TEST REPORT

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do, 443-390, Korea
TEL: 827050081021
FAX: 825052998311
Report No.: KCTL15-FR0069
Page(1)/(33) Pages

1. Applicant

Name:
Address:
2. Sample Description:

FCC ID:
2AF4S-STS-PRS-250
IC ID:
Type of equipment:
Basic Model:
3. Date of Test:

October 23 ~ October 27, 2015
FCC Part 15 Subpart C, 15.247
4. Test method used:

RSS-247 Issue 1 May 2015
RSS GEN Issue 4 November 2014

5. Test Results

Test Item: Refer to page 7
Result: \quad Refer to page $8 \sim$ page 32
Measurement Uncertainty: Refer to page 7

This result shown in this report refer only to the sample(s) tested unless otherwise stated.

Affirmation	Tested by	Technical Manager
	Name: KIM, TAE YOUNG	Name: SON, MIN GI

2015. 11. 17

KCTL Inc. Testing Laboratory

[Contents]

1. Client information3
2. Laboratory information 4
3. Description of E.U.T5
3.1 Basic description5
3.2 General description5
3.3 Test frequency 6
3.4 Test Voltage 6
4. Summary of test results 7
4.1 Standards \& results7
4.2 Uncertainty7
5. Test results 8
5.1 Antenna Requirement 8
5.2 Maximum Peak Output Power. 9
5.3 Peak Power Spectral Density 11
5.46 dB Bandwidth(DTS Channel Bandwidth) 15
5.5 Spurious Emission, Band Edge, and Restricted bands 20
5.6 Conducted Emission 31
6. Test equipment used for test 33

1. Client information

Applicant:

Address:

Telephone number:
Facsimile number:
Contact person:

Manufacturer:

Address:

SAM JIN CO., LTD
81, Anyangcheonseo-ro, Manan-gu, Anyang-so, Gyeonggi-do, 430-
817, Korea
+82-31-467-5949
+82-31-469-3115
Sang Soo Kim / gnasmic@samjin.com

SAM JIN CO., LTD
81, Anyangcheonseo-ro, Manan-gu, Anyang-so, Gyeonggi-do, 430-
817, Korea

2. Laboratory information

Address

KCTL Ltd.

65 Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea
Telephone Number: 82-70-5008-1016 Facsimile Number: 82-505-299-8311

Certificate

KOLAS No.: 231
FCC Site Designation No.: KR0040
FCC Site Registration No.: 687132
VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849
IC Site Registration No.:8035A-2

SITE MAP

This test report shall not be reproduced, except in full, without the written approval

3. Description of E.U.T.

3.1 Basic description

Applicant:	SAM JIN CO., LTD
Address of Applicant	81, Anyangcheonseo-ro, Manan-gu, Anyang-so, Gyeonggi-do, 430- 817, Korea
Manufacturer	SAM JIN CO., LTD
Address of Manufacturer	81, Anyangcheonseo-ro, Manan-gu, Anyang-so, Gyeonggi-do, 430- 817, Korea
Type of equipment	Arrival Sensor
Basic Model	STS-PRS-250
Serial number	N/A

3.2 General description

Frequency Range	$2405 \mathrm{MHz} \sim 2470 \mathrm{MHz}$
Type of Modulation	O-QPSK
Number of Channels	14 ch
Type of Antenna	PCB Pattern Antenna
Antenna Gain	0.85 dBi
Transmit Power	7.25 dBm
Operation temperature	$0{ }^{\circ} \mathrm{C} \sim 40{ }^{\circ} \mathrm{C}$
Power supply	DC 3.0 V
Product SW/HW version	1.0
Radio SW/HW version	1.0
Test SW Version	Teraterm_version 2.3
RF power setting in TEST SW	Target value " $8 "$

Note : The above EUT information was declared by the manufacturer.

This test report shall not be reproduced, except in full, without the written approval

3.3 Test frequency

	Frequency
Low frequency	2405 MHz
Middle frequency	2440 NHz
High frequency	2470 NHz

3.4 Test Voltage

Mode	Voltage
Norminal voltage	DC 3.0 V

4. Summary of test results

4.1 Standards \& results

FCC Rule Reference	IC Rule Reference	Parameter	Report Section	Test Result
15.203, $15.247(b)(4)$	-	Antenna Requirement	5.1	C
$15.247(\mathrm{~b})(3)$	RSS-247, 5.4(4)	Maximum Peak Output Power	5.2	C
$15.247(\mathrm{e})$	RSS-247, 5.2	Peak Power Spectral Density	5.3	C
$15.247(\mathrm{a})(2)$	RSS-247, 5.2	6 dB Channel Bandwidth	5.4	C
-	RSS-247, 5.2	Occupied Bandwidth $15.247(d)$, $15.205(a)$, $15.209(a)$ $15.207(a)$ RSS-GEN,8.9, 10	Spurious Emission, Band Edge, and Restricted bands	5.5
Note: C complies NC $=$ Not complies NT $=$ Not tested NA $=$ Not Applicable	Conducted Emissions	5.6	C	

* The method of measurement used to this test is KDB 558074, "Guidance for Performing Compliance measurements on Digital Transmission Systems (DTS) Operating Under §15.247"
* The general test methods used to test this device is ANSI C63.10:2013

4.2 Uncertainty

Measurement Item	$\begin{gathered} \text { Expanded } \\ \text { Uncertainty } \\ \mathrm{U}=k \mathrm{Uc}(k=2) \end{gathered}$	
Conducted RF power	1.30 dB	
Conducted Spurious Emissions	1.52 dB	
Radiated Spurious Emissions	$30 \mathrm{MHz} \sim 300 \mathrm{MHz}:$	+ $4.94 \mathrm{~dB},-5.06 \mathrm{~dB}$
		$+4.93 \mathrm{~dB},-5.05 \mathrm{~dB}$
	300 MHz ~ 1000 MHz	$+4.97 \mathrm{~dB},-5.08 \mathrm{~dB}$
		$+4.84 \mathrm{~dB},-4.96 \mathrm{~dB}$
	$1 \mathrm{CHz} \sim 25 \mathrm{CHz}$	$+6.03 \mathrm{~dB},-6.05 \mathrm{~dB}$
Conducted Emissions	$9 \mathrm{kHz} \sim 150 \mathrm{kHz}$:	3.75 dB
	$150 \mathrm{kHz} \sim 30 \mathrm{MHz}:$	3.36 dB

This test report shall not be reproduced, except in full, without the written approval

5. Test results

5.1 Antenna Requirement

5.1.1 Regulation

According to $\S 15.203$, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to $\S 15.247$ (b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBI . Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

5.1.2 Result

- Complied

The transmitter has a PCB pattern antenna as internal antenna.
The directional peak gain of the antenna is 0.85 dB i .

5.2 Maximum Peak Output Power

5.2.1 Regulation

According to §15.247(b)(3), For systems using digital modulation in the 902-928 MHz , 2 400-2 483.5 MHz, and 5 725-5 850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to $\S 15.247(\mathrm{~b})(4)$ The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi . Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

5.2.2 Measurement Procedure

These test measurement settings are specified in section 9.0 of 558074 D01 DTS Meas Guidance.

5.2.2.1 PKPM1 Peak power meter method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

This test report shall not be reproduced, except in full, without the written approval

5.2.3 Test Result

- Complied

Channel	Frequency $(M H z)$	Result (dBm)	Limit (dBm)	Margin (dB)	Average Power (dBm)
Low	2405	7.25	30.00	22.75	7.08
Middle	2440	6.95	30.00	23.05	6.82
High	2470	6.75	30.00	23.25	6.56

-NOTE:

1. Since the directional gain of the integral antenna declared by the manufacturer $\left(G_{A N T}=0.85 \mathrm{dBi}\right)$, does not exceed 6.0 dBi , there was no need to reduce the output power.
2. We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.3 Peak Power Spectral Density

5.3.1 Regulation

According to $\S 15.247$ (e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.3.2 Measurement Procedure

These test measurement settings are specified in section 10.0 of 558074 D01 DTS Meas Guidance.

5.3.2.1 Method PKPSD (peak PSD)

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

1) Set analyzer center frequency to DTS channel center frequency.
2) Set the span to 1.5 times the DTS bandwidth.
3) Set the RBW to: $3 \mathrm{kHz} \leq \mathrm{RBW} \leq 100 \mathrm{kHz}$.
4) Set the VBW $\geq 3 x$ RBW.
5) Detector $=$ peak.
6) Sweep time $=$ auto couple .
7) Trace mode $=\max$ hold .
8) Allow trace to fully stabilize.
9) Use the peak marker function to determine the maximum amplitude level within the RBW.
10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3.3 Test Result

- Complied

Channel	Frequency (MHz)	Result $[\mathrm{dBm}]$	Limit $[\mathrm{dBm}]$	Margin $[\mathrm{dBm}]$
Low	2405	3.28	8.00	4.72
Middle	2440	2.80	8.00	5.20
High	2470	2.24	8.00	5.76

-NOTE:

1. Since the directional gain of the integral antenna declared by the manufacturer $\left(\mathrm{G}_{\mathrm{ANT}}=0.85 \mathrm{dBi}\right)$, does not exceed 6.0 dBi , there was no need to reduce the output power.
2. We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.3.4 Test Plot

Figure 1. Plot of the Power Density
Lowest Channel(2405 MHz)

Middle Channel (2 440 MHz)

This test report shall not be reproduced, except in full, without the written approval
http://www.kctl.co.kr

Highest Channel (2 470 NHZ $)$

5.46 dB Bandwidth(DTS Channel Bandwidth)

5.4.1 Regulation

According to $\S 15.247(\mathrm{a})(2)$ Systems using digital modulation techniques may operate in the 902-928 MHz, $2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands. The minimum 6 dB bandwidth shall be at least 500 kHz .

5.4.2 Measurement Procedure

These test measurement settings are specified in section 8.0 of 558074 D01 DTS Meas Guidance.

5.4.2.1 DTS Channel Bandwidth-Option 1

1) Set $\mathrm{RBW}=100 \mathrm{kHz}$.
2) Set the video bandwidth $(\mathrm{VBW}) \geq 3 \times$ RBW.
3) Detector $=$ Peak.
4) Trace mode $=\max$ hold .
5) Sweep = auto couple.
6) Allow the trace to stabilize.
7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.4.2.2 DTS Channel Bandwidth Measurement Procedure-Option 2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB , if the functionality described above (i.e., RBW $=100 \mathrm{kHz}$, VBW $\geq 3 \times$ RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\geq 6 \mathrm{~dB}$.

5.4.3 Test Result

- Complied

Channel	Frequency $[\mathrm{MHz}]$	6 dB Bandwidth $[\mathrm{MHz}]$	Min. Limit $[\mathrm{MHz}]$	Occupied Bandwidth $(99 \%$ BW) $[\mathrm{MHz}]$
Low	2405	1.58	0.50	2.42
Middle	2440	1.58	0.50	2.41
High	2470	1.59	0.50	2.40

-NOTE:

1. We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.4.4 Test Plot

Figure 2. Plot of the 6 dB Bandwidth \& Occupied Bandwidth

* 6 dB Bandwidth

Lowest Channel (2 405 MHz)

Middle Channel (2 440 MHz)

This test report shall not be reproduced, except in full, without the written approval

Highest Channel (2 470 NHZ)

*OBW

Lowest Channel (2 405 MHz)

This test report shall not be reproduced, except in full, without the written approval

Middle Channel (2 440 MHz)

Highest Channel (2 470 MHz)

5.5 Spurious Emission, Band Edge, and Restricted bands

5.5.1 Regulation

According to $\S 15.247(\mathrm{~d})$, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in Section 15.209 (a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to $\S 15.209$ (a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall notexceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength $(\mu \mathrm{N} / \mathrm{m})$	Measurement distance (m)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30$	30	30
$30-88$	$100^{* *}$	3
$88-216$	$150^{* *}$	3
$216-960$	$200^{* *}$	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands $54-72 \mathrm{MHz}, 76-88 \mathrm{MHz}, 174-216 \mathrm{MHz}$ or $470-806 \mathrm{MHz}$. However, operation within these frequency bands is permItted under other sections of this part, e.g., $\S \S 15.231$ and 15.241.

This test report shall not be reproduced, except in full, without the written approval

According to $\S 15.205$ (a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

$M H z$	$M H z$	$M H z$	GHz
$0.009-0.110$	$16.42-16.423$	$399.9-410$	$4.5-5.15$
$0.495-0.505$	$16.69475-16.69525$	$608-614$	$5.35-5.46$
$2.1735-2.1905$	$16.80425-16.80475$	$960-1240$	$7.25-7.75$
$4.125-4.128$	$25.5-25.67$	$1300-1427$	$8.025-8.5$
$4.17725-4.17775$	$37.5-38.25$	$1435-1626.5$	$9.0-9.2$
$4.20725-4.20775$	$73-74.6$	$1645.5-1646.5$	$9.3-9.5$
$6.215-6.218$	$74.8-75.2$	$1660-1710$	$10.6-12.7$
$6.26775-6.26825$	$108-121.94$	$1718.8-1722.2$	$13.25-13.4$
$6.31175-6.31225$	$123-138$	$2200-2300$	$14.47-14.5$
$8.291-8.294$	$149.9-150.05$	$2310-2390$	$15.35-16.2$
$8.362-8.366$	$156.52475-156.52525$	$2483.5-2500$	$17.7-21.4$
$8.37625-8.38675$	$156.7-156.9$	$2690-2900$	$22.01-23.12$
$8.41425-8.41475$	$162.0125-167.17$	$3260-3267$	$23.6-24.0$
$12.29-12.293$	$167.72-173.2$	$3332-3339$	$31.2-31.8$
$12.51975-12.52025$	$240-285$	$3345.8-3358$	$36.43-36.5$
$12.57675-12.57725$	$322-335.4$	$3600-4400$	Above 38.6
$13.36-13.41$			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz , compliance with the limits in $\S 15.209$ shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in $\S 15.209$ shall be demonstrated based on the average value of the measured emissions. The provisions in $\S 15.35$ apply to these measurements.

This test report shall not be reproduced, except in full, without the written approval

5.5.2Measurement Procedure

5.5.2.1 Band-edge Compliance of RF Conducted Emissions

5.5.2.1.1 Reference Level Measurement

Establish a reference level by using the following procedure:

1) Set instrument center frequency to DTS channel center frequency.
2) Set the span to ≥ 1.5 times the DTS bandwidth.
3) Set the RBW $=100 \mathrm{kHz}$.
4) Set the VBW $\geq 3 \times$ RBW.
5) Detector = peak.
6) Sweep time = auto couple.
7) Trace mode = max hold.
8) Allow trace to fully stabilize.
9) Use the peak marker function to determine the maximum PSD level.

5.5.2.1.2 Emissions Level Measurement

1) Set the center frequency and span to encompass frequency range to be measured.
2) Set the RBW $=100 \mathrm{kHz}$.
3) Set the VBW $\geq 3 \times$ RBW.
4) Detector = peak.
5) Ensure that the number of measurement points \geq span/RBW
6) Sweep time = auto couple.
7) Trace mode = max hold.
8) Allow trace to fully stabilize.
9) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

This test report shall not be reproduced, except in full, without the written approval

5.5.2.2 Conducted Spurious Emissions

Set the spectrum analyzer as follows:

1) $\operatorname{Span}=$ wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
2) $\mathrm{RBW}=100 \mathrm{kHz}$
3) VBW \geq RBW
4) Sweep = auto
5) Detector function = peak
6) Trace $=$ max hold
7) Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
8) Each frequency found during preliminary measurements was re-examined and investigated.

The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.

5.5.2.3 Radiated Spurious Emissions

1) The preliminary and final rdiated measurements were performed to determine the frequency producing the maximum emissions in at a 10 m anechoic chamber. The EUT was tested at a distance 3 meters.
2) The EUT was placed on the top of the 0.8 -meter height, 1×1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
3) The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 klz to 30 MHz using the loop antenna, and from 30 to 1000 NHz using the TRILOG broadband antenna, and from 1000 MHzz to 26500 NHz using the horn antenna.
4) Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.

Note

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 CHz .
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz .
The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is $1 \mathrm{klz}(\geq 1 / \mathrm{T})$ for Average detection (AV) at frequency above 1 GHz . (where $\mathrm{T}=$ pulse width)

This test report shall not be reproduced, except in full, without the written approval

5.5.3 Test Result

- Complied

1. Conducted Spurious Emissions was shown in figure 3.

Note: We took the insertion loss of the cable into consideration within the measuring instrument.
2. Measured value of the Field strength of spurious Emissions (Radiated)
3. It tested x, y and $\mathrm{z}-3$ axis each, mentioned only worst case data at this report.

Below 1 GHz data (worst-case)

Lowest channel (2405 MHz)

Frequency $[\mathrm{MHz}]$	Receiver Bandwidth $[\mathrm{kHz}]$	Pol. $[\mathrm{V} / \mathrm{H}]$	Reading $[\mathrm{dB}(\mu \mathrm{V})]$	Factor $[\mathrm{dB}]$	Result $[\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})]$	Limit $[\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})]$	Margin $[\mathrm{dB}]$

Quasi-Peak DATA. Emissions below 30 MH

-	Not Detected	-	-	-	-	-	-
Quasi-Peak DATA. Emissions below 1 CHz							
62.01	120	V	39.90	-18.30	21.60	40.00	18.40
66.38	120	V	42.40	-19.60	22.80	40.00	17.20
143.98	120	V	37.10	-21.60	15.50	43.50	28.00
191.99	120	H	35.80	-18.40	17.40	43.50	26.10
Above 200.00	Not Detected	-	-	-	-	-	-

This test report shall not be reproduced, except in full, without the written approval

* Above 1 GHz data

Low channel (2405 MHz)

Frequency	Receiver Bandwidth $[\mathrm{kHz}]$	Pol. $[\mathrm{V} / \mathrm{H}]$	Reading $[\mathrm{dB}(\mu \mathrm{V})]$	Factor $[\mathrm{dB}]$	Result $[\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})]$	Limit	Margin
$[\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})]$	$[\mathrm{dB}]$						

Peak DATA. Emissions above 1 GHtz

* 4809.38	1000	H	41.50	12.90	54.40	74.00	19.60
* 2384.00	1000	H	43.70	6.20	49.90	74.00	24.10
$\begin{gathered} \hline \text { Above } \\ 5000.00 \\ \hline \end{gathered}$	Not Detected	-	-	-	-	-	-
Average DATA. Emissions above 1 GHz							
* 4809.38	1000	H	36.40	12.90	49.30	54.00	4.70
* 2384.00	1000	H	35.10	6.20	41.30	54.00	12.70
$\begin{gathered} \hline \text { Above } \\ 5000.00 \\ \hline \end{gathered}$	Not Detected	-	-	-	-	-	-

* Asterisks mean Restricted band.

Middle channel (2 440 MIZ)
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \text { Frequency } \\ {[\mathrm{MHz}]}\end{array} \begin{array}{c}\text { Receiver } \\ \text { Bandwidth } \\ {[\mathrm{kHz}]}\end{array} \begin{array}{c}\text { Pol. } \\ {[\mathrm{V} / \mathrm{H}]}\end{array} \begin{array}{c}\text { Reading } \\ {[\mathrm{dB}(\mu \mathrm{N})]}\end{array} \begin{array}{c}\text { Factor } \\ {[\mathrm{dB}]}\end{array} \begin{array}{c}\text { Result } \\ {[\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})]}\end{array} \begin{array}{c}\text { Limit } \\ {[\mathrm{dB}(\mu \mathrm{N} / \mathrm{m})]}\end{array} \begin{array}{c}\text { Margin } \\ {[\mathrm{dB}]}\end{array}\right]$

Peak DATA. Emissions above 1 GHz

$* 4878.75$	1000	V	42.80	13.00	55.80	74.00	18.20
Above 5000.00	Not Detected	-	-	-	-	-	-
Average DATA. Emissions above 1 GIt女							
$* 4878.75$	1000	V	32.90	13.00	45.90	54.00	8.10
Above 5000.00	Not Detected	-	-	-	-	-	-

This test report shall not be reproduced, except in full, without the written approval

High channel (2470 MEZ)

Frequency $[\mathrm{MHz}]$	Receiver Bandwidth $[\mathrm{kHz}]$	Pol. $[\mathrm{V} / \mathrm{H}]$	Reading $[\mathrm{dB}(\mu \mathrm{V})]$	Factor $[\mathrm{dB}]$	Result $[\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})]$	Limit $[\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})]$	Margin $[\mathrm{dB}]$
Peak DATA. Emissions above 1 GHtz							
$* 4940.63$	1000	V	41.70	13.10	54.80	74.00	19.20
$* 2483.50$	1000	H	44.30	6.50	50.80	74.00	23.20
Above 5000.00	Not Detected	-	-	-	-	-	-

Average DATA. Emissions above 1 GHt

$* 4940.63$	1000	V	35.20	13.10	48.30	54.00	5.70
$* 2483.50$	1000	H	33.00	6.50	39.50	54.00	14.50
Above 5000.00	Not Detected	-	-	-	-	-	-

* Asterisks mean Restricted band.

5.5.4 Test Plot

Figure 3. Plot of the Band-edge \& Conducted Spurious Emissions
Lowest Channel (2 405 MHz)

Reference

Band-edge

http://www.kctl.co.kr

Conducted Spurious Emissions

Middle Channel (2 440 MHz)

Reference

Conducted Spurious Emissions

Highest Channel (2 470 MHz)

Reference

Band-edge

* Reasult of 2 483.5 MHz

Conducted Spurious Emissions

5.6 Conducted Emission

5.6.1 Regulation

According to $\S 15.207$ (a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz , shall not exceed the limits in the following table, as measured using a $50 \mu \mathrm{H} / 50 \Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (NHIz)	Conducted limit $(\mathrm{dB} \mu \mathrm{V})$	
	Qausi-peak	Average
$0.15-0.5$	66 to $56 *$	56 to $46 *$
$0.5-5$	56	46
$5-30$	60	50

* Decreases with the logarithm of the frequency.

According to $\S 15.107$ (a), for unintentional device, except for Class A digital devices, line conducted emission limits are the same as the above table.

5.6.2 Measurement Procedure

1) The EUT was placed on a wooden table of size, 1 m by 1.5 m , raised 80 cm in which is located 40 cm away from the vertical wall and 1.5 m away from the side wall of the shielded room.
2) Each current-carrying conductor of the EUT power cord was individually connected through a $50 \Omega / 50 \mu \mathrm{H}$ LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
3) Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
4) The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz .
5) The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASIPEAK and AVERAGE within a bandwidth of 9 kHz . The EUT was in transmitting mode during the measurements.

This test report shall not be reproduced, except in full, without the written approval

5.6.3 Test Result

- Complied

Figure 4. plot of Conducted Emission
*Conducted worst-case data : Lowest Channel (2 405 MHz)

Final Result									
\qquad									
No. Frequency	$\begin{aligned} & \text { Reading } \\ & \text { QP } \end{aligned}$	Reading CAV	c.f			$\underset{Q P}{\operatorname{Limit}}$	Limit AV	$\begin{gathered} \text { Margin } \\ Q P \end{gathered}$	Margin CAV
[MHz]	[dB(uV)]	[dB(uV)]	[dB]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB]	[dB]
10.34709	16.9	5.2	10.0	26.9	15.2	59.0	49.0	32.1	33.8
20.5215	13.6	3.5	10.0	23.6	13.5	56.0	46.0	32.4	32.5
33.13839	15.6	5.5	9.6	25.2	15.1	56.0	46.0	30.8	30.9
--- L1 Phase ---									
No. Frequency	Reading QP	Reading CAV	c.f	Result QP	Result CAV	Limit QP	Limit AV	Margin QP	Margin CAV
[MHz]	[dB(uV)]	[dB(uV)]	[dB]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB]	[dB]
10.18203	28.4	13.4	10.1	38.5	23.5	64.4	54.4	25.9	30.9
20.23104	25.9	10.9	9.9	35.8	20.8	62.4	52.4	26.6	31.6
31.40456	1.4	-2.9	9.8	11.2	6.9	56.0	46.0	44.8	39.1
423.96444	17.3	12.1	9.8	27.1	21.9	60.0	50.0	32.9	28.1
519.68962	6.3	1.2	9.8	16.1	11.0	60.0	50.0	43.9	39.0
67.15392	2.8	-2.1	9.6	12.4	7.5	60.0	50.0	47.6	42.5
711.44012	6.8	1.2	9.7	16.5	10.9	60.0	50.0	43.5	39.1

This test report shall not be reproduced, except in full, without the written approval

6. Test equipment used for test

	Description	Manufacturer	Model No.	Serial No.	$\begin{gathered} \text { Next Cal } \\ \text { Date. } \end{gathered}$
\square	DC Power Supply	AGILENT	E3632A	MY40004399	16.01.06
\square	Spectrum Analyzer	R \& S	FSV30	100808	16.09.02
\square	Signal Generator	R \& S	SMB 100A	176206	16.03.10
\square	EMI Test Receiver	SCHWARZBECK	ESR7	101078	16.07.10
\square	Loop Antenna	R \& S	HFH2-Z2	861971003	17.03.03
\square	Bi-Log Antenna	SCHWARZBECK	VULB9163	552	16.05.14
\square	Horn Antenna	ETS-LINDGREN	3117	155787	16.02.05
\square	Horn Antenna	ETS.lindgren	3116	00086635	16.04.29
\square	Broadband Preamplifier	SCHWARZBECK	BBV9721	2	16.05.19
\square	Preamplifier	AGILENT	8449B	3008A02343	16.09.02
\square	Amplifier	SONOMA INSTRUMENT	310 N	186280	16.09.01
\square	Attenuator	R \& S	DNF Dämpfungsglied 10 dB in $\mathrm{N}-52$ Ohm	7	16.02.02
\square	Attenuator	AGILENT	8491A	MY52460424	16.07.13
\square	Highpass Filter	Wainwright Instruments GmbH	$\begin{gathered} \text { WHKX3.0/18G- } \\ \text { 12SS } \end{gathered}$	44	16.02.02
\square	Wideband Power Sensor	R \& S	NRP-Z81	100677	16.01.26
\square	Antenna Mast	Innco Systems	MA4000-EP	303	-
\square	Turn Table	Innco Systems	DT2000S-1t	79	-
\square	Test Receiver	R \& S	ESCI	100001	16.08.04
\square	$\begin{gathered} \text { TWO-LINE } \\ \text { V-NETWORK } \end{gathered}$	R \& S	ENV216	101358	16.09.03
\square	$\begin{gathered} \text { TWO-LINE } \\ \text { V-NETWORK } \end{gathered}$	R \& S	ESH3-Z5	100267	16.06.16

This test report shall not be reproduced, except in full, without the written approval

