Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1901088FV00 FCC ID: 2AF52626T

RADIO TEST REPORT

The device described below is tested by Dongguan Nore Testing Center Co., Ltd. to determine the maximum emission levels emanating from the device, the severe levels which the device can endure and E.U.T.'s performance criterion. The test results, data evaluation, test procedures, and equipment of configurations shown in this report were made in accordance with the procedures in ANSI C63.10(2013).

Λ.			-
A	าท	ica	nt.

Applicant	: KING PROFIT TRADING LTD.
-----------	----------------------------

Flat 06, 19/F, Laurels Industrial Centre, 32 Tai Yau st., San Po Kong, Address Kowloon, Hong Kong

: DONG GUAN YUNG FU ELECTRONICS LTD. Manufacturer/Factory

No.3 Lian Sheng Industrial Area, Deng Wu Village, Qiao Tou Town, Address DongGuan City, Guangdong, China

- E.U.T. : PORTABLE SOUND SYSTEM
- Brand Name : KING PROFIT, TOSHIBA
- Model No. : KP626T, TY-ASC50 (For model difference refer to section 1)

2AF52626T FCC ID

Measurement Standard : FCC PART 15.247: 2017

Date of Receiver : January 08, 2019

Date of Test : January 08, 2019 to January 22, 2019

Date of Report : January 22, 2019

This Test Report is Issued Under the Authority of :

Prepared by

Knight Wen / Engineer

This test report is for the customer shown above and their specific product only. This report applies to above tested sample only and shall not be reproduced in part without written approval of Dongguan Nore Testing Center Co., Ltd.

FAX: +86-769-22022799 Web: www.ntc-c.com TEL: +86-769-22022444 Address: Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong Province, China

Page 1 of 59

Table of Contents

1. GENERAL INFORMATION	5
1.1 Product Description for Equipment under Test	5
1.2 Related Submittal(s) / Grant (s)	7
1.3 Test Methodology	
1.4 Equipment Modifications	
1.5 Support Device	
1.6 Test Facility and Location	
1.7 Summary of Test Results	
2. SYSTEM TEST CONFIGURATION	
2.1 EUT Configuration	10
2.2 Special Accessories	
2.3 Description of test modes	
2.4 EUT Exercise	
3. CONDUCTED EMISSIONS TEST	
3.1 Test SET-UP (Block Diagram of Configuration)	11
3.2 Test Condition	
3.3 Measurement Results	
	1 /
4. RADIATED EMISSION TEST	
4.1 Test SET-UP (Block Diagram of Configuration)	
	14
4.1 Test SET-UP (Block Diagram of Configuration)4.2 Measurement Procedure4.3 Limit	14
 4.1 Test SET-UP (Block Diagram of Configuration) 4.2 Measurement Procedure 4.3 Limit 4.4 Measurement Results 	
4.1 Test SET-UP (Block Diagram of Configuration)4.2 Measurement Procedure4.3 Limit	
 4.1 Test SET-UP (Block Diagram of Configuration) 4.2 Measurement Procedure 4.3 Limit 4.4 Measurement Results 	
 4.1 Test SET-UP (Block Diagram of Configuration) 4.2 Measurement Procedure	
 4.1 Test SET-UP (Block Diagram of Configuration) 4.2 Measurement Procedure	
 4.1 Test SET-UP (Block Diagram of Configuration)	
 4.1 Test SET-UP (Block Diagram of Configuration) 4.2 Measurement Procedure 4.3 Limit 4.4 Measurement Results 5. CHANNEL SEPARATION TEST 5.1 Measurement Procedure 5.2 Test SET-UP (Block Diagram of Configuration) 5.3 Measurement Results 	
 4.1 Test SET-UP (Block Diagram of Configuration)	
 4.1 Test SET-UP (Block Diagram of Configuration)	
 4.1 Test SET-UP (Block Diagram of Configuration)	
 4.1 Test SET-UP (Block Diagram of Configuration)	
 4.1 Test SET-UP (Block Diagram of Configuration)	

8. TIME OF OCCUPANCY (DWELL TIME)	. 35
8.1 Measurement Procedure	
9. MAXIMUM PEAK OUTPUT POWER	. 41
 9.1 Measurement Procedure 9.2 Measurement Results 10. RAND EDGE 	41
10. BAND EDGE	
10.1 Measurement Procedure 10.2 Limit 10.3 Measurement Results	47
11. ANTENNA APPLICATION	. 54
 11.1 Antenna requirement 11.2 Measurement Results 12. CONDUCTED SPURIOUS EMISSIONS 	54
12.1 Measurement Procedure	
13. TEST EQUIPMENT LIST	. 59

Revision History of This Test Report

Report Number	Description	Issued Date
NTC1901088FV00	Initial Issue	2019-01-22

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test

Product Name	: PORTABLE SOUND SYSTEM
Main Model Name Additional Model Name	: KP626T : TY-ASC50
Model difference	: Both models have the same circuit schematic, construction, PCB Layout and critical components. Their difference in model number and brand name due to trading purpose.
Brand Name	: KING PROFIT, TOSHIBA
Power Supply	: AC 100-240V, 50/60Hz, DC12V From Lead-Acid Battery
Adapter	: N/A
Test voltage	: AC 120V/60Hz
Cable	: AC Main: 1.51m, unshielded Microphone Line: 2.55m, unshielded
Hardware version	: V1.0
Software version	: V1.0
Remark	: According to the model difference, all tests were performed on model KP626T.
Technical parameters	
Bluetooth Version	: BT 2.1+EDR
Frequency Range	: 2402-2480MHz
Modulation	: GFSK, π/4-DQPSK, 8DPSK
Number of Channel	: 79
Channel space Date Rate	: 1MHz : 1Mbps for GFSK
	2Mbps for π/4-DQPSK 3Mbps for 8DPSK
Antenna Type	: PCB Antenna
Antenna Gain	: 0 dBi

Channel	Frequency MHz	Channel	Frequency MHz	Channel	nannel Frequency MHz		Frequency MHz
1	2402	21	2422	41	2442	61	2462
2	2403	22	2423	42	2443	62	2463
3	2404	23	2424	43	2444	63	2464
4	2405	24	2425	44	2445	64	2465
5	2406	25	2426	45	2446	65	2466
6	2407	26	2427	46	2447	66	2467
7	2408	27	2428	47	2448	67	2468
8	2409	28	2429	48	2449	68	2469
9	2410	29	2430	49	2450	69	2470
10	2411	30	2431	50	2451	70	2471
11	2412	31	2432	51	2452	71	2472
12	2413	32	2433	52	2453	72	2473
13	2414	33	2434	53	2454	73	2474
14	2415	34	2435	54	2455	74	2475
15	2416	35	2436	55	2456	75	2476
16	2417	36	2437	56	2457	76	2477
17	2418	37	2438	57	2458	77	2478
18	2419	38	2439	58	2459	78	2479
19	2420	39	2440	59	2460	79	2480
20	2421	40	2441	60	2461		

BDR+EDR Channel List

Note: According to section 15.31(m), regards to the operating frequency range over 10MHz, the Lowest, middle, and the Highest frequency of channel were selected to perform the test. The selected frequency and test software see below:

Channel	Frequency MHz		
1	2402		
40	2441		
79	2480		

Test SW version	BK3256 RF Test_V1.3
-----------------	---------------------

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: **2AF52626T** filing to comply with Section 15.247 of the FCC Part 15 (2017), Subpart C Rule.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters.

1.4 Equipment Modifications

Not available for this EUT intended for grant.

1.5 Support Device

N/A

1.6 Test Facility and Location

Site Desc		
EMC L	_ab :	Listed by CNAS, August 13, 2018 The certificate is valid until August 13, 2024 The Laboratory has been assessed and proved to be in compliance with CNAS/CL01
		The Certificate Registration Number is L5795.
		Listed by A2LA, November 01, 2017 The certificate is valid until December 31, 2019 The Laboratory has been assessed and proved to be in compliance with ISO17025 The Certificate Registration Number is 4429.01
		Listed by FCC, November 06, 2017 The Designation Number is CN1214 Test Firm Registration Number: 907417
		Listed by Industry Canada, June 08, 2017 The Certificate Registration Number. Is 46405-9743
Name of	Firm :	Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)
Site Loca	ation :	Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong Province, China

1.7 Summary of Test Results

FCC Rules	Description Of Test	Uncertainty	Result
§15.247(a)(1)	Channel Separation test	±1.42 x10 ⁻⁴ %	Compliant
§15.247(a)(1)	20dB Bandwidth	±1.42 x10 ⁻⁴ %	Compliant
§15.247(a)(1)(iii)	Hopping Channel Number	±1.42 x10 ⁻⁴ %	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	±5%	Compliant
§15.247(b)	Max Peak output Power test ±1.06dB		Compliant
§15.247(d)	Band edge test	±1.70dB	Compliant
§15.207 (a)	AC Power Conducted Emission	±1.06dB	Compliant
§15.247(d),§15.209, §15.205	Radiated Emission	±3.70dB	Compliant
§15.203	Antenna Requirement	N/A	Compliant
§15.247(d)	Conducted Spurious Emission	±1.70dB	Compliant

2. System Test Configuration

2.1 EUT Configuration

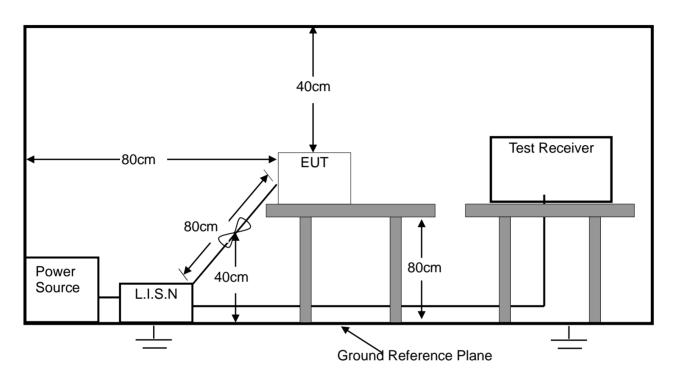
The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 Special Accessories

Not available for this EUT intended for grant.

2.3 Description of test modes

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and normal mode is programmed. The Lowest, middle and highest channel were chosen for testing, and all packets DH1, DH3, DH5, 2DH1, 2DH3, 2DH5, 3DH1, 3DH3, 3DH5 mode in all modulation type GFSK, $\pi/4$ -DQPSK, 8DPSK were tested.


2.4 EUT Exercise

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

3. Conducted Emissions Test

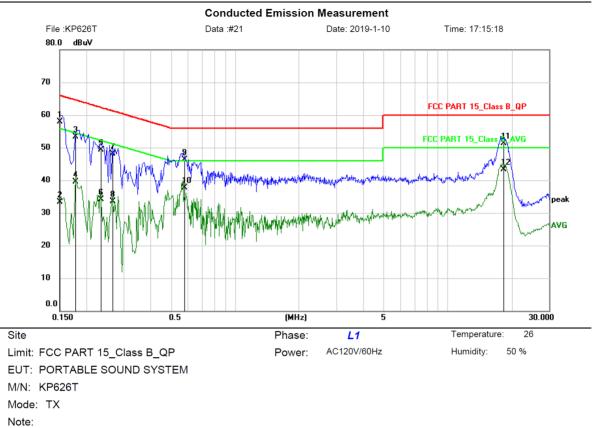
3.1 Test SET-UP (Block Diagram of Configuration)

3.2 Test Condition

Test Requirement: FCC Part 15.207

Frequency Range: 150KHz ~ 30MHz

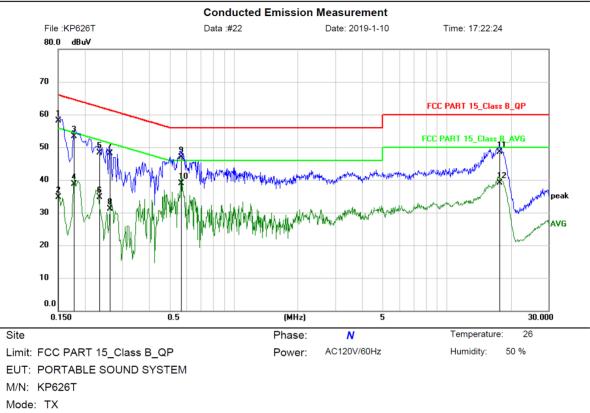
Detector: RBW 9KHz, VBW 30KHz


Operation Mode: TX

3.3 Measurement Results

Please refer to following plots of the worst case: 8DPSK Low Channel.

Nore Testing Center Dongguan NTC Co., Ltd. Tel:+86-769-22022444 Fax:+86-769-22022799 Web: <u>Http://www.ntc-c.com</u>

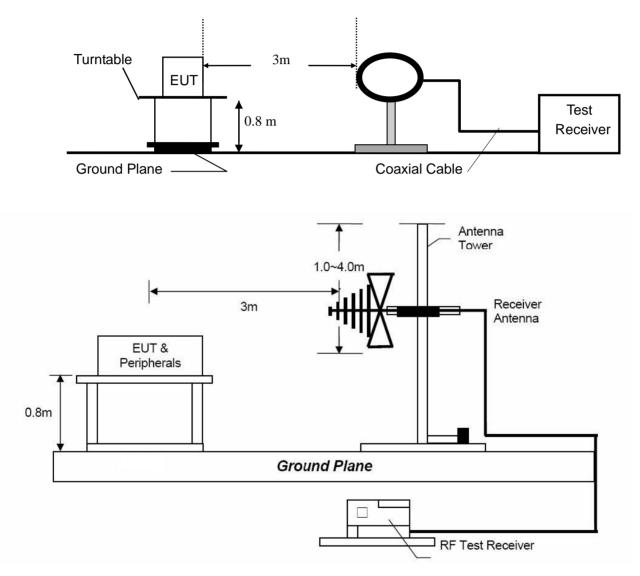

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	47.39	10.61	58.00	66.00	-8.00	QP	
2	0.1500	22.69	10.61	33.30	56.00	-22.70	AVG	
3	0.1779	42.79	10.61	53.40	64.58	-11.18	QP	
4	0.1779	28.89	10.61	39.50	54.58	-15.08	AVG	
5	0.2340	38.79	10.61	49.40	62.31	-12.91	QP	
6	0.2340	23.49	10.61	34.10	52.31	-18.21	AVG	
7	0.2660	37.49	10.61	48.10	61.24	-13.14	QP	
8	0.2660	22.89	10.61	33.50	51.24	-17.74	AVG	
9	0.5776	35.77	10.63	46.40	56.00	-9.60	QP	
10	0.5776	27.07	10.63	37.70	46.00	-8.30	AVG	
11	18.2859	40.73	10.67	51.40	60.00	-8.60	QP	
12 *	18.2859	32.63	10.67	43.30	50.00	-6.70	AVG	

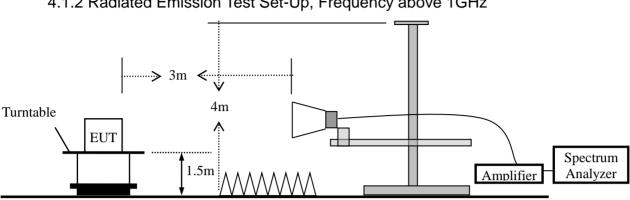
ГС

n Cer

Dongguan NTC Co., Ltd. Tel:+86-769-22022444 Fax:+86-769-22022799 Web: <u>Http://www.ntc-c.com</u>

Note:


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	47.49	10.61	58.10	66.00	-7.90	QP	
2	0.1500	24.19	10.61	34.80	56.00	-21.20	AVG	
3	0.1780	42.79	10.61	53.40	64.58	-11.18	QP	
4	0.1780	28.19	10.61	38.80	54.58	-15.78	AVG	
5	0.2340	37.79	10.61	48.40	62.31	-13.91	QP	
6	0.2340	24.19	10.61	34.80	52.31	-17.51	AVG	
7	0.2620	37.59	10.61	48.20	61.37	-13.17	QP	
8	0.2620	20.59	10.61	31.20	51.37	-20.17	AVG	
9	0.5657	36.27	10.63	46.90	56.00	-9.10	QP	
10 *	0.5657	28.27	10.63	38.90	46.00	-7.10	AVG	
11	17.6540	37.83	10.67	48.50	60.00	-11.50	QP	
12	17.6540	28.43	10.67	39.10	50.00	-10.90	AVG	


4. Radiated Emission Test

4.1 Test SET-UP (Block Diagram of Configuration)

4.1.1 Radiated Emission Test Set-Up, Frequency Below 30MHz

4.1.2 Radiated Emission Test Set-Up, Frequency above 1GHz

4.2 Measurement Procedure

- a. Blow 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:

The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

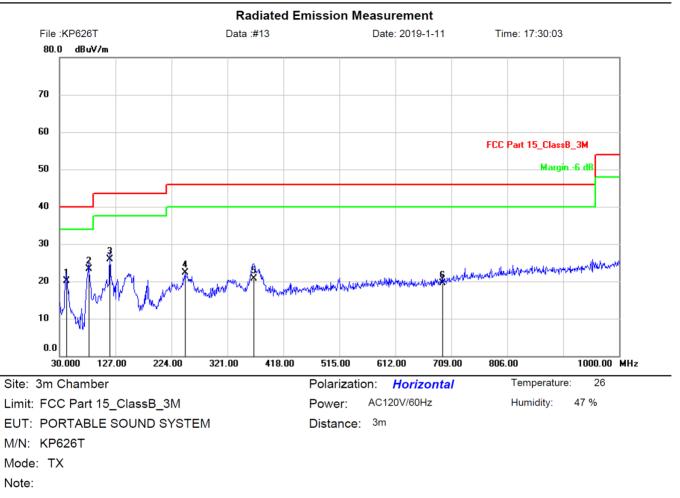
Frequency Band (MHz)	Level	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
	Average	1 MHz	10 Hz

4.3 Limit

Frequency range	Distance Meters	Field Strengths Limit (15.209)
MHz		μV/m
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

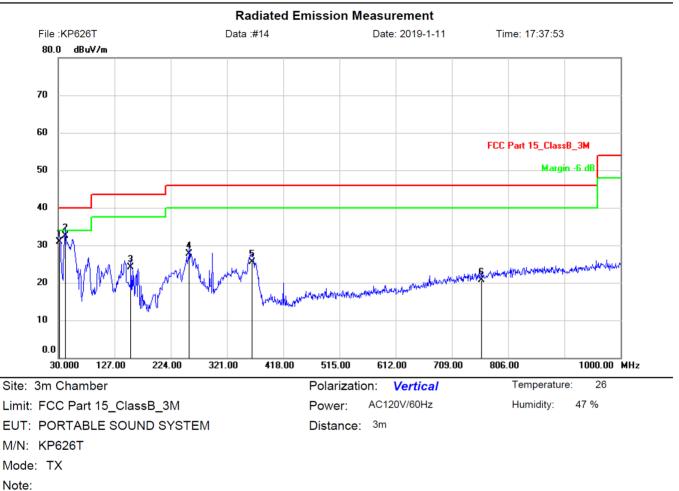
Remark : (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.


4.4 Measurement Results

Please refer to following plots of the worst case: 8DPSK Low Channel.

Dongguan NTC Co., Ltd. Tel:+86-769-22022444 Fax:+86-769-22022799 Web: Http://www.ntc-c.com


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		42.6100	40.23	-20.03	20.20	40.00	-19.80	QP			
2	*	80.4400	39.34	-16.04	23.30	40.00	-16.70	QP			
3		117.3000	39.36	-13.46	25.90	43.50	-17.60	QP			
4		247.2800	34.19	-11.79	22.40	46.00	-23.60	QP			
5		366.5900	29.86	-9.16	20.70	46.00	-25.30	QP			
6		693.4800	23.61	-4.01	19.60	46.00	-26.40	QP			

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Dongguan NTC Co., Ltd. Tel:+86-769-22022444 Fax:+86-769-22022799 Web: Http://www.ntc-c.com

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.9400	46.67	-15.77	30.90	40.00	-9.10	QP			
2	*	42.6100	46.78	-14.28	32.50	40.00	-7.50	QP			
3		155.1300	42.56	-18.36	24.20	43.50	-19.30	QP			
4		256.0100	41.24	-13.54	27.70	46.00	-18.30	QP			
5		363.6800	36.75	-11.15	25.60	46.00	-20.40	QP			
6		760.4099	23.16	-2.46	20.70	46.00	-25.30	QP			

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Modulation: 8DPSK (ThFrequency Range:1-25GHzTest Result:PASSMeasured Distance:3mTest By:Sance					Case) Test Date Temperati Humidity :	ure :	Januai 24 ℃ 47 %	ry 17, 20	19	
_		Rea	ding	– (Emissio	n Level	Limi	t 3m	Ма	rgin
Freq.	Ant.Pol.	Level(•	Factor	(dBı	JV)	(dBu	V/m)		B)
(MHz)	(H/V)	PK	ÂŃ	(dB/m)	PK	ÁV	Ρ̈́K	ÁV	PK	ÁV
			Oper	ation Mo	de: TX N	lode (Lo	w)			
4804	V	49.43	35.94	6.30	55.73	42.24	74.00	54.00	-18.27	-11.76
7206	V	45.74	36.20	10.44	56.18	46.64	74.00	54.00	-17.82	-7.36
4804	Н	48.14	32.29	6.30	54.44	38.59	74.00	54.00	-19.56	-15.41
7206	Н	50.09	32.64	10.44	60.53	43.08	74.00	54.00	-13.47	-10.92
			Ope	ration Mo	ode: TX N	lode (Mi	d)			
4882	V	47.41	33.86	6.60	54.01	40.46	74.00	54.00	-19.99	-13.54
7323	V	45.49	32.27	10.55	56.04	42.82	74.00	54.00	-17.96	-11.18
4882	Н	47.56	32.67	6.60	54.16	39.27	74.00	54.00	-19.84	-14.73
7323	Н	45.94	31.26	10.55	56.49	41.81	74.00	54.00	-17.51	-12.19
			Oper	ation Mo	de: TX M	ode (Hig	jh)		-	
4960	V	47.63	32.89	6.89	54.52	39.78	74.00	54.00	-19.48	-14.22
7440	V	45.53	31.76	10.60	56.13	42.36	74.00	54.00	-17.87	-11.64
4960	Н	47.64	33.63	6.89	54.53	40.52	74.00	54.00	-19.47	-13.48
7440	Н	46.29	32.77	10.60	56.89	43.37	74.00	54.00	-17.11	-10.63

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level + Factor
- (3) Factor= Antenna Gain + Cable Loss Amplifier Gain
- (4) Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits.
- (5) Measurement uncertainty : ±3.7dB.
- (6) Horn antenna used for the emission over 1000MHz.

5. Channel Separation test

5.1 Measurement Procedure

Minimum Hopping Channel Carrier Frequency Separation, FCC Rule 15.247(a)(1):

Connect EUT antenna terminal to the spectrum analyzer with a low loss cable, and using the MARKER and Max-Hold function to record the separation of two adjacent channels.

5.2 Test SET-UP (Block Diagram of Configuration)

EUT	- Spectrum Analyzer
-----	---------------------

5.3 Measurement Results

Modulation:	GFSK, π/4-DQPSK,	8DPSK	
RBW:	100KHz	VBW:	300KHz
Packet:	DH5, 2DH5, 3DH5	Spectrum Detector:	PK
Test By:	Sance	Test Date :	January 11, 2019
Temperature :	22 °C	Humidity :	53 %
Test Result:	PASS		

Channel number	Channel frequency (MHz)	Separation Read Value (KHz)	Separation Limit 2/3 20dB Bandwidth (KHz)	
		GFSK		
Lowest	2402	999	>734.00	
Middle	2441	999	>730.67	
Highest	2480	999	>735.33	
	π/	4-DQPSK		
Lowest	2402	999	>903.33	
Middle	2441	1005	>888.00	
Highest	2480	999	>906.00	
		8DPSK		
Lowest	2402	996	>902.67	
Middle	2441	1005	>910.67	
Highest	2480	1005	>902.67	

GFSK Lowest Channel

GFSK Middle Channel

Keysight Spectrum Analyzer - Swept SA				- ē 🔀
RF 50 Ω AC Center Freq 2.441000000 Center Freq 2.441000000 Center Freq 2.441000000 Center Freq 2.4410000000		SOURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	02:27:05 PM Jan 11, 2019 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 10.00 dBm	PNO: Wide Tirg: Free Run IFGain:Low #Atten: 30 dB	0.	ΔMkr2 999 kHz -0.047 dB	Auto Tune
0.00 -10.0 -20.0			2Δ1	Center Freq 2.441000000 GHz
-30.0				Start Freq 2.439500000 GHz
-60 0 -70 0 -80 0				Stop Freq 2.442500000 GHz
Center 2.441000 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 1	Span 3.000 MHz .000 ms (1001 pts)	CF Step 300.000 kHz <u>Auto</u> Man
1 N 1 f 2.441 2 Δ1 1 f (Δ) 3 4 5 6	1 036 GHz -5.237 dBm 999 kHz (Δ) -0.047 dB			Freq Offset 0 Hz
7 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10 1				Scale Type
11 (m	STATU	4	

GFSK Highest Channel

π/4-DQPSK Lowest Channel

Keysight Spectrum Analyzer - Swept SA				
RF 50 Ω AC Center Freq 2.402000000	GHz	AVG Type: Log-Pwr AvgIHold:>100/100	02:29:32 PM Jan 11, 2019 TRACE 1 2 3 4 5 6 TYPE MMAAAAAAAA	Frequency
	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB		2.402 006 GHz	Auto Tune
10 dB/div Ref 10.00 dBm			-6.384 dBm	
0.00	1		2∆1	Center Freq
-10.0				2.402000000 GHz
-30.0				Start Freq
-40.0				2.400500000 GHz
-50.0				
-60.0				Stop Freq
-80.0				2.403500000 GHz
Center 2.402000 GHz			Span 3.000 MHz	CF Step
#Res BW 100 kHz	#VBW 300 kHz		.000 ms (1001 pts)	300.000 kHz <u>Auto</u> Man
	Y 2 006 GHz -6.384 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
2 Δ1 1 f (Δ)	999 kHz (Δ) -0.023 dB			Freq Offset
5			E	0 Hz
7 8				Scale Type
9				Log Lin
11 <	m		•	
MSG		STATUS		

π/4-DQPSK Middle Channel

π/4-DQPSK Highest Channel

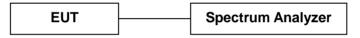
Keysight Spectrum Analyzer - Swept SA				
Center Freq 2.480000000	CHZ PNO: Wide	AVG Type: Log-Pwr Avg Hold:>100/100	02:30:52 PM Jan 11, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Frequency
10 dB/div Ref 10.00 dBm	IFGain:Low #Atten: 30 dB		DET P NNNNN .479 997 GHz -9.518 dBm	Auto Tune
200 200 201 201 201 201 201 201 201 201	1			Center Fred 2.480000000 GHz
-30.0				Start Freq 2.478500000 GHz
-60.0 -70.0 -80.0				Stop Freq 2.481500000 GHz
Center 2.480000 GHz #Res BW 100 kHz		Sweep 1.0	Span 3.000 MHz 00 ms (1001 pts) FUNCTION VALUE	CF Step 300.000 kHz <u>Auto</u> Mar
1 N 1 f 2.475 2 Δ1 1 f (Δ) 3 4 - - 5 - - - 6 - - -	9 997 GHz -9.518 dBm -999 kHz (Δ) 0.066 dB		H	Freq Offse t 0 Hz
7 8 8 9 10				Scale Type
< □ MSG	III	STATUS	4	

8DPSK Lowest Channel

8DPSK Middle Channel

weysight Spectrum Analyzer - Swept SA				
Center Freq 2.441000000	GHZ PNO: Wide Trig: Free Run	AVG Type: Log-Pwr Avg Hold:>100/100	36:07 PM Jan 11, 2019 TRACE 1 2 3 4 5 6 TYPE M 4440444	Frequency
10 dB/div Ref 10.00 dBm	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	0.	түре Мушинин Det P NNNNN 2 1.005 MHz -0.051 dB	Auto Tune
Log 0.00 -10.0 -20.0			2∆1	Center Fred 2.441000000 GH:
-30.0				Start Fred 2.439500000 GH:
-60.0 -70.0 -80.0				Stop Fred 2.442500000 GHz
Center 2.441000 GHz #Res BW 100 kHz MKR MODE TRC SCL X		Sweep 1.000	pan 3.000 MHz ms (1001 pts)	CF Step 300.000 kH: <u>Auto</u> Mar
1 N 1 f 2.441 2 Δ1 1 f (Δ) 1 3 - - - - 1 4 - - - - - 5 - - - - - - 6 -	1 069 GHz -7.753 dBm 1.005 MHz (Δ) -0.051 dB		E	Freq Offset 0 Hz
7 8 9 10 11				Scale Type
K	III	STATUS	•	

8DPSK Highest Channel


6. 20dB Bandwidth

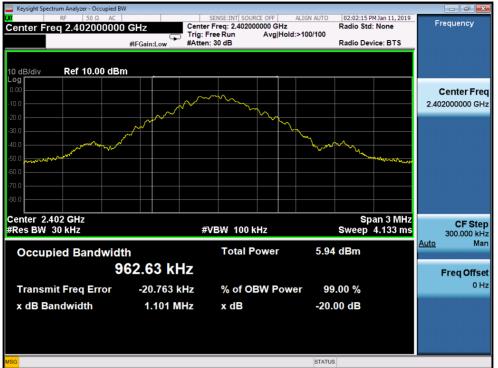
6.1 Measurement Procedure

Maximum 20dB RF Bandwidth, FCC Rule 15.247(a)(1):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was chosen so that the display was a result of the hopping channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. Use the spectrum 20dB down delta function to measure the bandwidth.

6.2 Test SET-UP (Block Diagram of Configuration)

6.3 Measurement Results


Refer to attached data chart.

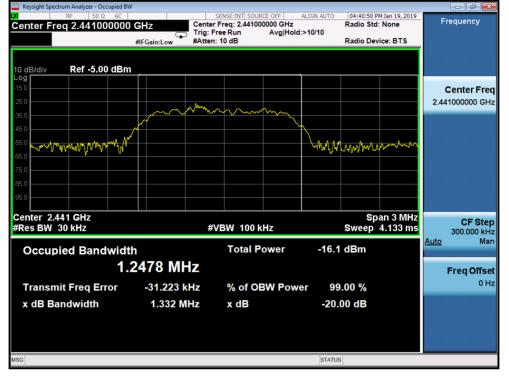
Modulation:	GFSK, π/4-DQPSK,	8DPSK	
RBW:	30KHz	VBW:	100KHz
Packet:	DH5, 2DH5, 3DH5	Spectrum Detector:	PK
Test By:	Sance	Test Date :	January 11, 2019
Temperature :	22 °C	Humidity :	53 %
Test Result:	PASS		

Channel frequency (MHz)	20dB Down BW(kHz)		
GFSK			
2402	1101		
2441	1096		
2480	1103		
π/4-DQPSK			
2402 1355			
2441	1332		
2480	1359		
8DPSK			
2402	1354		
2441	1366		
2480	1354		


GFSK Lowest Channel

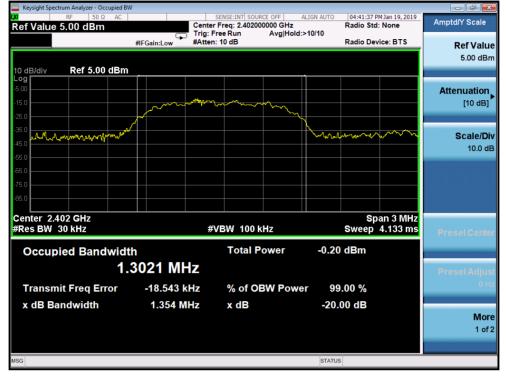
GFSK Middle Channel

GFSK Highest Channel

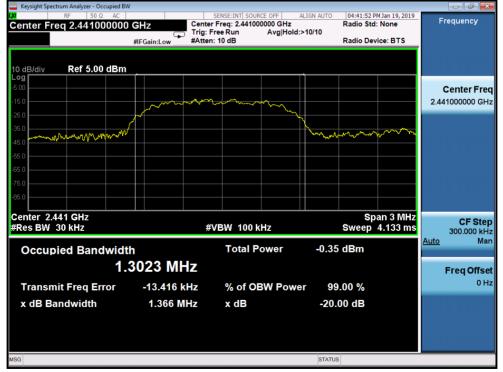


π/4-DQPSK Lowest Channel

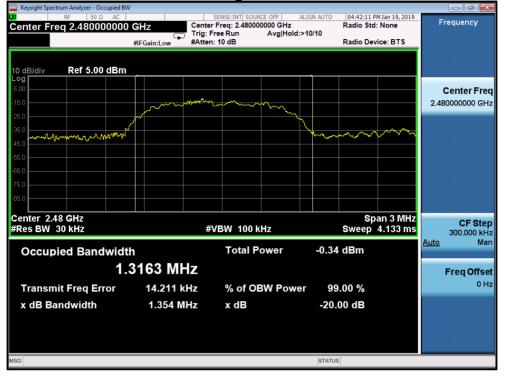
π/4-DQPSK Middle Channel



π/4-DQPSK Highest Channel



8DPSK Lowest Channel



8DPSK Middle Channel

8DPSK Highest Channel

7. Hopping Channel Number

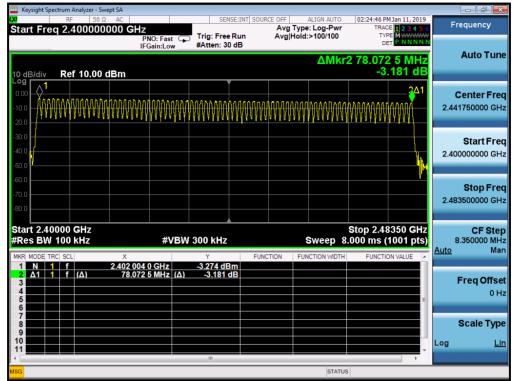
7.1 Measurement Procedure

Minimum Number of Hopping Frequencies, FCC Rule 15.247(a)(1)(iii):

Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum, and the spectrum analyzer set to MAX HOLD readings were taken for 3-5 minutes. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.

7.2 Test SET-UP (Block Diagram of Configuration)

7.3 Measurement Results


Modulation	GFSK, π/4-DQPSK,	8DPSK	
RBW:	100KHz	VBW:	300KHz
Packet:	DH5	Spectrum Detector:	PK
Test By:	Sance	Test Date :	January 11, 2019
Temperature :	22 °C	Humidity :	53 %
Test Result:	PASS		

Hopping Channel Frequency Range	Number of Hopping Channels	Limit
2402-2480	79	≥15

The worst case: 8DPSK

8DPSK

8. Time of Occupancy (Dwell Time)

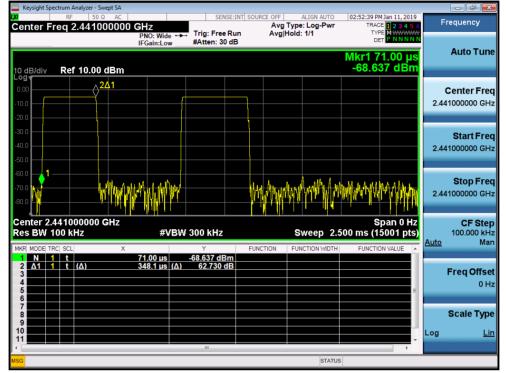
8.1 Measurement Procedure

Average Channel Occupancy Time, FCC Ref:15.247(a)(1)(iii):

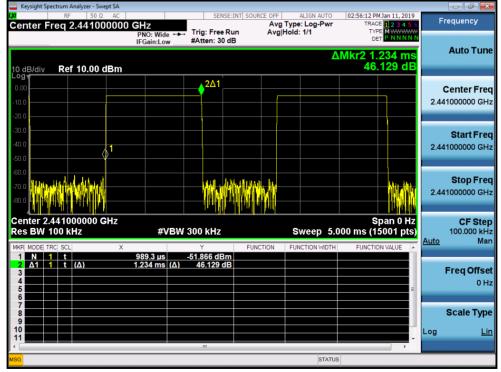
Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. The spectrum analyzer center frequency was set to one of the known hopping channels. The Sweep was set to 10 ms, the SPAN was set to Zero SPAN. The time duration of the transmissions so captured was measured with the Marker Delta function

8.2 Measurement Results

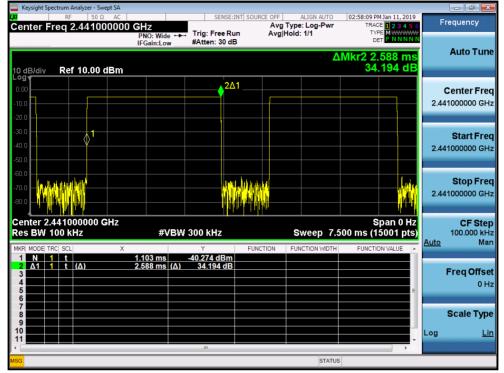
The maximum number of hopping channels in 31.6s (0.4s/Channel x 79 Channel)


Refer to attached data chart.

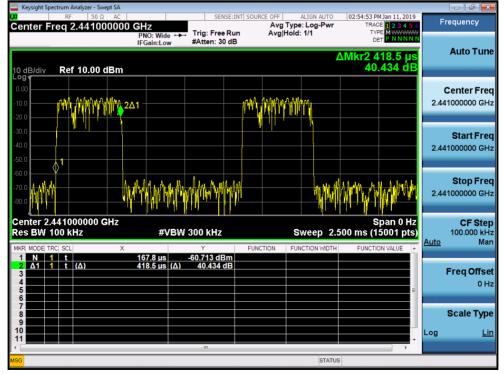
Modulation :	GFSK, π/4-DQPSK, 8	DPSK	
RBW :	1MHz	VBW :	3MHz
Spectrum Detector:	PK	Test By:	Sance
Test Date :	January 11, 2019	Temperature :	22°C
Test Result:	PASS	Humidity :	53 %


Packet	Frequency	Result			Limit
	(MHz)	(msec)			(msec)
			GFSK		
DH1	2441	0.348	(ms)*(1600/(2*79))*31.6=	111.36	400
DH3	2441	1.234	(ms)*(1600/(4*79))*31.6=	197.44	400
DH5	2441	2.588	(ms)*(1600/(6*79))*31.6=	276.05	400
π/4-DQPSK					
2-DH1	2441	0.419	(ms)*(1600/(2*79))*31.6=	134.08	400
2-DH3	2441	1.760	(ms)*(1600/(4*79))*31.6=	281.60	400
2-DH5	2441	3.020	(ms)*(1600/(6*79))*31.6=	322.13	400
8DPSK					
3-DH1	2441	0.444	(ms)*(1600/(2*79))*31.6=	142.08	400
3-DH3	2441	1.403	(ms)*(1600/(4*79))*31.6=	224.48	400
3-DH5	2441	2.427	(ms)*(1600/(6*79))*31.6=	258.88	400

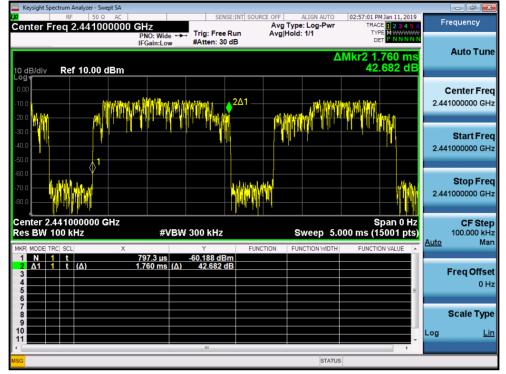
GFSK DH1



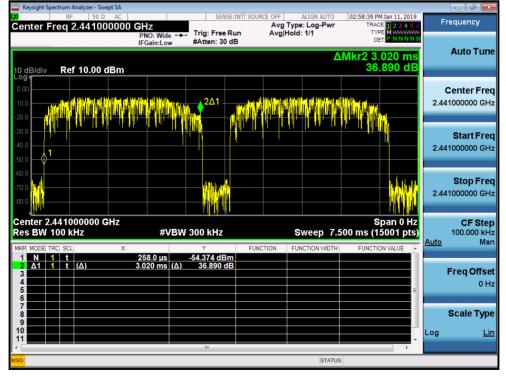
GFSK DH3



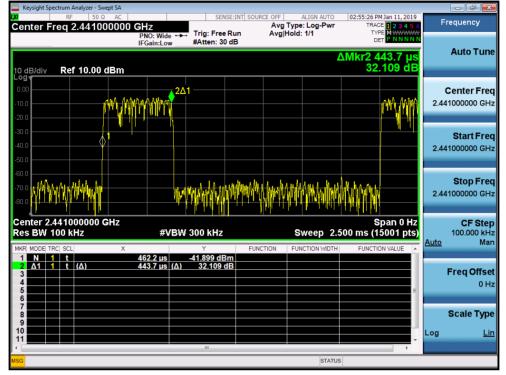
GFSK DH5



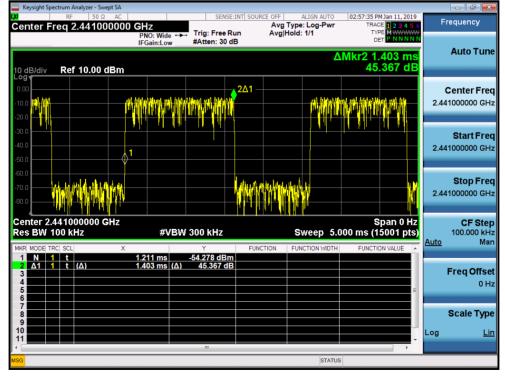
π/4-DQPSK 2DH1



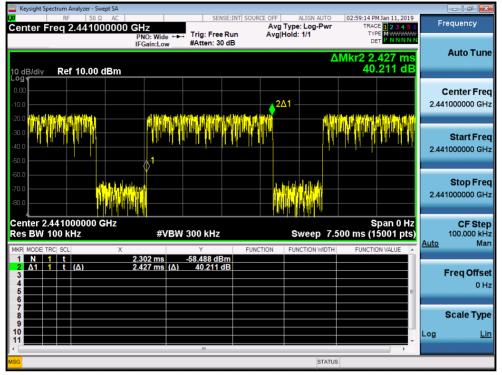
π/4-DQPSK 2DH3



 $\pi/4$ -DQPSK 2DH5



8DPSK 3DH1I



8DPSK 3DH3

8DPSK 3DH5

9. MAXIMUM PEAK OUTPUT POWER

9.1 Measurement Procedure

Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)(1):

Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum. The analyzer was set for RBW > 20dB bandwidth and power was read directly in dBm. Cable loss was considered during this measurement.

9.2 Measurement Results

Refer to attached data chart.

Modulation :	GFSK, π/4-DQP	SK, 8DPSK	
RBW :	3MHz	VBW :	3MHz
Spectrum Detector:	PK	Test Date :	January 11, 2019
Test By:	Sance	Temperature :	22 °C
Test Result:	PASS	Humidity :	53 %

Channel	Cable Loss	Peak Power	Peak Power	Peak Power						
Frequency		output	output	Limit	Pass/Fail					
(MHz)	(dB)	(dBm)	(mW)	(dBm)						
	GFSK									
2402.00	1.5	-0.302	0.933	21	PASS					
2441.00	1.5	-1.880	0.649	21	PASS					
2480.00	1.5	-3.144	0.485	21	PASS					
	π/4-DQPSK									
2402.00	1.5	-2.804	0.524	21	PASS					
2441.00	1.5	-4.413	0.362	21	PASS					
2480.00	1.5	-5.736	0.267	21	PASS					
8DPSK										
2402.00	1.5	-0.298	0.934	21	PASS					
2441.00	1.5	-1.872	0.650	21	PASS					
2480.00	1.5	-3.144	0.485	21	PASS					

GFSK Lowest Channel

GFSK Middle Channel

GFSK Highest Channel

π/4-DQPSK Lowest Channel

π/4-DQPSK Middle Channel

π/4-DQPSK Highest Channel

8DPSK Lowest Channel

8DPSK Middle Channel

8DPSK Highest Channel

10. Band Edge

10.1 Measurement Procedure

Out of Band Conducted Emissions, FCC Rule 15.247(d):

The transmitter output is connected to spectrum analyzer. The resolution bandwidth is set to100KHz, and the video bandwidth set to 300KHz.

10.2 Limit

15.247(d)In any 100KHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

10.3 Measurement Results

Please see below test table and plots. For Radiated Emission The worst case : **8DPSK**

Hopping-on mode

Freq. Ant.Pol.			Reading evel(dBuV) (dB/m)		Emission Level (dBuV)		Limit 3m (dBuV/m)		Margin (dB)	
(MHz)	(H/V)	PK	AV	(ub/m)	PK	AV	PK	AV	PK	AV
2390.000	Н	47.37	33.34	0.09	47.46	33.43	74.00	54.00	-26.54	-20.57
2390.000	V	47.16	33.09	0.09	47.25	33.18	74.00	54.00	-26.75	-20.82
2483.500	Н	49.99	34.14	0.34	50.33	34.48	74.00	54.00	-23.67	-19.52
2483.500	V	53.25	36.23	0.34	53.59	36.57	74.00	54.00	-20.41	-17.43

Note: (1) Emission Level= Reading Level + Factor

(2) Factor= Antenna Gain + Cable Loss - Amplifier Gain

(3) Horn antenna used for the emission over 1000MHz.



For RF Conducted

GFSK Highest Channel

π/4DQPSK Lowest Channel

Keysight Spectrum Analyzer - Swept Si

02:47:48 PM Jan 11, 2019 ALIGN AUTO Center Freq 2.483500000 GHz PNO: Wide Frequency TRACE 1 2 3 4 5 TYPE MWWW DET P N N N Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB Auto Tune ΔMkr2 3.62 MHz -38.039 dB Ref 10.00 dBm 10 dB/div Log r **Center Freq** \Diamond^1 2.483500000 GHz Start Freq _2∆1 2.478500000 GHz Stop Freq 2.488500000 GHz Center 2.483500 GHz #Res BW 100 kHz Span 10.00 MHz Sweep 1.000 ms (1001 pts) CF Step 1.000000 MHz Man #VBW 300 kHz Auto FUNCTION 1 N 1 f 2 Δ1 1 f (Δ) 2.480 02 GHz -12.082 dBm 3.62 MHz (Δ) -38.039 dB **Freq Offset** 3 0 Hz Scale Type <u>Lin</u> Log STATUS Keysight Spectrum Analyzer - Swept SA 02:47:56 PM Jan 11, 2019 TRACE 1 2 3 4 5 0 TYPE MWWWW DET P NNNN SENSE:INT SOURCE Avg Type: Log-Pwr Avg|Hold:>100/100 Frequency Center Freq 2.483500000 GHz Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low Auto Tune ΔMkr2 3.62 MHz -38.039 dB Ref 10.00 dBm 10 dB/div Log **Center Freq** \Diamond^1 2.483500000 GHz \sim Start Freq 2∆1 2.478500000 GHz Stop Freq 2.488500000 GHz Center 2.483500 GHz #Res BW 100 kHz Span 10.00 MHz Sweep 1.000 ms (1001 pts) **CF Step** 1.000000 MHz Man #VBW 300 kHz <u>Auto</u> 2.480 02 GHz -12.082 dBm 3.62 MHz (Δ) -38.039 dB N 1 f Δ1 1 f (Δ) Freq Offset 0 Hz Scale Type Log Lin

STATUS

π/4DQPSK Highest Channel

8DPSK Lowest Channel

8DPSK Highest Channel

11. Antenna Application

11.1 Antenna requirement

According to of FCC part 15C section 15.203 and 15.240:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

11.2 Measurement Results

The antenna is PCB Antenna and no consideration of replacement, and the best case gain of the antenna is 0 dBi. So, the antenna is consider meet the requirement.

12. Conducted Spurious Emissions

12.1 Measurement Procedure

Out of Band Conducted Spurious Emissions, FCC Rule 15.247(d):

The transmitter output is connected to spectrum analyzer. All spurious emission and up tp the tenth harmonic was measured and they were found to be at least 20dB below the highest level of the desired power in the passband.

12.2 Measurement Results

Please refer to following plots, the worst case (8DPSK) was shown.

Keysight Spectrum Analyzer - Swept SA E OFF ALIGN AUTO 03:04:29 PM Jan 11, 2019 Avg Type: Log-Pwr Avg|Hold:>100/100 TYPE Frequency Start Freg 30.000000 MHz Trig: Free Run #Atten: 30 dB TYPE PNO: Fast Auto Tune Mkr1 960.75 MHz -58.801 dBm 10 dB/div Log Ref 10.00 dBm **Center Freq** 515.000000 MHz Start Freq 30.000000 MHz 1 Stop Freq 1.000000000 GHz Start 0.0300 GHz #Res BW 100 kHz Stop 1.0000 GHz Sweep 94.00 ms (30001 pts) **CF Step** 97.000000 MHz <u>o</u> Man #VBW 300 kHz Auto 960.75 MHz -58.801 dBm Freq Offset 0 Hz Scale Type Log Lin Keysight Spectrum Analyzer - Swept SA 03:03:55 PM Jan 11, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N E OFF ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 100/100 Frequency Start Freg 1.000000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Auto Tune Mkr2 7.205 6 GHz -43.163 dBm 10 dB/div Log Ref 10.00 dBm **Center Freq** 13.000000000 GHz Start Freq ▲2 1.000000000 GHz Stop Freq 25.00000000 GHz Start 1.00 GHz #Res BW 1.0 MHz Stop 25.00 GHz Sweep 60.00 ms (30001 pts) **CF Step** 2.40000000 GHz #VBW 3.0 MHz <u>Auto</u> Man FUNCTION FUNCTION WIDTH FUNCTION VALUE 2.402 4 GHz 7.205 6 GHz -0.329 dBm -43.163 dBm <u>N 1 f</u> N 1 f Freq Offset 0 Hz Scale Type Lin Log

Middle Channel

	Ω AC	SENSE:INT S	OURCE OFF ALIGN AUTO	03:05:54 PM Jan 11, 2019	
art Freq 30.0000	PNO: Fast 😱	Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN	4
	IFGain:Low	#Atten: 30 dB	BAL	r1 774.35 MHz	Auto Tu
dB/div Ref 10.00	dBm		1011	-58.706 dBm	
9 00		l l			Contor F
					Center Fi 515.000000 N
				-21.96 dBm	
					Start Fr
0.0					30.000000 N
فالمتقابلة والمتلكة بمناجعة والمرجا والمرجا والمتعادية والمتحا والمتحا					Stop Fi
0.0					1.000000000
0.0					
tart 0.0300 GHz			A	Stop 1.0000 GHz	
Res BW 100 kHz	#VBW 3		-	00 ms (30001 pts)	97.000000 N Auto N
KR MODE TRC SCL	× 774.35 MHz	Y 58.706 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
2					Freq Off
4				=	0
6					
8					Scale Ty
0					Log
				•	
G			STATUS	•	
G Keysight Spectrum Analyzer - Sv				02:05:25 PM Jan 11 2019	- F
	Ω AC 0000 GHz	SENSE:INT S	OURCE OFF ALIGN AUTO	03:05:25 PM Jan 11, 2019 TRACE 1 2 3 4 5 TYPE M	Frequency
RF 50 S	ΩAC		OURCE OFF ALIGN AUTO		Frequency
art Freq 1.000000	Ω AC DOOD GHz PNO: Fast ↔→ IFGain:Low	SENSE:INT S	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN 2 24.047 2 GHz	Frequency Auto Tu
art Freq 1.000000	Ω AC DOOD GHz PNO: Fast ↔→ IFGain:Low	SENSE:INT S	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN	Frequency Auto Tu
art Freq 1.000000	Ω AC DOOD GHz PNO: Fast ↔→ IFGain:Low	SENSE:INT S	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN 2 24.047 2 GHz	Frequency Auto Tu
art Freq 1.000000	Ω AC DOOD GHz PNO: Fast ↔→ IFGain:Low	SENSE:INT S	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN 2 24.047 2 GHz	Frequency Auto Tu Center Fi
RF 50 4 cart Freq 1.000000 dB/div Ref 10.00	Ω AC DOOD GHz PNO: Fast ↔→ IFGain:Low	SENSE:INT S	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN 2 24.047 2 GHz	Frequency Auto Tu Center Fr
RF 50 4 cart Freq 1.000000	Ω AC DOOD GHz PNO: Fast ↔→ IFGain:Low	SENSE:INT S	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN 2 24.047 2 GHz	Frequency Auto Tu Center Fr 13.00000000 G Start Fr
RF 50 4 cart Freq 1.000000	Ω AC DOOD GHz PNO: Fast ↔→ IFGain:Low	SENSE:INT S	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN 2 24.047 2 GHz	Frequency Auto Tu Center Fr 13.00000000 G Start Fr
RF 50 4 cart Freq 1.000000	Ω AC DOOD GHz PNO: Fast ↔→ IFGain:Low	SENSE:INT S	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN 2 24.047 2 GHz	Frequency Auto Tu Center Fr 13.00000000 G Start Fr
RF 50 4 cart Freq 1.000000	Ω AC DOOD GHz PNO: Fast ↔→ IFGain:Low	SENSE:INT S	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN 2 24.047 2 GHz	Frequency Auto Tu Center Fr 13.00000000 C Start Fr 1.00000000 C
RF 50 4 cart Freq 1.000000 9 dB/div Ref 10.00 9 ↓ 1 00 ↓ 100 ↓ 100 ↓ 100 ↓ 100 ↓ 100 ↓ 100 ↓ 100 ↓ 100 ↓ 100 ↓ 100 ↓ 100	Ω AC DOOD GHz PNO: Fast ↔→ IFGain:Low	SENSE:INT S	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN 2 24.047 2 GHz	Frequency Auto Tu Center Fr 13.00000000 G Start Fr 1.00000000 G
RF 50.4 cart Freq 1.000000 0 dB/div Ref 10.00 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1	Ω AC DOOD GHz PNO: Fast ↔→ IFGain:Low	SENSE:INT S	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MYNNW DET PNNNN 2 24.047 2 GHz -39.275 dBm -21-96 dBm	Frequency Auto Tu Center Fr 13.00000000 G Start Fr 1.000000000 G Stop Fr 25.00000000 G
RF 50 4 cart Freq 1.000000 9 ↓ 1 00 ↓ 100 ↓	Ω AC DOOD GHz PNO: Fast ↔→ IFGain:Low	SENSE:INT S Trig: Free Run #Atten: 30 dB	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100 MKr/	TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN 2 24.047 2 GHz	Frequency Auto Tu Center Fr 13.00000000 G Start Fr 1.000000000 G Stop Fr 25.00000000 G CF St 2.40000000 G
RE 50.0 cart Freq 1.000000 0 00 0 00 1 10 1 <	Ω AC D0000 GHz PN0: Fast IFGain:Low PN0: Fast dBm Image: AC idBm Image: AC	SENSE:INT S Trig: Free Run #Atten: 30 dB	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100 MKr/	TRACE 1 2 3 4 5 Type Myster 0et P NNNN 2 24.047 2 GHz -39.275 dBm -21.96 dBm 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Frequency Auto Tu Center Fi 13.00000000 G Start Fr 1.00000000 G Stop Fr 25.00000000 G CF St
RF 50.0 cart Freq 1.000000 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 1 1 1 1 1 1	2 AC D0000 GHz PNO: Fast IFGain:Low dBm dBm dBm dBm dBm dBm dBm dBm	SENSE:INT S Trig: Free Run #Atten: 30 dB	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100 Mkr/	TRACE 2 3 4 5 TYPE Minimum State 00T Minimum State 2 24.047 2 GHz -39.275 dBm	Frequency Auto Tu Center Fr 13.00000000 G Start Fr 1.00000000 G Stop Fr 25.00000000 G CF St 2.40000000 G Auto Market
RF 50.0 cart Freq 1.000000 1 0 dB/div Ref 10.00 0 dB/div	2 AC D0000 GHz PNO: Fast IFGain:Low dBm dBm dBm dBm dBm dBm dBm dBm	SENSE:INT S Trig: Free Run #Atten: 30 dB	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100 Mkr/	TRACE 2 3 4 5 TYPE Minimum State 00T Minimum State 2 24.047 2 GHz -39.275 dBm	Frequency Auto Tu Center Fri 13.00000000 G Start Fri 1.00000000 G Stop Fri 25.00000000 G CF St 2.40000000 G Auto M Freq Offs
RE 50.4 cart Freq 1.000000 0 dB/div Ref 10.00 00 1 1 1 1 1 1 1 1 1 3 1 1 1	2 AC D0000 GHz PNO: Fast IFGain:Low dBm dBm dBm dBm dBm dBm dBm dBm	SENSE:INT S Trig: Free Run #Atten: 30 dB	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100 Mkr/	TRACE 2 3 4 5 TYPE Minimum State 00T Minimum State 2 24.047 2 GHz -39.275 dBm	Frequency Auto Tu Center Fri 13.00000000 G Start Fri 1.00000000 G Stop Fri 25.00000000 G CF St 2.40000000 G Auto M Freq Offs
RF 50.0 cart Freq 1.000000 0 dB/div Ref 10.00 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 AC D0000 GHz PNO: Fast IFGain:Low dBm dBm dBm dBm dBm dBm dBm dBm	SENSE:INT S Trig: Free Run #Atten: 30 dB	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100 Mkr/	224.047 2 GHz -39.275 dBm -21.96 dbm 2 24.047 2 GHz -39.275 dBm 2 24.047 2 GHz -39.275 dBm 2 2 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2	Frequency Auto Tu Center Fri 13.000000000 G Start Fri 1.000000000 G Stop Fri 25.000000000 G Auto Tu Center Fri 1.00000000 G Stop Fri 25.00000000 G Auto Tu Freq Offsi 0
RF 50.2 cart Freq 1.000000 1 0 dB/div Ref 10.00 0 dB/div	2 AC D0000 GHz PNO: Fast IFGain:Low dBm dBm dBm dBm dBm dBm dBm dBm	SENSE:INT S Trig: Free Run #Atten: 30 dB	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100 Mkr/	224.047 2 GHz -39.275 dBm -21.96 dbm 2 24.047 2 GHz -39.275 dBm 2 24.047 2 GHz -39.275 dBm 2 2 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2	Frequency Auto Tu Center Fr 13.00000000 G Start Fr 1.000000000 G Stop Fr 25.00000000 G Auto Tu Freq Offs 0 Scale Ty
RF 50.0 cart Freq 1.000000 1 0 dB/div Ref 10.00 1 n 1 1 n 1 1 n 1	2 AC D0000 GHz PNO: Fast IFGain:Low dBm dBm dBm dBm dBm dBm dBm dBm	SENSE:INT S Trig: Free Run #Atten: 30 dB	OURCE OFF ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100 Mkr/	224.047 2 GHz -39.275 dBm -21.96 dbm 2 24.047 2 GHz -39.275 dBm 2 24.047 2 GHz -39.275 dBm 2 2 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2	Frequency Auto Tu Center Fri 13.000000000 G Start Fri 1.000000000 G Stop Fri 25.000000000 G Auto Tu Center Fri 1.00000000 G Stop Fri 25.00000000 G Auto Tu Freq Offsi 0

Keysight Spectrum Analyzer - Swept SA 03:07:09 PM Jan 11, 2019 OFF ALIGN AUTO Avg Type: Log-Pwr Avg|Hold:>100/100 Frequency Start Freg 30.000000 MHz TRACE 1 2 3 4 5 (TYPE MWWWW DET P N N N N Trig: Free Run #Atten: 30 dB PNO: Fast Auto Tune Mkr1 748.77 MHz -58.924 dBm 10 dB/div Log Ref 10.00 dBm **Center Freq** 515.000000 MHz Start Freq 30.000000 MHz 1 Stop Freq 1.000000000 GHz Start 0.0300 GHz #Res BW 100 kHz Stop 1.0000 GHz Sweep 94.00 ms (30001 pts) **CF Step** 97.000000 MHz <u>o</u> Man #VBW 300 kHz Auto 748.77 MHz -58.924 dBm Freq Offset 0 Hz Scale Type Log Lin Keysight Spectrum Analyzer - Swept SA 03:06:45 PM Jan 11, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N Avg Type: Log-Pwr Avg|Hold: 100/100 Frequency Start Freg 1.000000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Auto Tune Mkr2 24.605 6 GHz -38.942 dBm 10 dB/div Ref 10.00 dBm **Center Freq** 13.000000000 GHz Start Freq 1.000000000 GHz Stop Freq 25.00000000 GHz Stop 25.00 GHz Sweep 60.00 ms (30001 pts) Start 1.00 GHz #Res BW 1.0 MHz **CF Step** 2.40000000 GHz #VBW 3.0 MHz <u>Auto</u> Man FUNCTION FUNCTION WIDTH FUNCTION VALUE 2.480 0 GHz 24.605 6 GHz -3.202 dBm -38.942 dBm N 1 f N 1 f Freq Offset 0 Hz Scale Type Lin Log

Highest Channel

Note: Sweep points=30001pts

13. Test Equipment List

No.	Equipment	Manufacturer	Model No.	Serial No.	Characteristics	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	9KHz~7GHz	Mar. 14, 2018	Mar. 13, 2019
2.	Antenna	Schwarzbeck	VULB9162	9162-010	30MHz~7GHz	Mar. 23, 2018	Mar. 22, 2019
3.	Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	20Hz~26.5GHz	Mar. 14, 2018	Mar. 13, 2019
4.	Spectrum Analyzer	Keysight	N9020A	MY5420083 1	20Hz~26.5GHz	Apr. 24, 2018	Apr. 23, 2019
5.	Horn Antenna	Schwarzbeck	BBHA9170	9170-372	15GHz~40GHz	Mar. 23, 2018	Mar. 22, 2019
6.	Pre-Amplifier	EMCI	EMC 184045	980102	18GHz~40GHz	Apr. 24, 2018	Apr. 23, 2019
7.	Power Sensor	DARE	RPR3006W	15I00041SN O64	100MHz~6GHz	Mar. 14, 2018	Mar. 13, 2019
8.	Horn Antenna	COM-Power	AH-118	071078	500MHz~18GHz	Mar. 23, 2018	Mar. 22, 2019
9.	Pre-Amplifier	HP	HP 8449B	3008A00964	1GHz~26.5GHz	Mar. 14, 2018	Mar. 13, 2019
10.	Pre-Amplifier	HP	HP 8447D	1145A00203	100KHz~1.3GHz	Mar. 14, 2018	Mar. 13, 2019
11.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	9KHz~30MHz	Apr. 24, 2018	Apr. 23, 2019
12.	Temperature & Humidity Chamber	REMAFEE	SYHR225L	N/A	-40~150℃	Apr. 24, 2018	Apr. 23, 2019
13.	DC Source	MY	MY8811	N/A	0~30V	Mar. 23, 2018	Mar. 22, 2019
14.	Temporary antenna connector	TESCOM	SS402	N/A	9KHz~25GHz	N/A	N/A
15.	Test Receiver	Rohde & Schwarz	ESCI	101152	9KHz~3GHz	Mar. 14, 2018	Mar. 13, 2019
16.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	N/A	Mar. 14, 2018	Mar. 13, 2019
	L.I.S.N	Schwarzbeck	NNLK8129	8129212	N/A	Mar. 07, 2018	Mar. 06, 2019
18.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	N/A	Mar. 14, 2018	Mar. 13, 2019
19.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.