

SAR Test Report

Report No.: AGC03175180601FH01

FCC ID : 2AF6M3396993M531P

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: MOBILE PHONE

BRAND NAME : Cellacom

MODEL NAME : M531

CLIENT: Mobile Commodity Corporation

DATE OF ISSUE: July. 17, 2018

IEEE Std. 1528:2013

STANDARD(S) : FCC 47CFR § 2.1093


IEEE/ANSI C95.1:2005

REPORT VERSION : V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 95

Report Revise Record

Report Version	Report Version Revise Time		Valid Version	Notes
V1.0	arce (© Metallion of Co.	July. 17, 2018	Valid	Initial Release

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 3 of 95

	Test Report Certification					
Applicant Name	Mobile Commodity Corporation					
Applicant Address	20955 Pathfinder Road, Suite 200, Diamond Bar, CA 91765, USA					
Manufacturer Name	Cellacom Technologies Company Limited					
Manufacturer Address	Rooms 05-15, 13A/F, South Tower, World Finance Centre, Harbour City, 17 Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong					
Product Designation	MOBILE PHONE					
Brand Name	Cellacom					
Model Name	M531					
Different Description	N/A CO					
EUT Voltage	DC3.7V by battery					
Applicable Standard	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005					
Test Date	June. 29, 2018 to July. 05, 2018					
Report Template	AGCRT-US-3G3/SAR (2018-01-01)					

Note: The results of testing in this report apply to the product/system which was tested only.

Tested By

Eric Zhou(Zhou Yongkang)

July. 05, 2018

Angela Li(Li Jiao)

July. 17, 2018

Forrest Lei(Lei Yonggang)
Authorized Officer

July. 17, 2018

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC03175180601FH01 Page 4 of 95

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	
2. GENERAL INFORMATION	
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	8
3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. COMOSAR E-FIELD PROBE	9 10 10
4. SAR MEASUREMENT PROCEDURE	
4.1. SPECIFIC ABSORPTION RATE (SAR)	13 15
5. TISSUE SIMULATING LIQUID	
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	17 18
6. SAR SYSTEM CHECK PROCEDURE	
6.1. SAR System Check Procedures	21
7. EUT TEST POSITION	22
7.1. DEFINE TWO IMAGINARY LINES ON THE HANDSET 7.2. CHEEK POSITION 7.3. TILT POSITION 7.4. BODY WORN POSITION	23 23
8. SAR EXPOSURE LIMITS	
9. TEST FACILITY	
10. TEST EQUIPMENT LIST	
11. MEASUREMENT UNCERTAINTY	28
12. CONDUCTED POWER MEASUREMENT	31
13. TEST RESULTS	39
13.1. SAR Test Results Summary	39
APPENDIX A. SAR SYSTEM CHECK DATA	
APPENDIX B. SAR MEASUREMENT DATA	
APPENDIX C. TEST SETUP PHOTOGRAPHS	88

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 5 of 95

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Fraguency Band	Highest Repo	SAR Test Limit	
Frequency Band	Head	Body-worn	(W/Kg)
GSM 850	0.911	0.620	- July
PCS 1900	1.222	0.725	The Met Compliance
UMTS Band II	1.363	0.774	8 # thion of Cloud
UMTS Band V	0.652	0.347	1.6
WIFI 2.4G	0.659	0.424	
Simultaneous Reported SAR	No. You	1.528	
SAR Test Result		PASS	Augustation of the station of the st

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01
- KDB 941225 D06 Hotspot Mode v02r01
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 6 of 95

2. GENERAL INFORMATION

2.1. EUT Description

General Information						
Product Designation	MOBILE PHONE					
Test Model	M531					
Hardware Version	H01_M_V2.0					
Software Version	Cellacom_M531_V05_20180612					
Device Category	Portable					
RF Exposure Environment	Uncontrolled					
Antenna Type	Internal Market Company of the Compa					
GSM and GPRS						
Support Band	☑GSM 850 ☑PCS 1900 ☑GSM 900 ☑DCS 1800					
GPRS Type	Class B					
GPRS Class	Class 12(1Tx+4Rx, 2Tx+3Rx, 3Tx+2Rx, 4Tx+1Rx)					
TX Frequency Range	GSM 850 : 820-850MHz;; PCS 1900: 1850-1910MHz;					
RX Frequency Range	GSM 850 : 869~894MHz; PCS 1900: 1930~1990MHz					
Release Version	R99					
Type of modulation	GMSK for GSM/GPRS;					
Antenna Gain	GSM850: 0.65dBi ;PCS1900: 0.57dBi					
Max. Average Power	GSM850: 31.63dBm ;PCS1900: 28.76dBm					
WCDMA						
Support Band	☐UMTS FDD Band II ☐UMTS FDD Band V ☐UMTS FDD Band I ☐UMTS FDD Band VIII					
HS Type	HSPA(HSUPA/HSDPA)					
TX Frequency Range	WCDMA FDD Band II: 1850-1910MHz;WCDMA FDD Band V: 820-850MHz					
RX Frequency Range	WCDMA FDD Band II: 1930-1990MHz;WCDMA FDD Band V: 869-894MHz					
Release Version	Rel-6					
Type of modulation	HSDPA:QPSK/16QAM; HSUPA:BPSK; WCDMA:QPSK					
Antenna Gain	Band II:0.64dBi; Band V: 0.72dBi					
Max. Average Power	Band II: 21.51dBm; Band V: 21.72dBm					

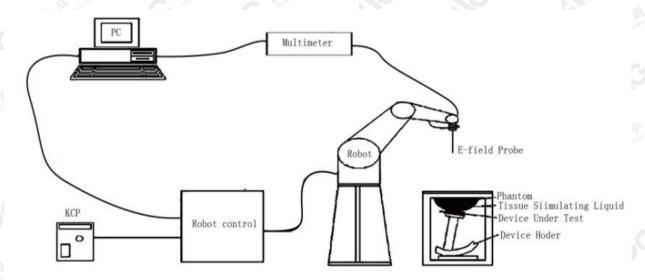
The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 7 of 95

Bluetooth	
Bluetooth Version	□V2.0 □V2.1 □V2.1+EDR □V3.0 □V3.0+HS □V4.0 □V4
Operation Frequency	2402~2480MHz
Type of modulation	⊠GFSK ⊠∏/4-DQPSK ⊠8-DPSK
Avg. Burst Power	4.357dBm
Antenna Gain	0.85dBi
WIFI	The state of the s
WIFI Specification	□802.11a ⊠802.11b ⊠802.11g ⊠802.11n(20) ⊠802.11n(40)
Operation Frequency	2412~2462MHz
Avg. Burst Power	11b:14.98dBm,11g:12.84dBm,11n(20):12.79dBm,11n(40):12.77dBm
Antenna Gain	0.85dBi
Accessories	Martin organic Co Co Co
Battery	Brand name: Cellacom Model No. : M531 Voltage and Capacitance: 3.7 V & 2200mAh
Earphone	Brand name: N/A Model No. : N/A
	sure the average power and Peak power at the same time for testing is end product.
Product	Type
FIUUUUL	Draduation unit

Production unit

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.


Identical Prototype

Page 8 of 95

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 9 of 95

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE5
Manufacture	MVG
Identification No.	SN 08/16 EPGO282
Frequency	0.7GHz-6GHz Linearity:±0.06dB(700MHz-6GHz)
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.06dB
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 3 GHz with precision of better 30%.

3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:

☐ High precision (repeatability 0.02 mm)

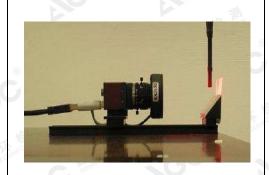
☐ High reliability (industrial design)

☐ Jerk-free straight movements

□ Low ELF interference (the closed metallic construction shields against motor control fields)

□ 6-axis controller

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

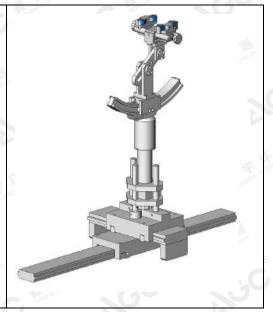

Page 10 of 95

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link.

During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.



3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 11 of 95

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

□ Left head

□ Right head

☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 12 of 95

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;
 E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
 σ is the conductivity of the tissue in siemens per metre;
 ρ is the density of the tissue in kilograms per cubic metre;
 c_b is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Page 13 of 95

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 14 of 95

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

			· Str. Com. Ch. Faller			
Maximum zoom scan spatial resolution: Δx_{Z00m} , Δy_{Z00m}			$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ $3 - 4 \text{ GHz}: \leq 5 \text{ mm}^*$ $4 - 6 \text{ GHz}: \leq 4 \text{ mm}^*$			
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
	graded grid	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
		between subsequent	≤ 1.5·Δz	Zoom(n-1)		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago-gent.com.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 15 of 95

4.3. RF Exposure Conditions

Test Configuration and setting:

The EUT is a model of GSM/WCDMA Portable Mobile Station (MS). It supports GSM/GPRS, WCDMA/HSPA, BT, WIFI, and support hot spot mode

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command.

Antenna Location: (the back view)

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 16 of 95

For WWAN mode:

Test Configurations	Antenna to edges/surface	SAR required	Note
Head	M S S S S S S S S S S S S S S S S S S S	Glopal C	
Left Touch	CC M	Yes	
Left Tilt		Yes	III IK (Seminar
Right Touch		Yes	puries 1 12 min 8 1 min of comment
Right Tilt		Yes	
Body	The Compliant	Allestan	
Back	<25mm	Yes	· · · · · · · · · · · · · · · · · ·
Front	<25mm	Yes	The state of the s
Hotspot			
Back	<25mm	Yes	CO " GO
Front	<25mm	Yes	
Edge 1 (Top)	0mm	Yes	The state of the s
Edge 2 (Right)	35mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR
Edge 3 (Bottom)	133mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR
Edge 4 (Left)	0mm	Yes	The state of the s

For WLAN mode:

Test Configurations	Antenna to edges/surface	SAR required	Note
Head			10000000000000000000000000000000000000
Left Touch	III.	Yes	The Committee of the Co
Left Tilt	nce The Complian	Yes	and the second s
Right Touch	® Atalon of Globa	Yes	
Right Tilt	C AME	Yes	- All The Bender
Body	7		A The Color of the
Back	<25mm	Yes	The state of the s
Front	<25mm	Yes	C Market C
Hotspot	on o' Attestation	. (10 (0)
Back	<25mm	Yes	· · · · · · · · · · · · · · · · · · ·
Front	<25mm	Yes	III
Edge 1 (Top)	0mm	Yes	Strategies (8) St. Jacob Com (9) St. Jacob Com (
Edge 2 (Right)	0mm	Yes	CO . GO.
Edge 3 (Bottom)	122mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR
Edge 4 (Left)	58mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 17 of 95

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

Citi inc composition (J1 (110 (100)	ao omnan	ating nquiu	30000		
Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
835 Head	50.36	1.25	48.39	0.0	0.0	0.0
835 Body	54.00	1 3	0.0	15	0.0	30
1900 Head	54.9	0.18	0.0	44.92	0.0	0.0
1900 Body	70	1	0.0	9	0.0	20
2450 Head	71.88	0.16	0.0	7.99	0.0	19.97
2450 Body	70	11	0.0	9 0 000	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	h	ead		body
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

($\varepsilon r = relative permittivity, \sigma = conductivity and \rho = 1000 kg/m3)$

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 18 of 95

5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

		Tissue Stimulant	Measurement for 835MHz					
相	Fr.	Dielectric Pa	Dielectric Parameters (±5%)					
	(MHz)	εr 41.5 (39.425-43.575)	δ[s/m] 0.90(0.855-0.945)	Temp [°C]	Test time			
	824.2	43.05	0.88	Mir.	T.			
Head	826.4	42.63	0.89	That Compliant	® Medation of Gr			
	835	42.17	0.90	21.2	Luby 0F 2010			
	836.6	41.77	0.91	21.2	July. 05, 2018			
	846.6	41.26	0.92		litie			
	848.8	40.89	0.93	iance in	K Kampilance			
	Fr.	Dielectric Pa	arameters (±5%)	Tissue	Giobal			
	(MHz)	er 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [oC]	Test time			
	824.2	56.38	0.93		liji;			
Body	826.4	55.71	0.94	Kar Milliones	The Compliance			
	835	55.13	0.95	21.5	luly 05, 2010			
	836.6	54.69	0.96	21.5	July. 05, 2018			
	846.6	54.03	0.97					
	848.8	53.57	0.98		litiz			

		Tissue Stimulant	Measurement for 1900MHz	(0) (22)	93762° 1.43°°
8	Fr.	Dielectric Par	Tissue		
® Alle	(MHz)	εr40.00(38.00-42.00)	δ[s/m]1.40(1.33-1.47)	Temp [°C]	Test time
	1850.2	40.89	1.34	The proposed of the party of th	8) The children of Global Co
Head	1852.4	40.35	1.37	GlobalCo	Alleside
	1880	39.97	1.38	21.6	July. 04, 2018
	1900	39.44	1.40	21.0	July. 04, 2016
	1907.6	39.02	1.42	校刊	
	1909.8	38.75	1.44	F Global Compan	Altestation
	∰ Fr.	Dielectric Par	ameters (±5%)	Tissue	Test time
	(MHz)	εr53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [oC]	rest time
	1850.2	55.11	1.46	-1111	lite: 7
Dody	1852.4	54.63	1.48	Kamphanos	The Milliands (8)
Body	1880	54.07	1.50	21.9	July. 04, 2018
	1900	53.73	1.51	21.9	July. 04, 2018
	1907.6	53.35	1.53	10	litre
Global	1909.8	52.89	1.55	10 m	The Third of the T

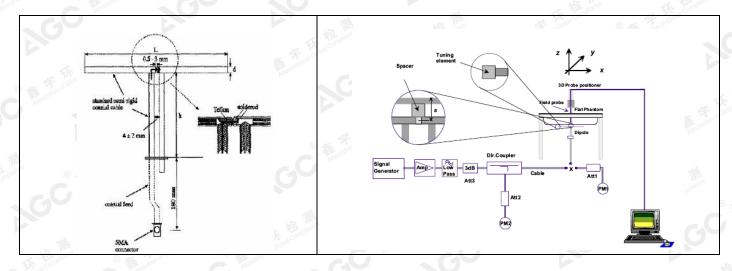
The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 19 of 95

		Tissue Stimulant	Measurement for 2450MHz			
Prince	Fr. (MHz)	Dielectric Pa	Tissue	Od Clopat Con.,		
		εr39.2(37.24-41.16)	δ[s/m]1.80(1.71-1.89)	Temp [°C]	Test time	
Head	2412	40.66	1.73		lin:	
	2437	39.87	1.75	21.3	luna 20 2019	
	2450	39.26	1.77	21.3	June. 29, 2018	
	2462	38.75	1.80		Attests	
Fr. V		Dielectric Pa	rameters (±5%)	Tissue		
	(MHz)	εr52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [oC]	Test time	
Body	2412	54.63	1.88	秋	pliance ® # Jation of G	
	2437	54.17	1.90	21.5	luna 20 2010	
	2450	53.59	1.92	21.5	June. 29, 2018	
	2462	52.86	1.95			

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 20 of 95

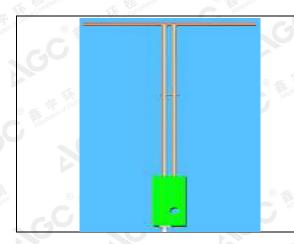

6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.



The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 €, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at Attp://www.agc-cett.com.

Page 21 of 95

6.2. SAR System Check 6.2.1. Dipoles

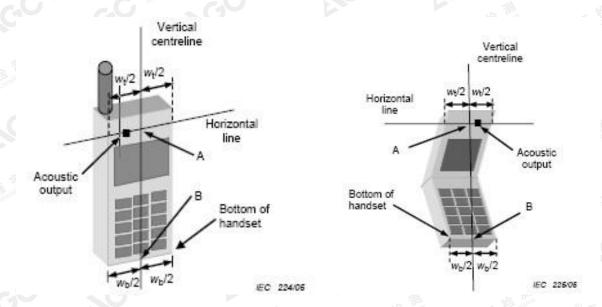
The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6
1900MHz	68	39.5	3.6
2450MHz	51.5	30.4	3.6

6.2.2. System Check Result

ormance	Check a	t 835MHz&1900N	//Hz &2450MHz f	or Head				
it: SN29/	15 DIP 00	8835-383&SN 29/	15 DIP 1G900-3	39& SN 2	29/15DIP	2G450-3	93	
		Paraphia (B)	300 -13110		Tissue Temp.	Test time		
1g	10g	1g	10g	1g	10g	[°C]		
10.04	6.43	9.036-11.044	5.787 -7.073	9.70	6.19	21.2	July. 05, 2018	
41.44	21.33	37.296-45.584	19.197-23.463	39.60	20.47	21.6	July. 04, 2018	
54.53	24.30	49.077-59.983 21.87-26.730		51.22	23.76	21.3	June. 29, 2018	
ormance	Check a	835 MHz &1900	MHz & 2450MHz	for Boo	ly			
						Tissue Temp.	Test time	
1g	10g	1g	10g	1g	10g	[°Cj	Allestation Of	
9.85	6.45	8.865-10.835	5.805-7.095	9.28	5.95	21.5	July. 05, 2018	
39.38	20.86	35.442-43.318	18.774-22.946	37.81	19.65	21.9	July. 04, 2018	
49.92	23.16	44.928-54.912	20.844-25.476	49.41	22.75	21.5	June. 29, 2018	
	it: SN29/* Tar Value(1g 10.04 41.44 54.53 ormance Tar Value(1g 9.85 39.38	Target Value(W/Kg) 1g 10g 10.04 6.43 41.44 21.33 54.53 24.30 ormance Check at Target Value(W/Kg) 1g 10g 9.85 6.45 39.38 20.86	it: SN29/15 DIP 0G835-383&SN 29/Target Target Reference Value(W/Kg) (± 1 1g 10g 1g 10.04 6.43 9.036-11.044 41.44 21.33 37.296-45.584 54.53 24.30 49.077-59.983 ormance Check at 835 MHz &1900 Target Reference Value(W/Kg) (± 1 1g 10g 1g 9.85 6.45 8.865-10.835 39.38 20.86 35.442-43.318	it: SN29/15 DIP 0G835-383&SN 29/15 DIP 1G900-38 Target Value(W/Kg) Reference Result (± 10%) 1g 10g 1g 10g 10.04 6.43 9.036-11.044 5.787 -7.073 41.44 21.33 37.296-45.584 19.197-23.463 54.53 24.30 49.077-59.983 21.87-26.730 ormance Check at 835 MHz &1900MHz & 2450MHz Target Value(W/Kg) Reference Result (± 10%) 1g 10g 1g 10g 9.85 6.45 8.865-10.835 5.805-7.095 39.38 20.86 35.442-43.318 18.774-22.946	it: SN29/15 DIP 0G835-383&SN 29/15 DIP 1G900-389& SN 2 Target Value(W/Kg) Reference Result (± 10%) Test Value 1g 10g 1g 10g 1g 10.04 6.43 9.036-11.044 5.787 -7.073 9.70 41.44 21.33 37.296-45.584 19.197-23.463 39.60 54.53 24.30 49.077-59.983 21.87-26.730 51.22 ormance Check at 835 MHz &1900MHz & 2450MHz for Booth Check at 835 MHz &1900MHz & 2450MHz for Booth Check Check (± 10%) Value 1g 10g 1g 10g 1g 9.85 6.45 8.865-10.835 5.805-7.095 9.28 39.38 20.86 35.442-43.318 18.774-22.946 37.81	Target Value(W/Kg) Reference Result (± 10%) Tested Value(W/Kg) 1g 10g 1g 10g 1g 10g 10.04 6.43 9.036-11.044 5.787 -7.073 9.70 6.19 41.44 21.33 37.296-45.584 19.197-23.463 39.60 20.47 54.53 24.30 49.077-59.983 21.87-26.730 51.22 23.76 ormance Check at 835 MHz &1900MHz & 2450MHz for Body Target Value(W/Kg) Reference Result (± 10%) Tested Value(W/Kg) 1g 10g 1g 10g 1g 10g 9.85 6.45 8.865-10.835 5.805-7.095 9.28 5.95 39.38 20.86 35.442-43.318 18.774-22.946 37.81 19.65	it: SN29/15 DIP 0G835-383&SN 29/15 DIP 1G900-389& SN 29/15 DIP 2G450-3 Target Value(W/Kg) Reference Result (± 10%) Tested Value(W/Kg) Tissue Temp. [°C] 1g 10g 1g 10g 1g 10g [°C] 10.04 6.43 9.036-11.044 5.787 -7.073 9.70 6.19 21.2 41.44 21.33 37.296-45.584 19.197-23.463 39.60 20.47 21.6 54.53 24.30 49.077-59.983 21.87-26.730 51.22 23.76 21.3 ormance Check at 835 MHz &1900MHz & 2450MHz for Body Target Value(W/Kg) Reference Result (± 10%) Tested Value(W/Kg) Tissue Temp. Temp. [°C] 1g 10g 1g 10g 1g 10g [°C] 9.85 6.45 8.865-10.835 5.805-7.095 9.28 5.95 21.5 39.38 20.86 35.442-43.318 18.774-22.946 37.81 19.65 21.9	

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.


Report No.: AGC03175180601FH01 Page 22 of 95

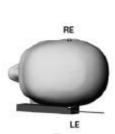
7. EUT TEST POSITION

This EUT was tested in Right Cheek, Right Tilted, Left Cheek, Left Tilted, Body back, Body front and 4 edges.

7.1. Define Two Imaginary Lines on the Handset

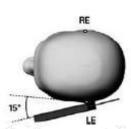
- (1)The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.


Page 23 of 95

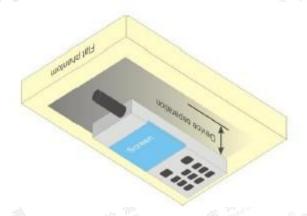
7.2. Cheek Position

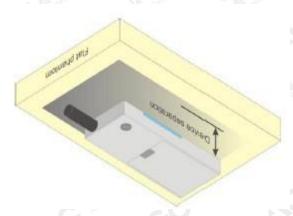
- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost



7.3. Tilt Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.



Page 24 of 95

7.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 5mm.

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

Page 25 of 95

8. SAR EXPOSURE LIMITS

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (SC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 26 of 95

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 27 of 95

10. TEST EQUIPMENT LIST

Equipment description	description Model Identification No.		Current calibration date	Next calibration date	
SAR Probe	MVG	SN 08/16 EPGO282	Aug. 08,2017	Aug. 07,2018	
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	SATIMO	· 下档 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Validated. No cal required.	Validated. No ca required.	
Comm Tester	Agilent-8960	GB46310822	Mar. 01,2018	Feb. 28,2019	
Multimeter	Keithley 2000	1188656	Mar. 01,2018	Feb. 28,2019	
Dipole	SATIMO SID835	SN29/15 DIP 0G835-383	July 05,2016	July 04,2019	
Dipole	SATIMO SID1900	SN 29/15 DIP 1G900-389	July 05,2016	July 04,2019	
Dipole	SATIMO SID2450	SN29/15 DIP 2G450-393	July 05,2016	July 04,2019	
Signal Generator	Agilent-E4438C	US41461365	Mar. 01,2018	Feb. 28,2019	
Vector Analyzer	Agilent / E4440A	US41421290	Mar. 01,2018	Feb. 28,2019	
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	Mar. 01,2018	Feb. 28,2019	
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A	
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A	
Amplifier	EM30180	SN060552	Mar. 01,2018	Feb. 28,2019	
Directional Couple	Werlatone/ C5571-10	SN99463	June. 12,2018	June. 11,2019	
Directional Couple	Werlatone/ C6026-10	SN99482	June. 12,2018	June. 11,2019	
Power Sensor	NRP-Z21	1137.6000.02	Oct. 12,2017	Oct. 11,2018	
Power Sensor	NRP-Z23	US38261498	Mar. 01,2018	Feb. 28,2019	
Power Viewer	R&S	V2.3.1.0	N/A	N/A	

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.agc.gett.com.

Page 28 of 95

11. MEASUREMENT UNCERTAINTY

Measure	ement un	certainty fo	r Dipole	averaged (over 1 grai	m / 10 gran	า.		
а	b	С	d	e f(d,k)	f	g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System			-1111		all	-31/		· 天下。	omplian
Probe calibration	E.2.1	5.831	N	1 派检	1	15/ 182 complete	5.83	5.83	00
Axial Isotropy	E.2.2	0.695	R 🛭 🠔	√3	√0.5	√0.5	0.28	0.28	8
Hemispherical Isotropy	E.2.2	1.045	R	√3	√0.5	√0.5	0.43	0.43	8
Boundary effect	E.2.3	1.0	R	√3	1 -	1	0.58	0.58	œ
Linearity	E.2.4	0.685	R	√3	1. Kil Compilar	1 4	0.40	0.40	00
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	1	1 Mestano	0.58	0.58	00
Modulation response	E2.5	3.0	R	√3	1	1	1.73	1.73	00
Readout Electronics	E.2.6	0.021	N	1	1	1 1	0.021	0.021	oo
Response Time	E.2.7	0	R	√3	1	1,	0 %	0	oo
Integration Time	E.2.8	1.4	R	√3	1 Saltestation	1	0.81	0.81	00
RF ambient conditions-Noise	E.6.1	3.0	R	√3	1	1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	√ 3	1	1	1.73	1.73	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1 # 3 A	0.81	0.81	∞
Probe positioning with respect to phantom shell	E.6.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	00
Test sample Related	-11		不怕	mpliance	IN THE	plance	® E Food	Opal	The state
Test sample positioning	E.4.2	2.6	N	1 8	estation of 1	1	2.6	2.6	00
Device holder uncertainty	E.4.1	3	N	1	1	1	3	3	8
Output power variation—SAR drift measurement	E.2.9	5	R	√3	1	1	2.89	2.89	8
SAR scaling	E.6.5	5	R	$\sqrt{3}$	pliance 1	TH Kill Compil	2.89	2.89	∞
Phantom and tissue parameters		The Compliance	® #	Fino (Global	® %	station of Glo	60		
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3		1	2.31	2.31	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	o
Liquid conductivity measurement	E.3.3	4	N	10 5%	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	® 5	N	- 1 ATT	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty	_ 1	A Compliance	RSS	Pal Courb.	Alleste	500	9.79	9.59	2
Expanded Uncertainty (95% Confidence interval)	Attestation of C		K=2				19.58	19.18	-111

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 29 of 95

System	check un	certainty fo	or Dipole	averaged	over 1 gra	m / 10 gran	n.		
а	b	С	d	e f(d,k)	f	g	h cxf/e	i cxg/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System		a.C.	Me.				• •		-TILL
Probe calibration drift	E.2.1.3	0.5	N	1	1	1 📆	0.50	0.50	8
Axial Isotropy	E.2.2	0.695	R	√3	0	TV O Compilar	0.00	0.00	00
Hemispherical Isotropy	E.2.2	1.045	R	√3	0	non of O	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	√3	0	0	0.00	0.00	00
Linearity	E.2.4	0.685	R	$\sqrt{3}$	0	0	0.00	0.00	00
System detection limits	E.2.4	1.0	R	√3	0 0	0 🧀	0.00	0.00	00
Modulation response	E2.5	3.0 🦘	R	√3	0	O hitestatic	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	99	0	0	0.00	0.00	∞
Response Time	E.2.7	0	R	√3	0	0	0.00	0.00	∞
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	√3	0	0	0.00	0.00	00
RF ambient conditions-reflections	E.6.1	3.0	R	√3	0	0	0.00	0.00	∞
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	oo
Probe positioning with respect to phantom shell	E.6.3	1.4	R	$\sqrt{3}$	ampliance 1	® #1 shion of	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	00
System check source (dipole)				~11		lin:	1	Kit plance	
Deviation of experimental dipoles	E.6.4	2	N	nplance 1	The William	nglerice 1	2	2	00
Input power and SAR drift measurement	8,6.6.4	5 %	R	$\sqrt{3}$	Alestation of T	1,0	2.89	2.89	8
Dipole axis to liquid distance	8,E.6.6	2	R	√3	1	1	1.15	1.15	00
Phantom and tissue parameters					-all		Till .	不不	Combijauce
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	Josephance 1	F TA KE	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	Less Hallon of Glob		0.84	1.90	1.60	00
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty			RSS			15 mm	5.564	5.205	(
Expanded Uncertainty (95% Confidence interval)		1917 - 1918 1918 - 1918	K=2	Kingliance .	® ##	F of Global Comm	11.128	10.410	r.C

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Page 30 of 95

System Va	alidation u	incertainty	for Dipo	le average	ed over 1 gi	ram / 10 gr	am.		
а	b	С	d	e f(d,k)	f	g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (±%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System	1	2.G	Me.						litte:
Probe calibration	E.2.1	5.831	N	1	1	1 :	5.83	5.83	8
Axial Isotropy	E.2.2	0.695	R	$\sqrt{3}$	not arrice 1	Th 1 complian	0.40	0.40	00
Hemispherical Isotropy	E.2.2	1.045	R	√3	0	iion of Co	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	E.2.4	0.685	R	√3	1	1	0.40	0.40	00
System detection limits	E.2.4	1.0	R	√3	Th 1 compliant	1 //	0.58	0.58	00
Modulation response	E2.5	3.0 🦘	R	√3	0	0	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	49	1.0	1	0.021	0.021	00
Response Time	E.2.7	0.0	R	√3	0	0 🧥	0.00	0.00	00
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	√3	1 1 station	1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	oo
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	The stance 1	© #1 Francis	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5 ®	2.3	R	√3	10	1	1.33	1.33	œ
System check source (dipole)						lin:		A TOWNERS	
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	in in the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	5.00	5.00	8
Input power and SAR drift measurement	8,6.6.4	5.0	R	√3	A cestation of 1	1-	2.89	2.89	00
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	00
Phantom and tissue parameters					llin-	7	1111	环	Combigue
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	√3	Indiance 1	F at Global Compile	2.31	2.31	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	Lestation of Carlo	60	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4.0	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5.0	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	00
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty			RSS			校神	9.718	9.517	(
Expanded Uncertainty (95% Confidence interval)		KEL TIME	K=2	KE TIMI	® ##	Jot Glopal Court	19.437	19.035	_{F,} C

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Page 31 of 95

12. CONDUCTED POWER MEASUREMENT GSM BAND

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <	I> C ME	Allegia		:11
GSM 850	824.2	31.62	-9	22.62
	836.6	31.56	-9	22.56
	848.8	31.63	-9	22.63
ODDO 050	824.2	31.47	-9	22.47
GPRS 850 (1 Slot)	836.6	31.40	-9	22.40
(1 Slot)	848.8	31.26	-9	22.26
CDDC 050	824.2	28.61	The complete -6 The college of	22.61
GPRS 850 (2 Slot)	836.6	28.77	-6	22.77
(2 SIUL)	848.8	28.66	-6	22.66
0000.050	824.2	27.30	-4.26	23.04
GPRS 850 (3 Slot)	836.6	27.22	-4.26	22.96
(3 3101)	848.8	27.25	-4.26	22.99
:10	824.2	25.44	-3	22.44
GPRS 850	836.6	25.50	-3	22.50
(4 Slot)	848.8	25.72	-3	22.72
1aximum Power <2	2>	据	collabor (B) Fr of Global Comment	® # Jalion of Gloss
:111	824.2	31.58	-9	22.58
GSM 850	836.6	31.26	-9	22.26
	848.8	31.19	-9	22.19
CDDC 050	824.2	31.32	-9	22.32
GPRS 850 (1 Slot)	836.6	31.25	-9 ®	22.25
(1000)	848.8	31.14	ration of -9	22.14
CDDC 050	824.2	28.36	-6	22.36
GPRS 850 (2 Slot)	836.6	28.41	-6	22.41
(2 3101)	848.8	28.28	-6	22.28
GPRS 850 (3 Slot)	824.2	27.17	-4.26	22.91
	836.6	27.09	-4.26	22.83
	848.8	27.12	-4.26	22.86
0000 050	824.2	25.38	-3	22.38
GPRS 850 (4 Slot)	836.6	25.41	-3 # E	22.41
(4 3101)	848.8	25.65	-3 Madalah	22.65

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 32 of 95

GSM BAND CONTINUE

Mode Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <1	S Ton of clobs	(S) A Global C	0 20	-60
PCS1900	1850.2	28.55	-9	19.55
	1880	28.67	-9	19.67
60	1909.8	28.39	-9 12	19.39
GPRS1900 (1 Slot)	1850.2	28.61	-9	19.61
	1880	28.76	-9	19.76
	1909.8	28.52	-9	19.52
00001000	1850.2	24.55	<u></u> -6 ₃₁	18.55
GPRS1900 (2 Slot)	1880	24.44	The state of the s	18.44
(2 3101)	1909.8	24.60	-6 American	18.60
GPRS1900 (3 Slot)	1850.2	23.41	-4.26	19.15
	1880	23.57	-4.26	19.31
(3 3101)	1909.8	23.54	-4.26	19.28
	1850.2	22.60	· -3	19.60
GPRS1900	1880	22.85	-3	19.85
(4 Slot)	1909.8	22.67	-3	19.67
Maximum Power <2	> 6		恒	Mance TK Com
60	1850.2	28.73	-9 4	19.73
PCS1900	1880	28.56	-9	19.56
	1909.8	28.47	-9	19.47
ODD04000	1850.2	28.41	-9	19.41
GPRS1900 (1 Slot)	1880	28.38	1 -9	19.38
(1 3101)	1909.8	28.39	近 2000 -9 8 編	19.39
ODD04000	1850.2	24.47	Japan of Grant Address of the Control of the Contro	18.47
GPRS1900 (2 Slot)	1880	24.32	-6	18.32
(Z 310t)	1909.8	24.56	-6	18.56
00004000	1850.2	23.27	-4.26	19.01
GPRS1900 (3 Slot)	1880	23.34	-4.26	19.08
(3 3101)	1909.8	23.28	-4.26	19.02
C M	1850.2	22.41	-3	19.41
GPRS1900	1880	22.53	-3	19.53
(4 Slot)	1909.8	22.37	-3 F	19.37

Note 1

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) – 9 dB

Frame Power = Max burst power (2 Up Slot) - 6 dB

Frame Power = Max burst power (3 Up Slot) - 4.26 dB

Frame Power = Max burst power (4 Up Slot) - 3 dB

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 33 of 95

UMTS BAND HSDPA Setup Configuration:

- •The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- •The RF path losses were compensated into the measurements.
- ·A call was established between EUT and Based Station with following setting:
- (1) Set Gain Factors(β c and β d) parameters set according to each
- (2) Set RMC 12.2Kbps+HSDPA mode.
- (3) Set Cell Power=-86dBm
- (4) Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
- (5) Select HSDPA Uplink Parameters
- (6) Set Delta ACK, Delta NACK and Delta CQI=8
- (7) Set Ack Nack Repetition Factor to 3
- (8) Set CQI Feedback Cycle (k) to 4ms
- (9) Set CQI Repetition Factor to 2
- (10) Power Ctrl Mode=All Up bits
- ·The transmitted maximum output power was recorded.

Table C.10.2.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc (Note5)	βd	βd (SF)	βc/βd	βHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
Attestation 1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15(Note 4)	15/15(Note 4)	64	12/15(Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with $\beta_{hs} = 30/15 * \beta_c$.

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause

5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .

Note 3: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the c/d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 11/15 and d = 15/15.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the sample (s) are retained for 30 days only. The document is issued by AGC, this document to an action of the sample (s) are retained for 30 days only. The document is issued by AGC, this document to an action of the sample (s) are retained for 30 days only. The document is issued by AGC, this document is a sample (s) are retained for 30 days only. The document is issued by AGC, this document to an action of the sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are reta

Page 34 of 95

HSUPA Setup Configuration:

- · The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- · The RF path losses were compensated into the measurements.
- · A call was established between EUT and Base Station with following setting *:
- (1) Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
- (2) Set the Gain Factors (βc and βd) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
- (3) Set Cell Power = -86 dBm
- (4) Set Channel Type = 12.2k + HSPA
- (5) Set UE Target Power
- (6) Power Ctrl Mode= Alternating bits
- (7) Set and observe the E-TFCI
- (8) Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- · The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βς	βd	βd (SF)	βc/βd	βHS (Note 1)	βес	βed (Note 4) (Note 5)	βed (SF)	βed (Code s)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E-TF CI
15	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/22 5	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	J. 1000000	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	βed1: 47/15 βed2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	- TI	<u> </u>	5/15	5/15	47/15	4	13	1.0	0.0	12	67

Note 1: For sub-test 1 to 4, \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, \triangle ACK, \triangle NACK and \triangle CQI = 5/15 with β_{hs} = 5/15 * β_c .

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the c/ d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 10/15 and d = 15/15.

Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 5: βed cannot be set directly; it is set by Absolute Grant Value.

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

Report No.: AGC03175180601FH01 Page 35 of 95

UMTS BAND II

IS BAND II	<u>-</u>	162 mars
Mode	Frequency	Avg. Burst Power
ing and a second	(MHz)	(dBm)
WCDMA 1900	1852.4	21.21
RMC	1880	21.48
, in the second	1907.6	21.51
WCDMA 1900	1852.4	20.33
AMR	1880	20.74
and Columb Co.	1907.6	20.54
HSDPA	1852.4	19.62
Subtest 1	1880	20.40
Subtest 1	1907.6	19.92
HSDPA	1852.4	19.68
Subtest 2	1880	19.90
Sublest 2	1907.6	19.63
HCDDA	1852.4	20.54
HSDPA	1880	19.72
Subtest 3	1907.6	20.77
© Management of the control of the c	1852.4	21.08
HSDPA	1880	21.14
Subtest 4	1907.6	21.22
The Bridge HOURS THE STREET	1852.4	21.47
HSUPA	1880	19.88
Subtest 1	1907.6	20.65
	1852.4	20.56
HSUPA	1880	19.92
Subtest 2	1907.6	20.07
And the second second	1852.4	20.90
HSUPA	1880	20.03
Subtest 3	1907.6	19.91
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1852.4	19.75
HSUPA	1880	19.63
Subtest 4	1907.6	19.78
inc	1852.4	19.67
HSUPA -	1880	19.78
Subtest 5	1907.6	19.80

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Report No.: AGC03175180601FH01 Page 36 of 95

UMTS BAND V

S BAND V	_	
Mode	Frequency	Avg. Burst Power
	(MHz)	(dBm)
WCDMA 850	826.4	20.92
RMC	836.6	21.69
i i i i i i i i i i i i i i i i i i i	846.6	21.72
WCDMA 850	826.4	20.54
AMR	836.6	20.95
of the state of th	846.6	20.75
HSDPA	826.4	19.83
Subtest 1	836.6	20.61
E TO TO THE TOTAL THE TOTA	846.6	20.13
HSDPA	826.4	19.89
Subtest 2	836.6	20.11
G051051.2	846.6	19.84
HSDPA	826.4	20.75
Subtest 3	836.6	19.93
Sublest 3	846.6	20.98
HSDPA	826.4	21.29
Subtest 4	836.6	21.35
Sublest 4	846.6	21.43
HSUPA	826.4	21.68
Subtest 1	836.6	20.09
Sublest 1	846.6	20.86
HSUPA	826.4	20.77
Mar and	836.6	20.13
Subtest 2	846.6	20.28
LICLIDA	826.4	21.11
HSUPA	836.6	20.24
Subtest 3	846.6	20.12
A ICLIDA	826.4	19.96
HSUPA	836.6	19.84
Subtest 4	846.6	19.99
HOUDA	826.4	19.88
HSUPA	836.6	19.99
Subtest 5	846.6	20.01

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 37 of 95

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)							
For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)							
Note: CM=1 for β $_{\rm c}/\beta$ $_{\rm d}$ =12/15, β $_{\rm hs}/\beta$ $_{\rm c}$ =24/15.For all other combinations of DPDCH, DPCCH, HS-DPCCH,									
E-DPDCH and E-DPCCH the MPR is based on the i	relative CM difference.								

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 38 of 95

WIFI

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Avg. Burst Power(dBm)
7	A Good Clobal	4 01	2412	11.53
802.11b	1 Attestant	06	2437	14.92
	10 1C	11	2462	14.98
2.0 °		01	2412	11.10
802.11g	6	2 Marie 06	2437	12.66
	K Managara	station 11 Maring sation of	2462	12.84
The store of Global Control of the Store of	of Global S	01	2412	11.07
802.11n(20)	6.5	06	2437	12.59
		11	2462	12.79
校	10° 10° 110° 110° 110° 110° 110° 110° 1	03	2422	12.38
802.11n(40)	13.5	06	2437	12.44
	(B) Allegation of	09	2452	12.77

Bluetooth_ V4.0-BR/EDR

Modulation	Channel	Frequency(MHz)	Avg. Burst Power (dBm)
inpliance Thomas Co	0	2402	4.037
GFSK	39	2441	4.100
	78	2480	4.357
	0	2402	3.559
π /4-DQPSK	39	2441	3.606
	78	2480	3.877
EG AT	0	2402	3.035
8-DPSK	39	2441	3.034
	78	2480	3.302

Bluetooth_ V4.0-BLE

Modulation	Channel	F	Frequency(MHz)	Peak Power (dBm)		
0 %	0	IIII:	2402	3.612		
GFSK	19	Compliance	2440	3.179		
	39		2480	3.474		

Page 39 of 95

13. TEST RESULTS

13.1. SAR Test Results Summary

13.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2013, Body-worn SAR was performed with the device 10mm from the phantom, and 4 Edges SAR was performed with the device 10mm from the phantom.

13.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is ≥0.8W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- 4. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- 5. Per KDB 248227 D01v02r02,for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/kg.
- Per KDB 941225 D06 V02r01, When the same wireless mode transmission configurations for voice and data are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations.
- Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:
 Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]
- 8. Proximity sensor, just for avoiding the wrong operation in the phone screen when call, and has no influence on output power or SAR resu

GPRS-3 slot

Report No.: AGC03175180601FH01

Page 40 of 95

12.1.3. Test Result

12.1.5. 165(1	Court						T. Alexandrian	The Mance	
SAR MEASUR	REMENT								
Depth of Liquid	d (cm):>15			Relative	Humidity	(%): 51.2			
Product: MOBI	LE PHONE								
Test Mode: GS	SM850 with GMS	SK mod	ulation						
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card	The Compliance		Allestation		Altestation .	-C Alles			
Left Cheek	voice	128	824.2	-0.02	0.750	31.65	31.62	0.755	1.6
Left Cheek	voice	190	836.6	0.03	0.800	31.65	31.56	0.817	1.6
Left Cheek	voice	251	848.8	-0.05	0.784	31.65	31.63	0.788	1.6
Left Tilt	voice	190	836.6	0.04	0.762	31.65	31.56	0.778	1.6
Right Cheek	voice	128	824.2	0.01	0.896	31.65	31.62	0.902	1.6
Right Cheek	voice	190	836.6	-0.00	0.886	31.65	31.56	0.905	1.6
Right Cheek	voice	251	848.8	0.02	0.907	31.65	31.63	0.911	1.6
Right Tilt	voice	190	836.6	-0.05	0.655	31.65	31.56	0.669	1.6
Body back	voice	190	836.6	0.03	0.341	31.65	31.56	0.348	1.6
Body front	voice	190	836.6	-0.04	0.361	31.65	31.56	0.369	1.6
(B) Allestation	10,2						THE THE	8	Th Compliant
Body back	GPRS-3 slot	190	836.6	-0.03	0.590	27.30	27.22	0.601	1.6
Body front	GPRS-3 slot	190	836.6	0.02	0.609	27.30	27.22	0.620	1.6
Edge 1 (Top)	GPRS-3 slot	190	836.6	-0.05	0.275	27.30	27.22	0.280	1.6

Note:

Edge 4(Left)

• When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

0.433

27.30

27.22

0.441

-0.04

•The test separation for body back, body front and 4 Edges is 10mm of all above table.

836.6

190

•Measurements for SIM Card 2 are not conducted since SIM Card 1 show the highest output power

Page 41 of 95

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 50.6

Product: MOBILE PHONE

Test Mode: PCS1900 with GMSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card	THE THE		R. F. Of Gir	palo	L Glopal Co.	® ##	on of Globs	Alle	6
Left Cheek	voice	661	1880.0	0.03	0.484	28.70	28.67	0.487	1.6
Left Tilt	voice	661	1880.0	-0.05	0.586	28.70	28.67	0.590	1.6
Right Cheek	voice	512	1850.2	0.04	0.978	28.70	28.55	1.012	1.6
Right Cheek	voice	661	1880.0	-0.00	0.915	28.70	28.67	0.921	1.6
Right Cheek	voice	810	1909.8	0.02	1.009	28.70	28.39	1.084	1.6
Right Tilt	voice	512	1850.2	-0.01	1.098	28.70	28.55	1.137	1.6
Right Tilt	voice	661	1880.0	0.03	1.088	28.70	28.67	1.096	1.6
Right Tilt	voice	810	1909.8	-0.02	1.138	28.70	28.39	1.222	1.6
Body back	voice	661	1880.0	-0.05	0.378	28.70	28.67	0.381	1.6
Body front	voice	661	1880.0	0.00	0.402	28.70	28.67	0.405	1.6
Tel Compliance	Ellopal Comp.	Altestation	-C	Attesti	1/6				-711/1
Body back	GPRS-4 slot	661	1880.0	0.02	0.663	22.85	22.85	0.663	1.6
Body front	GPRS-4 slot	661	1880.0	0.04	0.725	22.85	22.85	0.725	1.6
Edge 1 (Top)	GPRS-4 slot	661	1880.0	0.05	0.675	22.85	22.85	0.675	1.6
Edge 4(Left)	GPRS-4 slot	661	1880.0	0.01	0.381	22.85	22.85	0.381	1.6

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
- •The test separation for body back, body front and 4 Edges is 10mm of all above table.
- •Measurements for SIM Card 2 are not conducted since SIM Card 1 show the highest output power

Page 42 of 95

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 50.6

Product: MOBILE PHONE

Test Mode: WCDMA Band II with QPSK modulation

. cot mode											
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)		
Left Cheek	RMC 12.2kbps	9400	1880	0.03	0.619	21.55	21.48	0.629	1.6		
Left Tilt	RMC 12.2kbps	9400	1880	-0.05	0.744	21.55	21.48	0.756	1.6		
Right Cheek	RMC 12.2kbps	9262	1852.4	0.04	1.182	21.55	21.21	1.278	1.6		
Right Cheek	RMC 12.2kbps	9400	1880	-0.01	1.154	21.55	21.48	1.173	1.6		
Right Cheek	RMC 12.2kbps	9538	1907.6	-0.05	1.026	21.55	21.51	1.035	1.6		
Right Tilt	RMC 12.2kbps	9262	1852.4	0.02	1.260	21.55	21.21	1.363	1.6		
Right Tilt	RMC 12.2kbps	9400	1880	-0.03	1.232	21.55	21.48	1.252	1.6		
Right Tilt	RMC 12.2kbps	9538	1907.6	-0.01	1.040	21.55	21.51	1.050	1.6		
Body back	RMC 12.2kbps	9400	1880	0.00	0.669	21.55	21.48	0.680	1.6		
Body front	RMC 12.2kbps	9400	1880	-0.02	0.693	21.55	21.48	0.704	1.6		
Edge 1 (Top)	RMC 12.2kbps	9400	1880	-0.05	0.762	21.55	21.48	0.774	1.6		
Edge 4(Left)	RMC 12.2kbps	9400	1880	0.04	0.343	21.55	21.48	0.349	1.6		
A A A				•			72		KIN' COT		

Note

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
- •The test separation for body back, body front and 4 Edges is 10mm of all above table.

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 51.2

Product: MOBILE PHONE

Test Mode: WCDMA Band V with QPSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	RMC 12.2kbps	4183	836.6	-0.02	0.614	21.75	21.69	0.623	1.6
Left Tilt	RMC 12.2kbps	4183	836.6	-0.05	0.598	21.75	21.69	0.606	1.6
Right Cheek	RMC 12.2kbps	4183	836.6	0.04	0.643	21.75	21.69	0.652	1.6
Right Tilt	RMC 12.2kbps	4183	836.6	-0.01	0.533	21.75	21.69	0.540	1.6
Body back	RMC 12.2kbps	4183	836.6	0.03	0.342	21.75	21.69	0.347	1.6
Body front	RMC 12.2kbps	4183	836.6	0.00	0.321	21.75	21.69	0.325	1.6
Edge 1 (Top)	RMC 12.2kbps	4183	836.6	-0.05	0.143	21.75	21.69	0.145	1.6
Edge 4(Left)	RMC 12.2kbps	4183	836.6	0.04	0.251	21.75	21.69	0.254	1.6
(17) ASIGN 100							413	2///10	

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
- •The test separation for body back, body front and 4 Edges is 10mm of all above table

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 43 of 95

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 51.2

Product: MOBILE PHONE

Test Mode:802.11b

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	DTS	11	2462	0.02	0.656	15.00	14.98	0.659	1.6
Left Tilt	DTS	11	2462	-0.05	0.371	15.00	14.98	0.373	1.6
Right Cheek	DTS	11	2462	0.03	0.115	15.00	14.98	0.116	1.6
Right Tilt	DTS	11	2462	-0.04	0.164	15.00	14.98	0.165	1.6
Body back	DTS	11	2462	0.00	0.422	15.00	14.98	0.424	1.6
Body front	DTS	11	2462	-0.02	0.141	15.00	14.98	0.142	1.6
Edge 1 (Top)	DTS	11	2462	-0.05	0.112	15.00	14.98	0.113	1.6
Edge 2(Right)	DTS	11	2462	0.01	0.298	15.00	14.98	0.299	1.6

Note:

- -According to KDB 248227 D01v02r02,for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/kg.
- · All of above "DTS" means data transmitters.
- •The test separation for body back, body front and 4 Edges is 10mm of all above table.

Repeated SA	R									
Product: MOB	ILE PHONE									
Test Mode:GSM850&PCS1900 with GFSK modulation & WCDMA Band II with QPSK modulation										
Position Mode Ch. $Fr. \ (MHz)$ Power Drift $(<\pm5\%)$ Ch. $Fr. \ (MHz)$ Power $(<\pm5\%)$ Power Drift $(<\pm5\%)$ Power $(<\pm5\%)$ Twice $(<\pm5\%)$ Power Drift $(<\pm5\%)$ Power $(<\pm5\%)$ Third SAR $(<\pm5\%)$ (1g)										
Right Cheek	voice	251	848.8	0.26	0.899	-	-	-	-	1.6
Right Tilt	voice	810	1909.8	0.02	1.074		-	<u> </u>	- FA	1.6
Right Tilt	RMC12.2kbps	9262	1852.4	0.01	1.143	Dilance -	The com	liance -	® # - Jailon of Gri	1.6

Page 44 of 95

Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

NO	Simultaneous etete		Portable Handset					
NO	Simultaneous state	Head	Body-worn	Hotspot				
Topal Topilo	GSM(voice)+WLAN 2.4GHz (data)	Yes	Yes	-				
2	GSM(voice)+Bluetooth(data)		Yes	Wil pliance				
3	GSM (Data) + WLAN 2.4GHz (data)	- 100	Yes	Yes				
4	GSM (Data) + Bluetooth(data)	- 4	Yes	Yes				
5	WCDMA+WLAN 2.4GHz (data)	Yes	Yes	Yes				
6	WCDMA+Bluetooth(data)	(3)-	Yes	Yes				

NOTE:

- 1. WIFI and BT share the same antenna, and cannot transmit simultaneously.
- 2. Simultaneous with every transmitter must be the same test position.
- 3. KDB 447498 D01, BT SAR is excluded as below table.
- 4. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR and 5mm for body-worn SAR.
- 5. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow:
 - For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:
 - [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR³⁰, where
 - f(GHz) is the RF channel transmit frequency in GHz
 - Power and distance are rounded to the nearest mW and mm before calculation³
 - The result is rounded to one decimal place for comparison
 - The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 6. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 7. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

GCS

Page 45 of 95

8. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion

Estimated SAR		Max Power incl		Separation Distance (mm)	Estimated SAR (W/kg)
		dBm	mW	Distance (min)	(VV/Kg)
O A A A A A A A A A A A A A A A A A A A	Head	5	3.162	0	0.133
BT	Body	5	3.162	10	0.066

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 46 of 95

Sum of the SAR for GSM 850 &Wi-Fi & BT:

DE Evpocuro	Test	Simultaned	ous Transmissio	Σ1-g SAR	SPLSR	
RF Exposure Conditions	Position	GSM 850 WI-Fi Bluetooth		(W/Kg)	(Yes/No)	
A Dal Complia	Left Touch	0.817	0.659		1.476	No
Head	Left Tilt	0.778	0.373		1.151	No
(voice)	Right Touch	0.911	0.116		1.027	No
	Right Tilt	0.669	0.165		0.834	No
TV Compliance	Rear	0.348	0.424		0.772	No
Body-worn		0.348		0.066	0.414	No
(voice)	Front	0.369	0.142		0.511	No
		0.369		0.066	0.435	No
	No.	0.601		0.066	0.667	No
Body-worn	Rear	0.601	0.424		1.025	No
(Data)	Front	0.620		0.066	0.686	- No
	Front	0.620	0.142		0.762	No
Body-worn	Edge 1	0.280	0.113		0.393	No
(Hotspot)	Edge 1	0.280		0.066	0.346	No

Note:

According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

⁻SPLSR mean is "The SAR to Peak Location Separation Ratio

Page 47 of 95

Sum of the SAR for PCS 1900 &Wi-Fi & BT:

DE Evnacura	Test	Simultaneo	ous Transmissio	Σ1-g SAR	SDI SD	
RF Exposure Conditions	Position	PCS 1900 WI-Fi DTS Band Bluetooth		(W/Kg)	SPLSR (Yes/No)	
bal Compile	Left Touch	0.487	0.659		1.146	No
Head	Left Tilt	0.590	0.373		0.963	No
(voice)	Right Touch	1.084	0.116		1.200	No
	Right Tilt	1.222	0.165		1.387	No
Body-worn (voice)	DE KEL Inco	0.381	0.424		0.805	No
	Rear	0.381		0.066	0.447	No
	Front	0.405	0.142		0.547	No
		0.405		0.066	0.471	No
	TO THE STATE OF TH	0.663		0.066	0.729	No
Body-worn	Rear	0.663	0.424		1.087	No
(Data)	Front	0.725		0.066	0.791	- No
	Front	0.725	0.142		0.867	No
Body-worn	Edge 1	0.675	0.113		0.788	No
(Hotspot)	Edge 1	0.675		0.066	0.741	No

Note:

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

⁻SPLSR mean is "The SAR to Peak Location Separation Ratio"

Page 48 of 95

Sum of the SAR for WCDMA Band II&Wi-Fi & BT:

RF Exposure Conditions	Test	Simultaneo	ous Transmissio	Σ1-g SAR	SPLSR	
	Position	WCDMA Band II	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
bal Compile	Left Touch	0.629	0.659		1.288	No
@ A station of Gif	Left Tilt	0.756	0.373		1.129	No
Head	Right Touch	1.278	0.116		1.394	No
	Right Tilt	1.363	0.165		1.528	No
The Compliance	Rear	0.680	0.424		1.104	No
	Front	0.704	0.142		0.846	No
Da alvernance	Edge 1	0.774	0.113		0.887	No 🌏
Body-worn	Rear	0.680		0.066	0.746	No
	Front	0.704		0.066	0.770	No
	Edge 1	0.774	of	0.066	0.840	No

Note:

·SPLSR mean is "The SAR to Peak Location Separation Ratio "

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

Page 49 of 95

Sum of the SAR for WCDMA Band V &Wi-Fi & BT:

RF Exposure Conditions	Test	Simultaneo	ous Transmissio	Σ1-g SAR	SPLSR	
	Position	WCDMA Band V	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
K al comple	Left Touch	0.623	0.659		1.282	No
® Figure of GI	Left Tilt	0.606	0.373		0.979	No
Head	Right Touch	0.652	0.116		0.768	No
	Right Tilt	0.540	0.165		0.705	No
TK Compliance	Rear	0.347	0.424		0.771	No
	Front	0.325	0.142		0.467	No
Do du vers	Edge 1	0.145	0.113		0.258	No
Body-worn	Rear	0.347		0.066	0.413	No
	Front	0.325		0.066	0.391	No
	Edge 1	0.145	·	0.066	0.211	No

Note:

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

[·]SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 50 of 95

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: July. 05, 2018

System Check Head 835 MHz

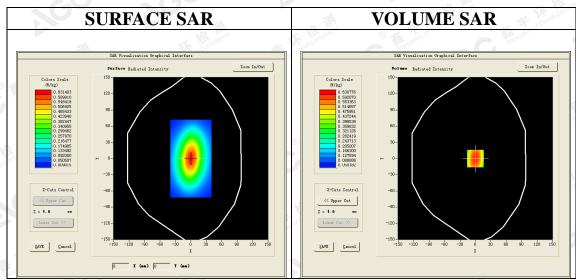
DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.74 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.90$ mho/m; $\epsilon r = 42.17$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$):22.1, Liquid temperature ($^{\circ}$): 21.2

SATIMO Configuration


Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

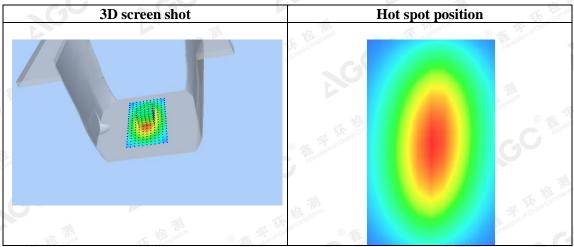
· Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=0.00, Y=1.00 SAR Peak: 0.90 W/kg

SAR 10g (W/Kg)	0.390534
SAR 1g (W/Kg)	0.611795

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC

Page 51 of 95

Date: July. 05, 2018

Page 52 of 95

Test Laboratory: AGC Lab System Check Body 835 MHz

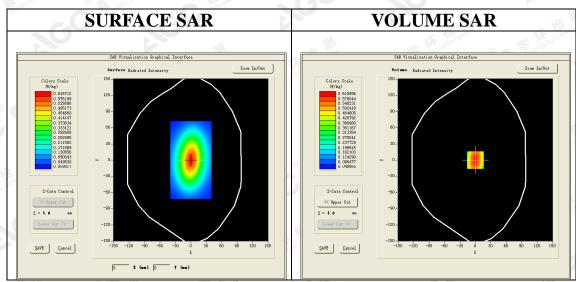
DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.81 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 55.13$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.1, Liquid temperature (°C): 21.5

SATIMO Configuration


Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

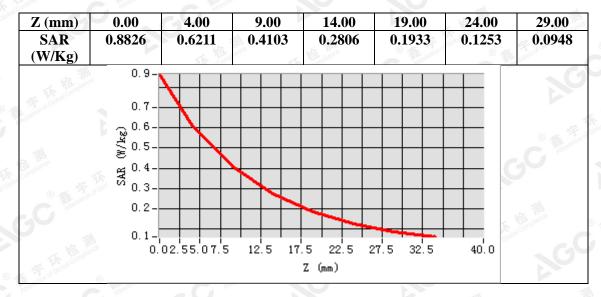
· Phantom: SAM twin phantom

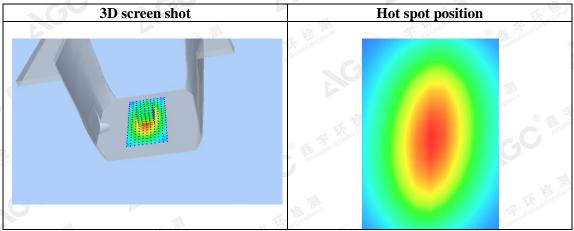
Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=0.00, Y=0.00 SAR Peak: 0.88 W/kg

SAR 10g (W/Kg)	0.375186			
SAR 1g (W/Kg)	0.585742			


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC 8

Page 53 of 95

Date: July. 04, 2018

Page 54 of 95

Test Laboratory: AGC Lab System Check Head 1900MHz

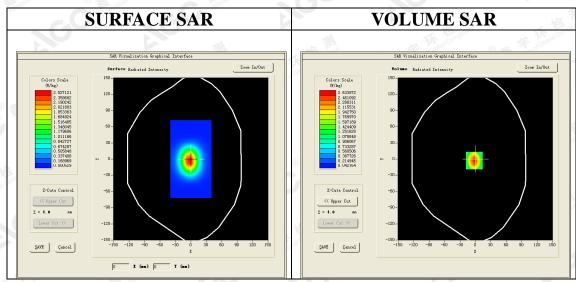
DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=2.32 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.40$ mho/m; $\epsilon r = 39.44$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.3, Liquid temperature (°C): 21.6

SATIMO Configuration:

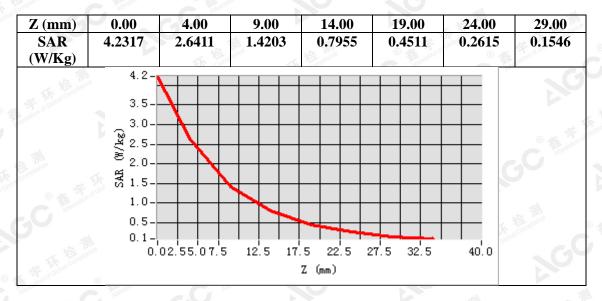

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

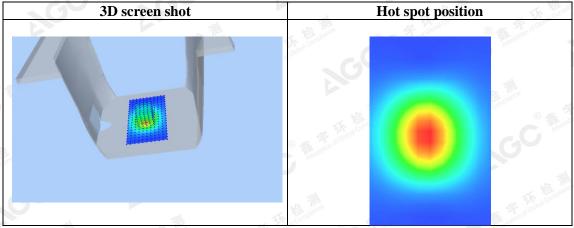
Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1900MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Head/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Maximum location: X=-2.00, Y=-3.00 SAR Peak: 4.21 W/kg


SAR 10g (W/Kg)	1.291532
SAR 1g (W/Kg)	2.498754

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 55 of 95

Date: July. 04, 2018

Page 56 of 95

Test Laboratory: AGC Lab System Check Body 1900MHz

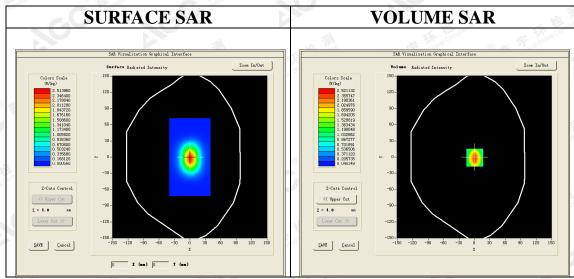
DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=2.39 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ mho/m; $\epsilon r = 53.73$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.3, Liquid temperature (°C): 21.9

SATIMO Configuration:

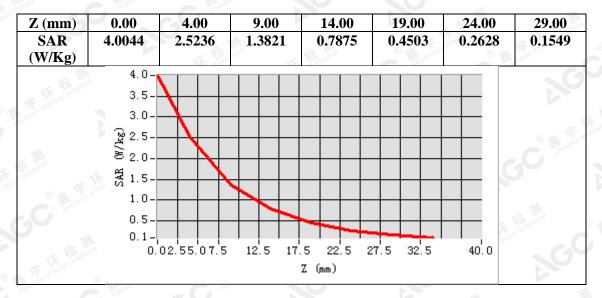

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

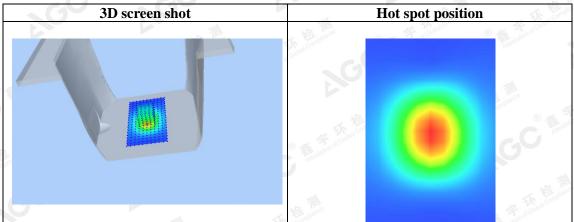
Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1900MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm


Maximum location: X=1.00, Y=-1.00 SAR Peak: 4.00 W/kg


51241 00021	1000 , 10118
SAR 10g (W/Kg)	1.240135
SAR 1g (W/Kg)	2.385771

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 57 of 95

Date: June. 29, 2018

Page 58 of 95

Test Laboratory: AGC Lab System Check Head 2450 MHz

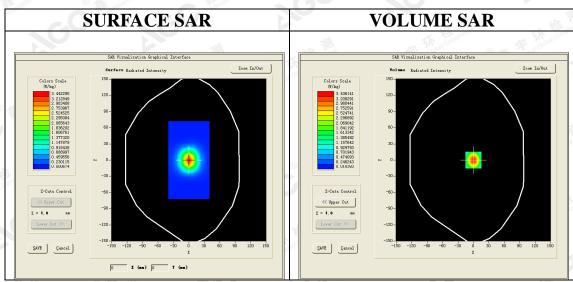
DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=2.52 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.77$ mho/m; $\epsilon r = 39.26$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):21.9, Liquid temperature ($^{\circ}$ C): 21.3

SATIMO Configuration


· Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

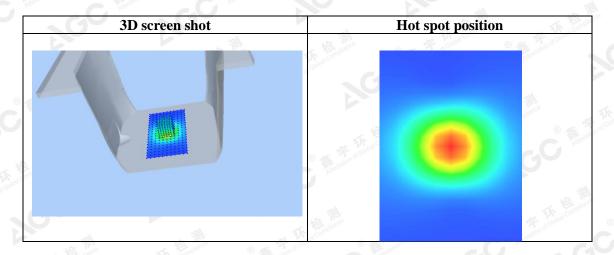
Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 2450MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Head/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Maximum location: X=1.00, Y=1.00 SAR Peak: 5.95 W/kg


SAR 10g (W/Kg)	1.499452			
SAR 1g (W/Kg)	3.231578			

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Report No.: AGC03175180601FH01 Page 59 of 95

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	5.9844	3.4402	1.6056	0.7711	0.3726	0.1833	0.0912
(W/Kg)		玉	ance	Managara	Attestation C	® %	station of d
100	5.98	\					
II I Global Compile.	5.00	\perp					
lestation of		1					
	4.00·	$\overline{}$	+++				
TIII)	्रिथ् १.00 € 3.00	\square					
Compliance	2 FG	$ \cdot \cdot \setminus$					
0 m 4	🦄 దే 2.00.			+++	+ + + + +		
Allestatio	1.00-						
6				 		Se Se	
- F	0.04	-	12.5 1	7.5 22.5 :	27.5 32.5	40.0	
TK Med Compli	an ·	02.33.01.3	12.5 1	7.5 ZZ.J . Z (mm)	21.3 32.3	40.0	
The Honor Glove				4 (MM)			

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document to confirmed at attp://www.agc.gett.com.

Date: June. 29, 2018

Page 60 of 95

Test Laboratory: AGC Lab System Check Body 2450 MHz

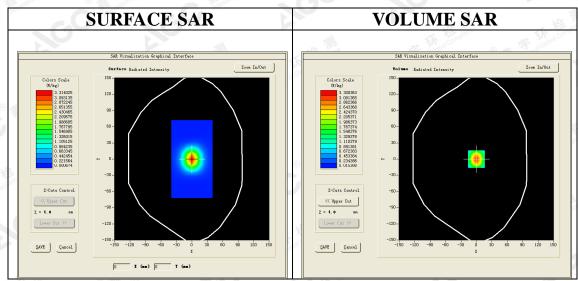
DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=2.58 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.92$ mho/m; $\epsilon r = 53.59$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):21.9, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration

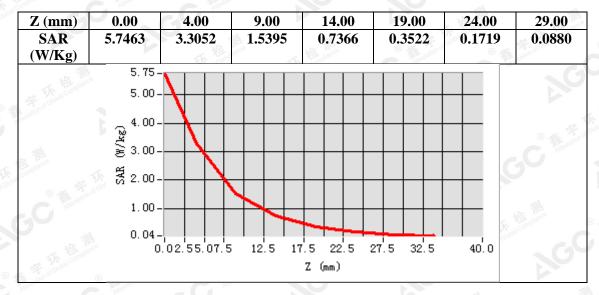

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

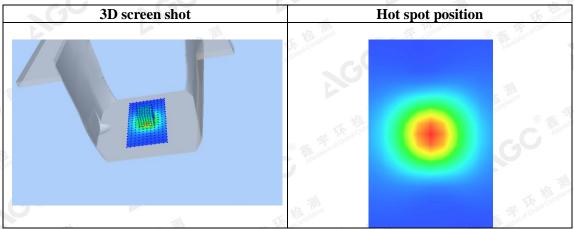
Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 2450MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Body/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm


Maximum location: X=0.00, Y=0.00 SAR Peak: 5.70 W/kg


SAR 10g (W/Kg)	1.435126				
SAR 1g (W/Kg)	3.117495				

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 61 of 95

Page 62 of 95

APPENDIX B. SAR MEASUREMENT DATA

Date: July. 05, 2018 Test Laboratory: AGC Lab

GSM 850 High- Touch-Right <SIM 1> **DUT: MOBILE PHONE;** Type: M531

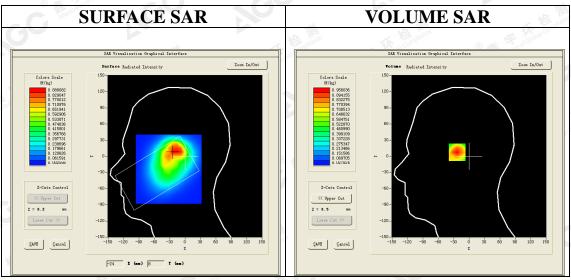
Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=1.74 Frequency: 848.8 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\epsilon r = 40.89$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 22.1, Liquid temperature ($^{\circ}$ C): 21.2

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

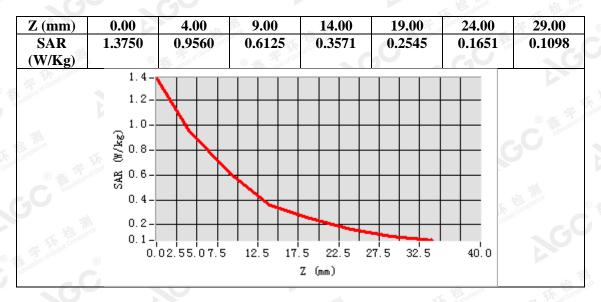
Measurement SW: OpenSAR V4_02_32

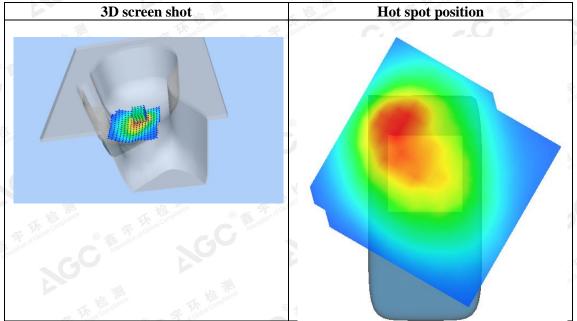
Configuration/GSM 850 High-Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GSM 850 High-Touch-Right/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt				
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete				
Phantom	Right head				
Device Position	Cheek				
Band	GSM 850				
Channels	High				
Signal	TDMA (Crest factor: 8.0)				

Maximum location: X=-21.00, Y=9.00

SAR Peak: 1.42 W/kg


SAR 10g (W/Kg)	0.550391			
SAR 1g (W/Kg)	0.907365			


The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 €, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

GC

Date: July. 05, 2018

Page 64 of 95

Test Laboratory: AGC Lab GPRS 850 Mid- Body- Front (3up) DUT: MOBILE PHONE; Type: M531

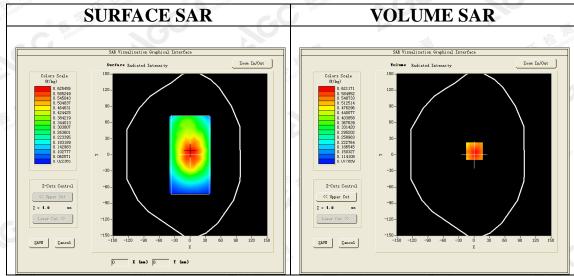
Communication System: GPRS-3 Slot; Communication System Band: GSM 850; Duty Cycle: 1:2.7; Conv.F=1.81; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.69$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.5

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

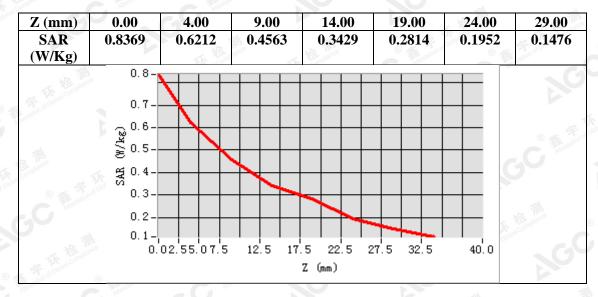

Sensor-Surface: 4mm (Mechanical Surface Detection)

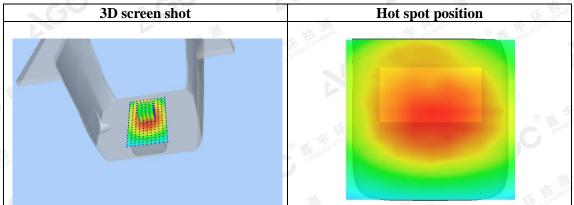
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GPRS 850 Mid-Body-Front/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS 850 Mid-Body-Front/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt				
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete				
Phantom	Validation plane				
Device Position Body Front					
Band GSM 850					
Channels	Middle				
Signal	TDMA (Crest factor: 2.7)				


Maximum location: X=1.00, Y=7.00 SAR Peak: 0.84 W/kg


SAR 10g (W/Kg)	0.431161			
SAR 1g (W/Kg)	0.609261			

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 65 of 95

Page 66 of 95

Test Laboratory: AGC Lab Date: July. 04, 2018

PCS 1900 High-Tilt-Right <SIM 1> DUT: MOBILE PHONE; Type: M531

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=2.32; Frequency: 1909.8 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.44 \text{ mho/m}$; $\epsilon = 38.75$; $\rho = 1000 \text{ kg/m}^3$;

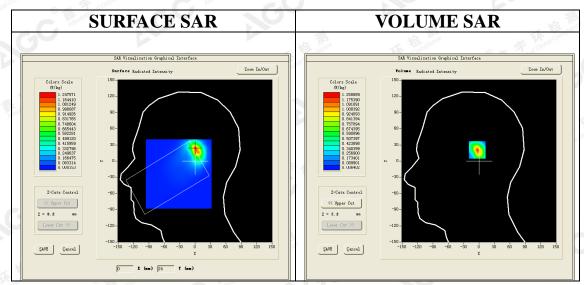
Phantom section: Right Section

Ambient temperature (°C): 22.3, Liquid temperature (°C): 21.6

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

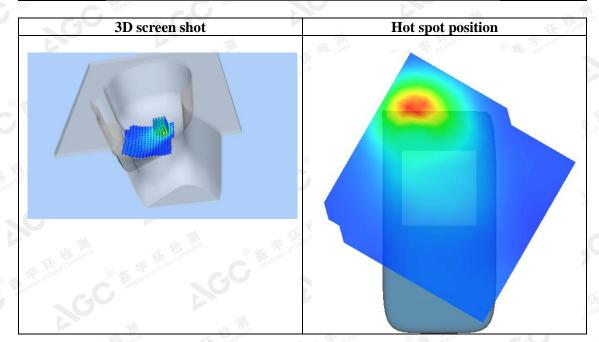
Configuration/PCS1900 High-Tilt-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/PCS1900 High-Tilt-Right/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt				
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete				
Phantom	Right head				
Device Position	Tilt				
Band	PCS 1900				
Channels	High @ # # # # # # # # # # # # # # # # # #				
Signal	TDMA (Crest factor: 8.0)				

Maximum location: X=1.00, Y=22.00

SAR Peak: 2.17 W/kg


SAR 10g (W/Kg)	0.494894
SAR 1g (W/Kg)	1.138332

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC03175180601FH01 Page 67 of 95

Soli.,		Allee					din:
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	2.1212	1.2589	0.6181	0.2964	0.1482	0.0763	0.0402
按测	2.12-	\					\ C
	1.75-	\rightarrow					
	1.50-	\rightarrow	+++	\square			
	1.25- ≥ 1.00	+					
	1.00-	$+\lambda$					
	∮ 8 0.75-	$++\lambda$					
	0.50-	- '					
	0.25-		 				
	0.02-			ļ _ _ 	╼┿╼┷┷┼╸╵	G _{lop} ,	
	0	.02.55.07.5	12.5 17	7.5 22.5 : Z (mm)	27.5 32.5	40.0	

Page 68 of 95

Test Laboratory: AGC Lab

GPRS 1900 Mid-Body-Front (4up)

DUT: MOBILE PHONE; Type: M531

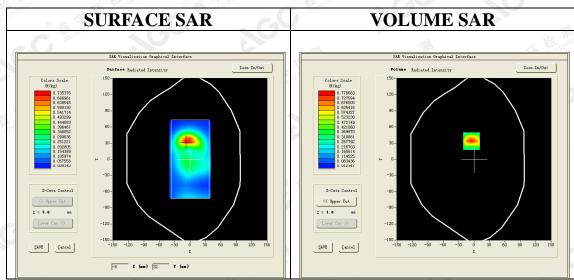
Communication System: GPRS-4Slot; Communication System Band: PCS 1900; Duty Cycle: 1:2.1; Conv.F=2.39 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon = 54.07$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 22.3, Liquid temperature (°C): 21.9

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

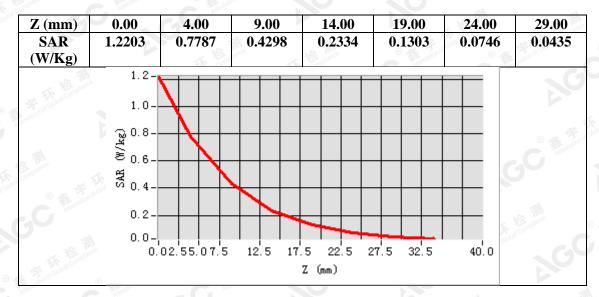

Sensor-Surface: 4mm (Mechanical Surface Detection)

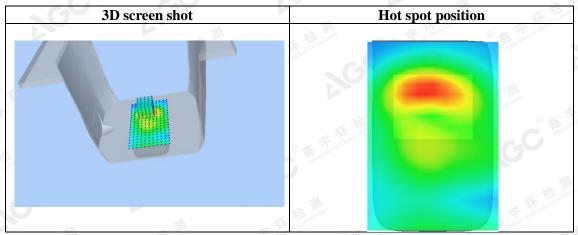
· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_32

Configuration/GPRS1900 Mid-Body-Front/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS1900 Mid-Body-Front/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt				
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete				
Phantom	Validation plane				
Device Position	Body Front				
Band	PCS 1900				
Channels	Middle @				
Signal	TDMA (Crest factor: 2.0)				


Maximum location: X=-5.00, Y=34.00 SAR Peak: 1.22 W/kg


SAR 10g (W/Kg)	0.374006			
SAR 1g (W/Kg)	0.724967			

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 69 of 95

Date: July. 04, 2018

Page 70 of 95

Test Laboratory: AGC Lab

WCDMA Band II Low-Tilt-Right <RMC>DUT: MOBILE PHONE; Type: M531

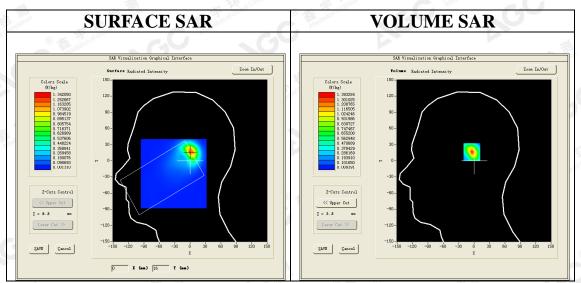
Communication System: UMTS; Communication System Band: Band II UTRA/FDD; Duty Cycle:1:1; Conv.F=2.32; Frequency: 1852.4 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$; $\epsilon = 40.35$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature (°C): 22.3, Liquid temperature (°C): 21.6

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


Sensor-Surface: 4mm (Mechanical Surface Detection)

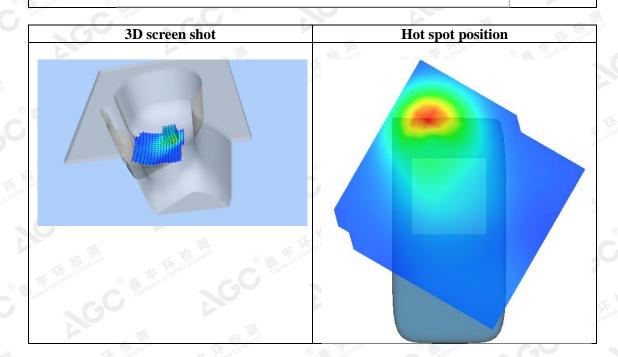
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/WCDMA Band II Low-Tilt-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/WCDMA Band II Low-Tilt-Right/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt				
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete				
Phantom	Right head				
Device Position	Tilt C				
Band	WCDMA band II				
Channels	Low				
Signal	CDMA (Crest factor: 1.0)				

Maximum location: X=1.00, Y=17.00 SAR Peak: 2.37 W/kg


SAR 10g (W/Kg)	0.559433			
SAR 1g (W/Kg)	1.260295			

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago. gent.com.

Report No.: AGC03175180601FH01 Page 71 of 95

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	2.4003	1.3933	0.6680	0.3499	0.1801	0.0943	0.0495
The Table	2.4-						1 C
atation of Global Consu	2.0-	$\overline{}$					
	्रिश्च श्च√#)	$\overline{}$					
Fills and the second	€ ¥ 1.0-						
© # 1410	್ಲಿ 0.5-		$\downarrow \mid \mid \mid$				
CO PATO						56	
1 极了	0.0- 0		12.5 17	.5 22.5 2	27.5 32.5	40.0	
The Stopal Country				Z (mm)			

Date: July. 04, 2018

Page 72 of 95

Test Laboratory: AGC Lab

WCDMA Band II Mid-Edge 1(RMC) DUT: MOBILE PHONE; Type: M531

Communication System: UMTS; Communication System Band: Band II UTRA/FDD ;Duty Cycle:1:1; Conv.F=2.39 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon = 54.07$; $\rho = 1000 \text{ kg/m}^3$;

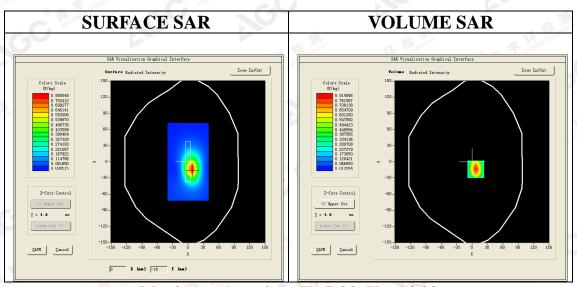
Phantom section: Flat Section

Ambient temperature (°C): 22.3, Liquid temperature (°C): 21.9

SATIMO Configuration:

· Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

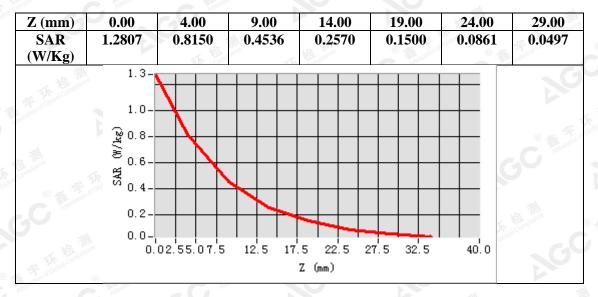
Measurement SW: OpenSAR V4_02_32

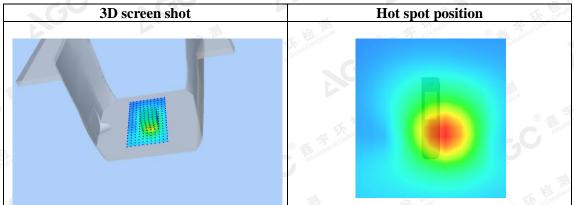
Configuration/ WCDMA band II Mid-Edge 1/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/ WCDMA band II Mid-Edge 1/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete			
Phantom	Validation plane			
Device Position	Edge 1			
Band	WCDMA band II			
Channels	Middle			
Signal	CDMA (Crest factor: 1.0)			

Maximum location: X=7.00, Y=-14.00


SAR Peak: 1.27 W/kg


SAR 10g (W/Kg)	0.391159
SAR 1g (W/Kg)	0.761872

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 73 of 95

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc.gett.com.

Page 74 of 95

Test Laboratory: AGC Lab Date: July. 05, 2018

WCDMA Band V Mid-Touch-Right (RMC) DUT: MOBILE PHONE; Type: M531

Communication System: UMTS; Communication System Band: BAND V UTRA/FDD; Duty Cycle:1: 1; Conv.F=1.74;

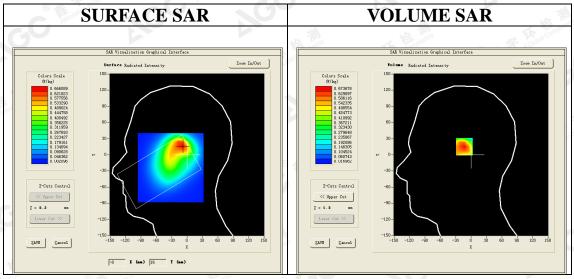
Frequency: 836.6 MHz; Medium parameters used: f = 835MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 41.77$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 22.1, Liquid temperature ($^{\circ}$ C): 21.2

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


Sensor-Surface: 4mm (Mechanical Surface Detection)

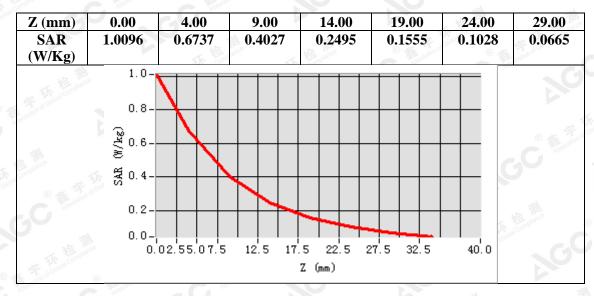
· Phantom: SAM twin phantom

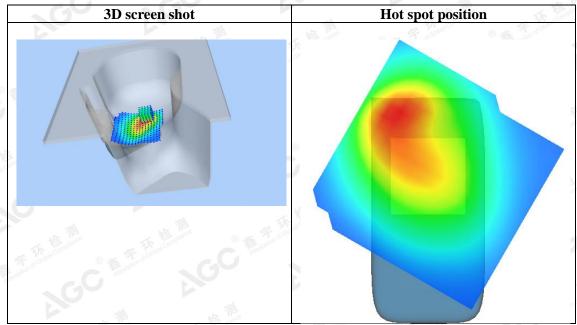
Measurement SW: OpenSAR V4_02_32

Configuration/ WCDMA Band V Mid-Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA Band V Mid-Touch-Right/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete	
Phantom	Right head	
Device Position	Cheek	
Band WCDMA Band V		
Channels	Middle	
Signal	CDMA (Crest factor: 1.0)	

Maximum location: X=-10.00, Y=17.00 SAR Peak: 1.03 W/kg


SAR 10g (W/Kg)	0.390451
SAR 1g (W/Kg)	0.643368


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

GCS

Page 75 of 95

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 76 of 95

Test Laboratory: AGC Lab Date: July. 05, 2018

WCDMA Band V Mid-Body-Towards Grounds (RMC)

DUT: MOBILE PHONE; Type: M531

 $Communication \ System: \ UMTS; \ Communication \ System \ Band: \ BAND \ V \ UTRA/FDD; \ Duty \ Cycle: 1: 1; \ Conv.F=1.81;$

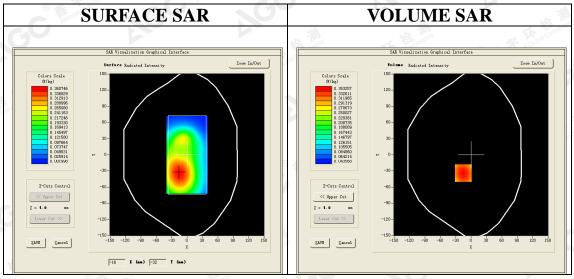
Frequency: 836.6 MHz; Medium parameters used: f = 835MHz; $\sigma=0.96$ mho/m; $\epsilon r = 54.69$; $\rho=1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 22.1, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

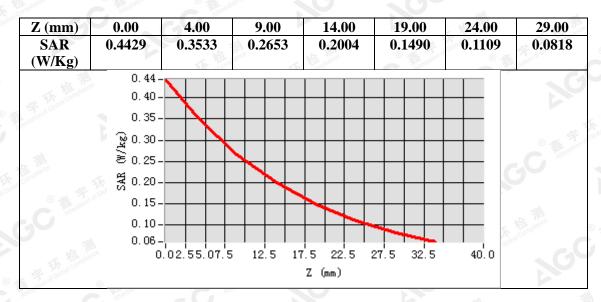
Measurement SW: OpenSAR V4_02_32

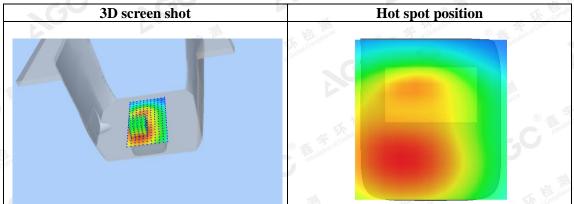
Configuration/ WCDMA Band V Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA Band V Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan sam_direct_droit2_surf8mm.txt			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	WCDMA Band V		
Channels	Middle		
Signal CDMA (Crest factor: 1.0)			

Maximum location: X=-15.00, Y=-34.00 SAR Peak: 0.44 W/kg

SAR 10g (W/Kg)	0.247177
SAR 1g (W/Kg)	0.342294


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GCS

Page 77 of 95

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 78 of 95

WIFI MODE

Test Laboratory: AGC Lab Date: June. 29, 2018

802.11b High-Touch-Left

DUT: MOBILE PHONE; Type: M531

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.52;

Frequency: 2462 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.80$ mho/m; $\epsilon r = 38.75$ $\rho = 1000$ kg/m³;

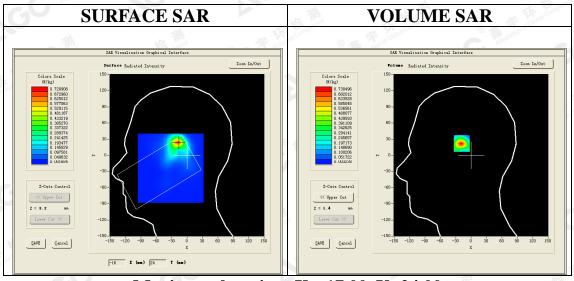
Phantom section: Left Section

Ambient temperature ($^{\circ}$):21.9, Liquid temperature ($^{\circ}$): 21.3

SATIMO Configuration:

· Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/802.11b High- Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm

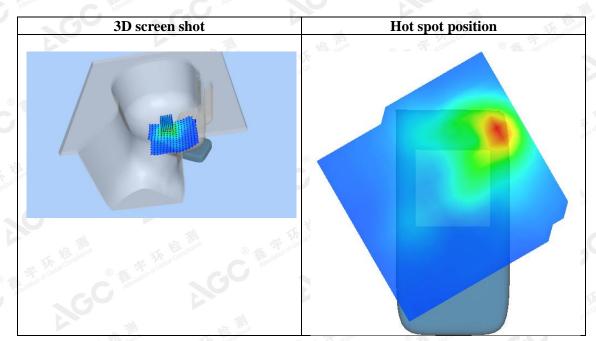
Configuration/802.11b High- Touch-Left/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Area Scan	sam_direct_droit2_surf8mm.txt	
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm	
Phantom	Left head	
Device Position	Cheek	
Band	2450MHz	
Channels	8 High	
Signal	Crest factor: 1.0	
(2)		

Maximum location: X=-17.00, Y=24.00

SAR Peak: 1.31 W/kg

SAR 10g (W/Kg)	0.274911	
SAR 1g (W/Kg)	0.656011	


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

GC

Report No.: AGC03175180601FH01 Page 79 of 95

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	1.3043	0.7305	0.3239	0.1454	0.0668	0.0302	0.0153
TK 12 JUL	1.3-						NG.
	1.0-	\longrightarrow					
	(%) 0.8-	\longrightarrow	\square	\perp	\bot		
	ш. в −в	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$					
	% 0.4-	$\perp \mid \setminus$					
	0.2-						
	0.0-			╼┾╼┼	444	X (300)	
		02.55.07.5			27.5 32.5	40.0	
				Z (mm)			

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document to confirmed at attp://www.agc.gett.com.

Date: June. 29, 2018

Page 80 of 95

Test Laboratory: AGC Lab

802.11b High-Body-Worn- Back (DTS) DUT: MOBILE PHONE; Type: M531

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.58;

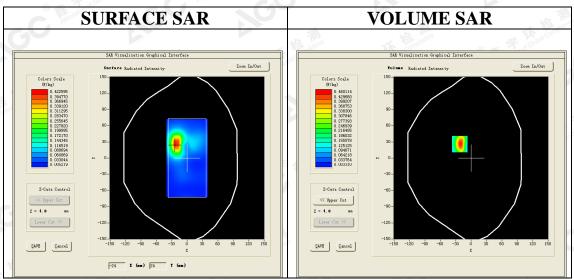
Frequency: 2462 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 52.86$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.5

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

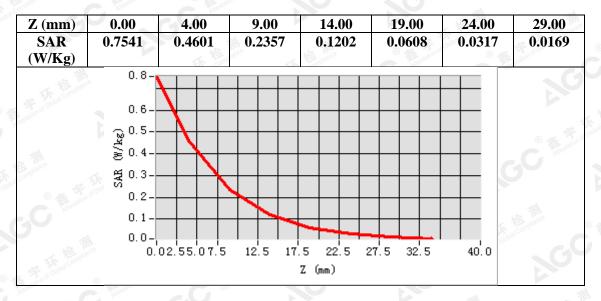
Measurement SW: OpenSAR V4_02_32

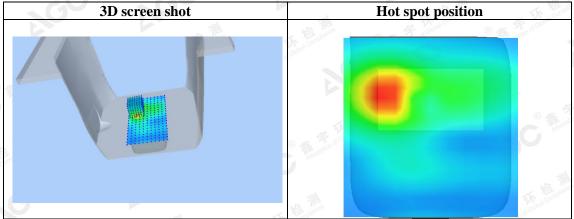
Configuration/802.11b High- Body- Back /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11b High- Body- Back /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Body Back
Band	2450MHz
Channels	Highdle
Signal	Crest factor: 1.0

Maximum location: X=-22.00, Y=26.00

SAR Peak: 0.76 W/kg


SAR 10g (W/Kg)	0.197870
SAR 1g (W/Kg)	0.422124


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a transfer

GC

Page 81 of 95

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 82 of 95

Repeated

Test Laboratory: AGC Lab Date: July. 05, 2018

GSM 850 High-Touch-Right <SIM 1> DUT: MOBILE PHONE; Type: M531

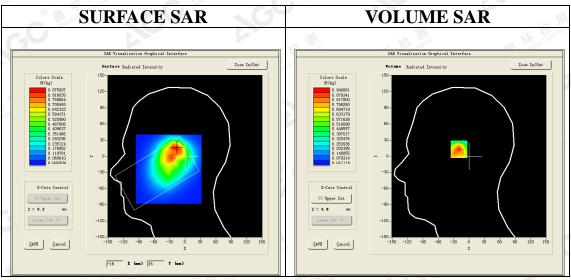
Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=1.74 Frequency: 848.8 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\epsilon r = 40.89$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C): 22.1, Liquid temperature (°C): 21.2

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


Sensor-Surface: 4mm (Mechanical Surface Detection)

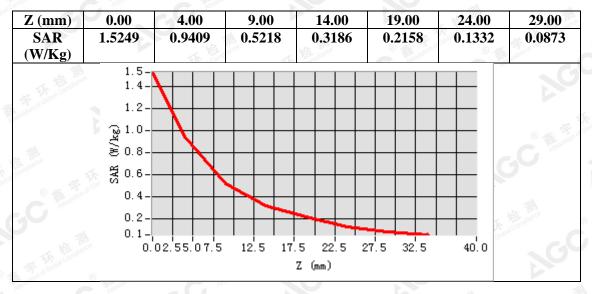
Phantom: SAM twin phantom

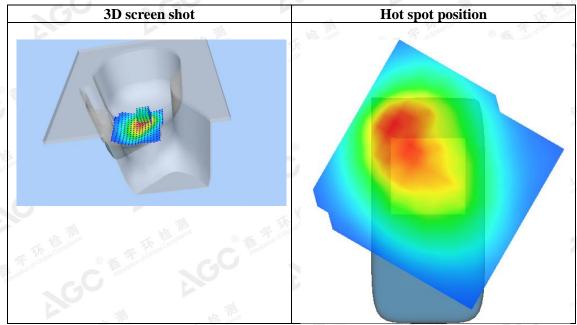
Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 High-Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GSM 850 High-Touch-Right/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Right head
Device Position	Cheek
Band	GSM 850
Channels High	
Signal TDMA (Crest factor: 8.0)	

Maximum location: X=-17.00, Y=15.00 SAR Peak: 1.53 W/kg


SAR 10g (W/Kg)	0.533851
SAR 1g (W/Kg)	0.899152


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

GC

Page 83 of 95

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a titp://www.agc.gatt.com.

Page 84 of 95

Test Laboratory: AGC Lab Date: July. 04, 2018

PCS 1900 High-Tilt-Right <SIM 1> DUT: MOBILE PHONE; Type: M531

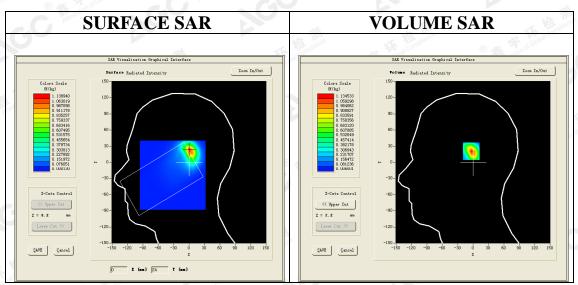
Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=2.32; Frequency: 1909.8 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.44 \text{ mho/m}$; $\epsilon = 38.75$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.6

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


· Sensor-Surface: 4mm (Mechanical Surface Detection)

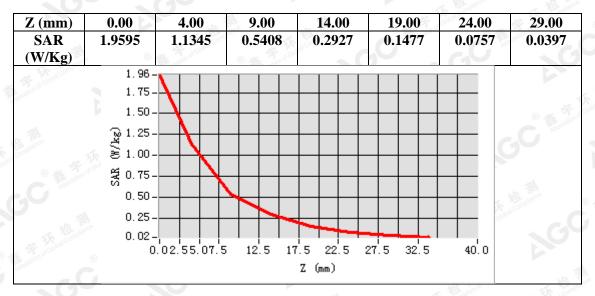
· Phantom: SAM twin phantom

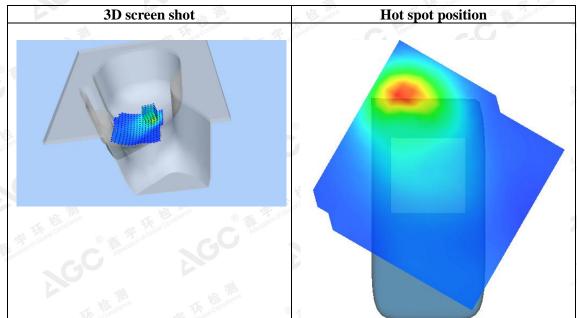
Measurement SW: OpenSAR V4_02_32

Configuration/PCS1900 High-Tilt-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/PCS1900 High-Tilt-Right/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Right head		
Device Position	Tilt is in the second		
Band	PCS 1900		
Channels	High High		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=1.00, Y=22.00 SAR Peak: 2.01 W/kg


21211 000110				
SAR 10g (W/Kg)	0.480507			
SAR 1g (W/Kg)	1.073973			


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

GC

The results spowd this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gent.com.

Date: July. 04, 2018

Page 86 of 95

Test Laboratory: AGC Lab

WCDMA Band II Low-Tilt-Right <RMC> DUT: MOBILE PHONE; Type: M531

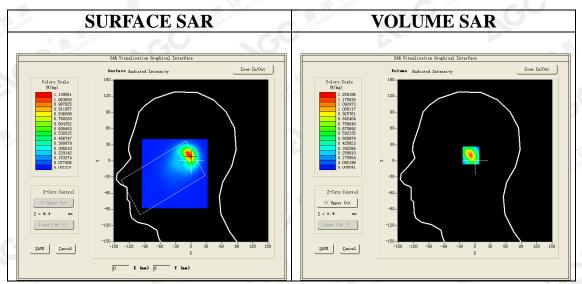
Communication System: UMTS; Communication System Band: Band II UTRA/FDD; Duty Cycle:1:1; Conv.F=2.32; Frequency: 1852.4 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$; $\epsilon = 40.35$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Right Section

Ambient temperature ($^{\circ}$ C): 22.3, Liquid temperature ($^{\circ}$ C): 21.6

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282


Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

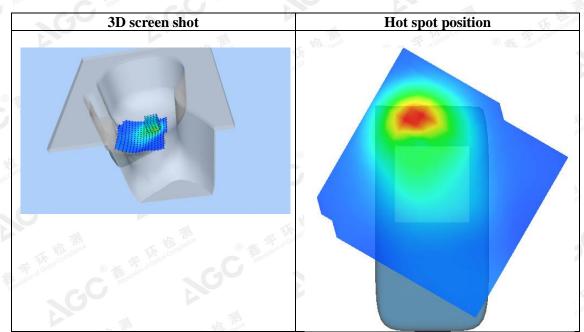
· Measurement SW: OpenSAR V4_02_32

Configuration/WCDMA Band II Low-Tilt-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/WCDMA Band II Low-Tilt-Right/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt					
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete					
Phantom	Right head					
Device Position	Tilt WCDMA band II					
Band						
Channels	Low					
Signal	CDMA (Crest factor: 1.0)					

Maximum location: X=-3.00, Y=10.00 SAR Peak: 2.08 W/kg

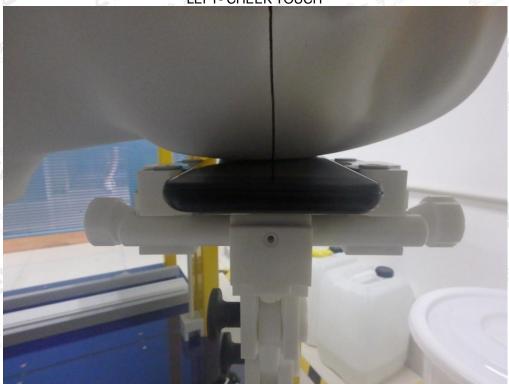
SAR 10g (W/Kg) 0.517090 SAR 1g (W/Kg) 1.142577

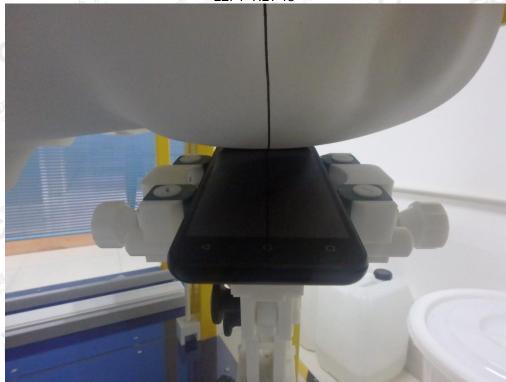

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

Report No.: AGC03175180601FH01 Page 87 of 95

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	2.0779	1.2592	0.6426	0.3362	0.1746	0.0928	0.0495
	2.08-	$\overline{}$					
	1.75 - 1.50 -	\					
	∯ 1.25- ≷ 1.00-	+					
	్ 1.00- • క్రి 0.75-						
	0.50-						
	0.25 - 0.03 -					Sion Si	
	· 0	.02.55.07.5	12.5 17	7.5 22.5 Z (mm)	27.5 32.5	40.0	
The salion of Global	(R)			Z (mm)			


The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.


Page 88 of 95

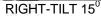
APPENDIX C. TEST SETUP PHOTOGRAPHS

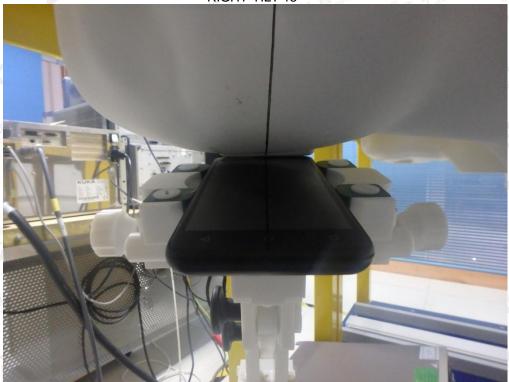
LEFT- CHEEK TOUCH

LEFT-TILT 15⁰

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

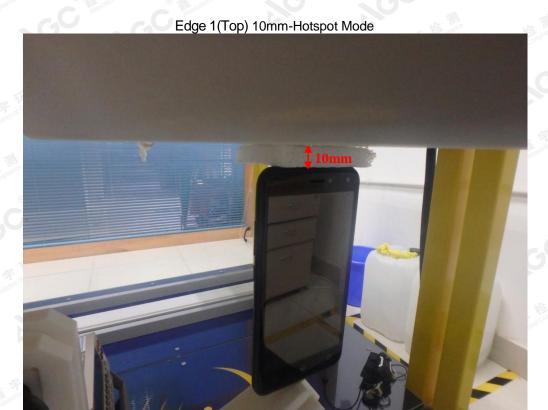

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China



Page 89 of 95

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 90 of 95

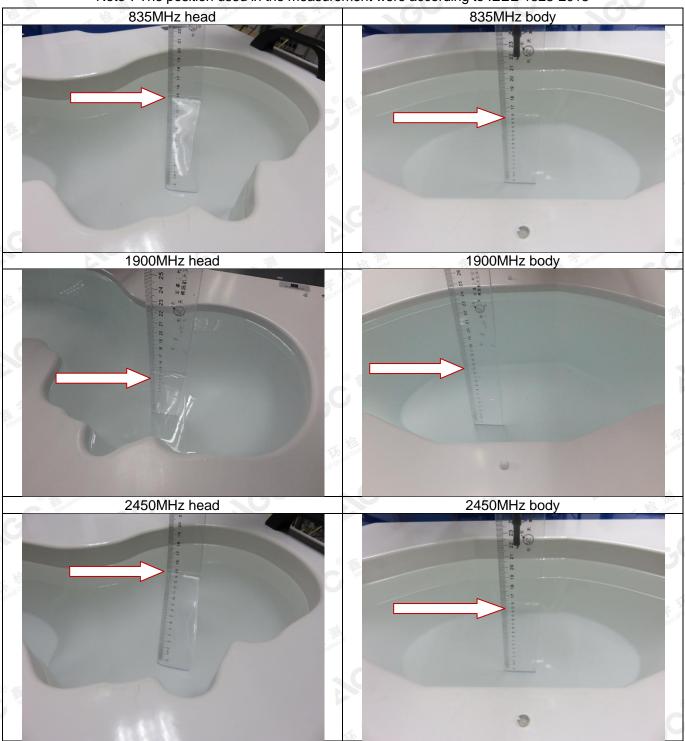


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com. **IGC** 8

Page 91 of 95

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 92 of 95


The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (60°, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 93 of 95

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note: The position used in the measurement were according to IEEE 1528-2013

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

Page 94 of 95

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (CE), this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed et attp://www.agc.gett.com.

Attestation of Global Compliance