

FCC/IC - TEST REPORT

Report Number : **68.950.17.026.02** Date of Issue: August 16, 2017

Model : HB32TX

Product Type : Baby Monitor

Applicant : Shenzhen Videotimes Technology Co., Ltd.

Address : Jinmeiwei First Industry Park, Xingye West Road, Bao'an

District, Shenzhen 518000 China

Production Facility : Shenzhen Videotimes Technology Co., Ltd.

Address : Floor 6, Building 3, Section 5, Honghualing Industrial South Park,

Liuxian Avenue, Taoyuan Street, Nanshan District, Shenzhen, China

Test Result : n Positive O Negative

Total pages : 36

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

Table of Contents

1	Т	Table of Contents2				
2		Details about the Test Laboratory				
3		Description of the Equipment Under Test	4			
4	5	Summary of Test Standards	5			
5	5	Summary of Test Results	6			
6	(General Remarks	7			
7	٦	Test Setups	8			
8	5	Systems test configuration	9			
9	٦	Technical Requirement	10			
Ş	9.1	Conducted Emission	10			
ç	9.2	Conducted peak output power	13			
Ş	9.3	20 dB bandwidth	15			
Ş).4	Carrier Frequency Separation	18			
Ş	9.5	Number of hopping frequencies	21			
Ş	9.6	Dwell Time	23			
Ş).7	Spurious RF conducted emissions	25			
Ş	8.6	Band edge testing	29			
ç	9.9	Spurious radiated emissions for transmitter	31			
10	٦	Test Equipment List	35			
11	ç	System Measurement Uncertainty	36			

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

FCC Registration

514049

No.:

IC Registration

10320A-1

No:

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

3 Description of the Equipment Under Test

Product: Baby Monitor

Model no.: HB32TX

FCC ID: 2AF2R-HB32TX

IC: 20674-HB32TX

Rating: 6VDC, 600mA

Powered by external power supply

Adaptor Input: 100-240VAC, 50/60Hz; 150mA

Adaptor Output: 6.0V, 600mA

RF Transmission

Frequency:

2403.5-2475.5MHz

No. of Operated

Channel:

49

Modulation: GFSK

Antenna Type: Integral Antenna

Antenna Gain: 1.2dBi

Description of the

EUT:

The Equipment Under Test (EUT) is a Baby Monitor operated at 2.4GHz

Channel List:

Channel	Frequency(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2403.5	13	2421.5	25	2439.5	37	2457.5
2	2405	14	2423	26	2441	38	2459
3	2406.5	15	2424.5	27	2442.5	39	2460.5
4	2408	16	2426	28	2444	40	2462
5	2409.5	17	2427.5	29	2445.5	41	2463.5
6	2411	18	2429	30	2447	42	2465
7	2412.5	19	2430.5	31	2448.5	43	2466.5
8	2414	20	2432	32	2450	44	2468
9	2415.5	21	2433.5	33	2451.5	45	2469.5
10	2417	22	2435	34	2453	46	2471
11	2418.5	23	2436.5	35	2454.5	47	2472.5
12	2420	24	2438	36	2456	48	2474
						49	2475.5

4 Summary of Test Standards

Test Standards				
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES			
10-1-2016 Edition	Subpart C - Intentional Radiators			
RSS-Gen Issue 4	General Requirements for the Certification of Radio Apparatus			
November 2014				
RSS-247 Issue 2	RSS-247 —Digital Transmission Systems (DTSs), Frequency			
February 2017	Hopping Systems (FHSs) and Licence-Exempt Local Area Network			
	(LE-LAN) Devices			

All the test methods were according to Public Notice DA 00-705 -Frequency Hopper Spread Spectrum Test Procedure released by FCC on March 30, 2000 and C63.10 (2014).

5 Summary of Test Results

Technical Requirements							
FCC Part 15 Sub	part C, RSS-Gen,	RSS-247			1		
Test Condition			Page s	Test Site	Tes Pas s	st Res Fai I	sult N/ A
§15.207	RSS-GEN A8.8	Conducted emission AC power port	10	Site 1	\boxtimes		
§15.247 (b) (1)	RSS-247 5.4(4)	Conducted peak output power	13	Site 1	\boxtimes		
§15.247(a)(1)	RSS-247 5.1(2)	20dB bandwidth	15	Site 1	\boxtimes		
§15.247(a)(1)	RSS-247 5.1(2)	Carrier frequency separation	18	Site 1	\boxtimes		
§15.247(a)(1)(iii)	RSS-247 5.1(3)	Number of hopping frequencies	20	Site 1	\boxtimes		
§15.247(a)(1)(iii	RSS-247 5.1(3)	Dwell Time	22	Site 1	\boxtimes		
§15.247(a)(2)	RSS-247 5.2 (1)	6dB bandwidth					\boxtimes
§15.247(e)	RSS-247 5.2 (2)	Power spectral density					\boxtimes
§15.247(d)	RSS-247 5.5	Spurious RF conducted emissions	26	Site 1	\boxtimes		
§15.247(d)	RSS-247 5.5	Band edge	30	Site 1	\boxtimes		
§15.247(d) & §15.209	RSS-247 5.5 & RSSGEN 6.13	Spurious radiated emissions for transmitter	32	Site 1	\boxtimes		
§15.203	RSSGEN 8.3	Antenna requirement	See r	note 2	\boxtimes		

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an integral antenna, which gain is 1.2dBi. In accordance to §15.203 and § RSSGEN 8.3, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2AF2R-HB32TX, IC: 20674-HB32TX complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules, RSS-Gen and RSS-210.

SUMMARY:

All tests according to the regulations cited on page 5 were

- n Performed
- o Not Performed

The Equipment Under Test

- n Fulfills the general approval requirements.
- Does not fulfill the general approval requirements.

Sample Received Date: July 31, 2017

Testing Start Date: July 31, 2017

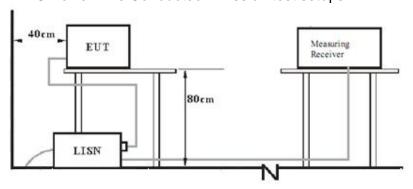
Testing End Date: August 15, 2017

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

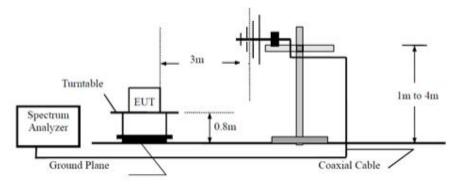
Reviewed by: Prepared by:

John Zhi EMC Project Manager

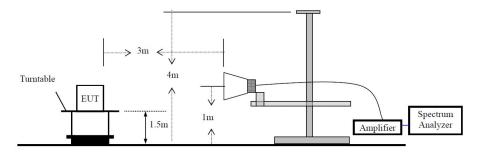
Johnshi


Alan Xiong EMC Project Engineer

Alem X300


7 Test Setups

7.1 AC Power Line Conducted Emission test setups



7.2 Radiated test setups


Below 1GHz

Above 1GHz

7.3 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)

Test software which used to control the EUT in continues transmitting mode

The system was configured to hopping mode and non-hopping mode.

Hopping mode: typical working mode (normal hopping status)

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power

9 Technical Requirement

9.1 Conducted Emission

Test Method

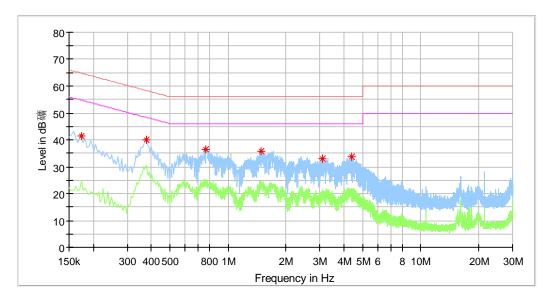
- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

According to §15.207 & RSS-GEN A8.8, conducted emissions limit as below:

Frequency		QP Limit	AV Limit	
	MHz	dΒμV	dΒμV	
	0.150-0.500	66-56*	56-46*	
	0.500-5	56	46	
	5-30	60	50	

Decreasing linearly with logarithm of the frequency

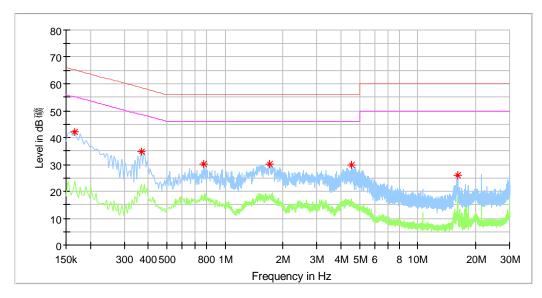


Product Type **Baby Monitor** M/N HB32TX **Operating Condition** Transmitting

Test Specification Line

Comment AC 120V/60Hz

Remark Model:RJ-AS060600U003


	Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
-	0.174000	41.30		64.77	23.47	L1	10.3
Ī	0.378000	40.16		58.32	18.16	L1	11.1
	0.770000	36.36		56.00	19.64	L1	10.3
	1.494000	35.87		56.00	20.13	L1	10.4
	3.090000	33.00		56.00	23.00	L1	10.4
	4.398000	33.71		56.00	22.29	L1	10.5

Product Type : Baby Monitor M/N : HB32TX Operating Condition : Transmitting Test Specification : Neutral

Comment : AC 120V/60Hz

Remark : Model:RJ-AS060600U003

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.166000	42.06		65.16	23.09	N	10.3
0.370000	34.82		58.50	23.68	N	10.3
0.774000	30.21		56.00	25.79	N	10.4
1.702000	30.26		56.00	25.74	N	10.4
4.554000	29.93		56.00	26.07	N	10.5
16.226000	25.96		60.00	34.04	N	11.0

Remark: Worst case adapter test record only.

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

Limits

According to §15.247 (b) (1) & RSS-247 5.4(4), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Conducted peak output power

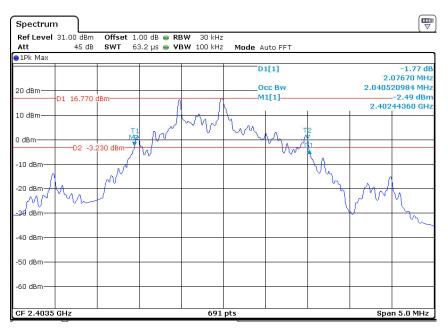
GFSK modulation Test Result

Frequency MHz	Conducted Peak Output Power dBm	Result
Low channel 2403.5MHz	17.40	Pass
Middle channel 2439.5MHz	17.42	Pass
High channel 2475.5MHz	16.88	Pass

9.3 20 dB bandwidth

Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.


Limit [kHz]	
N/A	

20 dB bandwidth

GFSK Modulation test result

Frequency	20 dB Bandwidth	Limit	Result
MHz	kHz	kHz	
2403.5	2076.7		Pass
2439.5	2083.9		Pass
2475.5	2076.7		Pass

20 dB bandwidth

9.4 Carrier Frequency Separation

Test Method

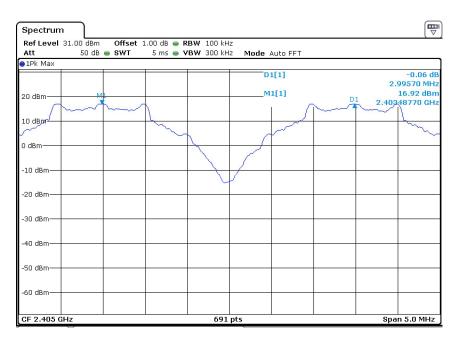
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. By using the Max-Hold function record the separation of two adjacent channels.
- 3. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

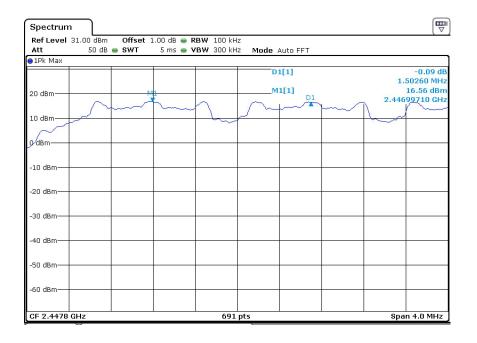
Limit
kHz
≥25KHz or 2/3 of the 20 dB bandwidth which is greater

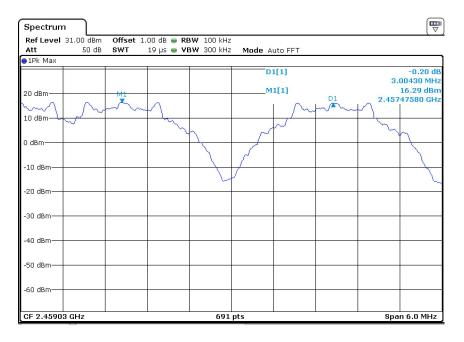
GFSK Modulation Limit

Frequency	2/3 of 20 dB Bandwidth
MHz	kHz
2403.5	1384.5
2439.5	1389.3
2460.5	1384.5



Carrier Frequency Separation


Test result: The measurement was performed with the typical configuration (normal hopping status), here GFSK modulation mode was used to show compliance.

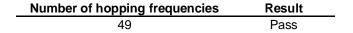

GFSK Modulation test result

Frequency	Carrier Frequency Separation	Result
MHz	kHz	
2403.5	2995.7	Pass
2439.5	1052.6	Pass
2460.5	3004.3	Pass

9.5 Number of hopping frequencies

Test Method

- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. Set the spectrum analyzer on Max-Hold Mode, and then keep the EUT in hopping mode.
- 3. Record all the signals from each channel until each one has been recorded.
- 4. Repeat above procedures until all frequencies measured were complete.


Limit

Limit	
number	
> 15	

Number of hopping frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status), Here GFSK modulation mode was used to show compliance.

Remark: The number of total hopping frequencies up to 49 and only 19 channels will hopping at the same time.

9.6 Dwell Time

Test Method

- 1. Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer
- 2. RBW: 1MHz; VBW: 1MHz; SPAN: Zero Span
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 4. Measure the Dwell Time by spectrum analyzer Marker function.
- 5. Repeat above procedures until all frequencies measured were complete.

Limit

According to §15.247(a)(1)(iii) & RSS-210 A8.1(c) The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

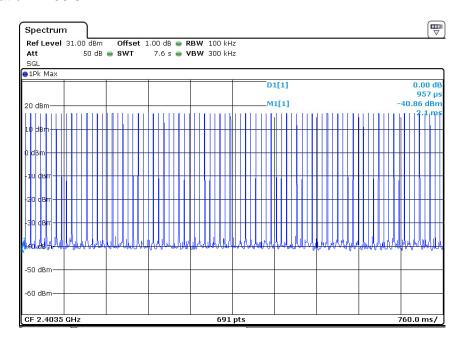
Dwell time

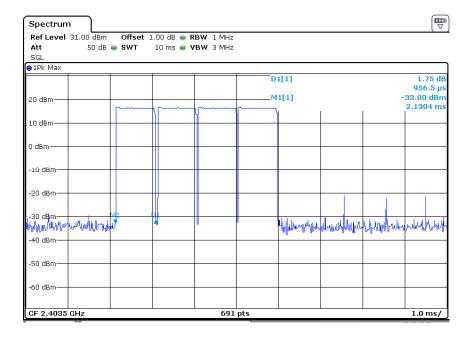
The maximum dwell time shall be 0.4 s.

We test all mode and worse case recorded in the report.

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows: The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 20 [ch] = 8.0 [s*ch];

The burst width, which is directly measured, refers to the duration on one channel hop.


The maximum number of hopping channels in 8.0s = 9*(8.0/0.8) = 90


Test Result

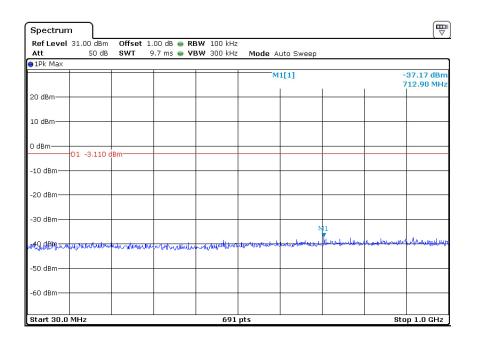
Modulation	Frequency	Reading (ms)	Total Hops	Test Result (ms)	Limit (ms)	Result
GFSK	2403.5MHz	3.826	83	317.56	< 400	Pass

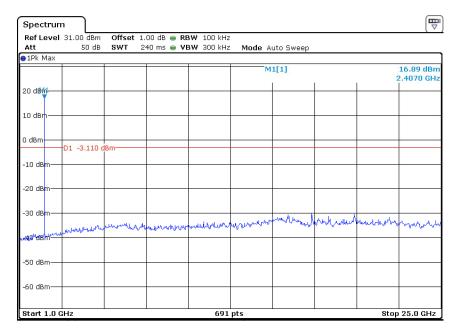
GFSK Modulation-2403.5MHz

9.7 Spurious RF conducted emissions

Test Method

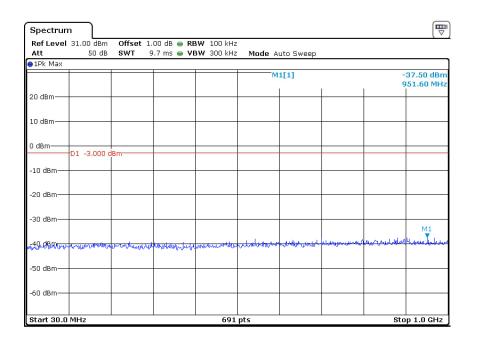
- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

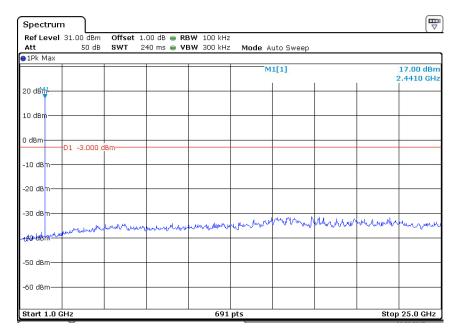

Limit


Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious RF conducted emissions

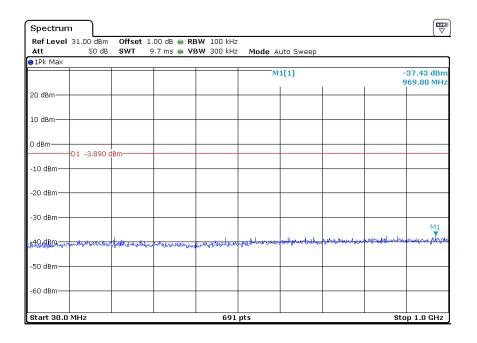
2403.5MHz

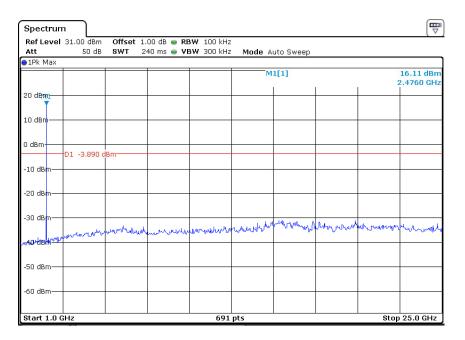




Spurious RF conducted emissions

2439.5MHz





Spurious RF conducted emissions

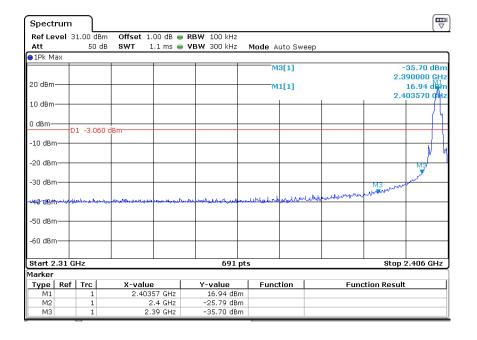
2475.5MHz

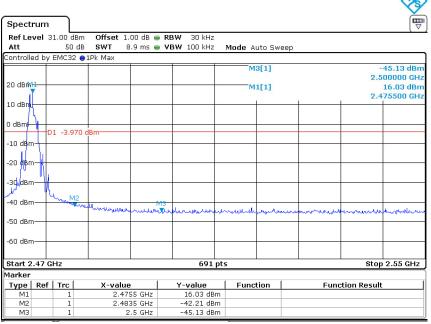
Remark: Testing is carried out with frequency rang 30MHz to 25GHz, which above 12.75GHz are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

9.8 Band edge testing

Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.
- 4 Repeat the test at the hopping off and hopping on mode, submit all the plots.


Limit:


According to §15.247(d) & RSS-210 A8.5, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a) and RSS-Gen7.2.2, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)) and RSS-Gen.

Band edge testing

GFSK Modulation Test Result:

Remark: Above test record based on FHSS mode worst case.

9.9 Spurious radiated emissions for transmitter

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

- 1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
- 3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).
- 4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

Limit

According to part 15.247(d) & RSS-247 5.5, the radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209 & RSSGEN 6.13.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (which is subject to the maximum EIRP, GFSK mode) test result is listed in the report.

Transmitting spurious emission test result as below:

GFSK Modulation 2403.5MHz Test Result:

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBµV/m		dBuV/m	
141.33	29.47	Horizontal	43.50	QP	14.03	Pass
272.02	34.28	Horizontal	46.00	QP	11.72	Pass
737.02	40.39	Horizontal	46.00	QP	5.61	Pass
138.640000	26.28	Vertical	43.50	QP	17.22	Pass
197.325000	24.89	Vertical	43.50	QP	18.61	Pass
282.685000	35.17	Vertical	46.00	QP	10.83	Pass
*4807	42.29	Horizontal	74	PK	31.71	Pass
7210.5	42.42	Horizontal	74	PK	31.58	Pass
*12017.5	47.00	Horizontal	74	PK	27.00	Pass
*4807	36.52	Vertical	74	PK	37.48	Pass
7210.5	40.50	Vertical	74	PK	33.50	Pass
*12017.5	43.35	Vertical	74	PK	30.65	Pass

GFSK Modulation 2439.5MHz Test Result:

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBµV/m		dBuV/m	
141.33	29.47	Horizontal	43.50	QP	14.03	Pass
272.02	34.28	Horizontal	46.00	QP	11.72	Pass
737.02	40.39	Horizontal	46.00	QP	5.61	Pass
138.640000	26.28	Vertical	43.50	QP	17.22	Pass
197.325000	24.89	Vertical	43.50	QP	18.61	Pass
282.685000	35.17	Vertical	46.00	QP	10.83	Pass
*4879	44.30	Horizontal	74	PK	29.70	Pass
9758	45.67	Horizontal	74	PK	28.33	Pass
*12197.5	46.73	Horizontal	74	PK	27.27	Pass
*4879	37.01	Vertical	74	PK	36.99	Pass
9758	42.98	Vertical	74	PK	31.02	Pass
*12197.5	46.83	Vertical	74	PK	27.17	Pass

GFSK Modulation 2475.5MHz Test Result:

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBµV/m		dBuV/m	
141.33	29.47	Horizontal	43.50	QP	14.03	Pass
272.02	34.28	Horizontal	46.00	QP	11.72	Pass
737.02	40.39	Horizontal	46.00	QP	5.61	Pass
138.640000	26.28	Vertical	43.50	QP	17.22	Pass
197.325000	24.89	Vertical	43.50	QP	18.61	Pass
282.685000	35.17	Vertical	46.00	QP	10.83	Pass
*4951	41.91	Horizontal	74	PK	32.09	Pass
7426.5	45.15	Horizontal	74	PK	28.85	Pass
*12377.5	52.72	Horizontal	74	PK	21.28	Pass
*4951	37.18	Vertical	74	PK	36.82	Pass
*12377.5	50.96	Vertical	74	PK	23.04	Pass

Remark:

- (1) Data of measurement within 30-1000MHz frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15 205
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

10 Test Equipment List

List of Test Instruments

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
С	Signal Generator	Rohde & Schwarz	SMB100A	108272	2018-7-7
	Signal Analyzer	Rohde & Schwarz	FSV40	101030	2018-7-7
	Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2018-7-7
	RF Switch Module	Rohde & Schwarz	OSP120/OS P-B157	101226/10085 1	2018-7-7
	EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2018-7-14
RE	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2018-7-14
KE	Horn Antenna	Rohde & Schwarz	HF907	102294	2018-7-14
	Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2018-7-14
	3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7
	EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2018-7-14
CE	LISN	Rohde & Schwarz	ENV4200	100249	2018-7-14
	LISN	Rohde & Schwarz	ENV432	101318	2018-7-14
	LISN	Rohde & Schwarz	ENV216	100326	2018-7-14

C - Conducted RF tests

- · Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- · Power spectral density*
- · Spurious RF conducted emissions
- · Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Radiated Spurious Emission	Horizontal: 4.98dB;			
25MHz-3000MHz	Vertical: 5.06dB;			
Uncertainty for Radiated Spurious Emission	Horizontal: 4.95dB;			
3000MHz-18000MHz	Vertical: 4.94dB;			
Uncertainty for Radiated Spurious Emission	Horizontal: 5.14dB;			
18000MHz-40000MHz	Vertical: 5.12dB;			
Uncertainty for Conducted RF test	Power level test involved: 2.06dB			
	Frequency test involved:			
	1.16×10 ⁻⁷			

---THE END---