

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202203-0211-16

1 of 50 Page:

Radio Test Report

FCC ID:2AF2R-62TX

Original Grant

TBR-C-202203-0211-16 Report No.

Applicant Shenzhen Videotimes Technology Co.,Ltd

Equipment Under Test (EUT)

EUT Name 2.4GHz Digital Wireless Video Baby Camera

Model No. **HB6339**

HB6339-2, HB6339TX, FK3963, FK3963-2, FK3963TX, BBM809, Series Model No.

BBM809-2, BBM809TX

Brand Name

202203-0211-9-1# 202203-0211-9-2# Sample ID

Receipt Date 2022-08-16

Test Date 2022-08-16 to 2022-09-10

Issue Date 2022-09-15

Standards FCC Part 15, Subpart C 15.247

ANSI C63.10: 2013 **Test Method**

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Seven Wu

Engineer Supervisor

Ivan Su

Ray Lai

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CONT	TENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	9
2.	TEST SUMMARY	.10
3.	TEST SOFTWARE	.10
4.	TEST EQUIPMENT	.11
5.COI	NDUCTED EMISSION TEST	.12
	5.1 Test Standard and Limit	.12
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	.13
	5.5 EUT Operating Mode	.13
	5.6 Test Data	.13
5.	RADIATED EMISSION TEST	.14
	6.1 Test Standard and Limit	.14
	6.2 Test Setup	.15
	6.3 Test Procedure	.16
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Condition	.17
	6.6 Test Data	
6.	RESTRICTED BANDS AND BAND-EDGE TEST	.18
	7.1 Test Standard and Limit	.18
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Condition	
	7.6 Test Data	
7.	NUMBER OF HOPPING CHANNEL	
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Condition	.21

Report No.: TBR-C-202203-0211-16 Page: 3 of 50

	8.6 Test Data	21
8.	AVERAGE TIME OF OCCUPANCY	22
	9.1 Test Standard and Limit	22
	9.2 Test Setup	22
	9.3 Test Procedure	22
	9.4 EUT Operating Condition	22
	9.4 Deviation From Test Standard	22
	9.5 Test Data	22
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	23
	10.1 Test Standard and Limit	23
	10.2 Test Setup	23
	10.3 Test Procedure	23
	10.4 Deviation From Test Standard	23
	10.5 EUT Operating Condition	23
	10.6 Test Data	23
10.	PEAK OUTPUT POWER TEST	24
	11.1 Test Standard and Limit	24
	11.2 Test Setup	24
	11.3 Test Procedure	24
	11.4 Deviation From Test Standard	
	11.5 EUT Operating Condition	
	11.6 Test Data	24
11.	ANTENNA REQUIREMENT	25
	12.1 Standard Requirement	25
	12.2 Deviation From Test Standard	25
	12.3 Antenna Connected Construction	
	12.4 Result	25
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	26
ATT	ACHMENT B RADIATED EMISSION TEST DATA	28
ATT	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	36
BAN	D EDGE	39
	D EDGE(HOPPING)	
	ACHMENT D NUMBER OF HOPPING CHANNEL TEST DATA	
	ACHMENT E AVERAGE TIME OF OCCUPANCY TEST DATA	
	ACHMENT F CHANNEL SEPARATION AND BANDWIDTH TEST DATA	
	ACHMENT G PEAK OUTPUT POWER TEST DATA	
\neg \cup \cup \cup	ACHNILINI G FLAR CUIFUI FUWLR IEGI DAIA	4 9

Report No.: TBR-C-202203-0211-16 Page: 4 of 50

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202203-0211-16	Rev.01	Initial issue of report	2022-09-15

Page: 5 of 50

1. General Information about EUT

1.1 Client Information

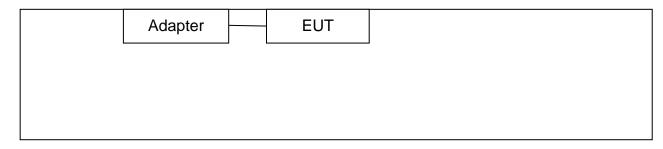

Applicant : Shenzhen Videotimes Technology Co.,Ltd		Shenzhen Videotimes Technology Co.,Ltd
		Room 2106, Building 11, Tianan Yungu Phase II(Plot of Land 02-08), Gangtou Community, Bantian Street, Longgang District, Shenzhen, Guangdong. 518000. China.
Manufacturer		Shenzhen Videotimes Technology Co.,Ltd
Address		Room 2106, Building 11, Tianan Yungu Phase II(Plot of Land 02-08), Gangtou Community, Bantian Street, Longgang District, Shenzhen, Guangdong. 518000. China.

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	2.4GHz Digital Wireless Vid	deo Baby Camera			
Models No.	:	HB6339, HB6339-2, HB6339TX, FK3963, FK3963-2, FK3963TX, BBM809, BBM809-2, BBM809TX				
Model Difference	:	All of these models have the same PCB, layout and circuitry, the only difference being the different selling model names.				
		Operation Frequency:	2.4GHz:2409.5MHz~2468MHz			
Product		Number of Channel:	40Channels see Note 2			
Description	•	Antenna Gain:	2 dBi External Antenna			
		Modulation Type:	GFSK			
Power Rating	:	Adapter: K05S050100U Input:100-240V~50/60Hz,0 Output:5V1A).2A			
Software Version : 1.0						
Hardware		1.0				
Version	-	The adapter and antenna gain provided by the applicant, the verified for				
Remark	:	the RF conduction test pro				

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.


(2) Channel List:

	Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
00	2409.5	14	2430.5	28	2451.5			
01	2411	15	2432	29	2453			
02	2412.5	16	2433.5	30	2454.5			
03	2414	17	2435	31	2456			
04	2415.5	18	2436.5	32	2457.5			
05	2417	19	2438	33	2459			
06	2418.5	20	2439.5	34	2460.5			
07	2420	21	2441	35	2462			
08	2421.5	22	2442.5	36	2463.5			
09	2423	23	2444	37	2465			
10	2424.5	24	2445.5	38	2466.5			
11	2426	25	2447	39	2468			
12	2427.5	26	2448.5					
13	2429	27	2450					

Note: Test frequencies are lowest channel: 2409.5MHz, middle channel: 2439.5MHz and highest channel: 2468MHz.

- (3) The Antenna information about the equipment is provided by the applicant.
- 1.3 Block Diagram Showing the Configuration of System Tested

Adapter & TX Mode

Page: 7 of 50

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1 Adapter+ TX Mode Channel 00				
For Radiated Test				
Final Test Mode	Description			
Mode 2	TX GFSK Mode Channel 00			
Mode 3	TX Mode(GFSK) Channel 00/20/39			
Mode 4	Hopping TX Mode			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (4Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 50

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	Adjust and control the corresponding transmission frequency through the EUT entity key.			
Frequency	2409.5 MHz	2439.5 MHz	2468 MHz	
GFSK	DEF	DEF	DEF	

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.20 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 50

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351. Designation Number:CN1223

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Page: 10 of 50

2. Test Summary

Standard Section	Took Idama	Toot Commission			
FCC	Test Item	Test Sample(s)	Judgment	Remark	
FCC 15.207(a)	Conducted Emission	202203-0211-9-1#	PASS	N/A	
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	202203-0211-9-1#	PASS	N/A	
FCC 15.203	Antenna Requirement	202203-0211-9-2#	PASS	N/A	
FCC 15.247(a)	99% Occupied Bandwidth & 20dB Bandwidth	202203-0211-9-2#	PASS	N/A	
FCC 15.247(b)(1)	Peak Output Power	202203-0211-9-2#	PASS	N/A	
FCC 15.247(a)(1)	Carrier frequency separation	202203-0211-9-2#	PASS	N/A	
FCC 15.247(a)(1)	Time of occupancy	202203-0211-9-2#	PASS	N/A	
FCC 15.247(b)(1)	Number of Hopping Frequency	202203-0211-9-2#	PASS	N/A	
FCC 15.247(d)	Band Edge	202203-0211-9-2#	PASS	N/A	
FCC 15.207(a)	Conducted Unwanted Emissions	202203-0211-9-2#	PASS	N/A	
FCC 15.205	Emissions in Restricted Bands	202203-0211-9-2#	PASS	N/A	

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.	
Conducted Emission	EZ-EMC	EZ	CDI-03A2	
Radiation Emission	EZ-EMC	EZ	FA-03A2RE	
Radiation Emission	TS+	Tonsced	3.0.0.4	
RF Conducted	MTS-8310	MWRFtest	V2.0.0.0	
Measurement	10113-0310	IVIVVICTUESU		

Report No.: TBR-C-202203-0211-16 Page: 11 of 50

4. Test Equipment

Conducted Emissio	Conducted Emission Test						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date		
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023		
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023		
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023		
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023		
Radiation Emission	Test			\			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date		
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023		
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 01, 2022	Aug. 31, 2023		
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jun. 23, 2022	Jun. 22, 2023		
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472	Feb. 26, 2022	Feb.25, 2023		
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb. 26, 2024		
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023		
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb. 25, 2024		
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	May 20, 2021	May 19, 2023		
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb. 25, 2024		
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024		
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb. 25, 2023		
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb.25, 2023		
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 01, 2022	Aug. 31, 2023		
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 01, 2022	Aug. 31, 2023		
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 01, 2022	Aug. 31, 2023		
Antenna Conducted	Emission						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date		
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 23, 2022	Jun. 22, 2023		
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023		
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 01, 2022	Aug. 31, 2023		
Spectrum Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 01, 2022	Aug. 31, 2023		
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 01, 2022	Aug. 31, 2023		
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 01, 2022	Aug. 31, 2023		
IVI LOME! SELISO!	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 01, 2022	Aug. 31, 2023		
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 01, 2022	Aug. 31, 2023		
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 01, 2022	Aug. 31, 2023		

Page: 12 of 50

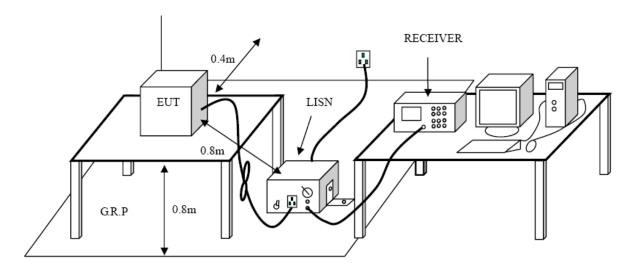
5.Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard

FCC Part 15.207 RSS-Gen 8.8

5.1.2 Test Limit


Conducted Emission Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 13 of 50

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

Page: 14 of 50

5. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

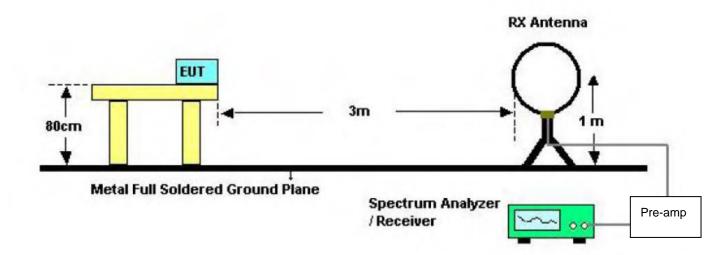
6.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

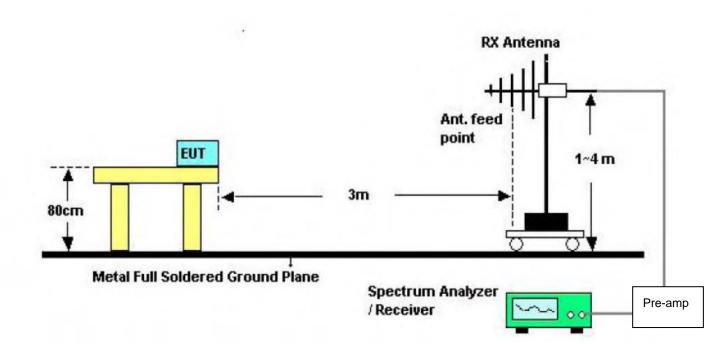
Madiated Ellission Ellint (5 KHZ 1000MHZ)						
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)				
0.009~0.490	2400/F(KHz)	300				
0.490~1.705	24000/F(KHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)				
(MHz)	Peak	Average			
Above 1000	74	54			


Note:

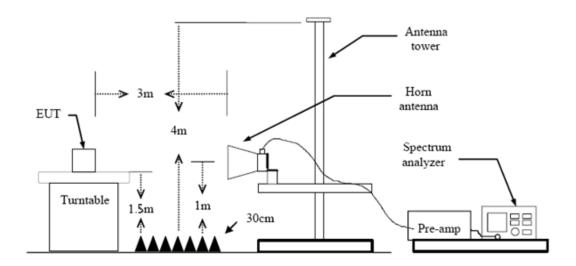
- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 15 of 50

6.2 Test Setup

Below 30MHz Test Setup



Below 1000MHz Test Setup

Page: 16 of 50

Above 1GHz Test Setup

6.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 17 of 50

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

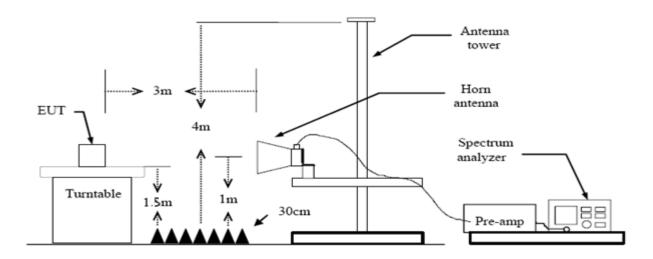
Page: 18 of 50

6. Restricted Bands and Band-edge test

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

F	Radiated measurement					
Restricted Frequency	Distance Meters(at 3m)					
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)				
2310 ~2390	74	54				
2483.5 ~2500	74	54				
C	onducted measurement					
Peak (dBm) _{see 7.3 e)} Average (dBm) _{see 7.3 e)}						
2310 ~2390	-41.20	-21.20				
2483.5 ~2500	-41.20	-21.20				

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

Conducted measurement

Page: 19 of 50

7.3 Test Procedure

---Radiated measurement

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

---Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalen t electric field strength using the following

Page: 20 of 50

relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

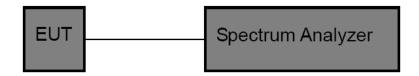
7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. Please refer to the Attachment C.

Page: 21 of 50

7. Number of Hopping Channel

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

8.6 Test Data

Please refer to the Attachment D.

Page: 22 of 50

8. Average Time of Occupancy

9.1 Test Standard and Limit

9.1.1 Test Standard

FCC Part 15.247 (a)(1)

9.1.2 Test Limit

Test Item	Limit
Average Time of Occupancy	0.4 sec

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100KHz, VBW=300KHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

9.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 20 [ch] = 8.0 [s*ch];

The burst width, which is directly measured, refers to the duration on one channel hop.

The maximum number of hopping channels in 8.0s = 3*(8.0/0.24) = 100

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

9.4 Deviation From Test Standard

No deviation

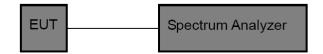
9.5 Test Data

Please refer to the Attachment E.

Page: 23 of 50

9. Channel Separation and Bandwidth Test

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5	
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5	

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=100 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

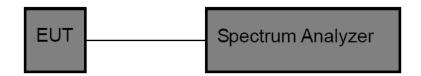
10.6 Test Data

Please refer to the Attachment F.

Page: 24 of 50

10. Peak Output Power Test

11.1 Test Standard and Limit


11.1.1 Test Standard

FCC Part 15.247 (b) (1)

11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm)	2400~2483.5	

11.2 Test Setup

11.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

11.4 Deviation From Test Standard

No deviation

11.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

11.6 Test Data

Please refer to the Attachment G.

Page: 25 of 50

11. Antenna Requirement

12.1 Standard Requirement

12.1.1 Standard

FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

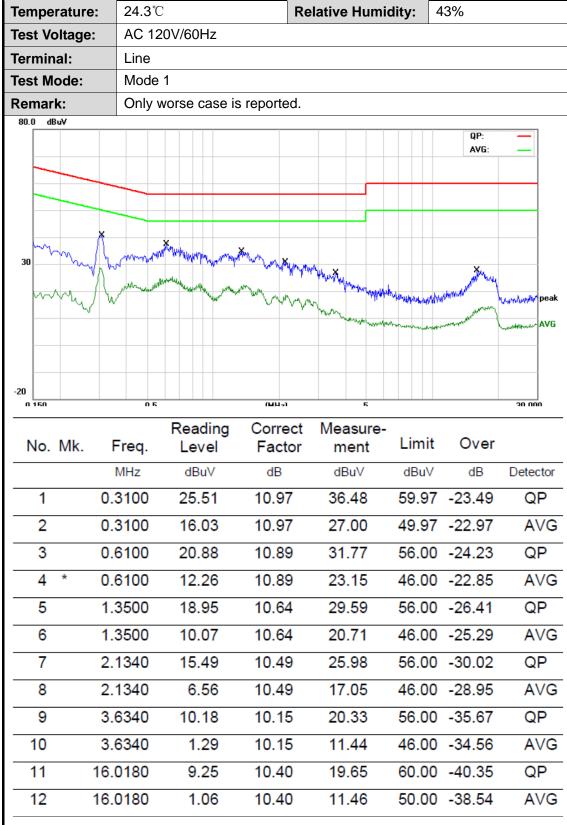
12.2 Deviation From Test Standard

No deviation

12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.4 Result


The EUT antenna is an External Antenna. It complies with the standard requirement.

Antenna Type
Permanent attached antenna
Unique connector antenna
Professional installation antenna

Page: 26 of 50

Attachment A-- Conducted Emission Test Data

Remark

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature:	24.3℃		Relative Hu	midity:	43%	
Test Voltage:	AC 120V/60Hz	II.			<u>'</u>	
Terminal:	Neutral					
Test Mode:	Mode 1					
Remark:	Only worse cas	e is reported.	•			
30 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	All of the first o	MANA MARIANA	Malana and a second	Mary Mary Mary Mary Mary Mary Mary Mary	QP: AVG:	peak
-20	0.5 Reading	(MHz) Correct	5 Measure-			30.000
No. Mk. F	req. Level	Factor	ment	Limit	Over	
N	lHz dBu∨	dB	dBuV	dBuV	dB	Detector
1 0.1	660 19.03	11.03	30.06	65.15	-35.09	QP
2 0.1	660 3.24	11.03	14.27	55.15	-40.88	AVG
3 0.3	020 21.17	10.98	32.15	60.19	-28.04	QP
4 0.3	020 8.71	10.98	19.69	50.19	-30.50	AVG
5 0.6	660 16.81	10.88	27.69	56.00	-28.31	QP
6 * 0.6	660 8.76	10.88	19.64	46.00	-26.36	AVG
7 1.4	020 15.24	10.63	25.87	56.00	-30.13	QP
8 1.4	020 7.15	10.63	17.78	46.00	-28.22	AVG
	740 10.32	10.27	20.59		-35.41	QP
	740 2.64	10.27	12.91		-33.09	AVG
11 15.7	140 5.83	10.39	16.22	60.00	-43.78	QP
12 15.7		10.39	10.08		-39.92	AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 28 of 50

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Tem	perat	ure:	23.	5℃				Relative	Humidity:	46%	
	t Volta			AC 120V/60HZ							
	. Pol.			izont							
	t Mode	e:				ode 2	2409.5MHz				
	nark:						is reported				
80.0		n		,			<u> </u>				
									(REJECC 1	5C 3M Radiatio	
									(iii ji cc i	Margin -6	
											6
								3	4	5	mysma
30						1	2 X	¥.	humbrath		
^	MANAMAN		Mangana	A	um	mlh.	Smiling	Maly Maly	****		
	~γ.	mm.	Jonahan	, Moh.	*****	· · · · //v					
-20 _ 30.	000 4	10 50	60	70 80			(MHz)	300	0 400 5	00 600 700	1000.000
Ν	lo. M	k. F	req.		eadi .eve		Correct Factor	Measure- ment	Limit	Over	
		N	1Hz	(dBu\	/	dB/m	dBuV/m	dBuV/m	dB	Detector
1		112.	1305	3	39.5	4	-15.43	24.11	43.50	-19.39	peak
2		160.	3456	3	88.2	6	-13.84	24.42	43.50	-19.08	peak
3		245.	9509	4	10.3	7	-11.38	28.99	46.00	-17.01	peak
4		459.	1144	3	33.7	8	-4.66	29.12	46.00	-16.88	peak
5		595.	1329	3	34.5	8	-2.91	31.67	46.00	-14.33	peak
6	*	881.	4067	3	35.0	0	1.80	36.80	46.00	-9.20	peak
	aximum (Over lim			nargin Cori	ect Factor				

Temperature:	23.5℃			Relative F	lumidity:	46%				
Test Voltage:	AC 120	V/60HZ								
Ant. Pol.	Vertical									
Test Mode:	TX GFS	TX GFSK Mode 2409.5MHz								
Remark:	Only wo	orse case is	s reported							
80.0 dBuV/m										
30	2		3 × X		(RF)FCC 15C	3M Radiation Margin -6	dB 6			
-20 30.000 40 5	0 60 70		(MHz)	300	400 500	600 700	1000.000			
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto			
1 33	.3279	35.97	-11.15	24.82	40.00	-15.18	peak			
2 71	.5806	36.11	-16.27	19.84	40.00	-20.16	peak			
3 128	3.1130	38.15	-14.99	23.16	43.50	-20.34	peak			
4 192	2.4186	39.77	-13.76	26.01	43.50	-17.49	peak			
5 513	3.6331	38.67	-3.79	34.88	46.00	-11.12	peak			
6 * 938	3.8326	33.81	3.66	37.47	46.00	-8.53	peak			
*:Maximum data	x:Over limit	!:over margin	rect Factor							

Page: 30 of 50

Above 1GHz (Only worse case is reported)

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2409.5MHz		

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4819.065	35.18	8.96	44.14	54.00	-9.86	AVG
2		4819.195	47.20	8.96	56.16	74.00	-17.84	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	26℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Vertical		
Test Mode:	TX GFSK Mode 2409.5MF	łz	

N	o. MI	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4819.321	35.07	8.96	44.03	54.00	-9.97	AVG
2		4819.416	47.17	8.96	56.13	74.00	-17.87	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 31 of 50

Temp	eratu	re:	26℃			Relative Hur	nidity:	54%	
Test \	Voltaç	ge:	AC 1	AC 120V/60HZ					
Ant. F	Pol.		Horiz	Horizontal					
Test I	Mode	:	TX	GFSK Mode	2439.5MH	lz			
No	. Mk	. Fre	eq.	Reading Level	Correct Factor		Limit	Over	
		MH	lz	dBuV	dB/m	dBuV/m	dBuV/n	n dB	Detector
1	*	4879.	210	35.12	9.28	44.40	54.00	-9.60	AVG
2		4879.	377	46.82	9.28	56.10	74.00	-17.90	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Tempe	eratu	re:	26 ℃	!		Relative H	lumidity:	54%			
Test V	oltag	je:	AC 1	120V/60HZ							
Ant. P	ol.		Verti	cal							
Test N	lode		TX (GFSK Mode	2439.5MHz	2					
No.	Mk	. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1	*	4879.	306	34.71	9.28	43.99	54.00	-10.01	AVG		
2		4879.	481	47.38	9.28	56.66	74.00	-17.34	peak		

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 32 of 50

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2468MHz		

1	No. Mk. Freq.		Reading Level		Measure- ment	Limit	Over		
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4936.305	34.41	9.60	44.01	54.00	-9.99	AVG
2			4936.401	46.41	9.60	56.01	74.00	-17.99	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

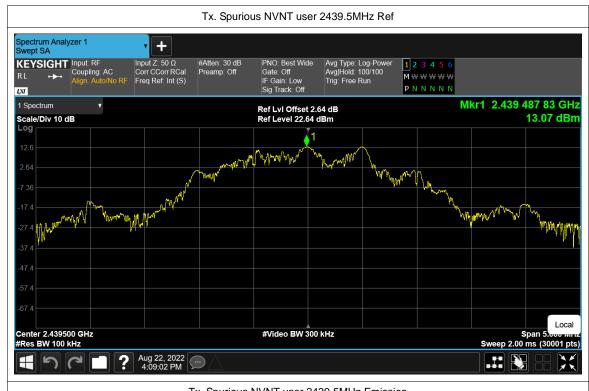
Temperature:	26 ℃		Relative Humidity:		54%	
Test Voltage:	AC 120V/60HZ					
Ant. Pol.	Vertical					
Test Mode: TX GFSK Mode 2468MHz						
No. Mk. Fr	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over	
Mi	Hz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 * 4936	.101 34.91	9.60	44.51	54.00	-9.49	AVG
2 4936	.369 46.29	9.60	55.89	74.00	-18.11	peak

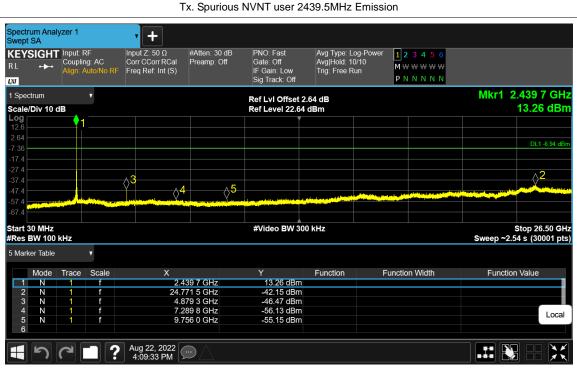
Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 33 of 50

Conducted Emission Test Data


Condition	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2409.5	-53.84	-20	Pass
NVNT	2439.5	-55.22	-20	Pass
NVNT	2468	-54.95	-20	Pass

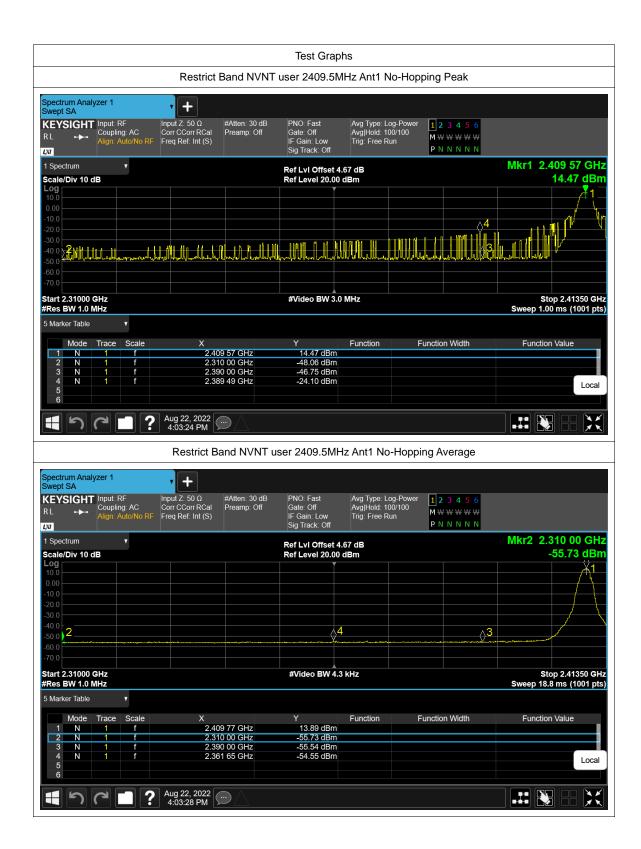


Page: 34 of 50

Page: 35 of 50

Page: 36 of 50

Attachment C-- Restricted Bands Requirement Test Data


(1) Radiation Test

Condition	Frequency	Hopping	Spur Freq	Power	Gain	Е	Detector	Limit	Verdict
	(MHz)	Mode	(MHz)	(dBm)	(dBi)	(dBuV/m)		(dBuV/m)	
NVNT	2409.5	No-Hopping	2310	-48.06	2	49.2	Peak	74	Pass
NVNT	2409.5	No-Hopping	2310	-55.73	2	41.53	Average	54	Pass
NVNT	2409.5	No-Hopping	2389.488	-24.1	2	73.16	Peak	74	Pass
NVNT	2409.5	No-Hopping	2361.6465	-54.55	2	42.71	Average	54	Pass
NVNT	2409.5	No-Hopping	2390	-46.75	2	50.51	Peak	74	Pass
NVNT	2409.5	No-Hopping	2390	-55.54	2	41.72	Average	54	Pass
NVNT	2468	No-Hopping	2483.5	-46.29	2	50.97	Peak	74	Pass
NVNT	2468	No-Hopping	2483.5	-55.45	2	41.81	Average	54	Pass
NVNT	2468	No-Hopping	2485.06	-23.36	2	73.9	Peak	74	Pass
NVNT	2468	No-Hopping	2484.088	-54.07	2	43.19	Average	54	Pass
NVNT	2468	No-Hopping	2500	-47.18	2	50.08	Peak	74	Pass
NVNT	2468	No-Hopping	2500	-54.58	2	42.68	Average	54	Pass

Page: 37 of 50

Page: 38 of 50

Page: 39 of 50

Band Edge

Condition	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2409.5	No-Hopping	-57.35	-20	Pass
NVNT	2468	No-Hopping	-56.69	-20	Pass

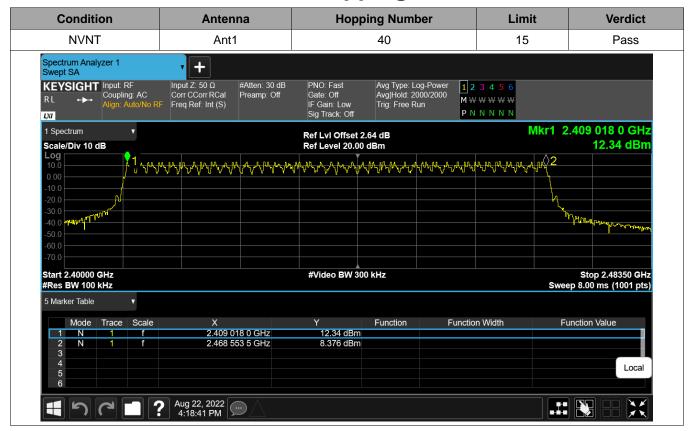
Page: 40 of 50

Page: 41 of 50

Band Edge(Hopping)

Condition	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2409.5	Hopping	-57.37	-20	Pass
NVNT	2468	Hopping	-57.18	-20	Pass

Page: 42 of 50



Page: 43 of 50

Attachment D-- Number of Hopping Channel Test Data

Report No.: TBR-C-202203-0211-16

Page: 44 of 50

Attachment E-- Average Time of Occupancy Test Data

Temperature:		25℃		Re	Relative Humidity:		55%		
Test Voltage:		AC	AC 120V/60HZ						
Test Mode:		Hop	oping Mode (G	SFSK)					
Test	Test Channel		Reading	Total hops		Test Result	ı	Limit	Result
Mode (MHz)		z)	Time (ms)			(ms)		(ms)	Result
GFSK	2439	.5	107.6	2		215.2		400	PASS

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 40 [ch] =16[s*ch];

The burst width, which is directly measured, refers to the duration on one channel hop.

The maximum number of hopping channels in 16s is 2.

Reading Time=107.6

GFSK Hopping Mode

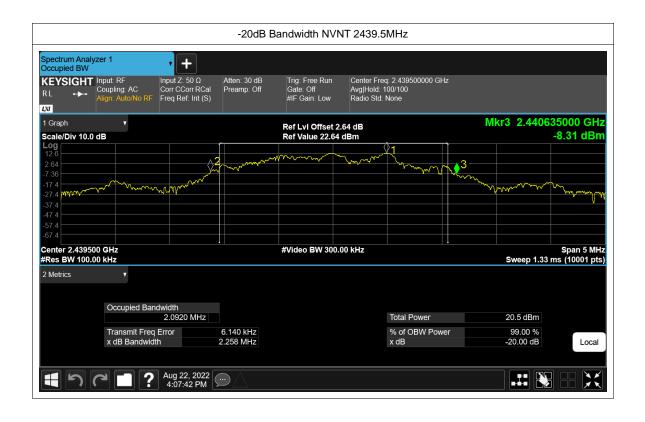
2439.5MHz

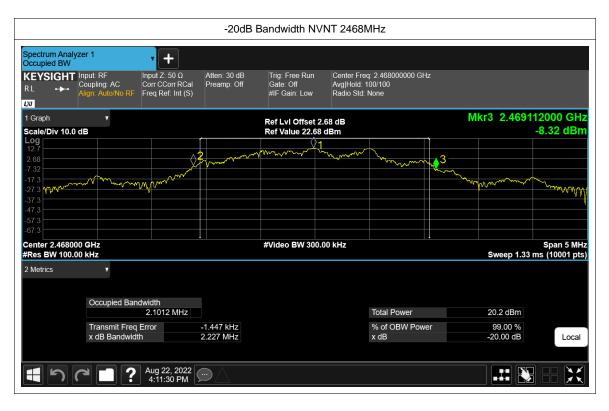
GFSK Hopping Mode 2439.5 MHz Spectrum Analyzer 1 Swept SA + Avg Type: Log-Power Trig: Free Run KEYSIGHT Input: RF
R L ← Coupling: AC
Align: Auto/No RF Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) Atten: 40 dB Preamp: Off PNO: Fast Gate: Off IF Gain: Low Sig Track: Off **w** ₩ ₩ ₩ ₩ PNNNNN L)XI ΔMkr1 107.6 ms -0.68 dB 1 Spectrum Scale/Div 10 dB Ref Level 30.00 dBm <u></u>1Δ2 Center 2.439500000 GHz Res BW 910 kHz Span 0 Hz Sweep 500 ms (1001 pts) 4 9 6 Aug 22, 2022 5:56:11 PM

Page: 46 of 50

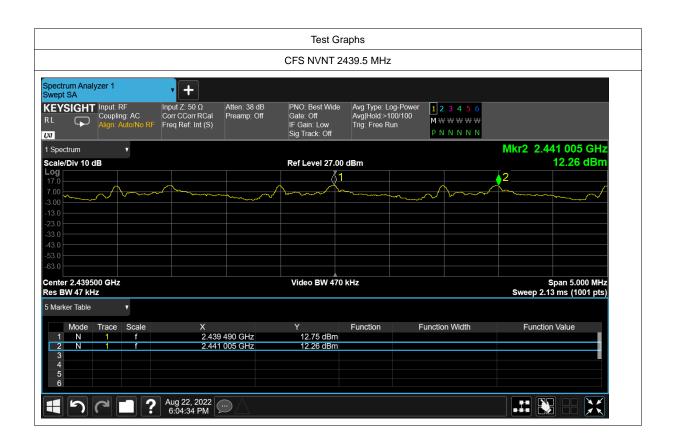
Attachment F-- Channel Separation and Bandwidth Test Data

Bandwidth Test Data:


Condition	Frequency (MHz)	20% OBW (MHz)	2/3 *20dB BW (MHz)
NVNT	2409.5	2.253	1.502
NVNT	2439.5	2.258	1.505
NVNT	2468	2.227	1.485



Page: 47 of 50

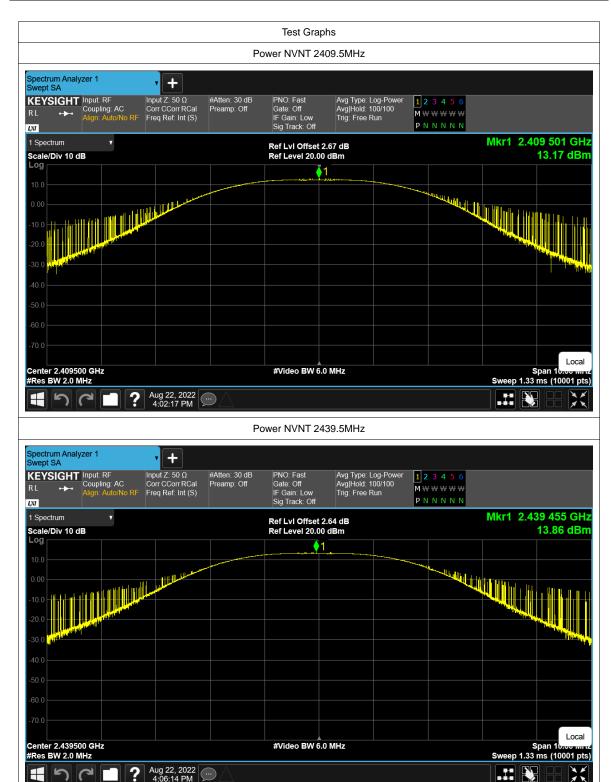


Report No.: TBR-C-202203-0211-16

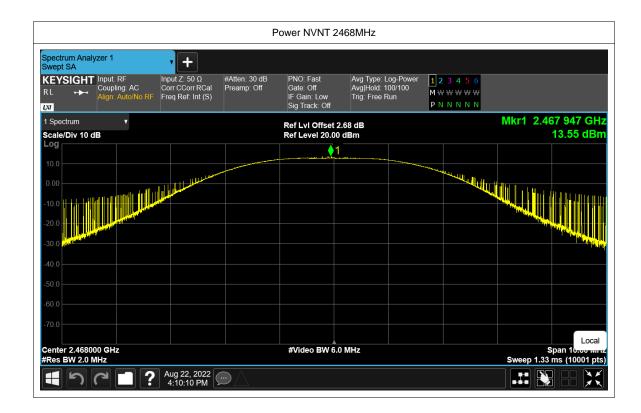
Page: 48 of 50

Channel Separation Test data:

Condition	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	2439.490	2441.005	1.515	1.505	Pass



Page: 49 of 50


Attachment G-- Peak Output Power Test Data

Condition	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	2409.5	13.170	21	Pass
NVNT	2439.5	13.860	21	Pass
NVNT	2468	13.550	21	Pass

Page: 50 of 50

----END OF REPORT----