IEEE 802.11n HT40

Channel 38 / 5190 MHz

Free GH		Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.3	88	54.53	33.21	35.82	9.52	61.44	74.00	-12.56	Peak	Horizontal
10.3	88	38.03	33.21	35.82	9.52	44.94	54.00	-9.06	Average	Horizontal
10.3	88	59.49	32.82	35.82	9.52	66.01	74.00	-7.99	Peak	Vertical
10.3	88	42.31	32.82	35.82	9.52	48.83	54.00	-5.17	Average	Vertical

Channel 46 / 5230 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.46	54.45	33.21	35.82	9.52	61.36	74.00	-12.64	Peak	Horizontal
10.46	38.57	33.21	35.82	9.52	45.48	54.00	-8.52	Average	Horizontal
10.46	59.66	32.82	35.82	9.52	66.18	74.00	-7.82	Peak	Vertical
10.46	41.15	32.82	35.82	9.52	47.67	54.00	-6.33	Average	Vertical

IEEE 802.11ac VHT20

Channel 36 / 5180 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.36	55.79	33.21	35.82	9.52	62.70	74.00	-11.30	Peak	Horizontal
10.36	39.44	33.21	35.82	9.52	46.35	54.00	-7.65	Average	Horizontal
10.36	59.18	32.82	35.82	9.52	65.70	74.00	-8.30	Peak	Vertical
10.36	41.36	32.82	35.82	9.52	47.88	54.00	-6.12	Average	Vertical

Channel 40 / 5200 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.44	55.21	33.21	35.82	9.52	62.12	74.00	-11.88	Peak	Horizontal
10.44	38.04	33.21	35.82	9.52	44.95	54.00	-9.05	Average	Horizontal
10.44	58.24	32.82	35.82	9.52	64.76	74.00	-9.24	Peak	Vertical
10.44	42.05	32.82	35.82	9.52	48.57	54.00	-5.43	Average	Vertical

Channel 48 / 5240 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.48	55.53	33.21	35.82	9.52	62.44	74.00	-11.56	Peak	Horizontal
10.48	38.65	33.21	35.82	9.52	45.56	54.00	-8.44	Average	Horizontal
10.48	58.40	32.82	35.82	9.52	64.92	74.00	-9.08	Peak	Vertical
10.48	41.79	32.82	35.82	9.52	48.31	54.00	-5.69	Average	Vertical

IEEE 802.11ac VHT40

Channel 38 / 5190 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.38	55.23	33.21	35.82	9.52	62.14	74.00	-11.86	Peak	Horizontal
10.38	38.36	33.21	35.82	9.52	45.27	54.00	-8.73	Average	Horizontal
10.38	59.19	32.82	35.82	9.52	65.71	74.00	-8.29	Peak	Vertical
10.38	41.98	32.82	35.82	9.52	48.50	54.00	-5.50	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 78

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.				
10.46	54.43	33.21	35.82	9.52	61.34	74.00	-12.66	Peak	Horizontal				
10.46	38.17	33.21	35.82	9.52	45.08	54.00	-8.92	Average	Horizontal				
10.46	59.29	32.82	35.82	9.52	65.81	74.00	-8.19	Peak	Vertical				
10.46	41.13	32.82	35.82	9.52	47.65	54.00	-6.35	Average	Vertical				

Channel 46 / 5230 MHz

IEEE 802.11ac VHT80

Channel 42 / 5210 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.			
10.42	54.20	33.21	35.82	9.52	61.11	74.00	-12.89	Peak	Horizontal			
10.42	38.43	33.21	35.82	9.52	45.34	54.00	-8.66	Average	Horizontal			
10.42	58.73	32.82	35.82	9.52	65.25	74.00	-8.75	Peak	Vertical			
10.42	42.63	32.82	35.82	9.52	49.15	54.00	-4.85	Average	Vertical			

Notes:

1). Measuring frequencies from 9 KHz ~ 40 GHz, No emission found between lowest internal used/generated frequency to 30MHz.

- 2). Radiated emissions measured in frequency range from 9 KHz ~ 40 GHz were made with an instrument using Peak detector mode.
- 3). 18~40GHz at least have 20dB margin. No recording in the test report.
- 4). Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;
- 5). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5.6.8.2 UNII Band 3

IEEE 802.11a

Channel 149 / 5745 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.49	55.46	33.92	36.09	10.26	63.55	74.00	-10.45	Peak	Horizontal
11.49	39.29	33.92	36.09	10.26	47.38	54.00	-6.62	Average	Horizontal
11.49	59.94	33.99	35.99	10.26	68.20	74.00	-5.80	Peak	Vertical
11.49	41.80	33.99	35.99	10.26	50.06	54.00	-3.94	Average	Vertical

Channel 157 / 5785 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.57	55.27	33.92	36.09	10.26	63.36	74.00	-10.64	Peak	Horizontal
11.57	38.88	33.92	36.09	10.26	46.97	54.00	-7.03	Average	Horizontal
11.57	58.10	33.99	35.99	10.26	66.36	74.00	-7.64	Peak	Vertical
11.57	41.31	33.99	35.99	10.26	49.57	54.00	-4.43	Average	Vertical

Channel 163 / 5825 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.			
11.65	55.44	33.92	36.09	10.26	63.53	74.00	-10.47	Peak	Horizontal			
11.65	39.71	33.92	36.09	10.26	47.80	54.00	-6.20	Average	Horizontal			
11.65	59.65	33.99	35.99	10.26	67.91	74.00	-6.09	Peak	Vertical			
11.65	41.24	33.99	35.99	10.26	49.50	54.00	-4.50	Average	Vertical			

IEEE 802.11n HT20

Channel 149 / 5745 MHz

Free GH		Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.4	19	55.33	33.92	36.09	10.26	63.42	74.00	-10.58	Peak	Horizontal
11.4	19	39.56	33.92	36.09	10.26	47.65	54.00	-6.35	Average	Horizontal
11.4	19	58.72	33.99	35.99	10.26	66.98	74.00	-7.02	Peak	Vertical
11.4	19	41.91	33.99	35.99	10.26	50.17	54.00	-3.83	Average	Vertical

Channel 157 / 5785 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.57	55.38	33.92	36.09	10.26	63.47	74.00	-10.53	Peak	Horizontal
11.57	38.02	33.92	36.09	10.26	46.11	54.00	-7.89	Average	Horizontal
11.57	58.33	33.99	35.99	10.26	66.59	74.00	-7.41	Peak	Vertical
11.57	41.20	33.99	35.99	10.26	49.46	54.00	-4.54	Average	Vertical

Channel 163 / 5825 MHz

		-							
Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.65	55.64	33.92	36.09	10.26	63.73	74.00	-10.27	Peak	Horizontal
11.65	38.93	33.92	36.09	10.26	47.02	54.00	-6.98	Average	Horizontal
11.65	58.55	33.99	35.99	10.26	66.81	74.00	-7.19	Peak	Vertical
11.65	42.24	33.99	35.99	10.26	50.50	54.00	-3.50	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 78

IEEE 802.11n HT40

Channel 151 / 5755 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.51	55.97	33.92	36.09	10.26	64.06	74.00	-9.94	Peak	Horizontal
11.51	38.92	33.92	36.09	10.26	47.01	54.00	-6.99	Average	Horizontal
11.51	58.40	33.99	35.99	10.26	66.66	74.00	-7.34	Peak	Vertical
11.51	42.71	33.99	35.99	10.26	50.97	54.00	-3.03	Average	Vertical

Channel 159 / 5795 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.59	54.75	33.92	36.09	10.26	62.84	74.00	-11.16	Peak	Horizontal
11.59	38.20	33.92	36.09	10.26	46.29	54.00	-7.71	Average	Horizontal
11.59	59.24	33.99	35.99	10.26	67.50	74.00	-6.50	Peak	Vertical
11.59	42.34	33.99	35.99	10.26	50.60	54.00	-3.40	Average	Vertical

IEEE 802.11ac VHT20

Channel 149 / 5745 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.49	55.04	33.92	36.09	10.26	63.13	74.00	-10.87	Peak	Horizontal
11.49	38.42	33.92	36.09	10.26	46.51	54.00	-7.49	Average	Horizontal
11.49	59.00	33.99	35.99	10.26	67.26	74.00	-6.74	Peak	Vertical
11.49	41.43	33.99	35.99	10.26	49.69	54.00	-4.31	Average	Vertical

Channel 157 / 5785 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.57	55.19	33.92	36.09	10.26	63.28	74.00	-10.72	Peak	Horizontal
11.57	39.49	33.92	36.09	10.26	47.58	54.00	-6.42	Average	Horizontal
11.57	58.88	33.99	35.99	10.26	67.14	74.00	-6.86	Peak	Vertical
11.57	41.06	33.99	35.99	10.26	49.32	54.00	-4.68	Average	Vertical

Channel 163 / 5825 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.65	55.50	33.92	36.09	10.26	63.59	74.00	-10.41	Peak	Horizontal
11.65	39.88	33.92	36.09	10.26	47.97	54.00	-6.03	Average	Horizontal
11.65	58.71	33.99	35.99	10.26	66.97	74.00	-7.03	Peak	Vertical
11.65	42.78	33.99	35.99	10.26	51.04	54.00	-2.96	Average	Vertical

IEEE 802.11ac VHT40

Channel 151 / 5755 MHz

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.51	55.31	33.92	36.09	10.26	63.40	74.00	-10.60	Peak	Horizontal
11.51	38.78	33.92	36.09	10.26	46.87	54.00	-7.13	Average	Horizontal
11.51	59.37	33.99	35.99	10.26	67.63	74.00	-6.37	Peak	Vertical
11.51	41.93	33.99	35.99	10.26	50.19	54.00	-3.81	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 78

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.59	54.55	33.92	36.09	10.26	62.64	74.00	-11.36	Peak	Horizontal
11.59	39.42	33.92	36.09	10.26	47.51	54.00	-6.49	Average	Horizontal
11.59	58.96	33.99	35.99	10.26	67.22	74.00	-6.78	Peak	Vertical
11.59	42.06	33.99	35.99	10.26	50.32	54.00	-3.68	Average	Vertical

IEEE 802.11ac VHT80

Channel 155 / 5775 MHz

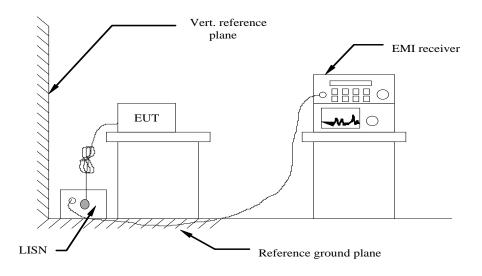
Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.51	54.17	33.92	36.09	10.26	62.26	74.00	-11.74	Peak	Horizontal
11.51	38.05	33.92	36.09	10.26	46.14	54.00	-7.86	Average	Horizontal
11.51	58.87	33.99	35.99	10.26	67.13	74.00	-6.87	Peak	Vertical
11.51	42.65	33.99	35.99	10.26	50.91	54.00	-3.09	Average	Vertical

Notes:

1). Measuring frequencies from 9 KHz ~ 40 GHz, No emission found between lowest internal used/generated frequency to 30MHz.

- 2). Radiated emissions measured in frequency range from 9 KHz ~ 40 GHz were made with an instrument using Peak detector mode.
- 3). 18~40GHz at least have 20dB margin. No recording in the test report.
- 4). Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;
- Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5.7. Power line conducted emissions

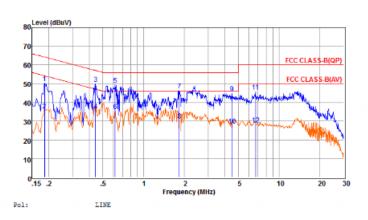

5.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBµ	V)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

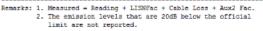
* Decreasing linearly with the logarithm of the frequency

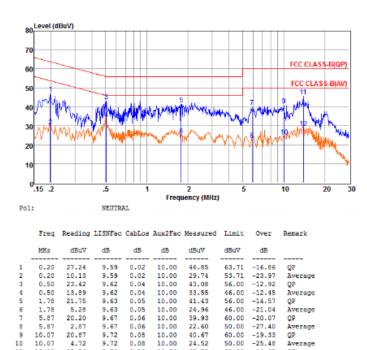
5.7.2 Block Diagram of Test Setup


5.7.3 Test Results

PASS.

The test data please refer to following page.


AC Conducted Emission of power by adapter @ AC 120V/60Hz @ IEEE 802.11a (worst case)


Line

Freq Reading LISNFac CabLos Aux2Fac Measured Limit Over Remar

	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.19	30.74	9.62	0.02	10.00	50.38	64.20	-13.82	QP
2	0.19	16.17	9.62	0.02	10.00	35.81	54.19	-18.38	Average
3	0.44	30.24	9.62	0.04	10.00	49.90	57.02	-7.12	QP
4	0.44	16.05	9.62	0.04	10.00	35.71	47.02	-11.31	Average
5	0.62	29.73	9.63	0.04	10.00	49.40	56.00	-6.60	QP
6	0.62	15.63	9.63	0.04	10.00	35.30	46.00	-10.70	Average
7	1.84	26.59	9.64	0.05	10.00	46.28	56.00	-9.72	QP
8	1.84	10.65	9.64	0.05	10.00	30.34	46.00	-15.66	Average
9	4.50	25.09	9,65	0.06	10.00	44.80	56.00	-11.20	QP
10	4.50	7.94	9.65	0.06	10.00	27.65	46.00	-18.35	Average
11	6.70	26.00	9.68	0.07	10.00	45.75	60.00	-14.25	QP
12	6.70	8.57	9.68	0.07	10.00	28.32	50.00	-21.68	Average
									-

12 13.92 9.11 9.74 0.10 10.00 28.95 50.00 -21.05 Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac. 2. The emission levels that are 20dB below the official limit are not reported.

10.00

0.10

11 13.91

25.74

9.74

***Note: Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11a).

45.58

60.00

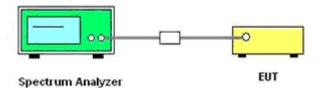
-14.42

OP

Average

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 78

Neutral


5.8 Undesirable Emissions Measurement

5.8.1 Limit

According to ξ 15.407 (b) Undesirable emission limits. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (a) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (b) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (c) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (d) For transmitters operating in the 5.725-5.85 GHz band:
 - (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
 - (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (e) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (f) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
- (g) The provisions of §15.205 apply to intentional radiators operating under this section.
- (h) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

5.8.2 Test Configuration

5.8.3 Test Procedure

According to KDB789033 D02 General UNII Test Procedures New Rules Section G: Unwanted Emission Measurement

- 1. Unwanted Emissions in the Restricted Bands
- a) For all measurements, follow the requirements in section II.G.3. "General Requirements for Unwanted Emissions Measurements."
- b) At frequencies below 1000 MHz, use the procedure described in section II.G.4. "Procedure for Unwanted Emissions Measurements below 1000 MHz."
- c) At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in sections II.G.5. and II.G.6, respectively, must satisfy the respective peak and average limits. If all peak measurements satisfy the average limit, then average measurements are not required.
- d) For conducted measurements above 1000 MHz, EIRP shall be computed as specified in section II.G.3.b) and then field strength shall be computed as follows (see KDB Publication 412172):
 - i) E[dBµV/m] = EIRP[dBm] 20 log (d[meters]) + 104.77, where E = field strength and d = distance at which field strength limit is specified in the rules;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 78

- ii) $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters
- e) For conducted measurements below 1000 MHz, the field strength shall be computed as specified in d), above, and then an additional 4.7 dB shall be added as an upper bound on the field strength that would be observed on a test range with a ground plane for frequencies between 30 MHz and 1000 MHz, or an additional 6 dB shall be added for frequencies below 30 MHz.
- 2. Unwanted Emissions that fall Outside of the Restricted Bands
- a) For all measurements, follow the requirements in section II.G.3. "General Requirements for Unwanted Emissions Measurements."
- b) At frequencies below 1000 MHz, use the procedure described in section II.G.4. "Procedure for Unwanted Emissions Measurements below 1000 MHz."
- c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in section II.G.5., "Procedure for Unwanted Maximum Unwanted Emissions Measurements Above 1000 MHz."
- d) Section 15.407(b) (1-3) specifies the unwanted emissions limit for the U-NII-1 and 2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz. However, an out-of-band emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz dBm/MHz peak emission limit.
 - i) Section 15.407(b) (4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b) (4) (i). An alternative to the band emissions mask is specified in Section 15.407(b) (4) (ii). The alternative limits are based on the highest antenna gain specified in the filing. There are also marketing and importation restrictions for the alternative limit.
- e) If radiated measurements are performed, field strength is then converted to EIRP as follows:
 i) EIRP = ((Exd) ^2) / 30
 - Where:
 - E is the field strength in V/m;
 - d is the measurement distance in meters;
 - EIRP is the equivalent isotopically radiated power in watts; ii) Working in dB units, the above equation is equivalent to:
 - ÉIRP [dBm] = E [dBµV/m] + 20 log (d [meters]) 104.77
 - iii) Or, if d is 3 meters:
 - $EIRP [dBm] = E [dB\mu V/m] 95.23$
- 3) Radiated versus Conducted Measurements.

The unwanted emission limits in both the restricted and non-restricted bands are based on radiated measurements; however, as an alternative, antenna-port conducted measurements in conjunction with cabinet emissions tests will be permitted to demonstrate compliance provided that the following steps are performed:

- (i) Cabinet emissions measurements. A radiated test shall be performed to ensure that cabinet emissions are below the emission limits. For the cabinet-emission measurements the antenna may be replaced by a termination matching the nominal impedance of the antenna.
- (ii) Impedance matching. Conducted tests shall be performed using equipment that matches the nominal impedance of the antenna assembly used with the EUT.
- (iii) EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater.3 However, for devices that operate in multiple bands using the same transmit antenna, the highest gain of the antenna within the operating band nearest to the out-of-band frequency being measured may be used in lieu of the overall highest gain when measuring emissions at frequencies within 20% of the absolute frequency at the nearest edge of that band, but in no case shall a value less than 2 dBi be selected.
- (iv) EIRP adjustments for multiple outputs. For devices with multiple outputs occupying the same or overlapping frequency ranges in the same band (e.g., MIMO or beamforming devices), compute the total EIRP as follows:
 - Compute EIRP for each output, as described in (iii), above.
 - Follow the procedures specified in KDB Publication 662911 for summing emissions across the outputs or adjusting emission levels measured on individual outputs by 10 log (N_{ANT}), where N_{ANT} is the number of outputs.
 - Add the array gain term specified in KDB Publication 662911 for out-of-band and spurious signals.
 (v) Direction of maximum emission.

For all radiated emissions tests, measurements shall correspond to the direction of maximum emission level for each measured emission (see ANSI C63.10 for guidance).

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 78

5.8.4 Test Results

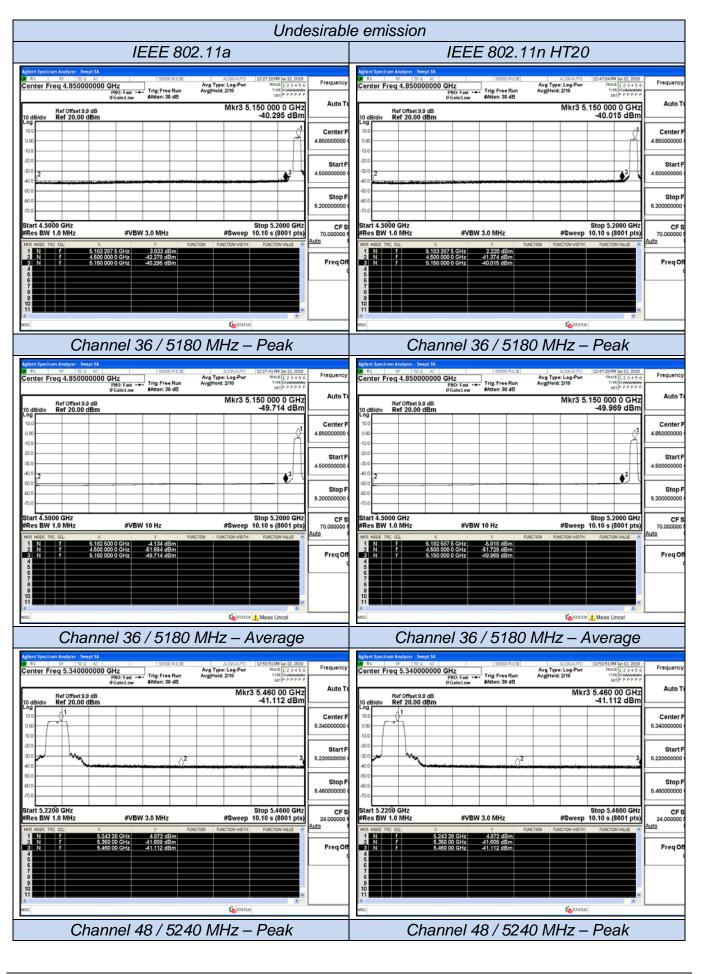
5.8.4.1 UNII Band 1

	IEEE 802.11a												
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict						
4500.000	-42.278	5.00	0.00	57.922	Peak	74.00	PASS						
4500.000	-51.684	5.00	0.00	48.516	Average	54.00	PASS						
5150.000	-40.295	5.00	0.00	59.905	Peak	74.00	PASS						
5150.000	-49.714	5.00	0.00	50.486	Average	54.00	PASS						
5350.000	-40.503	5.00	0.00	59.697	Peak	74.00	PASS						
5350.000	-51.640	5.00	0.00	48.560	Average	54.00	PASS						
5460.000	-40.841	5.00	0.00	59.359	Peak	74.00	PASS						
5460.000	-52.028	5.00	0.00	48.172	Average	54.00	PASS						

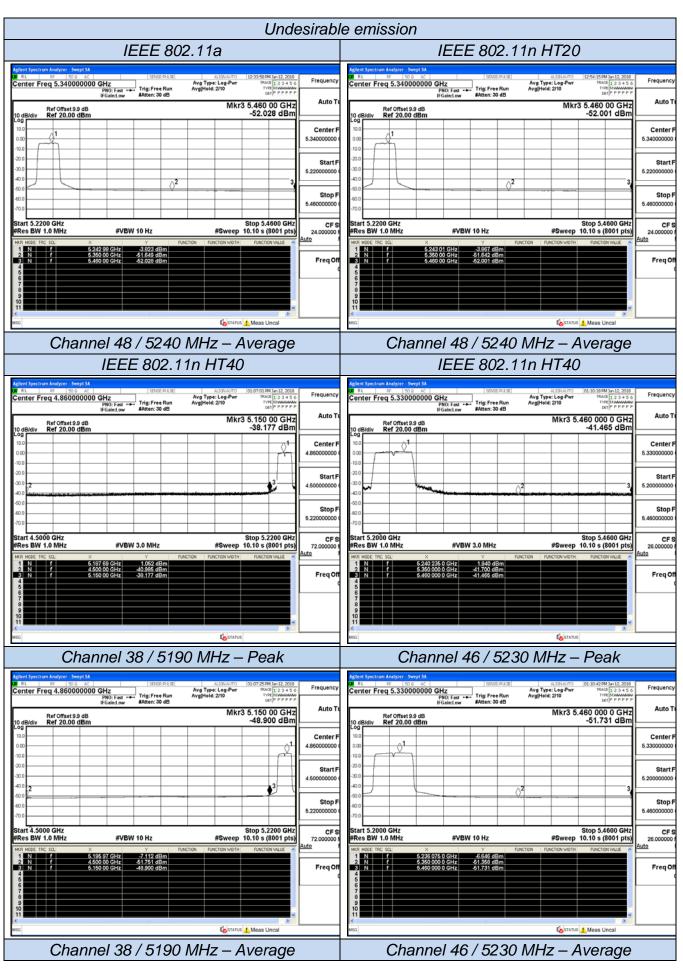
	IEEE 802.11n HT20												
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict						
4500.000	-41.374	5.00	0.00	58.826	Peak	74.00	PASS						
4500.000	-51.729	5.00	0.00	48.471	Average	54.00	PASS						
5150.000	-40.015	5.00	0.00	60.185	Peak	74.00	PASS						
5150.000	-49.969	5.00	0.00	50.231	Average	54.00	PASS						
5350.000	-41.609	5.00	0.00	58.591	Peak	74.00	PASS						
5350.000	-51.642	5.00	0.00	48.558	Average	54.00	PASS						
5460.000	-41.112	5.00	0.00	59.088	Peak	74.00	PASS						
5460.000	-52.001	5.00	0.00	48.199	Average	54.00	PASS						

	IEEE 802.11n HT40												
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict						
4500.000	-40.985	5.00	0.00	59.215	Peak	74.00	PASS						
4500.000	-51.751	5.00	0.00	48.449	Average	54.00	PASS						
5150.000	-38.177	5.00	0.00	62.023	Peak	74.00	PASS						
5150.000	-48.900	5.00	0.00	51.300	Average	54.00	PASS						
5350.000	-41.700	5.00	0.00	58.500	Peak	74.00	PASS						
5350.000	-51.358	5.00	0.00	48.842	Average	54.00	PASS						
5460.000	-41.465	5.00	0.00	58.735	Peak	74.00	PASS						
5460.000	-51.731	5.00	0.00	48.469	Average	54.00	PASS						

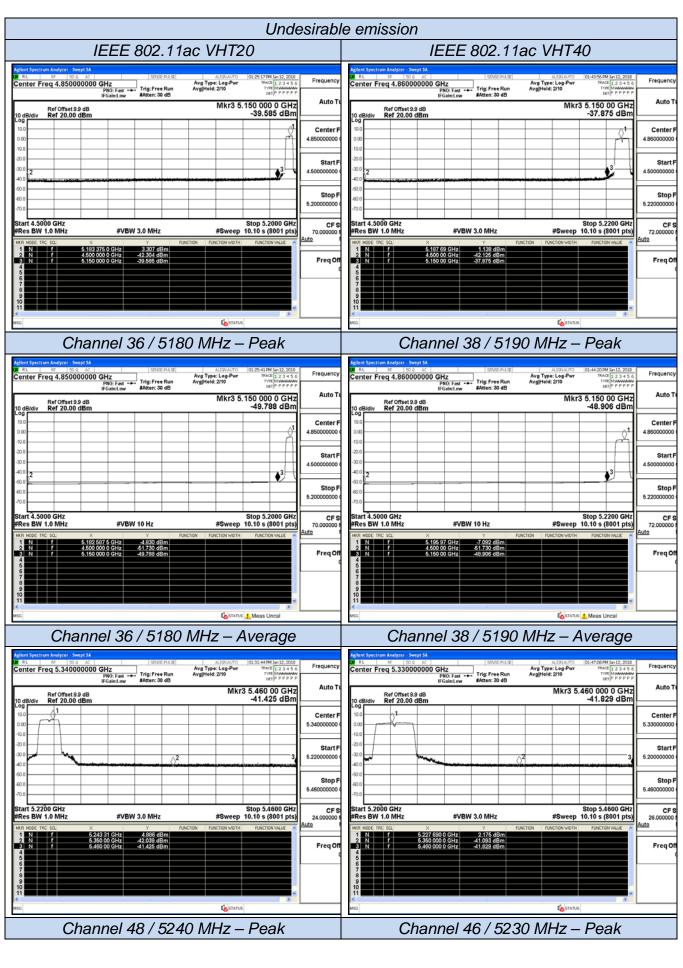
	IEEE 802.11ac VHT20												
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict						
4500.000	-42.304	5.00	0.00	57.896	Peak	74.00	PASS						
4500.000	-51.730	5.00	0.00	48.470	Average	54.00	PASS						
5150.000	-39.585	5.00	0.00	60.615	Peak	74.00	PASS						
5150.000	-49.788	5.00	0.00	50.412	Average	54.00	PASS						
5350.000	-42.039	5.00	0.00	58.161	Peak	74.00	PASS						
5350.000	-51.662	5.00	0.00	48.538	Average	54.00	PASS						
5460.000	-41.425	5.00	0.00	58.775	Peak	74.00	PASS						
5460.000	-52.023	5.00	0.00	48.177	Average	54.00	PASS						


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 78

			IEEE 802.11	ac VHT40			
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
4500.000	-42.125	5.00	0.00	58.075	Peak	74.00	PASS
4500.000	-51.730	5.00	0.00	48.470	Average	54.00	PASS
5150.000	-37.875	5.00	0.00	62.325	Peak	74.00	PASS
5150.000	-48.906	5.00	0.00	51.294	Average	54.00	PASS
5350.000	-41.093	5.00	0.00	59.107	Peak	74.00	PASS
5350.000	-51.370	5.00	0.00	48.830	Average	54.00	PASS
5460.000	-41.829	5.00	0.00	58.371	Peak	74.00	PASS
5460.000	-51.713	5.00	0.00	48.487	Average	54.00	PASS


	IEEE 802.11ac VHT80												
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Convert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict						
4500.000	-41.145	5.00	Ò.0Ó	59.055	Peak	74.00	PASS						
4500.000	-50.985	5.00	0.00	49.215	Average	54.00	PASS						
5150.000	-42.300	5.00	0.00	57.900	Peak	74.00	PASS						
5150.000	-51.249	5.00	0.00	48.951	Average	54.00	PASS						
5350.000	-41.612	5.00	0.00	58.588	Peak	74.00	PASS						
5350.000	-51.738	5.00	0.00	48.462	Average	54.00	PASS						
5460.000	-40.576	5.00	0.00	59.624	Peak	74.00	PASS						
5460.000	-50.337	5.00	0.00	49.863	Average	54.00	PASS						

Remark:


- 1. Measured Undesirable emission at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;
- 4. Covert Radiated E Level At 3m = Conducted average power + Directional Gain + 104.77-20*log(3);
- 5. Please refer to following test plots;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 60 of 78

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 61 of 78

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 62 of 78

Unde	esirabl	e emission
IEEE 802.11ac VHT20		IEEE 802.11ac VHT40
8.gljent Spectrum Andyzer, Swegi SA 14. 87 (50 g. 42.) (589.68.P.3.68) 44.329.40/70 (01.32-08.P4 3ar.12, 2010	Frequency	Agitent Spectrum Analyzer - Swept SA 8 8 8 90 4/2 900 - C Canada - Except 5 200 0.000 CH Canada - Except 5 200 0.000 CH State - Except 5 200 0.0000 CH Sta
Center Freq 5.34000000 GHz FR0:Fau +> IFGainLow FAtten: 30 dB	AutoT	PRO: Fast
Ref Offiset 9.9 dB Mkr3 5.460 00 GHz 10 dB/div Ref 20.00 dBm -52.023 dBm		Ref Offset 3.9 dB Mkr3 5.460 000 0 GHz Autor 10 dB/div Ref 20.00 dBm -51.713 dBm
	Center F 5.340000000 0	100 000 01 533000000
	Start F	-100 -200 Start F
	5.220000000	
	Stop F	000 V V V Stop F 5.460000000
300 Store S	CF S 24.000000 1	Start 5.2000 GHz Stop 5.4600 GHz CF S #Res BW 1.0 MHz #VBW 10 Hz #Sweep 10.10 s (8001 pts) 28000000
MRT HODE TRC SLI X Y Function Function Punction width Punction width 1 N F 5.242.98 GHz 3.769 dBm 1 1 1 F 5.350.00 GHz 3.61 662 dBm 1 1 1 1 5.652 dBm 1	Auto	More Hope Tric Sol X Y Punction Punction Punction worth Punction
3 N 7 5.350 00 GHz 51 682 dBm 3 N 7 5.460 00 GHz \$2.023 dBm 4 5 5 5	Freq Off 0	Z N r 5350 000 0 GH2 313/0 0Bm Freq 01
6 7 8 9		
Channel 48 / 5240 MHz – Average		Channel 46 / 5230 MHz – Average
IEEE 802.11ac VHT80		IEEE 802.11ac VHT80
Agilent Spectrum Analyzer - Swept SA		Aglent Spectrum Analyzer - Swegt SA
MI BF SOG AC ISPREPARI AUSWARD D2074499 bm12, 2018 Center Freq 5.315000000 GHz PR071aet → Trig: Free Run Avg1Pride: 2/10 Marc[2:34:5 Trig: Center Free Run Avg1Pride: 2/10 Trig: Cen	Frequency	RL 65 50.0 AC [SEME-PALSE] AUXINUTO [02:0652PM bn 12, 2019] Center Freq 4.875000000 GHz Frequency Avg Type: Log-Pwr TRACE [1:2:4:5:6] Frequency PR0: Fault Trig: Free Run Avg Type: Log-Pwr Trive: Trig: Free Run Avg Type: Log-Pwr
Ref Offset 9.9 dB Mkr3 5.460 00 GHz 10 dB/div Ref 20.00 dBm -42.300 dBm	Auto Tu	IF-Gaint.ow #Atten: 30 dB Deliver in the second se
	Center F 5.315000000	100 01 Center F
300 400	Start F 5.170000000 (300 2 31 Start F 4.50000000
40.0	Stop F	500 Stop F
700 Start 5.1700 GHz Stop 5.4600 GHz	5.460000000 0 CF S	-700 5.25000000 Start 4.5000 GHz Stop 5.2500 GHz CF S
#Res BW 1.0 MHz #VBW 3.0 MHz #Sweep 10.10 s (8001 pts) HVR MODE TRC SCL X Y PUNCTION PLANTION WOLT A UNCTION VALUE	29.000000 1 Auto	#Res BW 1.0 MHz #VBW 3.0 MHz #Sweep 10.10 s (8001 pts) Mrx Mode TRC SQL X Y Ranction Ranction worth Ranction
1 N f 520734.0Hz 3964.4Bm 2 N f 53800.06Hz 41.145.4Bm 3 N f 5.460.00.0Hz 42.300.4Bm	Freq Off	1 N f 520734 GHz 3323 dBm 2 N f 45000 GHz 41612 dBm 3 N f 5150 00 GHz 41657 dBm 4 Freq Of
667	ļ	
8 9 10		
		MSG GSTATUS
Channel 42 / 5210 MHz – Peak(left))	Channel 46 / 5230 MHz – Peak(right)
Agitett Spectram Analyzer Swept SA STREE PLASE ALSPLANTO 02:0000 PM Jpn 12; 2010 W R1 RF SF SO 0 AC STREE PLASE ALSPLANTO 02:0000 PM Jpn 12; 2010 Center Free S.315 S000000 GHz Avg Type: Log-Pwr TMAE [2:2:4:5 TMAE [2:2:4:5	Frequency	Adjent Spectral Analyzer - Swept SA RESPECTAND
Center Freq 5.315000000 GHz Avg Type: Log-Per Tract [2:2:4:5 PNO: [Fact ++] Trig: Free Run Avg]Hold: 2/10 Trig: Free Run IFGaint.ow #Atten: 30 dB Mkr3 5.460 00 GHz Ref Offset 9.9 dB Mkr3 5.460 00 GHz	Auto Tr	PHO: Fast
10 dB/div Ref 20.00 dBm -51.249 dBm	Center F	10 dB/div Ref 20.00 dBm -50.337 dBm
100	5.315000000	100 Center F 0.00 4.87600000
	Start F	300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40.0	5.460000000 0	600 Stop F 525000000
Start 5.1700 GHz Stop 5.4600 GHz #Res BW 1.0 MHz #VBW 10 Hz #Sweep 10.10 s (8001 pts)	29.000000 1	Start 4.5000 GHz #VBW 10 Hz #Sweep 10.10 s(800 Hz) 75.0000 GHz #Res BW 1.0 MHz #VBW 10 Hz #Sweep 10.10 s(800 Hz) 57.000000
MRR MORE TRC SQL X Y PRACTON PONETON WD1H PUNCTON V0LUE A 1 N f 6,5124.66 0Hz 598.059 0Hz 598.059 0Hz F 6,469.00 0Hz 631.249 0Hm F 6,469.00 0Hz 631.249 0Hm F 6,469.00 0Hz 631.249 0Hm F 6,459.00 0Hz 631.249 0Hm F 6,459.00 0Hz 631.249 0Hm F 6,459.00 0Hz 51.249 0Hm F 6,459.00 0Hz 631.249 0Hm F 6,459.00 0Hz 51.249 0Hm F 51.249	Freq Off	Moli Mode Tire, Sci. X Y Plaction Function worth F
3 N f 5,460 00 GHz 51 249 dBm 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
7		
11 was		Ma Meas Uncal
Channel 42 / 5210 MHz – Average(le	eft)	Channel 46 / 5230 MHz – Average(right)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 63 of 78

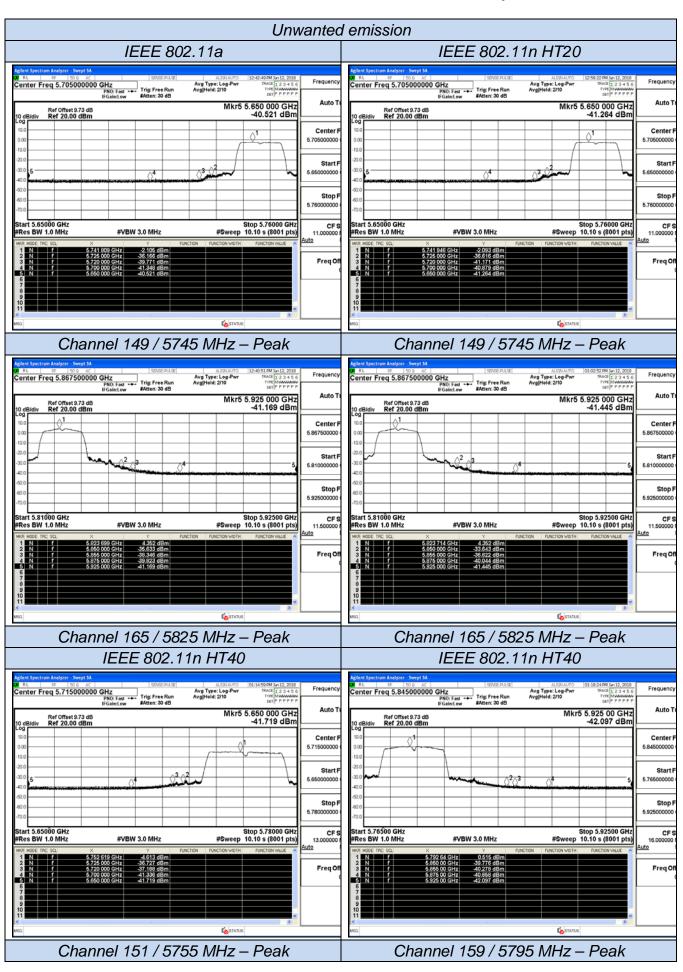
5.8.4.2 UNII Band 3

	IEEE 802.11a											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit (dB)	Verdict					
5650.000	-40.521	5.00	-35.521	Peak	-27.00	-8.521	PASS					
5700.000	-41.348	5.00	-36.348	Peak	10.00	-46.348	PASS					
5720.000	-39.771	5.00	-34.771	Peak	15.60	-50.371	PASS					
5725.000	-36.166	5.00	-31.166	Peak	27.00	-58.166	PASS					
5850.000	-36.633	5.00	-31.633	Peak	27.00	-58.633	PASS					
5855.000	-38.346	5.00	-33.346	Peak	15.60	-48.946	PASS					
5875.000	-39.823	5.00	-34.823	Peak	10.00	-44.823	PASS					
5925.000	-41.169	5.00	-36.169	Peak	-27.00	-9.169	PASS					

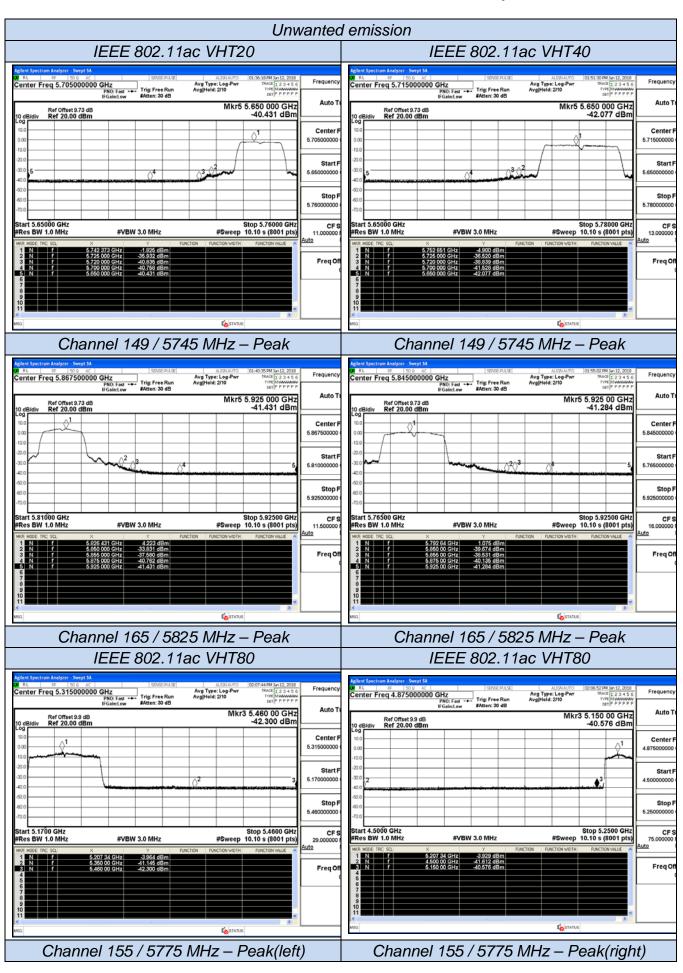
	IEEE 802.11n HT20											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit (dB)	Verdict					
5650.000	-41.264	5.00	-36.264	Peak	-27.00	-9.264	PASS					
5700.000	-40.879	5.00	-35.879	Peak	10.00	-45.879	PASS					
5720.000	-41.171	5.00	-36.171	Peak	15.60	-51.771	PASS					
5725.000	-36.616	5.00	-31.616	Peak	27.00	-58.616	PASS					
5850.000	-33.643	5.00	-28.643	Peak	27.00	-55.643	PASS					
5855.000	-36.822	5.00	-31.822	Peak	15.60	-47.422	PASS					
5875.000	-40.044	5.00	-35.044	Peak	10.00	-45.044	PASS					
5925.000	-41.445	5.00	-36.445	Peak	-27.00	-9.445	PASS					

	IEEE 802.11n HT40											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit (dB)	Verdict					
5650.000	-41.719	5.00	-36.719	Peak	-27.00	-9.719	PASS					
5700.000	-41.336	5.00	-36.336	Peak	10.00	-46.336	PASS					
5720.000	-37.188	5.00	-32.188	Peak	15.60	-47.788	PASS					
5725.000	-36.727	5.00	-31.727	Peak	27.00	-58.727	PASS					
5850.000	-39.776	5.00	-34.776	Peak	27.00	-61.776	PASS					
5855.000	-40.278	5.00	-35.278	Peak	15.60	-50.878	PASS					
5875.000	-40.658	5.00	-35.658	Peak	10.00	-45.658	PASS					
5925.000	-42.097	5.00	-37.097	Peak	-27.00	-10.097	PASS					

	IEEE 802.11ac VHT20										
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit (dB)	Verdict				
5650.000	-40.431	5.00	-35.431	Peak	-27.00	-8.431	PASS				
5700.000	-40.758	5.00	-35.758	Peak	10.00	-45.758	PASS				
5720.000	-40.835	5.00	-35.835	Peak	15.60	-51.435	PASS				
5725.000	-35.932	5.00	-30.932	Peak	27.00	-57.932	PASS				
5850.000	-33.831	5.00	-28.831	Peak	27.00	-55.831	PASS				
5855.000	-37.590	5.00	-32.590	Peak	15.60	-48.190	PASS				
5875.000	-40.762	5.00	-35.762	Peak	10.00	-45.762	PASS				
5925.000	-41.431	5.00	-36.431	Peak	-27.00	-9.431	PASS				


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 64 of 78

IEEE 802.11ac VHT40							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit (dB)	Verdict
5650.000	-42.077	5.00	-37.077	Peak	-27.00	-10.077	PASS
5700.000	-41.528	5.00	-36.528	Peak	10.00	-46.528	PASS
5720.000	-38.839	5.00	-33.839	Peak	15.60	-49.439	PASS
5725.000	-36.520	5.00	-31.520	Peak	27.00	-58.520	PASS
5850.000	-39.674	5.00	-34.674	Peak	27.00	-61.674	PASS
5855.000	-38.531	5.00	-33.531	Peak	15.60	-49.131	PASS
5875.000	-40.135	5.00	-35.135	Peak	10.00	-45.135	PASS
5925.000	-41.284	5.00	-36.284	Peak	-27.00	-9.284	PASS


IEEE 802.11ac VHT80							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit (dB)	Verdict
5650.000	-43.054	5.00	-38.054	Peak	-27.00	-11.054	PASS
5700.000	-33.510	5.00	-28.510	Peak	10.00	-38.510	PASS
5720.000	-31.478	5.00	-26.478	Peak	15.60	-42.078	PASS
5725.000	-30.072	5.00	-25.072	Peak	27.00	-52.072	PASS
5850.000	-33.826	5.00	-28.826	Peak	27.00	-55.826	PASS
5855.000	-34.928	5.00	-29.928	Peak	15.60	-45.528	PASS
5875.000	-39.062	5.00	-34.062	Peak	10.00	-44.062	PASS
5925.000	-41.985	5.00	-36.985	Peak	-27.00	-9.985	PASS

Remark:

- 1. Measured unwanted emission at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11ac VHT20, IEEE 802.11ac VHT40, IEEE 802.11ac VHT80;
- 4. EIRP = Conducted power + Directional Gain
- 5. EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater.3 However, for devices that operate in multiple bands using the same transmit antenna, the highest gain of the antenna within the operating band nearest to the out-of-band frequency being measured may be used in lieu of the overall highest gain when measuring emissions at frequencies within 20% of the absolute frequency at the nearest edge of that band, but in no case shall a value less than 2 dBi be selected.
- 6. Over limit = EIRP Limit
- 7. Please refer to following test plots;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 66 of 78

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 67 of 78

5.9. Antenna Requirements

5.9.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

5.9.2 Antenna Connected Construction

5.9.2.1. Standard Applicable

According to § 15.203 & RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.9.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 5dBi, and the antenna is an external antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.9.2.3. Results: Compliance.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Conducted power refers ANSI C63.10:2013 Output power test procedure for NII devices. Radiated power refers to ANSI C63.10:2013 Radiated emissions tests.

Measurement parameters

Measurement parameter				
Detector:	Peak			
Sweep Time:	Auto			
Resolution bandwidth:	1MHz			
Video bandwidth:	3MHz			
Trace-Mode:	Max hold			

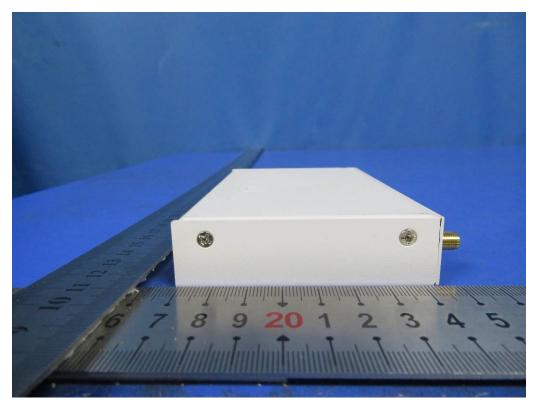
Limits

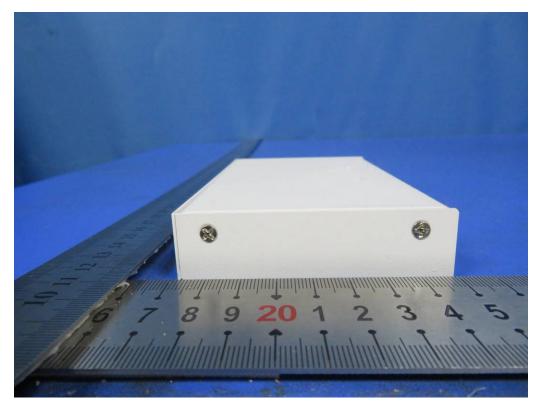
FCC	ISED		
Antenna Gain			
6 dBi			

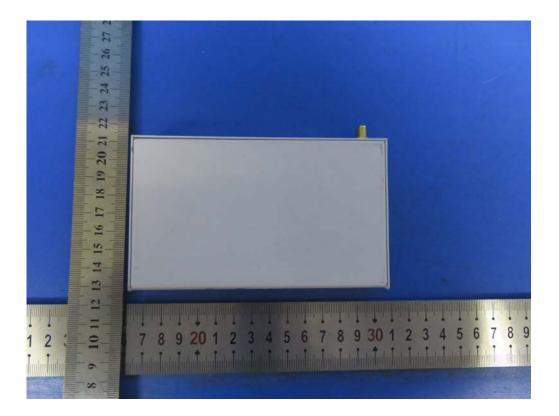
6. TEST SETUP PHOTOGRAPHS OF EUT

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 69 of 78

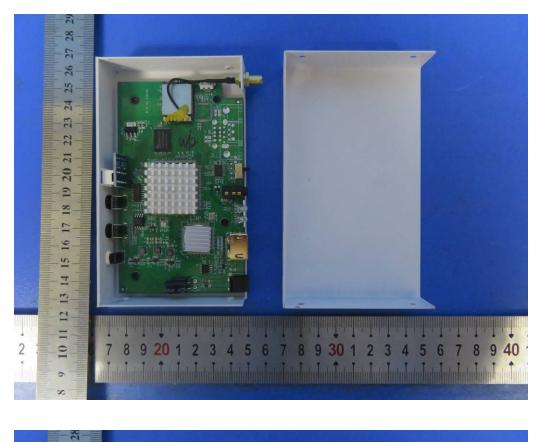
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 70 of 78

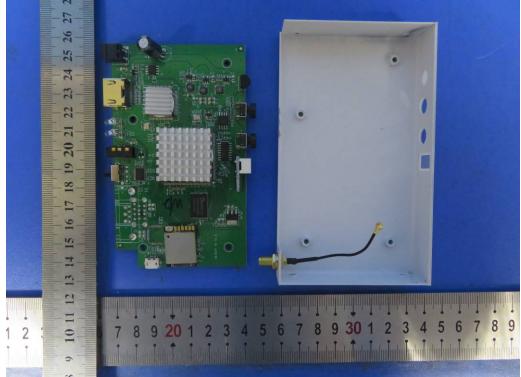

7. EXTERIOR PHOTOGRAPHS OF THE EUT

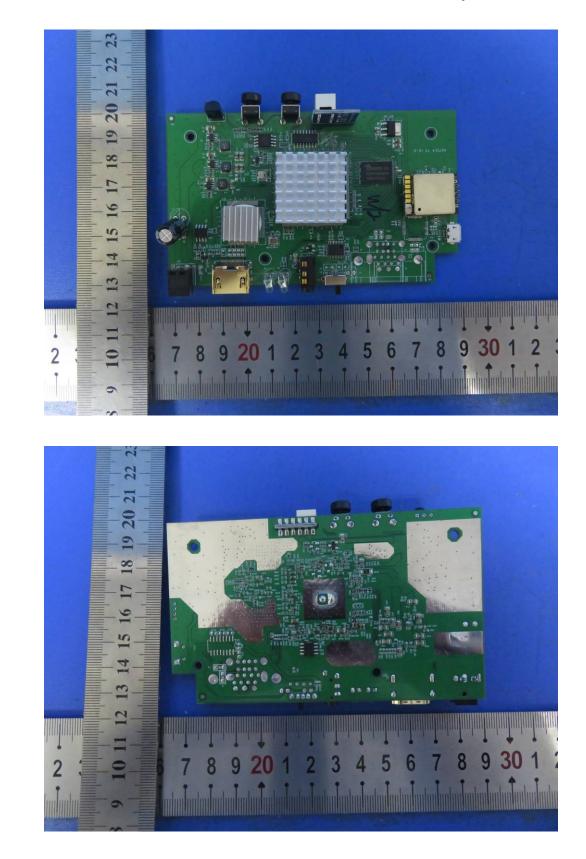

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 71 of 78



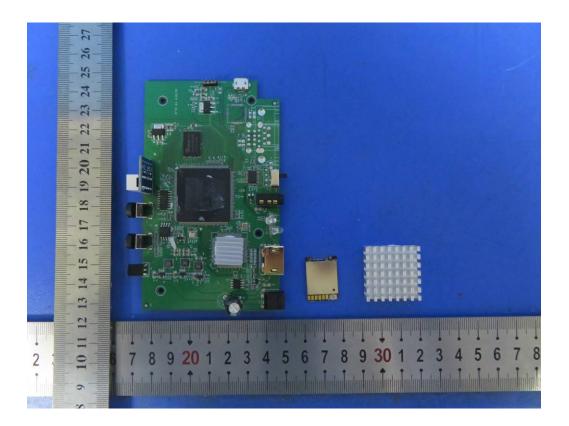
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 72 of 78

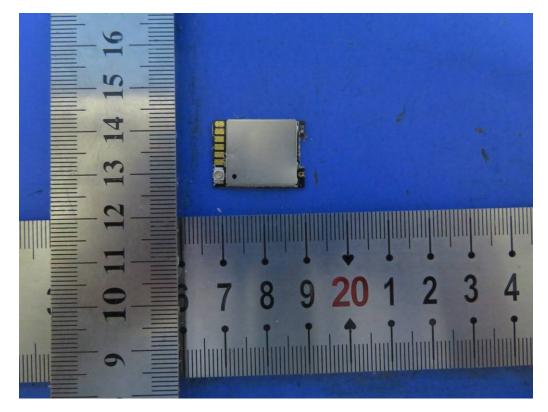



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 73 of 78

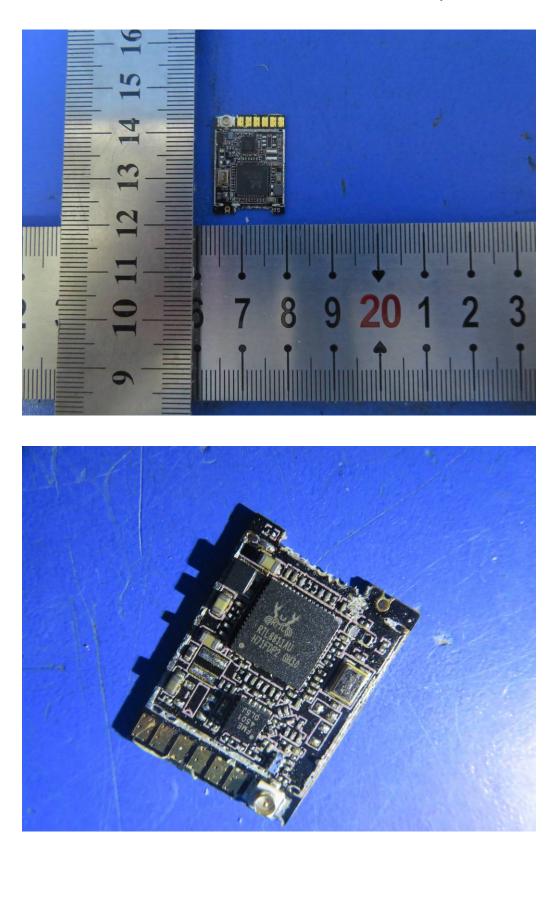

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 74 of 78

8. INTERIOR PHOTOGRAPHS OF THE EUT





This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 75 of 78



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 76 of 78

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 77 of 78

-----THE END OF REPORT------

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 78 of 78