

RADIO TEST REPORT

S

5

A

Report No: STS1612115F01

Issued for

Mobile commodity corporation

20955 Pathfinder Road, Suite 200, Diamond bar, CA 91765 United States

Product Name:	Mobile phone	
Brand Name:	Cellacom	
Model Name:	M232	
Series Model:	N/A	
FCC ID:	2AF6M3396993M232	
Test Standard:	FCC Part 22H and 24E	

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample. VAL

Report No.: STS1612115F01

TEST RESULT CERTIFICATION

Applicant's name:	Mobile commodity corporation
Address:	20955 Pathfinder Road, Suite 200, Diamond bar, CA 91765 United States
Manufacture's Name	Cellacom incorporation
Address	20955 pathfinder road, ste 200, diamond bar, ca 91765, USA
Product name:	Mobile phone
Brand name:	Cellacom
Model and/or type reference :	M232
Standards	FCC Part 22H and 24E
Test procedure	. ANSI/TIA 603-D (2010)

This device described above has been tested by STS and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date of performance of tests 14 Dec. 2016~21 Dec. 2016

Date of Issue 22 Dec. 2016

Test Result Pass

Testing Engineer

2

lo (Leo li) Technical Manager : (Tony liu) Authorized Signatory : (Bovey Yang)

Shenzhen STS Test Services Co., Ltd.

	5.4 OCCUPIED BANDWIDTH	13
	5.5 FREQUENCY STABILITY	14
	5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	15
	5.7 BAND EDGE	16
	5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	17
Α	PPENDIX ATESTRESULT	19
	A1CONDUCTED OUTPUT POWER	19
	A2 PEAK-TO-AVERAGE RADIO	20
	A3 TRANSMITTER RADIATED POWER (EIRP/ERP)	20
	A4 OCCUPIED BANDWIDTH(99% OCCUPIED BANDWIDTH/26DB BANDWIDTH)	22
	A5 FREQUENCY STABILITY	28
	A6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	30
	A7 BAND EDGE	34
	A8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	38
Α	PPENDIX BPHOTOS OF TEST SETUP	42

1 INTRODUCTION

5 TEST ITEMS

1.1 TEST FACTORY

2 PRODUCT INFORMATION

4 MEASUREMENT INSTRUMENTS

1.2 MEASUREMENT UNCERTAINTY

5.1 CONDUCTED OUTPUT POWER

5.2 PEAK TO AVERAGE RATIO

3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

5.3 TRANSMITTER RADIATED POWER (EIRP/ERP)

3 of 42

TABLE OF CONTENTS

Page

6

6

6

7

8

9

10

10

11

12

Report No.: STS1612115F01

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	22 Dec. 2016	STS1612115F01	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-D:

2010,KDB 971168 D01 v02r02 and KDB 648474 D03 v01r04

FCC Rules	Test Description	Test Limit	Test Result	Reference
2.1049	Conducted OutputPower Reporting Only		PASS	
2.0146 24.232	Peak-to-AverageRatio	< 13 dB	PASS	
2.1046 22.913 24.232	Effective Radiated Pow- er/Equivalent Isotropic Radiated Power	< 7 Watts max. ERP(Part 22) < 2 Watts max. EIRP(Part 24)	PASS	
2.1049 22.917 24.238	Occupied Bandwidth	Reporting Only	PASS	
2.1055 22.355 24.235	Frequency Stability	< 2.5 ppm (Part 22) Emission must remain in band (Part 24)	PASS	
2.1051 22.917 24.238	Spurious Emission at Antenna Terminals	< 43+10log10(P[Watts])	PASS	
2.1053 22.917 24.238	Field Strength of Spurious Radiation	< 43+10log10(P[Watts])	PASS	
2.1051 22.917 24.238	Band Edge	< 43+10log10(P[Watts])	PASS	

1 INTRODUCTION 1.1 TEST FACTORY Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China FCC Registration No.: 842334; IC Registration No.: 12108A-1

1.2 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

No.	Item	Uncertainty
1	RF power, conducted	±0.70dB
2	Spurious emissions, conducted	±1.19dB
5	All emissions,radiated(<1G) 30MHz-200MHz	±2.83dB
6	All emissions,radiated(<1G) 200MHz-1000MHz	±2.94dB
7	All emissions,radiated(>1G)	±3.03dB
8	Temperature	±0.5°C
9	Humidity	±2%

Report No.: STS1612115F01

2 PRODUCT INFORMATION

Product Designation:	Mobile phone		
Hardware version:	V1.0		
Software version:	V1.0		
FCC ID:	2AF6M3396993M232		
	GSM/GPRS:		
Tx Frequency:	850: 824.2 MHz ~ 848.8 MHz		
	1900: 1850.2 MHz ~ 1909.8MHz		
	GSM/GPRS:		
Rx Frequency:	850: 869.2 MHz ~ 893.8 MHz		
	1900: 1930.2 MHz ~ 1989.8 MHz		
Max RF Output Power:	GSM850:33.45dBm,PCS1900:29.26dBm GPRS850:33.42dBm,GPRS1900:29.24dBm		
Type of Emission:	GSM(850):320KGXW: GSM(1900):322KGXW GPRS(850):318KGXW: GPRS(1900):317KGXW		
SIM Card:	SIM 1 and SIM 2 is a chipset unit and tested as single chip- set,SIM 1 is used to tested		
Antenna:	PIFA Antenna		
Antenna gain:	GSM 850: -2.5dBi ,PCS 1900: -2.5dBi		
Power Supply:	DC 3.7V by battery		
Battery parameter:	Capacity: 600mAh, Rated Voltage: 3.7V		
GPRS Class:	Multi-Class12		
Extreme Vol. Limits:	DC3.3 V to 4.2 V (Nominal DC3.7V)		
Extreme Temp. Tolerance:	-20℃ to +45℃		
** Note: The High Voltage 4.2 V and Low Voltage 3.3 V was declared by manufacturer, The			
EUT couldn't be operate normally with higher or lower voltage.			

Report No.: STS1612115F01

3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v02r02 with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

- 1. 30 MHz to 10th harmonic for GSM850
- 2. 30 MHz to 10th harmonic for GSM1900

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

	TEST MODES		
BAND	RADIATED TCS CONDUCTED TO		
GSM 850	GSM LINK GPRS CLASS 12 LINK	GSM LINK GPRS CLASS 12 LINK	
GSM 1900	GSM LINK GPRS CLASS 12 LINK	GSM LINK GPRS CLASS 12 LINK	

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1612115F01

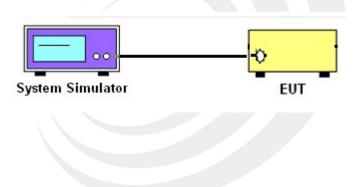
4 MEASUREMENT INSTRUMENTS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibra- tion	Calibrated Un- til
Spectrum Analyzer	Agilent	E4407B	MY50140340	2016.10.23	2017.10.22
Signal Analyzer	Agilent	N9020A	MY49100060	2016.10.23	2017.10.22
Test Receiver	R&S	ESCI	101427	2016.10.23	2017.10.22
Communication Tester	Agilent	8960	MY48360751	2016.10.23	2017.10.22
Communication Tester	R&S	CMU200	112012	2016.10.23	2017.10.22
Test Receiver	R&S	ESCI	102086	2016.10.23	2017.10.22
Bilog Antenna	TESEQ	CBL6111D	34678	2014.11.24	2017.11.23
Bilog Antenna (Calibration antenna)	TESEQ	CBL6111D	34678	2014.11.24	2017.11.23
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1343	2015.03.05	2018.03.04
Horn Antenna (Calibration antenna)	Schwarzbeck	BBHA 9120D	9120D-1343	2015.03.05	2018.03.04
MXA SIGNAL Analyzer	Agilent	N9020A	MY49100060	2016.10.23	2017.10.22
Double Ridge Horn An- tenna	COM-POWER CORPORATION	AH-840	AHA-840	2016.03.06	2017.03.05
Low frequency cable	N/A	R01	N/A	NCR	NCR
High frequency cable	SCHWARZBECK	AK9515H	SN-96286/96287	NCR	NCR
Vector signal generator	Agilent	E8257D-521	MY45141029	2016.10.23	2017.10.22
Power amplifier	DESAY	ZHL-42W	9638	2016.10.23	2017.10.22
Band Reject fil- ter(1920-1980MHz)	COM-MW	ZBSF-1920-1980	0092	2016.10.23	2017.10.22
Band Reject fil- ter(880-915MHz)	COM-MW	ZBSF-C897.5-35	707	2016.10.23	2017.10.22
Band Reject fil- ter(1710-1785MHz)	COM-MW	ZBSF-C1747.5-75	708	2016.10.23	2017.10.22
Band Reject fil- ter(1850-1910MHz)	COM-MW	ZBSF-C1880-60	709	2016.10.23	2017.10.22
Band Reject fil- ter(2500-2570MHz)	COM-MW	ZBSF-C2535-70	710	2016.10.23	2017.10.22
Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	2016.10.23	2017.10.22

Equipment with a calibration date of "NCR" shown in this list was not used to make direct calibrated measurements.

Shenzhen STS Test Services Co., Ltd.

5 TEST ITEMS 5.1 CONDUCTED OUTPUT POWER


Test overview

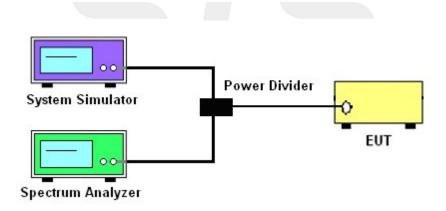
A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

Test procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set eut at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

Test setup

5.2 PEAK TO AVERAGE RATIO


TEST OVERVIEW

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 db.

TEST PROCEDURES

- 1. The testing follows fcckdb 971168 v02r02 section
- 2. The eut was connected to the and peak and av system simulator& spectrum analysis reads
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Set the test probe and measure average power of the spectrum analysis

TEST SETUP

Shenzhen STS Test Services Co., Ltd.

5.3 TRANSMITTER RADIATED POWER (EIRP/ERP) TEST OVERVIEW

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

TEST PROCEDURE

1. The testing follows FCC KDB 971168 D01

Section 5.2.2 (for GSM/GPRS) and ANSI / TIA-603-D-2010 Section 2.2.17.

2. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

3. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

4. The frequency range up to tenth harmonic of the fundamental frequency was investigated.

5. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a nonradiating cable. The absolute levels of the spurious emissions were measured by the substitution.

6. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain - Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor,

ERP/EIRP = P.SG + GT - LC

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMe as, typically dBW or dBm);

PMeas(PK) = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

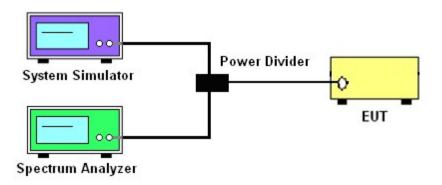
LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

5.4 OCCUPIED BANDWIDTH

TEST OVERVIEW

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.


All modes of operation were investigated and the worst case configuration results are reported in this section.

TEST PROCEDURE

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.

- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
- 1-5% of the 99% occupied bandwidth observed in Step 7

TEST SETUP

5.5 FREQUENCY STABILITY Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-D-2010. The frequency stability of the transmitter is measured by:

14 of 42

a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency. For Part 24 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure

Temperature Variation

1. The testing follows fcckdb 971168 D01 section 9.0

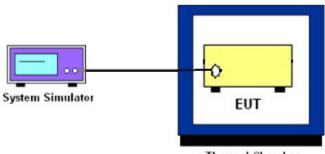
2. The EUT was set up in the thermal chamber and connected with the system simulator.

3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing.

Power was applied and the maximum change in frequency was recorded within one minute.

4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

Voltage Variation


1. The testing follows FCC KDB 971168 D01 Section 9.0.

2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.

3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.

4. The variation in frequency was measured for the worst case.

TEST SETUP

Thermal Chamber

5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS <u>Test Overview</u>

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

Test procedure

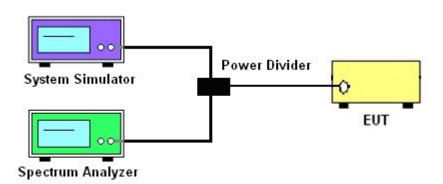
1. The testing FCC KDB 971168 D01 v02r02 Section 6.0. and ANSI/TIA-603-D-2010-Section 2.2.13.2(d)

2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.

3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and

attenuator. The path loss was compensated to the results for each measurement.

4. The middle channel for the highest RF power within the transmitting frequency was measured.


5. The conducted spurious emission for the whole frequency range was taken.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

- = P(W) [43 + 10log(P)] (dB)
- = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB)
- = -13dBm.

Test Setup

5.7 BAND EDGE

<u>OVERVIEW</u>

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

TEST PROCEDURE

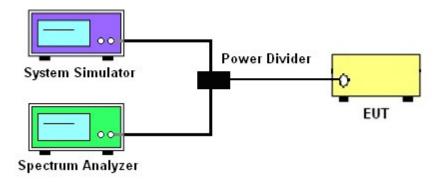
1. The testing FCC KDB 971168 D01 v02r02 Section 6.0. and ANSI/TIA-603-D-2010-Section 2.2.13.2(d)

- 2. Start and stop frequency were set such that the band edge would be placed in the center of then Plot.
- 3. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 4. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator.

The path loss was compensated to the results for each measurement.

5. The band edges of low and high channels for the highest RF powers were measured.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


7.The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB)

= -13dBm.

TEST SETUP

5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

Test overview

Radiated spurious emissions measurements are performed using the substitution method described inANSI/TIA-603-D with the EUT transmitting into an integral antenna. Measurements on signalsoperating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized horn antennas. All measurements are performed as peak measurements while the EUT isoperating at maximum power and at the appropriate frequencies.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

Test procedure

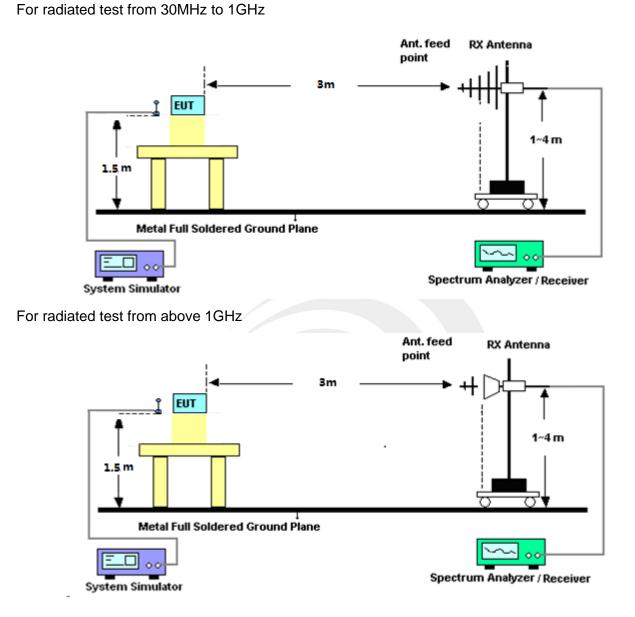
1. The testing FCC KDB 971168 D01 Section 5.8 and ANSI/TIA-603-D-2010-Section 2.2.12.2(b)

- 2. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5.No. of sweep points > 2 x span/RBW
- 6. Detector = Peak
- 7. Trace mode = max hold
- 8. The trace was allowed to stabilize

9. Effective Isotropic Spurious Radiation was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain - Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor,

ERP/EIRP = P.SG + GT - LC

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as P Meas, typically dBW or dBm);


P.SG = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

readiated test from 20MULE to 4 CULE

18 of 42

Report No.: STS1612115F01

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1612115F01

APPENDIX ATESTRESULT A1CONDUCTED OUTPUT POWER

GSM 850:

Mode	Frequency (MHz) AVG Powe	
	824.2	33.18
GSM850	836.6	33.40
	848.8	33.45
GPRS850	824.2	33.16
	836.6	33.38
	848.8	33.42

PCS 1900:

Mode	Frequency (MHz)	AVG Power
	1850.2	29.12
GSM1900	1880	29.16
	1909.8	29.26
	1850.2	29.11
GPRS1900	1880	29.15
	1909.8	29.24

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1612115F01

A2 PEAK-TO-AVERAGE RADIO

PCS 1900:

Mode	Frequency (MHz)	PEAK Power	AVG Power	PAR
	1850.2	29.24	29.12	0.12
PCS1900	1880	29.27	29.16	0.11
	1909.8	29.37	29.26	0.11
	1850.2	29.21	29.11	0.10
GPRS1900	1880	29.26	29.15	0.11
	1909.8	29.37	29.24	0.13

A3 TRANSMITTER RADIATED POWER (EIRP/ERP)

		Radiate	d Power	(ERP) fo	or GSM 850 MH	Z	
				Re	esult		
Mode	Frequency	S G.Level (dBm)	Cable loss	Gain (dBi)	PMeas E.R.P(dBm)	Polarization Of Max. ERP	Conclusion
	824.2	24.67	0.44	6.5	30.73	Horizontal	Pass
	824.2	26.61	0.44	6.5	32.67	Vertical	Pass
GSM850	836.6	25.04	0.45	6.5	31.09	Horizontal	Pass
	836.6	26.84	0.45	6.5	32.89	Vertical	Pass
	848.8	24.92	0.46	6.5	30.96	Horizontal	Pass
	848.8	26.90	0.46	6.5	32.94	Vertical	Pass
	824.2	24.90	0.44	6.5	30.96	Horizontal	Pass
	824.2	26.52	0.44	6.5	32.58	Vertical	Pass
	836.6	24.95	0.45	6.5	31.00	Horizontal	Pass
GPRS850	836.6	26.79	0.45	6.5	32.84	Vertical	Pass
	848.8	25.07	0.46	6.5	31.11	Horizontal	Pass
	848.8	26.72	0.46	6.5	32.76	Vertical	Pass

Report No.: STS1612115F01

		Radiated	Power (B	EIRP) fo	r PCS 1900 MH	Z					
				R	esult						
Mode	Frequency	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion				
		(dBm)	loss	(dBi)	E.I.R.P.(dBm)	Of Max.EIRP.					
	1850.2	18.82	2.41	10.35	26.76	Horizontal	Pass				
	1850.2	20.67	2.41	10.35	28.61	Vertical	Pass				
PCS1900	1880.0	18.88	2.42	10.35	26.81	Horizontal	Pass				
PC31900	1880.0	20.72	2.42	10.35	28.65	Vertical	Pass				
	1909.8	19.1	2.43	10.35	27.02	Horizontal	Pass				
	1909.8	20.83	2.43	10.35	28.75	Vertical	Pass				
	1850.2	18.71	2.41	10.35	26.65	Horizontal	Pass				
	1850.2	20.53	2.41	10.35	28.47	Vertical	Pass				
	1880.0	18.89	2.42	10.35	26.82	Horizontal	Pass				
GPRS1900	1880.0	20.57	2.42	10.35	28.5	Vertical	Pass				
	1909.8	19.12	2.43	10.35	27.04	Horizontal	Pass				
	1909.8	20.77	2.43	10.35	28.69	Vertical	Pass				

Π

Report No.: STS1612115F01

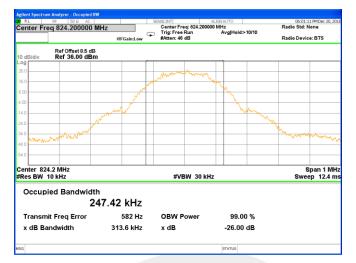
A4 OCCUPIED BANDWIDTH(99% OCCUPIED BANDWIDTH/26DB BANDWIDTH)

	Occupied Band	width for GSM 850 band	
Mode	Frequency(MHz)	Occupied Bandwidth	Emission Bandwidth
Mode	Frequency(IVIFIZ)	(99%)(kHz)	(-26dBc)(kHz)
Low Channel	824.2	247.42	313.6
Middle Channel	836.6	245.96	320.4
High Channel	848.8	246.36	318.0
	Occupied Band	width for GPRS 850 band	
Mode	Fraguanay (MHz)	Occupied Bandwidth	Emission Bandwidth
Mode	Frequency(MHz)	(99%)(kHz)	(-26dBc)(kHz) 313.6 320.4 318.0
Low Channel	824.2	245.98	315.5
Middle Channel	836.6	245.26	311.9
High Channel	848.8	242.43	318.0

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1612115F01

	Occupied Band	width for GSM1900 band		
Mode	Frequency(MHz)	Occupied Bandwidth	Emission Bandwidth	
Mode	Frequency(IVIFIZ)	(99%)(kHz)	(-26dBc)(kHz)	
Low Channel	1850.2	249.45	320.4	
Middle Channel	1880.0	245.33	314.2	
High Channel	1909.8	246.25	322.2	
	Occupied Bandy	width for GPRS 1900 band		
Mode		Occupied Bandwidth	Emission Bandwidth	
Mode	Frequency(MHz)	(99%)(kHz)	(-26dBc)(kHz) 320.4 314.2 322.2	
Low Channel	1850.2	244.45	316.9	
Middle Channel	1880.0	247.12	315.0	
High Channel	1909.8	243.22	315.3	

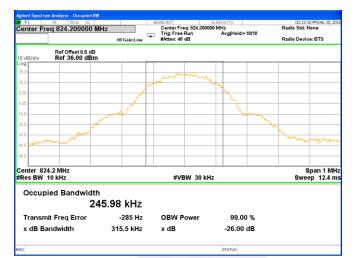


Shenzhen STS Test Services Co., Ltd.

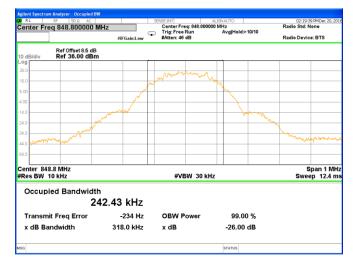
Report No.: STS1612115F01

GSM 850 CH 128

GSM 850 CH 190

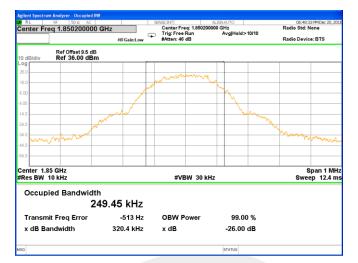

GSM 850 CH 251

Shenzhen STS Test Services Co., Ltd.

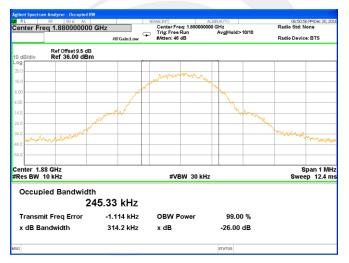

Report No.: STS1612115F01

GPRS 850 CH 128

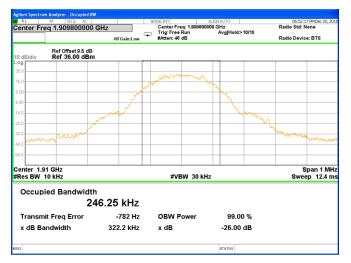
GPRS 850 CH 190


GPRS 850 CH 251

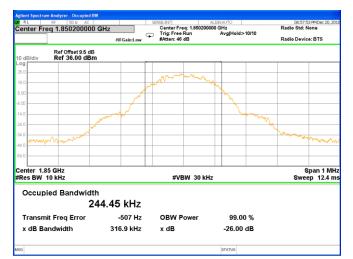
Shenzhen STS Test Services Co., Ltd.



Report No.: STS1612115F01


PCS 1900 CH 512

PCS 1900 CH 661


PCS 1900 CH 810

Shenzhen STS Test Services Co., Ltd.

GPRS 1900 CH 512

GPRS 1900 CH 661

GPRS 1900 CH 810

Report No.: STS1612115F01

A5 FREQUENCY STABILITY

Normal Voltage = 3.7V. ; Battery End Point (BEP) = 3.3 V.; Maximum Voltage = 4.2 V

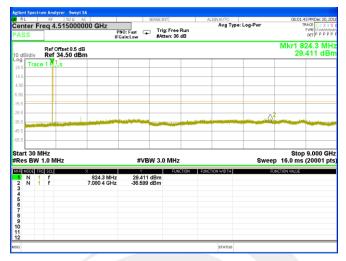
	GSM	850 Middle Char	nel/836.6MHz		
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result
50		17.64	0.211		
40		23.32	0.279		
30		19.86	0.237		
20		19.54	0.234	-	
10	Normal Voltage	21.61	0.258		
0		27.91	0.334	2.5ppm	PASS
-10		17.03	0.204		
-20	/	34.61	0.414	-	
-30		13.64	0.163		
25	Maximum Voltage	28.97	0.346		
25	BEP	27.52	0.329		

	GPRS	850 Middle Cha	nnel/836.6MHz		
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result
50		18.04	0.216		
40		33.65	0.402		
30		20.49	0.245		
20		27.82	0.333	-	
10	Normal Voltage	24.03	0.287		
0		18.00	0.215	2.5ppm	PASS
-10		14.64	0.175		
-20		12.54	0.150		
-30		11.86	0.142		
25	Maximum Voltage	26.43	0.024		
25	BEP	28.96	0.014]	

Report No.: STS1612115F01

	GSM 1900 Middle Channel/1880MHz										
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result						
50		15.30	0.008								
40		13.91	0.007								
30	Normal Voltage	25.08	0.013		PASS						
20		27.42	0.015	Within Au- thorized Band							
10		24.72	0.013								
0		23.64	0.013								
-10		30.73	0.016								
-20		28.81	0.015								
-30		26.28	0.014								
25	Maximum Voltage	15.29	0.008								
25	BEP	34.53	0.018								

	GPRS	1900 Middle Cha	annel/1880MHz		
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result
50		34.04	0.018		
40		17.85	0.009		
30		12.67	0.007		PASS
20		24.10	0.013	Within Au-	
10	Normal Voltage	20.62	0.011		
0		32.01	0.017	thorized	
-10		27.93	0.015	Band	
-20		23.33	0.012		
-30		27.63	0.015		
25	Maximum Voltage	12.74	0.007		
25	BEP	30.19	0.016		


#

A6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

GSM 850 BAND

Lowest Channel

Middle Channel

RL	trum Analyzer - Se	DR AC	SENSE:II	m	ALIGNAUTO		06:03:56 PMDec 20
		000000 GHz	D: East . Tris	:FreeRun en:36 dB		: Log-Pwr	TRACE
0 dB/div	Ref Offset Ref 34.50						Mkr1 836.9 N 29.416 d
og 74.5 Tra	ce 1 F 1.s						
14.5							
150							
.50							
5.5							
8.5					<mark>2</mark>		
5.5					Y		
5.5							
5.5							
itart 30 Res BV	MHz V 1.0 MHz		#VBW 3.0	MHz		Swee	Stop 9.000 (p 16.0 ms (20001
KR MODE		× 836.9 MHz	29.416 dBm	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE
1 N 2 N		5.806 7 GHz	-31.817 dBm				
3							
5							
7							
9							
ő							
1							

Highest Channel

	R AC	SENSE:INT		ALIGNAUTO) PMDec 20, 20
enter Freq 4.5150 ASS	PN	D: Fast Trig: Fr ain:Low #Atten:	ee Run 36 dB	Avg Type	Log-Pwr		ACE 1 2 3 4 5 TYPE MUMANA DET P P P P P
Ref Offset 8. dB/div Ref 34.50						Mkr1 84 29.3	19.0 MH 328 dBi
Trace 1 F1s							
4.5							
50							
50							
5.5				_			
5.5			_	0	2		
5.5		Constitution of the local division of	A PROPERTY AND IN COLUMN				Company and the state
5.5							
3.5							
tart 30 MHz Res BW 1.0 MHz		#VBW 3.0 M	Hz		Swee	Stop p 16.0 ms	9.000 GH (20001 p
I N 1 f	× 849.0 MHz	29.328 dBm	FUNCTION	UNCTION WIDTH	f	FUNCTION VALUE	
2 N 1 f 3	6.165 5 GHz	-36.053 dBm					
4 5							
6							
9							
0							

Shenzhen STS Test Services Co., Ltd.

GPRS 850 BAND

Lowest Channel

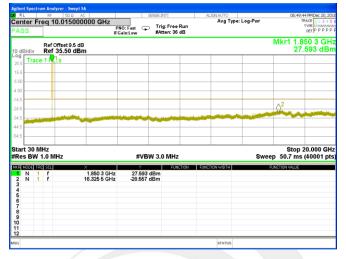
	um Analyzer - Swept S								
LXIRL	RF 50 Ω AI			SENSE: INT	A	LIGNAUTO			8 PMDec 20, 2016
	eq 4.5150000	00 GHz	NO: Fast	Trig: Free I	Run	Avg Type:	Log-Pwr		RACE 1 2 3 4 5 6
PASS			Gain:Low	#Atten: 36	dB				DETPPPPP
	Ref Offset 8.5 dB								24.3 MHz
10 dB/div	Ref 34.50 dBr	n						28.	387 dBm
24.5 Trace	e 1 Hus								
14.5									
4.50									
-5.50									
-15.5									
-25.5									
-35.5		in the sector	and the second				\triangle^2		
-45.5									
-40.0									
-55.5									
Start 30 N								Stop	9.000 GHz
#Res BW	1.0 MHz		#VB	W 3.0 MHz			Swee	p 16.0 ms	(20001 pts)
MKR MODE TH	C SCL	×	Y	FUNC	TION FUNC	TION WIDTH	R	INCTION VALUE	
1 N 1 2 N 1	f	824.3 MHz 6.479 4 GHz	28.387 -35.866						
3									
5									
6									
2 N 1 3 4 5 6 7 8 9 10									
10									
11 12									
12 MSG						STATUS			
MSG						STATUS			

Middle Channel

RL RF enter Freq 4.51	50 R AC 5000000 GHz		ग g: Free Run ten: 36 dB	ALIGNAUTO Avg Typ	e: Log-Pwr		A PMDec 20, 2 RACE 1 2 3 4 TYPE MINIMA DET P P P P
Ref Offse dB/div Ref 34.		anclow					36.9 MI 438 dB
Trace 1 F1.s							
4.6					_		
50							
50							
.5							
1.5					^2		
i.5		and the second division of the second divisio		and free and	V Planet		-
5.5							
5.5							
art 30 MHz Res BW 1.0 MHz	· · ·	#VBW 3.0	MHz		Swe	Stop ep 16.0 ms	9.000 G (20001 p
R MODE TRO SCL N 1 f 2 N 1 f	× 836.9 MHz	28.438 dBm	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
2 N 1 f	6.147 5 GHz	-36.020 dBm					
4							
5							
3							
)							
2							
3				STATUS			

Highest Channel

RF 50 Ω		SENSE: INT		ALIGNAUTO		02:20:10 PMC
er Freq 4.51500	PNC): Fast 😱 Trig: Fr in:Low #Atten:	ee Run 36 dB	Avg Type:	Log-Pwr	TRACE TVPE DET
Ref Offset 8.5 div Ref 34.50 d	dB Bm					Mkr1 849. 28.379
Frace 1 1. s						
				2		
	and the second	Contractory of the local division of	and the second	and the second	بالطن بمالات	a start and a start and a start as a start a
						0 1
30 MHz BW 1.0 MHz		#VBW 3.0 M	Hz		Swee	Stop 9.0 p 16.0 ms (200
DE TRC SCL	×		FUNCTION	UNCTION WIDTH	6	UNCTION VALUE
	849.0 MHz 6.022 0 GHz	28.379 dBm -35.203 dBm				


Shenzhen STS Test Services Co., Ltd.

Report No.: STS1612115F01

GSM1900 BAND(30M-20G)

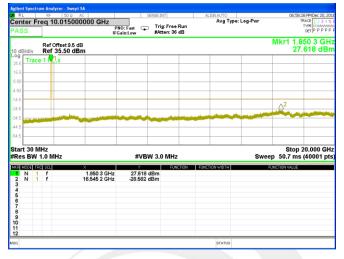
Lowest Channel

Middle Channel

		Ω AC	SENSE	:INT	ALIGNAUTO			:31 PM Dec 20, 2
enter ASS	Freq 10.015		IO: Fast 🖵 Ti ain:Low #4	rig: Free Run Atten: 36 dB	Avg Type	: Log-Pwr		TYPE MWWW DET P P P P
0 dB/div							Mkr1 1. 27	880 2 G '.359 dE
og 75.5 Tra	ice 1 Als							
5.6								_
50								
50							_	_
.5							- 2	
.5							\	
.5		No	and the second second	and the second second	and the second second	and the second distance		
.5								
.6								
							Oton	20.000 G
	MHz V 1.0 MHz		#VBW 3.	.0 MHz		Swe	ep 50.7 ms	s (40001
Res BV	V 1.0 MHz	× 1.880 2 GHz	27.359 dBm	FUNCTION	FUNCTION WIDTH		ep 50.7 ms	20.000 C
ResBV El MODE N 2 N	V 1.0 MHz		Y	FUNCTION	FUNCTION WIDTH		ep 50.7 m	(40001 s
Res BV	V 1.0 MHz	1.880 2 GHz	27.359 dBm	FUNCTION	FUNCTION WIDTH		ep 50.7 m	(40001)
Res BV 1 N 2 N 3 4 5 5	V 1.0 MHz	1.880 2 GHz	27.359 dBm	FUNCTION	FUNCTION WIDTH		ep 50.7 m	(40001
Res BV 1 N 2 N 3 4 5 5 7 8	V 1.0 MHz	1.880 2 GHz	27.359 dBm	FUNCTION	FUNCTION WIDTH		ep 50.7 m	20.000 C
TRIMODE	V 1.0 MHz	1.880 2 GHz	27.359 dBm	FUNCTION	FUNCTION WIDTH		ep 50.7 m	20.000 C
Res BV 1 N 2 N 3 4 5 5 5 5 5 5 6 7 8 9	V 1.0 MHz	1.880 2 GHz	27.359 dBm	FUNCTION	FUNCTION WIDTH		ep 50.7 m	(40001)

Highest Channel

IL I	RF 50 Ω	AC	5	ENSE:INT		AUTO		06:5	2:51 PMDec 20, 2
nter Fred	10.0150	000000 GHz	PNO: Fast	Trig: Free Run #Atten: 36 dB		Avg Type:	Log-Pwr		TYPE MUMM DET P P P F
			Gain:Low	#Atten: 36 db				Mkr1 1	909 7 G
B/div	ef Offset 9.5 ef 35.50 d								5.971 dE
Trace 1	F 13								
5									
	_							_	
								-	_
								02	
	and the second		مي الارتيان العربية (المراجع العربية (المراجع المراجع المراجع المراجع المراجع العربية (المراجع ال		and the second se	and the second			-
								_	
5									
rt 30 MH	,							Stor	20.000 G
s BW 1.0			#VB	№ 3.0 MHz			Swe	ep 50.7 m	s (40001 p
MODE TRC 1		×	Y	FUNCTION	FUNCTION	WIDTH		FUNCTION VALUE	
N 1	f f	1.909 7 GHz 16.485 3 GHz	26.971	dBm dBm					


Shenzhen STS Test Services Co., Ltd.

Report No.: STS1612115F01

GPRS1900 BAND(30M-20G)

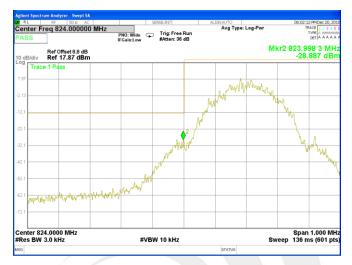
Lowest Channel

Middle Channel

RL	RF			SB	ISE:INT	A	LIGNAUTO			13 PMDec 20, 2
enter ASS	Freq	10.01500		0: Fast 😱 ain:Low	Trig: Free F #Atten: 36 d	Run iB	Avg Type	: Log-Pwr		TYPE MUMM DET P P P P
0 dB/div		Offset 9.5 d f 35.50 dE							Mkr1 1.8 27	380 2 G .361 dE
5.5 Tra	ace 1 P	1 <u>s</u>								
5.6										
50										
50										
1.5										
.5									\triangle^2	
.5	an anna an an			the second s	-	-	البينا والبرا	Contraction of the local division of the loc		
.5										
.5										
art 30	MHz								Stop	20.000 G
les Bl	N 1.0 I	MHz		#VBW	3.0 MHz			Swe	ep 50.7 ms	6 (40001
	TRC SCL		X 1.880 2 GHz	27.361 dE	FUNC	TION FUNC	TION WIDTH		FUNCTION VALUE	
2 N	1 1		16.525 2 GHz	-28.431 dE						
3										
5										
7										
Э										
B 9 0 1										
))										

Highest Channel

RL RF	yzer - Swept SA S0 Ω AC		INSE:JINT	ALIGNAUTO	07:00:31 PMDec 20,
nter Freq 10 SS	0.015000000 GHz	PNO: Fast G	Trig: Free Run #Atten: 36 dB	Avg Type: Log	Pwr TRACE 123 TYPE MMMM DET P P P
	ffset 9.5 dB 35.50 dBm				Mkr1 1.910 2 G 27.013 dE
Trace 1 F	13				
; 					
,					2
				and the second se	and the second
5					
rt 30 MHz					Stop 20.000 G
es BW 1.0 M	Hz	#VBV	V 3.0 MHz		Sweep 50.7 ms (40001 p
MODE TRC SCL	×	Y AT A CA	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
N 1 f N 1 f	1.910 2 G 16.505 3 G	Hz 27.013 d Hz -27.736 d	Bm		
				STATUS	


Shenzhen STS Test Services Co., Ltd.

A7 BAND EDGE

GSM 850

Lowest Band Edge

Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

Highest Band Edge

Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

Shenzhen STS Test Services Co., Ltd.

GPRS 850

Lowest Band Edge

Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

Highest Band Edge

Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

Shenzhen STS Test Services Co., Ltd.

GSM 1900

Lowest Band Edge

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

Highest Band Edge

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

Shenzhen STS Test Services Co., Ltd.

GPRS 1900

Lowest Band Edge

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

Highest Band Edge

Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

Shenzhen STS Test Services Co., Ltd.

A8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

GSM 850: (30-9000)MHz

GSM 850: (30-9000)MHz											
The Worst Test Results Channel 128/824.2 MHz											
	S G.Lev			PMea	Limit	Margin	Delerity				
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity				
1648.37	-41.18	9.40	4.75	-36.53	-13.00	-23.53	Н				
2472.56	-40.14	10.60	8.39	-37.93	-13.00	-24.93	Н				
3296.46	-32.15	12.00	11.79	-31.94	-13.00	-18.94	Н				
1648.46	-43.25	9.40	4.75	-38.60	-13.00	-25.60	V				
2472.63	-44.85	10.60	8.39	-42.64	-13.00	-29.64	V				
3296.81	-43.49	12.00	11.79	-43.28	-13.00	-30.28	V				
The Worst Test Results Channel 190/836.6 MHz											
	S G.Lev (dBm)	Ant(dDi)		PMea	Limit	Margin	Delority				
Frequency(MHz)		Ant(dBi)	Loss -	(dBm)	(dBm)	(dBm)	Polarity				
1673.09	-40.73	9.50	4.76	-35.99	-13.00	-22.99	Н				
2509.61	-39.75	10.70	8.40	-37.45	-13.00	-24.45	Н				
3346.28	-31.38	12.20	11.80	-30.98	-13.00	-17.98	Н				
1673.22	-44.21	9.40	4.75	-39.56	-13.00	-26.56	V				
2509.75	-44.69	10.60	8.39	-42.48	-13.00	-29.48	V				
3346.08	-43.75	12.20	11.82	-43.37	-13.00	-30.37	V				
	The W	orst Test R	esults Ch	annel 251/	848.8 MHz						
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity				
Frequency(MHZ)	(dBm)	Ani(ubi)	L055	(dBm)	(dBm)	(dBm)	Folanty				
1697.60	-40.39	9.60	4.77	-35.56	-13.00	-22.56	Н				
2546.28	-39.55	10.80	8.50	-37.25	-13.00	-24.25	Н				
3395.09	-31.30	12.50	11.90	-30.70	-13.00	-17.70	Н				
1697.39	-43.90	9.60	4.77	-39.07	-13.00	-26.07	V				
2546.39	-44.77	10.80	8.50	-42.47	-13.00	-29.47	V				
3395.33	-42.57	12.50	11.90	-41.97	-13.00	-28.97	V				

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

Report No.: STS1612115F01

GPRS 850: (30-9000)MHz

GPRS 850: (30-9000)MHz											
The Worst Test Results Channel 128/824.2 MHz											
	S G.Lev			PMea	Limit	Margin	Delerity				
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity				
1648.11	-40.46	9.40	4.75	-35.81	-13.00	-22.81	Н				
2472.31	-39.39	10.60	8.39	-37.18	-13.00	-24.18	Н				
3296.91	-32.24	12.00	11.79	-32.03	-13.00	-19.03	Н				
1648.47	-44.38	9.40	4.75	-39.73	-13.00	-26.73	V				
2472.35	-44.97	10.60	8.39	-42.76	-13.00	-29.76	V				
3296.74	-42.62	12.00	11.79	-42.41	-13.00	-29.41	V				
The Worst Test Results Channel 190/836.6 MHz											
	S G.Lev (dBm) Ant(dBi	Anot(dDi)	Loss	PMea	Limit	Margin	Delority				
Frequency(MHz)		Апцаві)	L035	(dBm)	(dBm)	(dBm)	Polarity				
1673.15	-40.59	9.50	4.76	-35.85	-13.00	-22.85	Н				
2509.43	-39.30	10.70	8.40	-37.00	-13.00	-24.00	Н				
3346.05	-31.48	12.20	11.80	-31.08	-13.00	-18.08	Н				
1673.03	-43.71	9.40	4.75	-39.06	-13.00	-26.06	V				
2509.60	-44.47	10.60	8.39	-42.26	-13.00	-29.26	V				
3345.99	-42.89	12.20	11.82	-42.51	-13.00	-29.51	V				
	The W	orst Test R	esults Ch	annel 251/	848.8 MHz						
	S G.Lev	Apt(dDi)	Loss	PMea	Limit	Margin	Delority				
Frequency(MHz)	(dBm)	Ant(dBi)	LUSS	(dBm)	(dBm)	(dBm)	Polarity				
1697.54	-41.27	9.60	4.77	-36.44	-13.00	-23.44	Н				
2546.32	-40.38	10.80	8.50	-38.08	-13.00	-25.08	Н				
3395.07	-31.41	12.50	11.90	-30.81	-13.00	-17.81	Н				
1697.48	-44.46	9.60	4.77	-39.63	-13.00	-26.63	V				
2546.44	-44.29	10.80	8.50	-41.99	-13.00	-28.99	V				
3395.11	-42.67	12.50	11.90	-42.07	-13.00	-29.07	V				

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

Report No.: STS1612115F01

PCS 1900: (30-20000)MHz

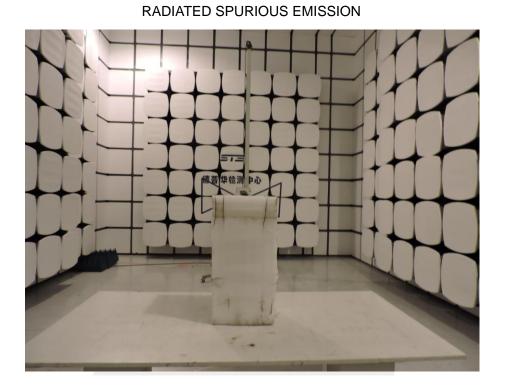
DCS 1900: (30-20000)MHz											
The Worst Test Results for Channel 512/1850.2MHz											
	S G.Lev			PMea	Limit	Margin	Delevity				
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity				
3700.31	-34.46	12.60	12.93	-34.79	-13.00	-21.79	Н				
5550.53	-34.05	13.10	17.11	-38.06	-13.00	-25.06	Н				
7400.57	-33.31	11.50	22.20	-44.01	-13.00	-31.01	Н				
3700.51	-35.64	12.60	12.93	-35.97	-13.00	-22.97	V				
5550.57	-34.58	13.10	17.11	-38.59	-13.00	-25.59	V				
7400.68	-32.46	11.50	22.20	-43.16	-13.00	-30.16	V				
The Worst Test Results for Channel 661/1880.0MHz											
	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Delority				
Frequency(MHz)	(dBm)	Апцаві)		(dBm)	(dBm)	(dBm)	Polarity				
3760.13	-34.83	12.60	12.93	-35.16	-13.00	-22.16	Н				
5640.11	-34.39	13.10	17.11	-38.40	-13.00	-25.40	Н				
7520.14	-32.72	11.50	22.20	-43.42	-13.00	-30.42	Н				
3760.24	-35.84	12.60	12.93	-36.17	-13.00	-23.17	V				
5640.23	-33.80	13.10	17.11	-37.81	-13.00	-24.81	V				
7520.12	-33.16	11.50	22.20	-43.86	-13.00	-30.86	V				
	The Wor	st Test Res	sults for C	hannel 810)/1909.8MH	z					
	S G.Lev	Apt(dDi)		PMea	Limit	Margin	Delority				
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity				
3819.36	-34.89	12.60	12.93	-35.22	-13.00	-22.22	Н				
5729.48	-34.62	13.10	17.11	-38.63	-13.00	-25.63	Н				
7639.21	-32.80	11.50	22.20	-43.50	-13.00	-30.50	Н				
3819.38	-35.67	12.60	12.93	-36.00	-13.00	-23.00	V				
5729.24	-34.65	13.10	17.11	-38.66	-13.00	-25.66	V				
7639.35	-32.47	11.50	22.20	-43.17	-13.00	-30.17	V				

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

Report No.: STS1612115F01

GPRS 1900: (30-20000)MHz


GPRS1900: (30-20000)MHz											
The Worst Test Results for Channel 512/1850.2MHz											
	S G.Lev			PMea	Limit	Margin	Deleritu				
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity				
3700.19	-33.52	12.60	12.93	-33.85	-13.00	-20.85	Н				
5550.50	-34.93	13.10	17.11	-38.94	-13.00	-25.94	Н				
7400.85	-32.23	11.50	22.20	-42.93	-13.00	-29.93	Н				
3700.51	-35.09	12.60	12.93	-35.42	-13.00	-22.42	V				
5550.38	-35.15	13.10	17.11	-39.16	-13.00	-26.16	V				
7400.88	-32.70	11.50	22.20	-43.40	-13.00	-30.40	V				
The Worst Test Results for Channel 661/1880.0MHz											
	S G.Lev			PMea	Limit	Margin	Delerity				
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity				
3760.09	-34.29	12.60	12.93	-34.62	-13.00	-21.62	Н				
5640.03	-34.14	13.10	17.11	-38.15	-13.00	-25.15	Н				
7520.16	-33.05	11.50	22.20	-43.75	-13.00	-30.75	Н				
3760.13	-34.79	12.60	12.93	-35.12	-13.00	-22.12	V				
5640.24	-35.20	13.10	17.11	-39.21	-13.00	-26.21	V				
7519.99	-31.90	11.50	22.20	-42.60	-13.00	-29.60	V				
	The Wor	st Test Res	sults for C	hannel 810)/1909.8MH	Z					
	S G.Lev			PMea	Limit	Margin	Deleritu				
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity				
3819.55	-34.59	12.60	12.93	-34.92	-13.00	-21.92	Н				
5729.42	-34.98	13.10	17.11	-38.99	-13.00	-25.99	Н				
7638.89	-33.07	11.50	22.20	-43.77	-13.00	-30.77	Н				
3819.56	-35.90	12.60	12.93	-36.23	-13.00	-23.23	V				
5729.43	-34.61	13.10	17.11	-38.62	-13.00	-25.62	V				
7638.92	-31.73	11.50	22.20	-42.43	-13.00	-29.43	V				

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

APPENDIX BPHOTOS OF TEST SETUP

Shenzhen STS Test Services Co., Ltd.