

FCC 47 CFR PART 15 SUBPART E

for

Dual-band Wifi Extender Model: MX1200YZ (where Y can be A, B, C, D or blank, and Z can be A, B, C, D, or blank, for identical hardware models for marketing purposes only) Brand: Motorola

> Test Report Number: 4C161220Z01-RP1-3 Issued Date: December 30, 2016

> > Issued for

MTRLC LLC

P.O.Box 12147 Boston, Massachusetts 02112-1147 United States

Issued by:

Compliance Certification Services (Shenzhen) Inc.

No.10-1 Mingkeda Logistics park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China TEL: 86-755-28055000 FAX: 86-755-28055221

E-Mail: service@ccssz.com

Note: This report shall not be reproduced except in tull, without the written approval of Compliance Certification Services (Shenzhen) Inc. This document may be altered or revised by Compliance Certification Services (Shenzhen) Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The TEST RESULTS in the report only apply to the tested sample.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	December 30, 2016	Initial Issue	ALL	Sabrina Wang

TABLE OF CONTENTS

1. TEST CERTIFICATION	4
2. EUT DESCRIPTION	5
3. TEST METHODOLOGY	7
3.1 EUT CONFIGURATION	7
3.2 EUT EXERCISE	
3.3 GENERAL TEST PROCEDURES	
3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	8
3.5 DESCRIPTION OF TEST MODES	9
4. SETUP OF EQUIPMENT UNDER TEST	
4.1 MEASURING INSTRUMENT CALIBRATION	10
4.2 MEASUREMENT EQUIPMENT USED	
4.3 DESCRIPTION OF SUPPORT UNITS	
4.4 MEASUREMENT UNCERTAINTY	10
5. FACILITIES AND ACCREDITATIONS	11
5.1 FACILITIES	11
5.2 EQUIPMENT	11
5.3 ACCREDITATIONS	11
6. DYNAMIC FREQUENCY SELECTION	12

1. TEST CERTIFICATION

Product	Dual-band Wifi Extender
Model	MX1200YZ (where Y can be A, B, C, D or blank, and Z can be A, B, C, D, or blank, for identical hardware models for marketing purposes only)
Brand	Motorola
Tested	February 18~July 4, 2016 and December 20~29, 2016
Applicant	MTRLC LLC P.O.Box 12147 Boston, Massachusetts 02112-1147 United States
Manufacturer	MTRLC LLC P.O.Box 12147 Boston, Massachusetts 02112-1147 United States

APPLICABLE STANDARDS		
STANDARD	TEST RESULT	
FCC 47 CFR Part 15 Subpart E No non-compliance noted		

We hereby certify that:

Compliance Certification Services (Shenzhen) Inc. tested the above equipment. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in **ANSI C63.10: 2013** and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.407 and IC RSS-247.

The TEST RESULTS of this report relate only to the tested sample identified in this report.

Approved by:

hant

Sunday Hu Supervisor of EMC Dept. Compliance Certification Services (Shenzhen) Inc.

Reviewed by:

Ruby Zhang Supervisor of Report Dept. Compliance Certification Services (Shenzhen) Inc.

2. EUT DESCRIPTION

Product	Dual-band Wifi Extender			
Model Number	MX1200YZ (where Y can be A, B, C, D or blank, and Z can be A, B, C, D, or blank, for identical hardware models for marketing purposes only)			
Brand	Motorola			
Model Discrepancy	N/A			
Serial Number	C161220Z01-RP1-	3		
Received Date	December 20, 2010			
Power Supply	Input: ~100-240V, {			
Power Supply	input. ~100-240V, t	50/00HZ, 0.5A	F ree and a set	Number of
		Mode	Frequency Range(MHz)	Number of channel
		IEEE 802.11a	5180-5240	4
	UNII Band I:	IEEE 802.11n HT20	5180-5240	4
	UNIT Dariu I.	IEEE 802.11n HT40	5190-5230	2
		IEEE 802.11ac 80	5210	1
		IEEE 802.11a	5260-5320	4
	UNII Band II:	IEEE 802.11n HT20	5260-5320	4
		IEEE 802.11n HT40	5270-5310	2
Operating Frequency		IEEE 802.11ac 80	5290	1
Range & Number of		IEEE 802.11a	5500-5580;	8
Channels			5660- 5700	-
		IEEE 802.11n HT20	5500-5580;	8
	UNII Band III:		5660- 5700	
		IEEE 802.11n HT40	5510-5550; 5670	3
		IEEE 802.11ac 80	5530	1
		IEEE 802.11a	5745-5825	5
		IEEE 802.11n HT20	5745-5825	5
	UNII Band IV:	IEEE 802.11n HT40	5755-5795	2
		IEEE 802.11ac 80	5775	1
Modulation Technique	OFDM (QPSK, BPSK, 16-QAM, 64-QAM)			
Antenna Specification	Embedded Antenna with 3.3dBi gain (Max)			
Channels Spacing	IEEE 802.11a, 802.11n HT20 : 20MHz IEEE 802.11n HT40: 40MHz IEEE 802.11ac 80: 80MHz			
Temperature Range	• 0°C ~ +40°C			
Hardware Version	V1.01			
Software Version	V1.0.0			

Note: 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

aratian Franssanas

<u>Operation Frequency:</u> UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII)		
CHANNEL	MHz	
36	5180	
38	5190	
40	5200	
42	5210	
44	5220	
46	5230	
48	5240	
52	5260	
54	5270	
56	5280	
58	5290	
60	5300	
62	5310	
64	5320	
100	5500	
102	5510	
104	5520	
106	5530	
108	5540	
110	5550	
112	5560	
116	5580	
132	5660	
134	5670	
136	5680	
140	5700	
149	5745	
151	5755	
153	5765	
155	5775	
157	5785	
159	5795	
161	5805	
165	5825	

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- This submittal(s) (test report) is intended for <u>FCC ID</u>: <u>2AF5PMX1200</u> filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules and FCC 14-30.

3. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4 Radiated testing was performed at an antenna to EUT distance 3 meters. The tests documented in this report were performed in accordance with ANSI C63.4: 2009 and FCC CFR 47 Part 15.207, 15.209, 15.407 and FCC 14-30, IC RSS-247, Radio testing was performed according to KDB DA 02-2138、KDB 789033 D02、KDB 905462 D02, KDB 905462 D03, KDB 905462 D06;

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed for RF field strength measurement to meet the Commissions requirement, and is operated in a manner intended to generate the maximum emission in a continuous normal application.

3.2 EUT EXERCISE

The EUT is operated in the engineering mode to fix the TX frequency for the purposes of measurement.

According to its specifications, the EUT must comply with the requirements of Section 15.407 under the FCC Rules Part 15 Subpart E and IC RSS-247.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is positioned at 0.8 m above the ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4, the conducted emission from the EUT is measured in the frequency range between 0.15 MHz and 30MHz, using the CISPR Quasi-Peak detector mode.

Radiated Emissions

The EUT is placed on the turntable, which is 0.8m above the ground plane. The turntable is then rotated for 360 degrees to determine the proper orientation for the maximum emission level. The EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission level. And, each emission is to be maximized by changing the horizontal and vertical polarization of the receiving antenna. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

Compliance Certification Services (Shenzhen) Inc.

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT is a 2TX configuration without beam forming function.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

IEEE 802.11n HT20: 5300 MHz Channel (5300MHz) with 13Mbps data rate was chosen for the final testing.

IEEE 802.11n HT20: 5500 MHz Channel (5500MHz) with 13Mbps data rate was chosen for the final testing.

IEEE 802.11n HT40: 5310 MHz Channel (5310MHz) with 27Mbps data rate was chosen for the final testing.

IEEE 802.11n HT40: 5510 MHz Channel (5510MHz) with 27Mbps data rate was chosen for the final testing.

IEEE802.11ac 80: 5290 MHz Channel (5290MHz) with 27Mbps data rate was chosen for the final testing.

IEEE 802.11ac 80: 5530 MHz Channel (5530MHz) with 27Mbps data rate was chosen for the final testing.

4. SETUP OF EQUIPMENT UNDER TEST

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Remark: Each piece of equipment is scheduled for calibration once a year.

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9010A	MY52221469	10/24/2017
Vector Signal Generator	KEYSIGHT	N5182B	MY53051596	04/11/2017

4.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Model No.	Serial No.	FCC ID	Brand	Data Cable	Power Cord
1	N/A						

Note:

Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 MEASUREMENT UNCERTAINTY

Parameter	Uncertainty
RF frequency	+/-1 * 10-5
RF power conducted	+/- 1,5 dB
RF power radiated	+/- 6 dB
Spurious emissions, conducted	+/- 3 dB
Spurious emissions, radiated	+/- 6 dB
Humidity	+/- 5 %
Temperature	+/- 1°C
Time	+/-10 %

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at No.10-1 Mingkeda Logistics park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA	A2LA
China	CNAS

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA	FCC
Japan	VCCI(C-4815,R-4320,T-2317, G-10624)
Canada	INDUSTRY CANADA

Copies of granted accreditation certificates are available for downloading from our web site, <u>http://www.ccssz.com</u>

6. DYNAMIC FREQUENCY SELECTION

<u>LIMIT</u>

According to § 15.407 (h) and FCC 06-96 appendix "compliance measurement procedures for unlicensed-national information infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection".

	Operational Mode				
Requirement	Master	Client (without radar detection)	Client(with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		

Table 1: Applicability of DFS requirements prior to use of a channel

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode			
	Master Device or Client with Radar Detection	Client Without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices	Master Device or Client	Client Without			
with multiple bandwidth modes	with Radar Detection	Radar Detection			
U-NII Detection Bandwidth and	All BW modes must be	Not required			
Statistical Performance Check	tested				
Channel Move Time and Channel	Test using widest BW mode	Test using the widest			
Closing Transmission Time	available	BW mode available			
		for the link			
All other tests	Any single BW mode	Not required			
Note: Frequencies selected for statistical	Note: Frequencies selected for statistical performance check (Section 7.8.4) should include				
several frequencies within the radar detection bandwidth and frequencies near the edge of					
the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in					
each of the bonded 20 MHz chann	els and the channel center frequ	ency.			

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value	
	(See Notes 1, 2, and 3)	
$EIRP \ge 200 milliwatt$	-64 dBm	
EIRP < 200 milliwatt and	-62 dBm	
power spectral density < 10 dBm/MHz		
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm	
density requirement		
Note 1: This is the level at the input of the receiver assuming a 0 dBi		
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.		
Note3: EIRP is based on the highest antenna gain. For MIMO device D01.	es refer to KDB Publication 662911	

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

		se Kadar Test wavelorn		
Pulse	PRI	Number of Pulses		Minimum
Width	(µsec)		Percentage of	Number
(µsec)			Successful	of
			Detection	Trials
1	1428	18	See Note 1	See Note
				1
1	Test A: 15 unique	$\left(\left(1 \right) \right)$	60%	30
	PRI values	$\frac{1}{360}$		
	randomly selected	Roundun		
		19.10°		
		PRI		
	Test B: 15 unique			
	PRI values			
	randomly selected			
	within the range			
	• •			
	with a minimum			
	increment of 1			
	µsec, excluding			
	selected in Test A			
1-5	150-230	23-29	60%	30
6-10	200-500	16-18	60%	30
11-20	200-500	12-16	60%	30
			80%	120
		sed for the detection ba	ndwidth test, ch	annel move
annel closing	time tests.			
)	Width (μsec) 1 1 1 1 1 1 1 1 1 1 1 20 Radar Types rt Pulse Rada	Width (μsec)(μsec)114281Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a1Test B: 15 unique PRI values randomly selected within the range of 518-3066 μsec, with a minimum increment of 1 μsec, excluding PRI values selected in Test A1-5150-2306-10200-50011-20200-500Radar Types 1-4)1428	Width (µsec)(µsec)114281Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5aRoundup1Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test ARoundup1-5150-23023-296-10200-50016-1811-20200-50012-16Radar Types 1-4)rt Pulse Radar Type 0 should be used for the detection ba	Width (µsec)(µsec)Percentage of Successful Detection1142818See Note 11Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5aRoundup $\left\{ \frac{13.60}{PRI_{\musec}} \right\}$ 60%60%Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A $1-5$ 150-23023-2960%1-5150-23023-2960%60%11-20200-50012-1660%1-120200-50012-1660%80%80%80%11-2080%

Table 5 – Short Pulse Radar Test Waveforms

Table 6 -	Long	Pulse	Radar	Test	Waveform
Table 0 -	Long	r uise	Kauar	rest	wavelor m

Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of
	(µsec)	(MHz)		per Burst		Successful	Trials
				_		Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				

Table 7 – Frequency Hopping Radar Test Waveform

	Table 7 Trequency Hopping Radar Test Waveform						
Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of
	(µsec)		Нор	(kHz)	Length	Successful	Trials
					(msec)	Detection	
6	1	333	9	0.333	300	70%	30

DESCRIPTION OF EUT

Overview Of EUT With Respect To §15.407 (H) Requirements

The firmware installed in the EUT during testing was: Firmware Rev: V1.0.0

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

The EUT is a Master Device.

The highest power level within these bands is 18.50dBm EIRP in the 5250-5350 MHz band and 17.63 dBm EIRP in the 5470-5725 MHz band.

The two antennas assembly utilized with the EUT has a gain of 3.3 dBi.

The rated output power of the Master unit is < 23dBm (EIRP). Therefore the required interference threshold level is -64 or -62 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -62+2 = -60 dBm.

The calibrated conducted DFS Detection Threshold level is set to –64 or -62 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT uses one transmitter connected to two 50-ohm coaxial antenna ports via a diversity switch. Both antenna ports are connected to the test system via a power divider to perform conducted tests.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a architecture, with a nominal channel bandwidth of 20 MHz.

Test results show that the EUT requires 24.73 seconds to complete its initial power-up cycle

Manufacturer's Statement Regarding Uniform Channel Spreading

The end product implements an automatic channel selection feature at startup such that operation commences on channels distributed across the entire set of allowed 5GHz channels. This feature will ensure uniform spreading is achieved while avoiding non-allowed channels due to prior radar events.

TEST AND MEASUREMENT SYSTEM

System Overview

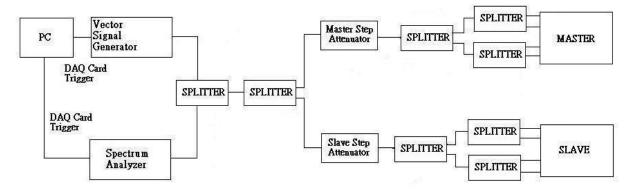
The measurement system is based on a conducted test method.

The short pulse and long pulse signal generating system utilizes the NTIA software and the same manufacturer / model Vector Signal Generator as the NTIA. The hopping signal generating system utilizes the simulated hopping method.

The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution. The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time. The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List, with the initial starting point randomized at run-time.

The signal monitoring equipment consists of a spectrum analyzer with the capacity to display 8192 bins on the horizontal axis. A time-domain resolution of 2 msec / bin is achievable with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold. A time-domain resolution of 3 msec / bin is achievable with a 24 second sweep time, meeting the 22 second long pulse reporting criteria and allowing a minimum of 10 seconds after the end of the long pulse waveform.

Frequency Hopping Signal Generation


The hopping burst generator is a High Speed Digital I/O card plugged into the control computer. This card utilizes an independent hardware clock reference therefore the output pulse timing is unaffected by host computer operating system latency times.

The software selects the hopping sequence as a 100-length segment of the August 2005 NTIA hopping frequency list. This list contains 274 unique pseudorandom sequences. Each such sequence contains 475 frequencies ordered on a random without replacement basis. Each successive trial uses a contiguous 100- length segment from within each successive 475-length sequence in the list. The initial starting point within the list is randomized at run-time such that the first 100-length segment is entirely contained within the first 475-length sequence. The starting point of each successive trial is incremented by 475.

Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from FL to FH for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

Conducted Method System Block Diagram

Measurement System Frequency Reference

Lock the signal generator and the spectrum analyzer to the same reference source as follows: Connect the 10 MHz OUT (SWITCHED) on the spectrum analyzer to the 10 MHz IN on the signal generator and set the spectrum analyzer 10 MHz Out to On.

System Calibration

Connect the spectrum analyzer to the test system in place of the master device. Set the signal generator to CW mode. Adjust the amplitude of the signal generator to yield a measured level of –62 dBm on the spectrum analyzer.

Without changing any of the instrument settings, reconnect the spectrum analyzer to the Common port of the Spectrum Analyzer Combiner/Divider and connect a 50 ohm load to the Master Device port of the test system.

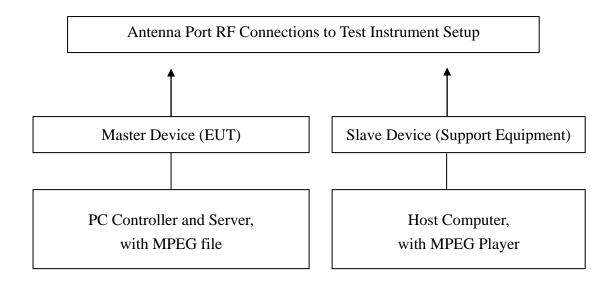
Measure the amplitude and calculate the difference from -62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference. Confirm that the signal is displayed at -62 dBm. Readjust the RBW and VBW to 3 MHz, set the span to 10 MHz, and confirm that the signal is still displayed at -62 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

Interference Detection Threshold Adjustment

Download the applicable radar waveforms to the signal generator. Select the radar waveform, trigger a burst manually and measure the amplitude on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

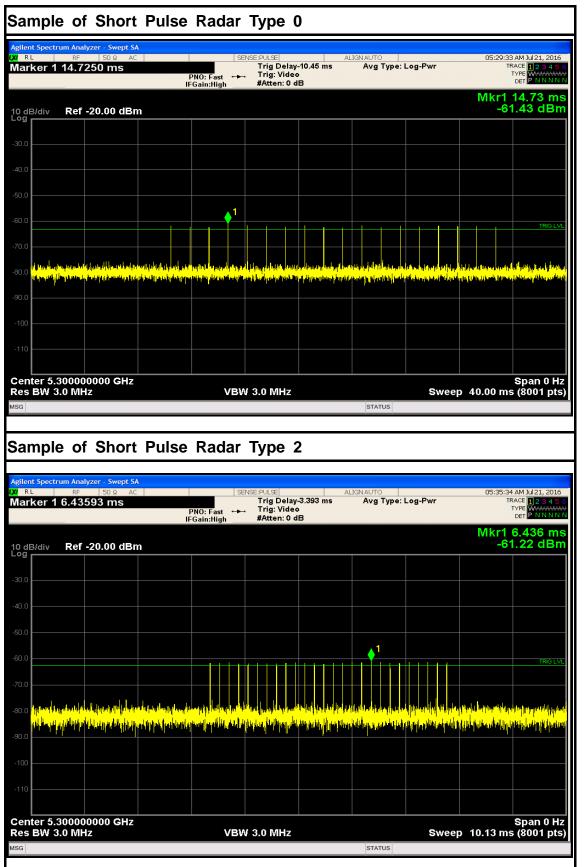

Adjustment Of Displayed Traffic Level

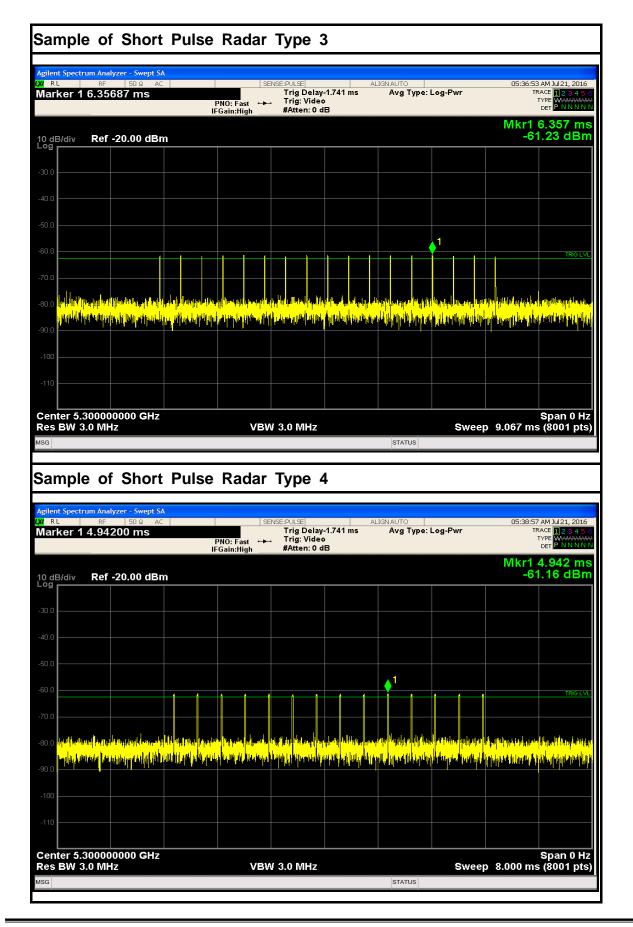
Establish a link between the Master and Slave, adjusting the Link Step Attenuator as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. Confirm that the displayed traffic is from the Master Device. For Master Device testing confirm that the displayed traffic does not include Slave Device traffic. For Slave Device testing confirm that the displayed traffic does not include Master Device traffic.

If a different setting of the Master Step Attenuator is required to meet the above conditions, perform a new System Calibration for the new Master Step Attenuator setting.

Test Setup

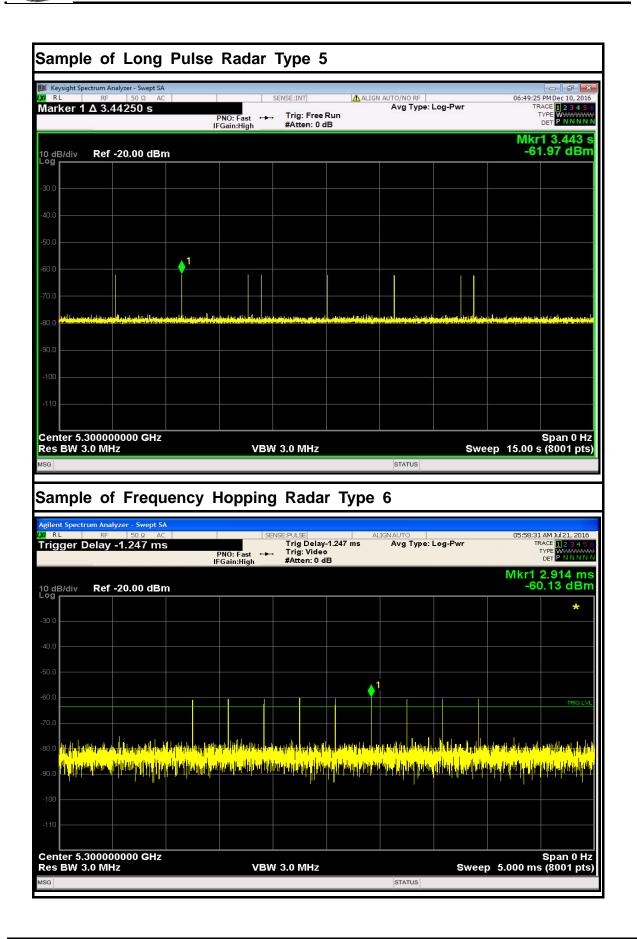
TEST RESULTS


lest plot			
Master Throughput			
Agilent Spectrum Analyzer - Swept SA	SENSE:PULSE	ALIGNAUTO	07:47:18 PM Jul 21, 2016
Marker 1 1.49250 s	PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 10 dB	Avg Type: Log-Pwr	TRACE 2 3 4 5 6 TYPE WWWWWW DET P N N N N N
10 dB/div Ref 0.00 dBm			Mkr1 1.493 s -34.97 dBm
-10.0			
-20.0 -30.0			
- 40.0 http://www.englishing.com/or and an advantage of the second of th	ala a na fasta fan fan stander en		an (year a farmened) as it she far a suffer start an
-60.0			
-80.0			
Center 5.290000000 GHz Res BW 3.0 MHz	VBW 3.0 MHz	Sweep	Span 0 Hz 15.00 s (8001 pts)
2	Y FUNCTION 493 s -34.97 dBm	FUNCTION WIDTH FUNC	ION VALUE
3 4 5 6			
7 8 99999999999999			
			>
MSG		STATUS	
Slave Throughput			
Agilent Spectrum Analyzer - Swept SA	SENSE:PULSE	ALIGNAUTO Avg Type: Log-Pwr	07:48:03 PM Jul 21, 2016 TRACE 1 2 3 4 5 6 TYPE WWWWWW
	PNO: Fast ↔ Trig: Free Run IFGain:Low Atten: 10 dB		DET PNNNN
10 dB/div Ref 0.00 dBm			Mkr1 12.06 s -34.76 dBm
-10.0			
-30.0 -40.0 Astronomical and the second strong of the form			an dar an dar an Dari yan dari kan sa man dal 1 da ili dari yang da
-50.0			
-70.0			
-90.0 Center 5.290000000 GHz			Span 0 Hz
Res BW 3.0 MHz	VBW 3.0 MHz Y FUNCTION		15.00 s (8001 pts)
1 N 1 t 1: 2 3 3 4 4	2.06 s -34.76 dBm		
4 5 6 7			
8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			
MSG		STATUS	>
		SIRIO	


No Throughput Keysig - Swept SA 04:52:00 PM Oct 09, 2015 TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N N ALIGN AUTO/NO RF R SENSE:INT Marker 1 7.32750 s Avg Type: Log-Pwr Trig: Free Run PNO: Fast IFGain:Low -----Atten: 10 dB Mkr1 7.328 s -63.54 dBm Ref 0.00 dBm 10 dB/div Log -10.0 -20.0 -30.0 40.0 -50.0 ٠ -60.0 -70.0 -80.0 -90.0 Center 5.530000000 GHz Span 0 Hz Res BW 3.0 MHz VBW 3.0 MHz Sweep 15.00 s (8001 pts) MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE Y 7.328 s -63.54 dBm 1 N t 2 3 4 5 6 7 8 9 10 11 ISG 🔱 File <ScreenCapture.png> saved STATUS

PLOTS OF RADAR WAVEFORMS

Compliance Certification Services (Shenzhen) Inc.



FCC ID: 2AF5PMX1200

Page 23 / 88

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Compliance Certification Services (Shenzhen) Inc.

FCC ID: 2AF5PMX1200 Page 24 / 88 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

TEST CHANNEL AND METHOD

All tests were performed at a channel center frequency of 5300 MHz utilizing a conducted test method.

CHANNEL AVAILABILITY CHECK TIME

Test Procedure To Determine Initial Power-Up Cycle Time

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total powerup cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

Test Procedure For Timing Of Radar Burst

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, corresponding to the beginning of the CAC time, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, corresponding to the end of the CAC time, and transmissions on the channel were monitored on the spectrum analyzer.

Channel Availability Check Time Results

No non-compliance	note	d.		
_	-		-	

Time required for EUT to complete the initial power-up cycle (sec)	
22.73	

If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.

Timing of Radar Burst	Display on EUT / PC Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT Initiates Transmissions	Transmissions begin on channel after completion of the initial power-up cycle and the 60 second CAC
Within 0 to 6 second window	EUT indicates radar detected EUT does not display any radar parameter values	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected EUT does not display any radar parameter values	No transmissions on channel

CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

General Reporting Notes

The reference marker is set at the end of last radar pulse.

Type 0 Radar Reporting Notes

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time =

(Number of analyzer bins showing transmission) * (dwell time per bin)

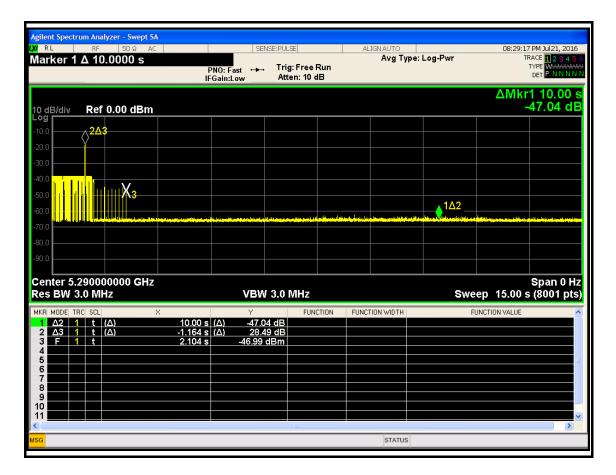
The observation period over which the aggregate time is calculated

Begins no later than (Reference Marker + 200 msec)

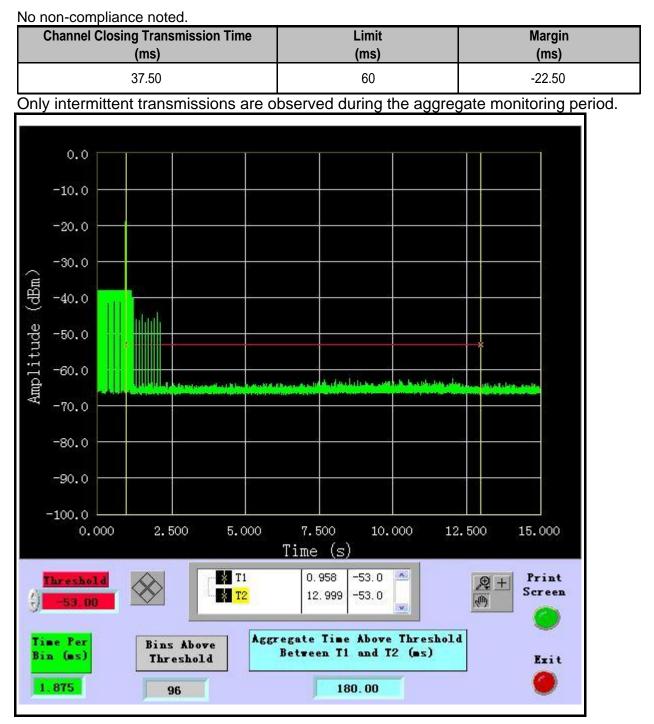
and

Ends no earlier than (Reference Marker + 10 sec).

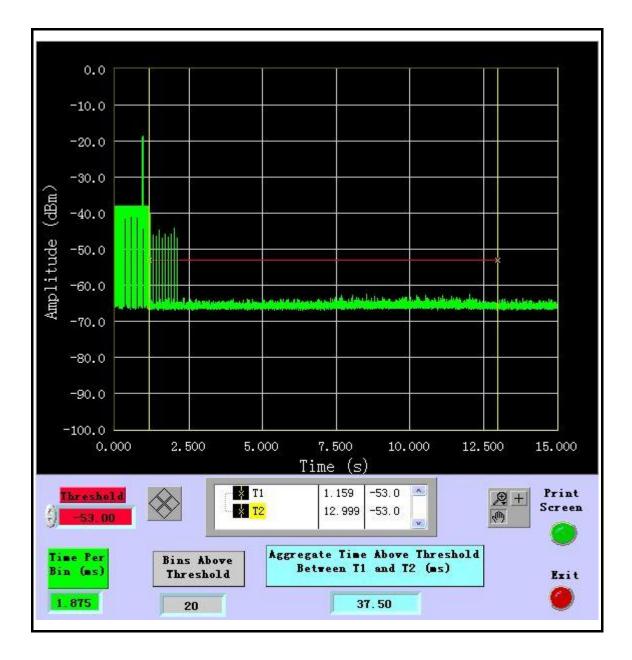
TEST RESULTS


LOW BAND RESULTS

LOW BAND RESULTS


IEEE 802.11ac 80 MHz Mode

Type 0 Channel Move Time Results


Channel Move Time	Limit	
(s)	(s)	
1.164	10	

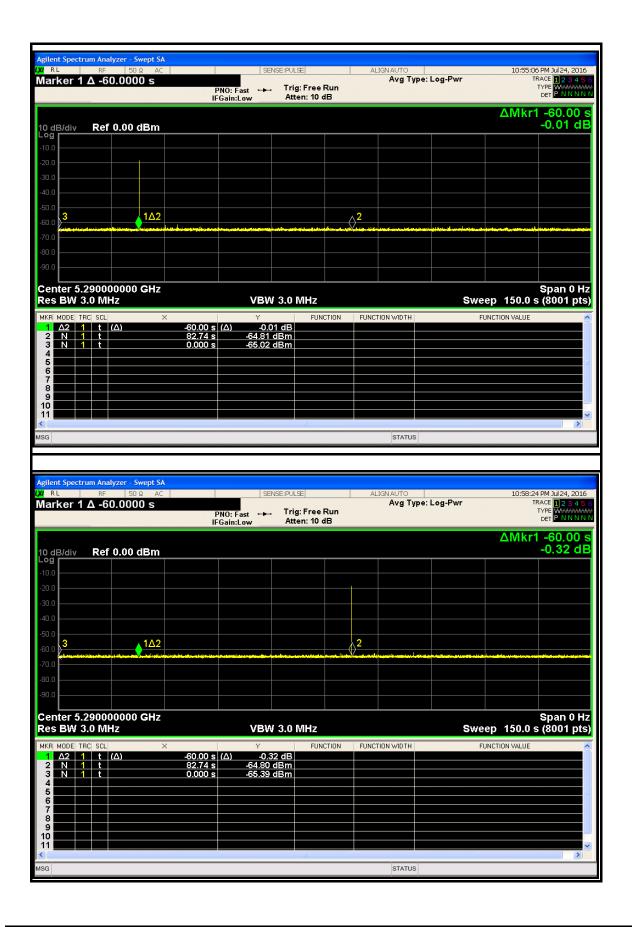
Type 0 Channel Closing Transmission Time sResults

Non-Occupancy Period

Type 0 Non-Occupancy Period Test Results


No non-compliance noted: No EUT transmissions were observed on the test channel during the 30 minute observation time.

a RL RF 50 Ω AC Marker 1 Δ 1.80000 ks		9E g: Free Run en: 10 dB	ALIGNAUTO Avg Type: Lo		:14:58 PM Jul 21, 2016 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N
10 dB/div Ref 0.00 dBm	IFGain:Low Atto			ΔM	kr1 1.800 ks -980.44 dB
10.0 20.0					
40.0					
60.0 but offer and a second s	a dhanna a Bhiri dh anna a Bhiri dh Chunna a Bhiri dh Chunna a Bhiri dh Chunna a Bhiri dh Chunna a Bhiri dh Chu	nan, a ∰ipa Ip dan ya ∰ipa Ip day ang a ∰ipa	ið flema aft þaði flema efti þaði flema efti þ	8 fma = fty-18 flerma = fty-18 flerma = fty-18 fle	1∆2
				2.	0
Center 5.290000000 GHz Res BW 3.0 MHz	VBW 3.01	MHz		Sweep 2.00	Span 0 Hz 0 ks (8001 pts)
MKR MODE TRC SCL X 1 A2 1 t (Δ) 1.8 2 N 1 t (Δ) 1.8 3 I t 3 Image: SG Image: SG<	300 ks (Δ) -980.44 dB 11.50 s -19.56 dBm	FUNCTION I	FUNCTION WIDTH	FUNCTION VA	



Initial Channel Availability Check Time (Master)

The EUT does not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle (=82.74-60=22.74 sec).

DETECTION BANDWIDTH

IEEE 802.11n 20 MHz Mode

Test Results

FL (MHz)	FH (MHz)	Detection Bandwidth (MHz)	99% Power Bandwidth (MHz)	Ratio of Detection BW to 99% Power BW (MHz)	Minimum Limit (%)
5291	5309	18	17.585	102.36	100

Number of Trials	Frequency (MHz)	Number Detected	Detection(%)
10	5291	9	90
10	5292	10	100
10	5293	10	100
10	5294	8	80
10	5295	8	80
10	5300	10	100
10	5305	9	90
10	5306	10	100
10	5307	10	100
10	5308	10	100
10	5309	9	90

IEEE 802.11n 40 MHz Mode

Test Results

FL (MHz)	FH (MHz)	Detection Bandwidth (MHz)	99% Power Bandwidth (MHz)	Ratio of Detection BW to 99% Power BW (MHz)	Minimum Limit (%)
5292	5328	36	35.973	100.07	100

Number of Trials	Frequency (MHz)	Number Detected	Detection(%)
10	5292	9	90
10	5293	10	100
10	5294	10	100
10	5295	8	80
10	5300	10	100
10	5305	8	80
10	5310	10	100
10	5315	9	90
10	5320	10	100
10	5325	10	100
10	5326	10	100
10	5327	9	90
10	5328	9	90

IEEE 802.11ac 80 MHz Mode

Test Results

FL (MHz)	FH (MHz)	Detection Bandwidth (MHz)	99% Power Bandwidth (MHz)	Ratio of Detection BW to 99% Power BW (MHz)	Minimum Limit (%)
5252	5328	76	74.884	101.49	100

	Frequency	Number	
Number of Trials	(MHz)	Detected	Detection(%)
10	5252	9	90
10	5253	10	100
10	5254	10	100
10	5255	9	90
10	5260	10	100
10	5265	9	90
10	5270	10	100
10	5275	10	100
10	5280	10	100
10	5285	8	80
10	5290	10	100
10	5295	8	80
10	5300	10	100
10	5305	9	90
10	5310	10	100
10	5315	10	100
10	5320	9	90
10	5325	10	100
10	5326	9	90
10	5327	10	100
10	5328	9	90

Statistical Performance Check

IEEE 802.11n 20 MHz Mode

Test Results

No non-compliance noted:

Summary of Detection Probability

Radar Type	Number of Trials	Detection (%)	Limit (%)	Pass / Fail
Туре 0	30	93.33	60	Pass
Type 2	30	96.67	60	Pass
Туре 3	30	96.67	60	Pass
Type 4	30	96.67	60	Pass
Aggregate of 1 to 4	30	95.84	80	Pass
Туре 5	30	96.67	70	Pass
Туре 6	30	96.67	80	Pass

Type 0 Detection Probability

	Successful Detection
Trial No.	(Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	NO
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	NO
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 2 Detection Probability

	Successful Detection
Trial No.	(Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	NO
30	YES

Type 3 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	NO
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 4 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	NO
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 5 Detection Probability

Trial No.	Successful Detection
	(Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	NO
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 6 Detection Probability

Trial No.	Successful Detection
	(Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	NO
25	YES
26	YES
27	YES
30	YES

IEEE 802.11n 40 MHz Mode

Test Results

No non-compliance noted:

Summary of Detection Probability

Radar Type	Number of Trials	Detection (%)	Limit (%)	Pass / Fail
Туре 0	30	90.00	60	Pass
Type 2	30	96.67	60	Pass
Туре 3	30	90.00	60	Pass
Type 4	30	96.67	60	Pass
Aggregate of 1 to 4	30	93.34	80	Pass
Туре 5	30	96.67	70	Pass
Туре 6	30	96.67	80	Pass

Type 0 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	NO
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	NO
19	YES
20	YES
21	YES
22	YES
23	NO
24	YES
25	YES
26	YES
27	YES
30	YES

Type 2 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	NO
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 3 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	NO
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	NO
22	YES
23	YES
24	YES
25	YES
26	YES
27	NO
30	YES

Type 4 Detection Probability

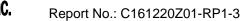
Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	NO
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 5 Detection Probability

Trial No.	Successful Detection
	(Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	NO
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 6 Detection Probability

Trial No.	Successful Detection (Yes/No)	
1	YES	
2	YES	
3	YES	
4	YES	
5	YES	
6	YES	
7	YES	
8	YES	
9	YES	
10	YES	
11	YES	
12	YES	
13	YES	
14	YES	
15	YES	
16	YES	
17	NO	
18	YES	
19	YES	
20	YES	
21	YES	
22	YES	
23	YES	
24	YES	
25	YES	
26	YES	
27	YES	
30	YES	


IEEE 802.11ac 80 MHz Mode

<u>Test Results</u>

No non-compliance noted:

Summary of Detection Probability

Radar Type	Number of Trials	Detection (%)	Limit (%)	Pass / Fail
Туре 0	30	96.67	60	Pass
Type 2	30	96.67	60	Pass
Туре 3	30	96.67	60	Pass
Туре 4	30	96.67	60	Pass
Aggregate of 1 to 4	30	96.67	80	Pass
Туре 5	30	96.67	70	Pass
Туре 6	30	96.67	80	Pass

Type 0 Detection Probability

Trial No.	Successful Detection (Yes/No)	
1	YES	
2	YES	
3	YES	
4	YES	
5	YES	
6	YES	
7	YES	
8	YES	
9	YES	
10	YES	
11	YES	
12	YES	
13	YES	
14	YES	
15	NO	
16	YES	
17	YES	
18	YES	
19	YES	
20	YES	
21	YES	
22	YES	
23	YES	
24	YES	
25	YES	
26	YES	
27	YES	
30	YES	

Type 2 Detection Probability

Trial No.	Successful Detection (Yes/No)		
1	YES		
2	YES		
3	YES		
4	YES		
5	YES		
6	YES		
7	YES		
8	NO		
9	YES		
10	YES		
11	YES		
12	YES		
13	YES		
14	YES		
15	YES		
16	YES		
17	YES		
18	NO		
19	YES		
20	YES		
21	YES		
22	YES		
23	YES		
24	YES		
25	YES		
26	YES		
27	YES		
30	YES		

Type 3 Detection Probability

Trial No.	Successful Detection (Yes/No)	
1	YES	
2	YES	
3	YES	
4	YES	
5	YES	
6	YES	
7	YES	
8	YES	
9	YES	
10	YES	
11	NO	
12	YES	
13	YES	
14	YES	
15	YES	
16	YES	
17	YES	
18	YES	
19	YES	
20	YES	
21	YES	
22	YES	
23	YES	
24	YES	
25	YES	
26	YES	
27	YES	
30	YES	

Type 4 Detection Probability

Trial No.	Successful Detection (Yes/No)		
1	YES		
2	YES		
3	YES		
4	YES		
5	YES		
6	YES		
7	YES		
8	YES		
9	YES		
10	YES		
11	NO		
12	YES		
13	YES		
14	YES		
15	YES		
16	YES		
17	YES		
18	YES		
19	YES		
20	YES		
21	YES		
22	YES		
23	YES		
24	YES		
25	YES		
26	YES		
27	YES		
30	YES		

Type 5 Detection Probability

Trial No.	Successful Detection	
	(Yes/No)	
1	YES	
2	YES	
3	YES	
4	YES	
5	YES	
6	YES	
7	NO	
8	YES	
9	YES	
10	YES	
11	YES	
12	YES	
13	YES	
14	YES	
15	YES	
16	YES	
17	YES	
18	YES	
19	YES	
20	YES	
21	YES	
22	YES	
23	YES	
24	YES	
25	YES	
26	YES	
27	YES	
30	YES	

Type 6 Detection Probability

Trial No.	Successful Detection (Yes/No)		
1	YES		
2	YES		
3	YES		
4	YES		
5	YES		
6	YES		
7	YES		
8	YES		
9	YES		
10	YES		
11	YES		
12	YES		
13	NO		
14	YES		
15	YES		
16	YES		
17	YES		
18	YES		
19	YES		
20	YES		
21	YES		
22	YES		
23	YES		
24	YES		
25	YES		
26	YES		
27	YES		
30	YES		

CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

General Reporting Notes

The reference marker is set at the end of last radar pulse.

Type 0 Radar Reporting Notes

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

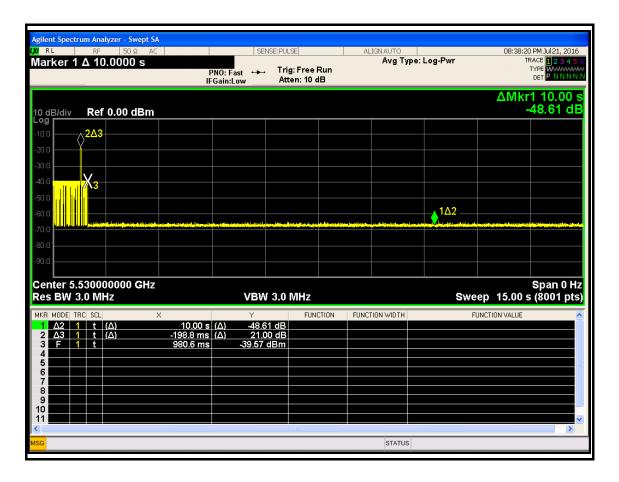
Aggregate Transmission Time =

(Number of analyzer bins showing transmission) * (dwell time per bin)

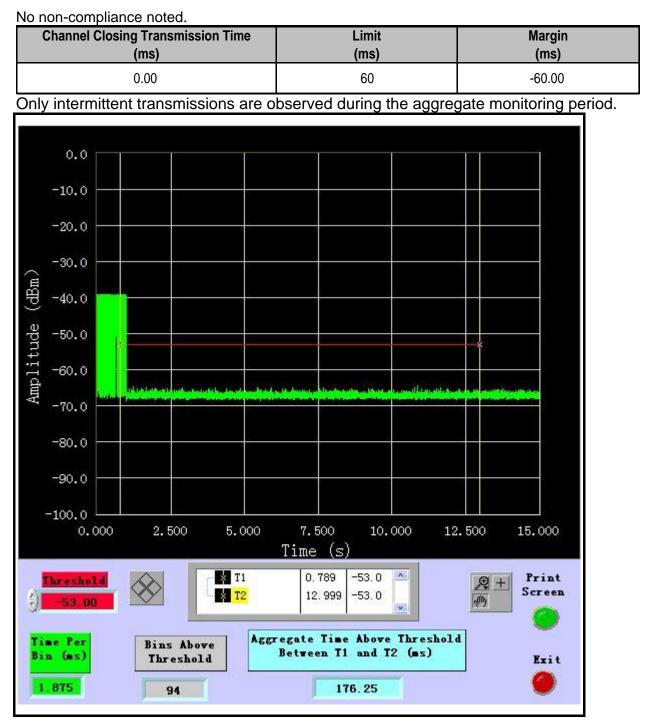
The observation period over which the aggregate time is calculated

Begins no later than (Reference Marker + 200 msec)

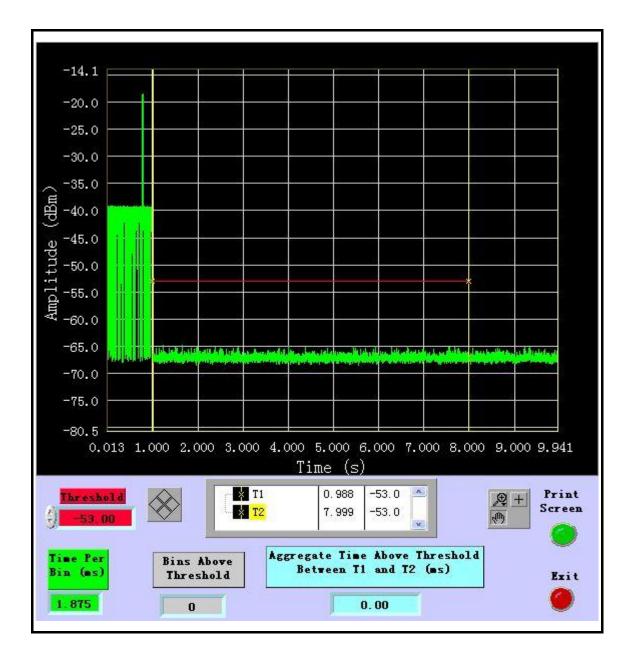
and


Ends no earlier than (Reference Marker + 10 sec).

HIGH BAND RESULTS


IEEE 802.11ac 80 MHz Mode

Type 0 Channel Move Time Results


Channel Move Time	Limit
(s)	(s)
0.1988	10

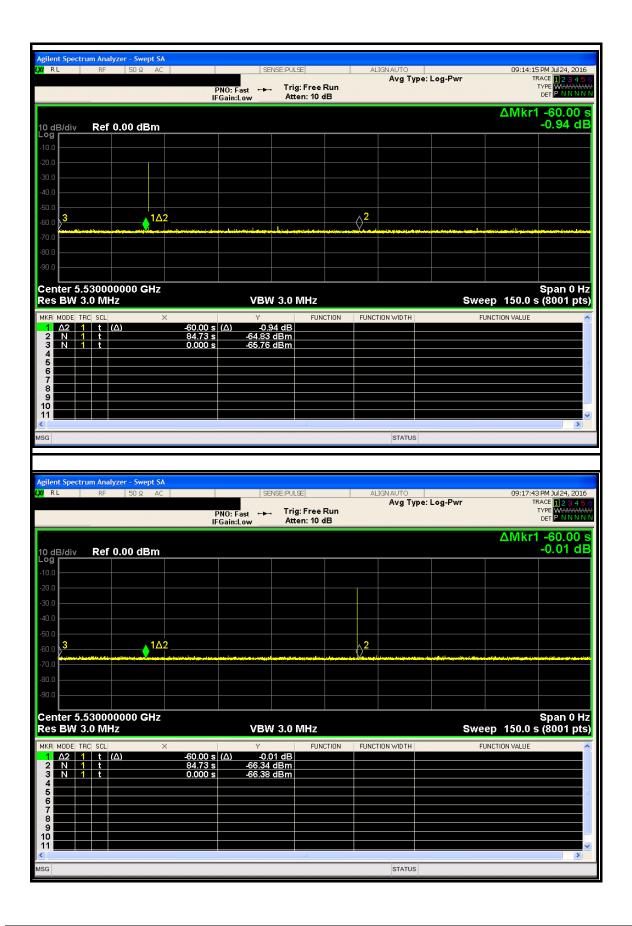
Type 0 Channel Closing Transmission Time Results

Non-Occupancy Period

Type 0 Non-Occupancy Period Test Results

No non-compliance noted: No EUT transmissions were observed on the test channel during the 30 minute observation time.

LXI RL	m Analyzer - Swept SA RF 50 Ω AC		SENSE:PULS	ε	ALIGNAUTO		08:20:14	PM Jul 21, 2016
Marker 1 /	∆ 1.80000 ks	PNO: Fas IFGain:Lo		: Free Run en: 10 dB	Аvg Тур	e: Log-Pwr	Т	ACE 123456 YPE WWWWWWWW DET PNNNNN
10 dB/div Log	Ref 0.00 dBm						∆Mkr1 -{	1.800 ks 53.76 dB
-10.0 -20.0								
-30.0	2							
-50.0								_1∆2
-70.0					anden fan sen de fan sen en fan s			
-90.0								
Center 5.5 Res BW 3.0	30000000 GHz 0 MHz		VBW 3.0 I	νIHz		Swee	p 2.000 ks	Span 0 Hz (8001 pts)
MKR MODE TRC 1 Δ2 1 2 N 1 3 4 4 5 5 5 6 7 7 8 9 9 10 11 1	scL X t (Δ) t - - - - - - - - - - -	1.800 ks (Δ) 48.25 s	Y -53.76 dB -19.71 dBm	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
MSG					STATUS			



Initial Channel Availability Check Time (Master)

The EUT does not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle (=84.73-60=24.73 sec).

Agilent Spectrum Analyzer - Swept SA X RL RF 50Ω AC Marker 1 Δ -60.0000 s	SENSE:PULSE PNO: Fast →→→ Trig: Free Run IFGain:Low Atten: 10 dB	ALIGNAUTO Avg Type: Log-Pwr	09:09:20 PM Jul 24, 2016 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N
10 dB/div Ref 0.00 dBm			∆Mkr1 -60.00 s -15.01 dB
-20.0			
-30.0			
-50.0 -60.0 3 1Δ2			प्रात्म् प्रमान् क्रियां स्वत्म् व्याप्त्रा क्रियां क्रियां स्वत्म प्राप्त्र स्वाप्त्रा क्रियां क्रियां क्रिया
-70.0			
-90.0 Center 5.530000000 GHz			Span 0 Hz
Res BW 3.0 MHz MKR MODE TRC SCL X	VBW 3.0 MHz Y FUNCTION		eep 150.0 s (8001 pts)
1 Δ2 1 t Δ2 0.000 2 N 1 t 84.73 3 N 1 t 0.000 4 - - - -	s -51.58 dBm		
5 6 7 7 7 8 7 _			
9 10 10 10 10 10 10 10 10 10 10 10 10 10			~
SG		STATUS	

DETECTION BANDWIDTH

IEEE 802.11n 20 MHz Mode

Test Results

FL (MHz)	FH (MHz)	Detection Bandwidth (MHz)	99% Power Bandwidth (MHz)	Ratio of Detection BW to 99% Power BW (MHz)	Minimum Limit (%)
5491	5509	18	17.589	102.34	100

Number of Trials	Frequency (MHz)	Number Detected	Detection(%)
10	5491	9	90
10	5492	10	100
10	5493	10	100
10	5494	9	90
10	5495	10	100
10	5500	10	100
10	5505	10	100
10	5506	8	80
10	5507	10	100
10	5508	8	80
10	5509	10	100

IEEE 802.11n 40 MHz Mode

Test Results

FL (MHz)	FH (MHz)	Detection Bandwidth (MHz)	99% Power Bandwidth (MHz)	Ratio of Detection BW to 99% Power BW (MHz)	Minimum Limit (%)
5492	5528	36	35.964	100.10	100

Number of Trials	Frequency (MHz)	Number Detected	Detection(%)
10	5292	9	90
10	5293	10	100
10	5294	10	100
10	5295	8	80
10	5300	10	100
10	5305	8	80
10	5510	10	100
10	5515	9	90
10	5520	10	100
10	5525	10	100
10	5526	10	100
10	5527	9	90
10	5528	9	90

IEEE 802.11ac 80 MHz Mode

Test Results

FL (MHz)	FH (MHz)	Detection Bandwidth (MHz)	99% Power Bandwidth (MHz)	Ratio of Detection BW to 99% Power BW (MHz)	Minimum Limit (%)
5492	5568	76	74.862	101.52	100

Number of Trials	Frequency (MHz)	Number Detected	Detection(%)
10	5492	9	90
10	5493	10	100
10	5494	10	100
10	5495	10	100
10	5500	10	100
10	5505	9	90
10	5510	10	100
10	5515	10	100
10	5520	10	100
10	5525	8	80
10	5530	10	100
10	5535	9	90
10	5540	10	100
10	5545	9	90
10	5550	10	100
10	5555	10	100
10	5560	9	90
10	5565	10	100
10	5566	9	90
10	5567	10	100
10	5568	9	90

Statistical Performance Check

IEEE 802.11n 20 MHz Mode Test Results

No non-compliance noted:

Summary of Detection Probability

Radar Type	Number of Trials	Detection (%)	Limit (%)	Pass / Fail
Туре 0	30	96.67	60	Pass
Type 2	30	93.33	60	Pass
Туре 3	30	96.67	60	Pass
Туре 4	30	96.67	60	Pass
Aggregate of 1 to 4	30	95.84	80	Pass
Туре 5	30	96.67	70	Pass
Туре 6	30	96.67	80	Pass

Type 0 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	NO
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 2 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	NO
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	NO
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 3 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	NO
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 4 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	NO
27	YES
30	YES

Type 5 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	NO
26	YES
27	YES
30	YES

Type 6 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	NO
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

IEEE 802.11n 40 MHz Mode

Test Results

No non-compliance noted:

Summary of Detection Probability

Radar Type	Number of Trials	Detection (%)	Limit (%)	Pass / Fail
Туре 0	30	96.67	60	Pass
Type 2	30	96.67	60	Pass
Туре 3	30	93.33	60	Pass
Type 4	30	96.67	60	Pass
Aggregate of 1 to 4	30	95.84	80	Pass
Туре 5	30	96.67	70	Pass
Туре 6	30	96.67	80	Pass

Type 0 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	NO
24	YES
25	YES
26	YES
27	YES
30	YES

Type 2 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	NO
24	YES
25	YES
26	YES
27	YES
30	YES

Type 3 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	NO
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	NO
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 4 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	NO
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 5 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	NO
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 6 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	NO
27	YES
30	YES

IEEE 802.11ac 80 MHz Mode

Test Results

No non-compliance noted:

Summary of Detection Probability

Radar Type	Number of Trials	Detection (%)	Limit (%)	Pass / Fail
Туре 0	30	96.67	60	Pass
Type 2	30	96.67	60	Pass
Туре 3	30	96.67	60	Pass
Type 4	30	93.33	60	Pass
Aggregate of 1 to 4	30	95.84	80	Pass
Туре 5	30	96.67	70	Pass
Туре 6	30	96.67	80	Pass

Type 0 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	NO
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 2 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	NO
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

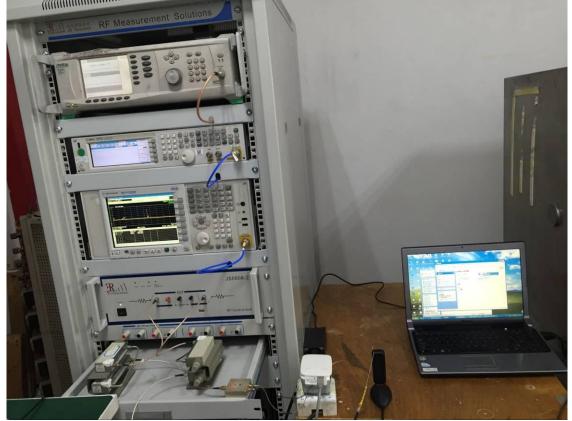
Type 3 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	NO
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 4 Detection Probability

Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	NO
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	NO
25	YES
26	YES
27	YES
30	YES

Type 5 Detection Probability


Trial No.	Successful Detection (Yes/No)
1	YES
2	YES
3	YES
4	YES
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	NO
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

Type 6 Detection Probability

Trial No.	Successful Detection
	(Yes/No)
1	YES
2	YES
3	YES
4	NO
5	YES
6	YES
7	YES
8	YES
9	YES
10	YES
11	YES
12	YES
13	YES
14	YES
15	YES
16	YES
17	YES
18	YES
19	YES
20	YES
21	YES
22	YES
23	YES
24	YES
25	YES
26	YES
27	YES
30	YES

APPENDIX I PHOTOGRAPHS OF TEST SETUP

