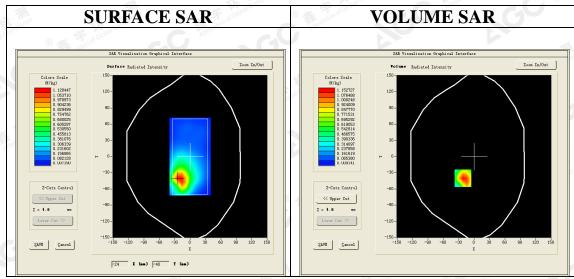
Communication System: UMTS; Communication System Band: Band II UTRA/FDD ;Duty Cycle:1:1; Conv.F=2.39; Frequency: 1852.4 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.48 \text{ mho/m}$; $\epsilon = 54.71$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 22.5, Liquid temperature (°C): 22.0

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

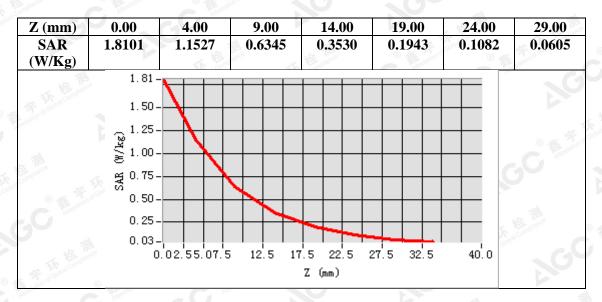

• Sensor-Surface: 4mm (Mechanical Surface Detection)

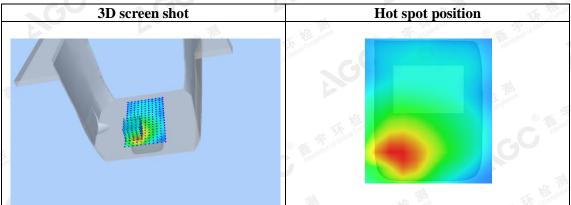
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/ WCDMA band II Low-Body-back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA band II Low-Body-back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5m;

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	WCDMA band II		
Channels	Low		
Signal	CDMA (Crest factor: 1.0)		


Maximum location: X=-22.00, Y=-40.00 SAR Peak: 1.81 W/kg


SAR 10g (W/Kg)	0.594882
SAR 1g (W/Kg)	1.098118

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a transfer

Page 109 of 119

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc.gett.com.

Page 110 of 119

Test Laboratory: AGC Lab Date: June 21,2018

LTE Band IV Mid-Body-Back (1 RB#0)
DUT: MOBILE PHONE; Type: S51_lite

Communication System: LTE; Communication System Band: LTE Band IV; Duty Cycle:1:1; Conv.F=2.07; Frequency:1732.5 MHz; Medium parameters used: f = 1750 MHz; σ= 1.46 mho/m; εr =54.67; ρ= 1000 kg/m³;

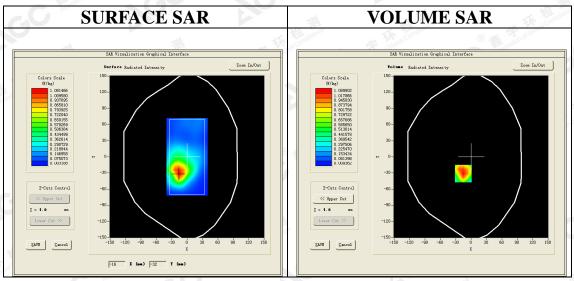
Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.7

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)


Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

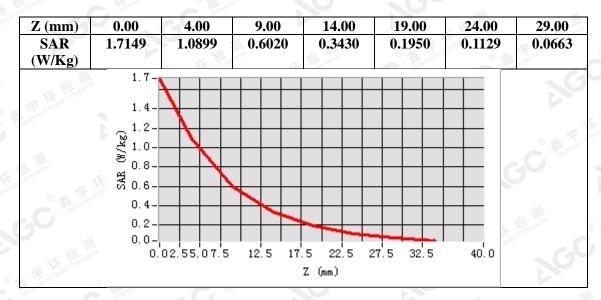
Configuration/ LTE Band IV Mid-Body-back/Area Scan: Measurement grid: dx=8mm, dy=8mm

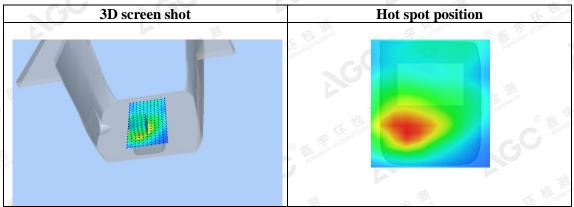
Configuration/ LTE Band IV Mid-Body-back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5m;

Area Scan	sam_direct_droit2_surf8mm.txt		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Phantom	Validation plane		
Device Position	Body Back		
Band	LTE Band IV		
Channels	Middle		
Signal	OFDM (Crest factor: 1.0)		

Maximum location: X=-15.00, Y=-31.00 SAR Peak: 1.73 W/kg

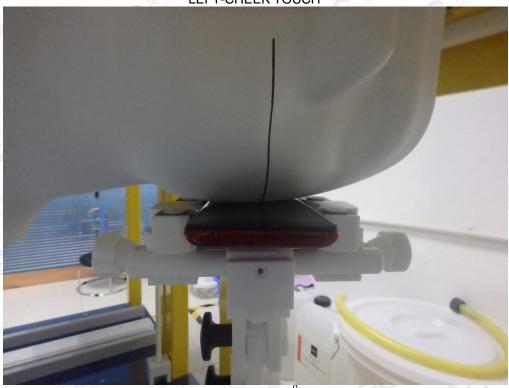
SAR 10g (W/Kg)	0.576763
SAR 1g (W/Kg)	1.041189

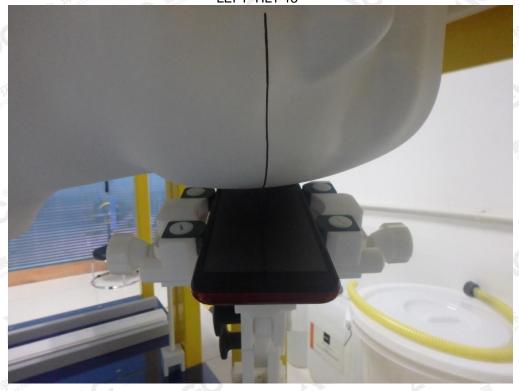

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC

Page 111 of 119


The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.


Page 112 of 119

APPENDIX C. TEST SETUP PHOTOGRAPHS

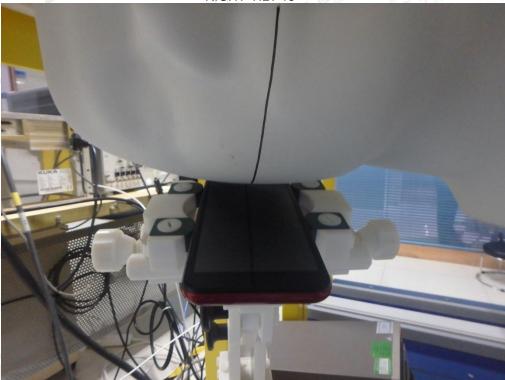
Test Setup Photographs
LEFT-CHEEK TOUCH

LEFT-TILT 15⁰

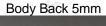
The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cett.com. VGC 8

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com **6** 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

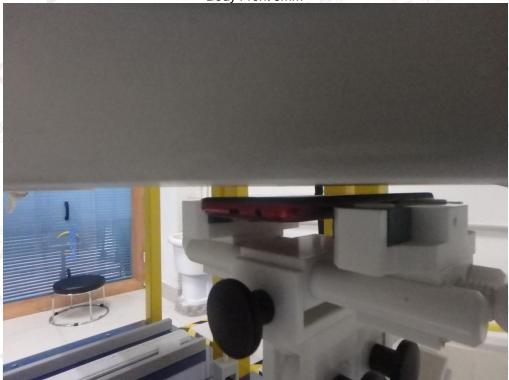


Page 113 of 119



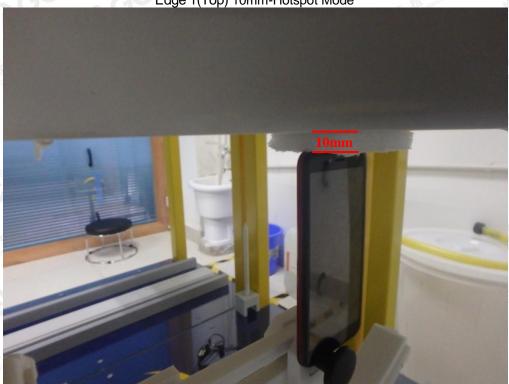


The results shown the streport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc cent.com.



Page 114 of 119

Body Front 5mm



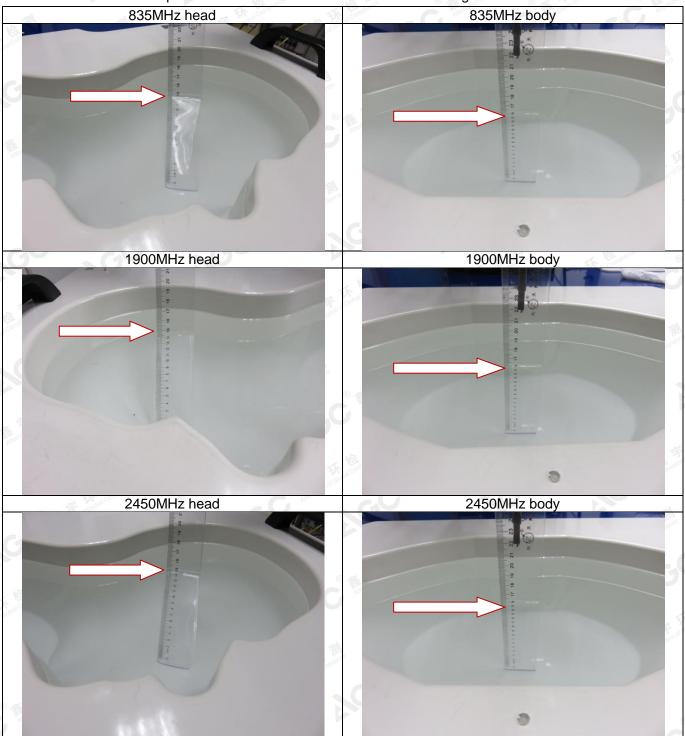
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cett.com.

Page 115 of 119

Edge 2(Right) 10mm-Hotspot Mode

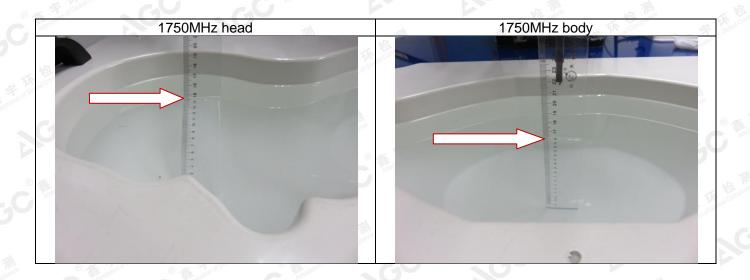
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (c), this document to cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com. **IGC** 8

Page 116 of 119


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. **\GC** s

Page 117 of 119

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN


Note: The position used in the measurement were according to IEEE 1528-2013

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 118 of 119

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (60°, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 119 of 119

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true. If www.agc cont.com.