

Report No.: TBR-C-202302-0288-24 Page: 1 of 53

Radio Test Report FCC ID: 2AF2R-56RX

Original Grant

Report No.	: TBR-C-202302-0288-24
Applicant	: Shenzhen Videotimes Technology Co.,Ltd
Equipment Under T	est (EUT)
EUT Name	: 2.4GHz Digital Wireless Video Baby Monitor
Model No.	: HB6256
Series Model No.	 HB6256-2, BBM825, FK5363, FK5363-2, BBM820, VT506, VT506-2, BBM823, BL9057, BL9057-2, BBM828, BG1058, BG1058-2, BBM832, HB6359, HB6359-2, BBM836, VV6010, VV6010-2, BBM838, JA2303, JA2303-2, BBM821
Brand Name	
Sample ID	: 202302-0288-15-1# 202302-0288-15-2#
Receipt Date	: 2023-03-08
Test Date	: 2023-03-16 to 2023-06-02
Issue Date	: 2023-06-06
Standards	: FCC Part 15, Subpart C 15.247
Test Method	: ANSI C63.10: 2013
Conclusions	: PASS
	In the configuration tested, the EUT complied with the standards specified above,

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

The EUT technically complies with the FCC requirements

Seven Wu

Ivan Su

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	
5.C	ONDUCTED EMISSION TEST	12
	5.1 Test Standard and Limit	
	5.2 Test Setup	12
	5.3 Test Procedure	13
	5.4 Deviation From Test Standard	13
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
5.	RADIATED EMISSION TEST	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	15
	6.3 Test Procedure	16
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Condition	17
	6.6 Test Data	
6.	RESTRICTED BANDS AND BAND-EDGE TEST	
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	20
	7.5 EUT Operating Condition	
	7.6 Test Data	
7.	NUMBER OF HOPPING CHANNEL	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Condition	

	8.6 Test Data	21
8.	AVERAGE TIME OF OCCUPANCY	22
	9.1 Test Standard and Limit	22
	9.2 Test Setup	22
	9.3 Test Procedure	22
	9.4 EUT Operating Condition	22
	9.4 Deviation From Test Standard	22
	9.5 Test Data	22
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	23
	10.1 Test Standard and Limit	23
	10.2 Test Setup	23
	10.3 Test Procedure	23
	10.4 Deviation From Test Standard	23
	10.5 EUT Operating Condition	
	10.6 Test Data	
10.	PEAK OUTPUT POWER TEST	24
	11.1 Test Standard and Limit	24
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	
	11.5 EUT Operating Condition	
	11.6 Test Data	
11.	ANTENNA REQUIREMENT	
	12.1 Standard Requirement	
	12.2 Deviation From Test Standard	
	12.3 Antenna Connected Construction	
	12.4 Result	
	ACHMENT A CONDUCTED EMISSION TEST DATA	
	ACHMENT B RADIATED EMISSION TEST DATA	
ATTA	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	40
ATTA	ACHMENT D NUMBER OF HOPPING CHANNEL TEST DATA	47
ATTA	ACHMENT E AVERAGE TIME OF OCCUPANCY TEST DATA	48
ΑΤΤΑ	ACHMENT F CHANNEL SEPARATION AND BANDWIDTH TEST DATA	49
ΑΤΤΑ	ACHMENT G PEAK OUTPUT POWER TEST DATA	52

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202302-0288-24	Rev.01	Initial issue of report	2023-06-06

1. General Information about EUT

1.1 Client Information

Applicant	:	Shenzhen Videotimes Technology Co.,Ltd		
AddressRoom 2106, Building 11, Tianan Yungu Phase II(Plot of Land 02-08)Address:Gangtou Community, Bantian Street, Longgang District, Shenzhen, Guangdong.China				
Manufacturer : Shenzhen Videotimes Technology Co.,Ltd		Shenzhen Videotimes Technology Co.,Ltd		
		Room 2106, Building 11, Tianan Yungu Phase II(Plot of Land 02-08), Gangtou Community, Bantian Street, Longgang District, Shenzhen, Guangdong.China		

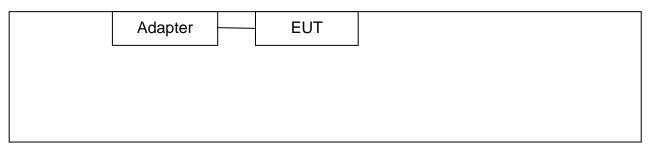
1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	2.4GHz Digital Wireless Vid	2.4GHz Digital Wireless Video Baby Monitor		
Models No.	:	HB6256, HB6256-2, BBM825, FK5363, FK5363-2, BBM820, VT506, VT506-2, BBM823, BL9057, BL9057-2, BBM828, BG1058, BG1058-2, BBM832, HB6359, HB6359-2, BBM836, VV6010, VV6010-2, BBM838, JA2303, JA2303-2, BBM821			
Model Difference	:	All of these models are identical in the same PCB, layout and circuit, the only difference is different customer, different model name and appearance.			
		Operation Frequency:	2.4GHz:2412MHz~2469MHz		
Product		Number of Channel:	58Channels see Note 2		
Description	•	Antenna Gain:	2.5 dBi Dipole antenna		
		Modulation Type:	GFSK		
Power Rating	:	Adapter#1: K05S050100U Input:100-240V~50/60Hz,0.2A Output:5V1A Adapter#2: A318-050100W-US2 Input:100-240V~50/60Hz,0.2A Output:5V1A			
Software Version	:	1.0			
Hardware Version	:	1.0			
Remark	:	The adapter and antenna ga	ain provided by the applicant, the verified for the		
		RF conduction test provided	by TOBY test lab.		

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:


Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
00	2412	20	2432	40	2452		
01	2413	21	2433	41	2453		
02	2414	22	2434	42	2454		
03	2415	23	2435	43	2455		
04	2416	24	2436	44	2456		
05	2417	25	2437	45	2457		
06	2418	26	2438	46	2458		
07	2419	27	2439	47	2459		
08	2420	28	2440	48	2460		
09	2421	29	2441	49	2461		
10	2422	30	2442	50	2462		
11	2423	31	2443	51	2463		
12	2424	32	2444	52	2464		
13	2425	33	2445	53	2465		
14	2426	34	2446	54	2466		
15	2427	35	2447	55	2467		
16	2428	36	2448	56	2468		
17	2429	37	2449	57	2469		
18	2430	38	2450				
19	2431	39	2451				
Note: Test frequencies are lowest channel: 2412MHz, middle channel: 2442MHz and							

Note: Test frequencies are lowest channel: 2412MHz, middle channel: 2442MHz a highest channel: 2469MHz.

(3) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Adapter & TX Mode

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode	Description				
Mode 1	Adapter#1+ TX Mode Channel 00				
Mode 2	Adapter#2+ TX Mode Channel 00				
For	For Radiated Test				
Final Test Mode	Description				
Mode 3	Adapter#1+ TX Mode Channel 00				
Mode 4 Adapter#2+ TX Mode Channel 00					
Mode 5TX Mode Channel 00/30/57					
Mode 6 Hopping TX Mode					

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	Adjust and control the corresponding transmission frequency through the EUT entity key.			
Frequency	2412 MHz	2442 MHz	2469 MHz	
GFSK	Default	Default	Default	

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})	
	Level Accuracy:	±3.50 dB	
Conducted Emission	9kHz~150kHz	±3.10 dB	
	150kHz to 30MHz	±3.10 db	
Radiated Emission	Level Accuracy:	±4.60 dB	
Radiated Emission	9kHz to 30 MHz		
Radiated Emission	Level Accuracy:	+4.20 dB	
Radiated Emission	30MHz to 1000 MHz	±4.20 dB	
Radiated Emission	Level Accuracy:	±4.20 dB	
	Above 1000MHz	±4.20 dB	

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Π

2. Test Summary

Standard Section	Test Item	Test Sample(a)	ludgmont	Remark
FCC	lest item	Test Sample(s)	Judgment	
FCC 15.207(a)	Conducted Emission	202302-0288-15-1#	PASS	N/A
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	202302-0288-15-1#	PASS	N/A
FCC 15.203	Antenna Requirement	202302-0288-15-2#	PASS	N/A
FCC 15.247(a)	99% Occupied Bandwidth & 20dB Bandwidth	202302-0288-15-2#	PASS	N/A
FCC 15.247(b)(1)	Peak Output Power	202302-0288-15-2#	PASS	N/A
FCC 15.247(a)(1)	Carrier frequency separation	202302-0288-15-2#	PASS	N/A
FCC 15.247(a)(1)	Time of occupancy	202302-0288-15-2#	PASS	N/A
FCC 15.247(b)(1)	Number of Hopping Frequency	202302-0288-15-2#	PASS	N/A
FCC 15.247(d)	Band Edge	202302-0288-15-2#	PASS	N/A
FCC 15.207(a)	Conducted Unwanted Emissions	202302-0288-15-2#	PASS	N/A
FCC 15.205	Emissions in Restricted Bands	202302-0288-15-2#	PASS	N/A

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

4. Test Equipment

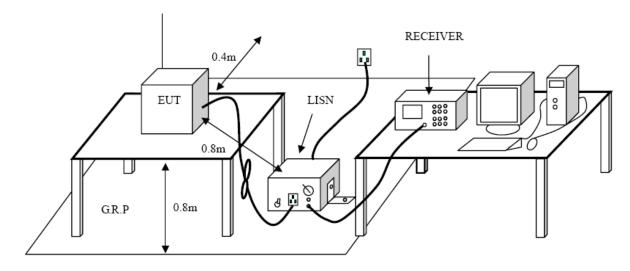
Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
Radiation Emission T	est (B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023
Antenna Conducted I	Emission				-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 23, 2022	Jun. 22, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Sep. 01, 2022	Aug. 31, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Dec. 15, 2022	Dec. 14, 2023
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 01, 2022	Aug. 31, 2023
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 23, 2022	Jun. 22, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep. 01, 2022	Aug. 31, 2023
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Jun. 23, 2022	Jun. 22, 2023
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 22, 2022	Jun. 21, 2023

5.Conducted Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1Test Standard FCC Part 15.207
 - 5.1.2 Test Limit

Fraguanay	Maximum RF Li	ne Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level				
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

Conducted Emission Test Limit


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

5. Radiated Emission Test

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

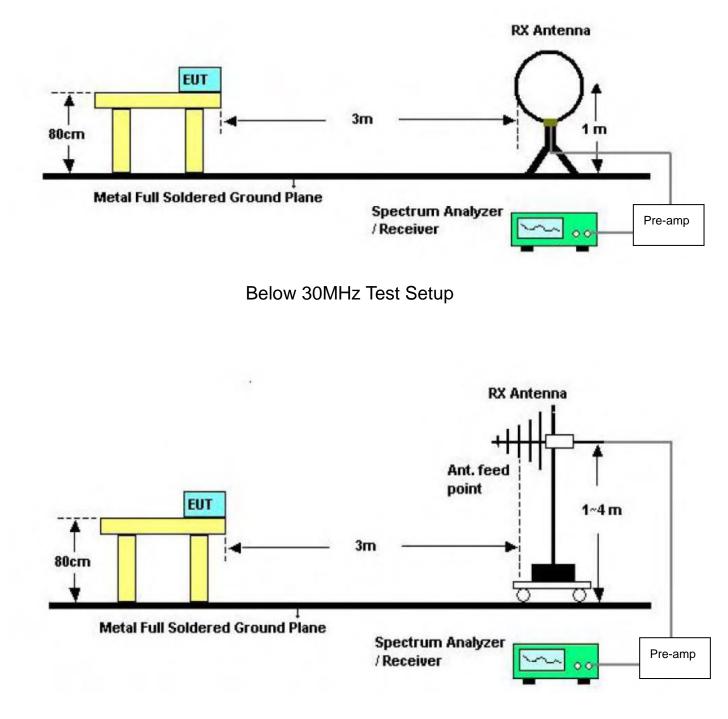
6.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

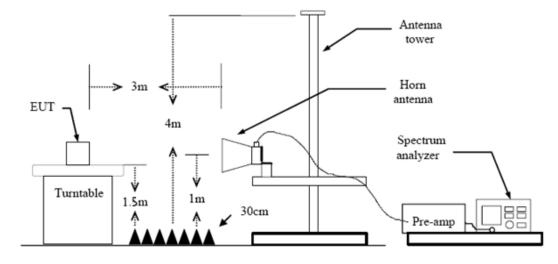
Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)			
(MHz)	Peak	Average		
Above 1000	74	54		


Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m)


6.2 Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

- 6.3 Test Procedure
- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

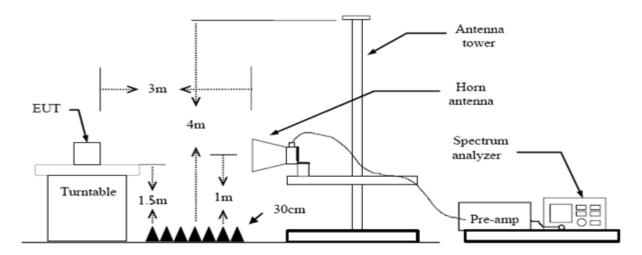
6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

6. Restricted Bands and Band-edge test

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard


FCC Part 15.205 & FCC Part 15.247(d)

7.1.2 Test Limit

Radiated measurement							
Restricted Frequency Distance Meters(at 3m)							
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)					
2310 ~2390	74	54					
2483.5 ~2500	74	54					
Conducted measurement							
Peak (dBm)see 7.3 e) Average (dBm) see 7.3 e)							
2310 ~2390	2310 ~2390 -41.20 -21.20						
2483.5 ~2500	2483.5 ~2500 -41.20 -21.20						
Note: According the ANSI C63.10 11.12	.2 antenna-port conducted measure	ments may also be used as an					
alternative to radiated measurements for	or determining compliance in the rest	ricted frequency bands					
requirements. If conducted measureme	nts are performed, then proper impe	dance matching must be ensured					
and an additional radiated test forcabine	et/case emissions is required.						

7.2 Test Setup

Radiated measurement

Conducted measurement

7.3 Test Procedure

---Radiated measurement

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

---Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalen t electric field strength using the following

relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m EIRP is the equivalent isotropically radiated power in dBm

- d is the specified measurement distance in m
- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.
- 7.4 Deviation From Test Standard

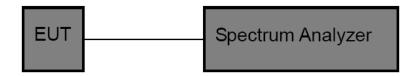
No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. Please refer to the Attachment C.



7. Number of Hopping Channel

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard
 - FCC Part 15.247 (a)(1)
 - 8.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.
- 8.4 Deviation From Test Standard

No deviation

- 8.5 EUT Operating Condition
- The EUT was set to the Hopping Mode by the Customer.

8.6 Test Data

Please refer to the Attachment D.

8. Average Time of Occupancy

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.247 (a)(1)
 - 9.1.2 Test Limit

Test Item	Limit
Average Time of Occupancy	0.4 sec

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100KHz, VBW=300KHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

9.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 20 [ch] = 8.0 [s*ch];

The burst width, which is directly measured, refers to the duration on one channel hop.

The maximum number of hopping channels in $8.0s = 3^{(8.0)}(8.0) = 100$

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

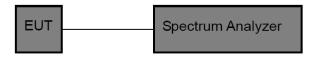
The EUT was set to the Hopping Mode by the Customer.

9.4 Deviation From Test Standard

No deviation

9.5 Test Data

Please refer to the Attachment E.



9. Channel Separation and Bandwidth Test

- 10.1 Test Standard and Limit
 - 10.1.1 Test Standard
 - FCC Part 15.247
 - 10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: Channel Separation: RBW=100 kHz, VBW=100 kHz. Bandwidth: RBW=30 kHz, VBW=100 kHz.
- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

10.4 Deviation From Test Standard

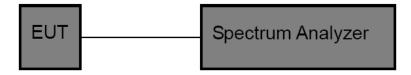
No deviation

10.5 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

10.6 Test Data

Please refer to the Attachment F.



10. Peak Output Power Test

- 11.1 Test Standard and Limit
 - 11.1.1 Test Standard
 - FCC Part 15.247 (b) (1)
 - 11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)		
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm)	2400~2483.5		

11.2 Test Setup

11.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:
 Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz.
 RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.
- 11.4 Deviation From Test Standard

No deviation

11.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

11.6 Test Data

Please refer to the Attachment G.

11. Antenna Requirement

12.1 Standard Requirement

12.1.1 Standard

FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

12.2 Deviation From Test Standard

No deviation

12.3 Antenna Connected Construction

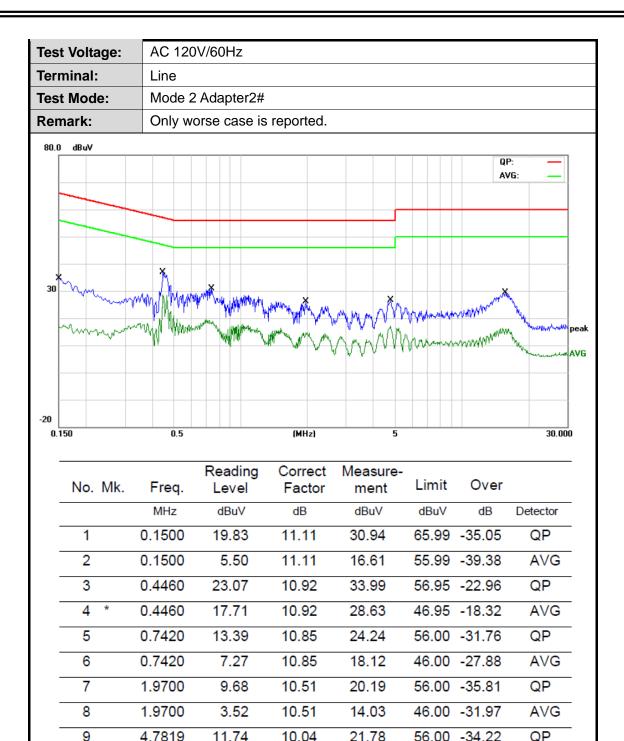
The gains of the antenna used for transmitting is 2.5 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.4 Result

The EUT antenna is a Dipole antenna. It complies with the standard requirement.

Antenna Type				
Permanent attached antenna				
Unique connector antenna				
Professional installation antenna				

Attachment A-- Conducted Emission Test Data


Temperat	ure:	26.3 ℃			elative Hun			
Test Volta	age:	AC 120	AC 120V/60Hz					
[erminal:		Line						
lest Mod	e:	Mode 1	Adapter1#					
Remark:		Only wo	orse case is	reported.				
80.0 dBuV								
							QP: AVG	: <u> </u>
30 MM	$\sim \Lambda$		MAY MANAGEMENT	www.www.u				
		Manahuru .	entropy of the second s	A CONTRACTOR OF THE OWNER	Haperton and the second	WHMMALMAN -	a se de altra a la tra	N 1 44 1 4 1
p~~w	VI	manthone	- WWW. Kip HANPIP	market and	when which but		CARAGE WITH	peal
					and a second week	Wer Lord residence	and an all the all all all all all all all all all al	AVG
20								
0.150		0.5		(MHz)	5			30.000
			Deeding	Correct	Magazina			
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	(0.3180	21.14	10.87	32.01	59.76	-27.75	QP
2	* (0.3180	15.16	10.87	26.03	49.76	-23.73	AVG
3		0.6100	13.42	10.91	24.33		-31.67	QP
4		0.6100	7.35	10.91	18.26		-27.74	AVG
							-31.60	
		0.7340	13.54	10.86	24.40			QP
6		0.7340	6.32	10.86	17.18		-28.82	AVG
7		2.0620	6.14	10.47	16.61		-39.39	QP
8		2.0620	0.79	10.47	11.26	46.00	-34.74	AVG
9		3.1740	3.32	10.17	13.49	56.00	-42.51	QP
	;	3.1740	-1.56	10.17	8.61	46.00	-37.39	AVG
10		6.3540	7.73	10.43	18.16	60.00	-41.84	QP
10	10	0.0040						

Temperature	26.3 ℃			Relative Hu	midity:	54.6%	
Test Voltage		0V/60Hz			, .		
Terminal:	Neutra	1					
Test Mode:	Mode ²	1 Adapter1#					
Remark:	Only w	orse case is	s reported.				
80.0 dBuV						QP: AVG:	_
30 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Marrietta Marria de Marrietta Marria de	mugunuten mugunuten	My house and	AVG.	here average a
-20	0.5		(MHz)	5			30.000
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit dBuV	Over dB	Detector
1	0.3220	26.53	10.96	37.49	59.65		QP
2 *	0.3220	18.62	10.96	29.58	49.65		AVG
3	0.7460	22.31	10.90	33.15	56.00		
4	0.7460	14.19	10.84	25.03	46.00		AVG
5	1.2340	19.83	10.66	30.49	56.00		QP
6	1.2340	11.10	10.66	21.76	46.00		AVG
7	1.6580	17.20	10.60	27.80	56.00		QP
8	1.6580	8.72	10.60	19.32	46.00		AVG
9	5.0380	9.03	10.04	19.07	60.00		QP
10	5.0380	2.41	10.04	12.45	50.00	-37.55	AVG
11	16.1380	13.36	10.40	23.76	60.00	-36.24	QP
12	16.1380	5.09	10.40	15.49	50.00	-34.51	AVG
	(dB) = LISN Fa =QuasiPeak/A		-	-			

4.7819

15.7380

15.7380

10

11

12

Remark:

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

5.99

13.11

3.59

10.04

10.37

10.37

16.03

23.48

13.96

46.00 -29.97

60.00 -36.52

50.00 -36.04

AVG

QP

AVG

Temperature	e: 23.4 ℃			Relative H	umidity	45%	
Test Voltage	: AC 12	0V/60Hz					
Terminal:	Neutra	al					
Test Mode:	Mode	2 Adapter2	#				
Remark:	Only v	vorse case	is reported.				
80.0 dBuV	mm w W Wwww				Mummin	QP AVI	
-20 0.150	0.5		(MHz)	5			30.000
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1539	19.19	11.10	30.29	65.78	-35.49	QP
2	0.1539	2.93	11.10	14.03	55.78	-41.75	AVG
3	0.4460	22.43	10.92	33.35	56.95	-23.60	QP
4 *	0.4460	16.85	10.92	27.77	46.95	-19.18	AVG
5	0.6900	10.58	10.88	21.46	56.00	-34.54	QP
6	0.6900	4.93	10.88	15.81	46.00	-30.19	AVG
7	1.5220	7.68	10.58	18.26	56.00	-37.74	QP
8	1.5220	2.97	10.58	13.55	46.00	-32.45	AVG
9	5.1140	8.02	10.02	18.04	60.00	-41.96	QP
9	5.1140	3.80	10.02	13.82	50.00	-36.18	AVG
10				17.02	60.00	-42.17	QP
	15.8580	7.44	10.39	17.83	00.00	-42.17	S

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

emper	ature:	24.3	°℃			Relative	Humidity:	45%	
est Vo	Itage:	AC [·]	120V/	60HZ					
nt. Po	d.	Hori	zontal	I					
est Mo	ode:	Mod	le 3 Ao	dapter	·1#				
emark	c :	Only	/ wors	e case	e is reported				
80.0 d	BuV/m								
70									
60									
50								C 3M Radiation	
			, I I I I I I I I I I I I I I I I I I I				Margin-6-de)	
40				¥	2×	+	5	X	Dea
30						3 X X		1 Munulum	holunghand
20		Mut	h sould	Walkhall			wall when a when a when	Writesteeren	
20		Mundh	YmrW	4. ANN ANN	understühlicharder	AN AN HUNDER	underhall of the Later of	Mennandan	
WALK .	M. M.A.	r Wurk	Ymeld ^{ys}	4ville/www	unders Withheld agest	Millillilli	with the former of the second s	Methodalane	
10	hh. M. A.J	t lut	YmeW.	WII WWW	understühlichaph	Phil William and an and a start of the start	underson of the fail of the	Mene alexandre	
10		t Und	Ymrld ^a		undur Mildulph	White Will have been and	with the first of the second		
10		60.00	Ymr W		(MHz)	1411WILLow	1.00		
10 -10 -20	Frequer (MHz	псу		ding uV)	(мн₂) Factor (dB/m)	300 Level	Limit (dBuV/m)	Margin (dB)	1000.0
10	Frequer	ncy)	(dB	<u> </u>	Factor	300 Level	Limit	Margin	1000.0 Detecto
10 0 -10 -20 30.000 NO.	Frequer (MHz	ncy) 16	(dB	uV) .32	Factor (dB/m)	300 Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	1000.0 Detecto peak
10 0 -10 -20 30.000 No. 1 *	Frequer (MHz 89.904	ncy) 16 13	(dB 62. 56.	uV) .32	Factor (dB/m) -26.68	300 Level (dBuV/m) 35.64	Limit (dBuV/m) 43.50	Margin (dB) -7.86	1000.0 Detecto peak peak
10 0 -10 -20 30.000 No. 1 * 2	Frequer (MHz 89.904 162.04	ncy) 16 13 28	(dB 62. 56. 51.	u∨) .32 .34	Factor (dB/m) -26.68 -22.31	300 Level (dBuV/m) 35.64 34.03	Limit (dBuV/m) 43.50 43.50	Margin (dB) -7.86 -9.47	1000.0 Detecto peak peak peak
10 0 -10 -20 30.000 No. 1 * 2 3	Frequer (MHz 89.904 162.04 197.89	ncy) 16 13 28 48	(dB 62. 56. 51. 46.	uV) .32 .34 .43	Factor (dB/m) -26.68 -22.31 -24.79	Level (dBuV/m) 35.64 34.03 26.64	Limit (dBuV/m) 43.50 43.50 43.50	Margin (dB) -7.86 -9.47 -16.86	1000.00 Detecto peak peak peak peak

*:Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

iempe	rature:	24.3°	С			Relative	Humidity:	45%	
Test Vo	ltage:	AC 1	20V/60	HZ					
Ant. Po	ol.	Vertio	cal						
Test Mo	ode:	Mode	e 3 Ada	apter1	#				
Remarl		Only	worse	case	is reported				
80.0 d	BuV/m								
70									
60									
50							(RF)FCC 150 Margin -6 dl	C 3M Radiation	"
							maigin -o u	× ×	X
40						1 X	3X		peak
30						¥	11.11.11.1		NIN THAT
20	Kennen hand hand the	at the		l A I	. Labertand	Williamante	M Kalankal Malanca		
10	here were a second the second the	radional-habiteria	mulition	Mathanas	Man and a second s				
0									
-10									
-20									
30.000		60.00			(MHz)	300	.00		
		60.00							1000.00
No.	Frequ (MF	ency	Rea (dB	-	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.		ency Iz)	1	uV)				-	
	(M⊢	ency Iz) 928	(dB	uV) 97	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	(Ḿ⊢ 197.8	ency Iz) 3928 3748	(dB 60.	u∨) 97 40	(dB/m) -24.79	(dBuV/m) 36.18	(dBuV/m) 43.50	(dB) -7.32	Detector peak
1 2	(Ḿ⊢ 197.8 270.3	ency Iz) 3928 3748 350	(dB) 60. 51.	uV) 97 40 30	(dB/m) -24.79 -21.90	(dBuV/m) 36.18 29.50	(dBuV/m) 43.50 46.00	(dB) -7.32 -16.50	Detector peak peak
1 2 3	(MH 197.8 270.3 451.1	ency Iz) 3928 3748 350 329	(dB) 60. 51. 52.	uV) 97 40 30 76	(dB/m) -24.79 -21.90 -16.59	(dBuV/m) 36.18 29.50 35.71	(dBuV/m) 43.50 46.00 46.00	(dB) -7.32 -16.50 -10.29	peak peak peak
1 2 3 4 *	(MH 197.8 270.3 451.1 595.1	ency Iz) 3928 3748 350 329 3604	(dB) 60. 51. 52. 55.	u∨) 97 40 30 76 67	(dB/m) -24.79 -21.90 -16.59 -12.99	(dBuV/m) 36.18 29.50 35.71 42.77	(dBuV/m) 43.50 46.00 46.00 46.00	(dB) -7.32 -16.50 -10.29 -3.23	Detecto peak peak peak

Emission Level= Read Level+ Correct Factor

	ature:	24.3	S℃		Relative	Humidity:	45%	
Fest Vol	tage:	AC [·]	120V/60HZ					
Ant. Po	I.	Hori	izontal					
lest Mo	de:	Mod	le 4 Adapte	r2#				
Remark	:	Only	/ worse cas	e is reported				
80.0 dB	3u∀/m							
70								
60								
							3M Radiation	6
50						Margin -6-dB	F	<u>ę</u>
40				2				, kan kan
30		1		î \$, M. Ppeak
20		h		Manmaladade	11 Mary white	M. M. M. M.	UNDERFECT	
10 mountains the second				have a second a second s	MMM And Andrews			
0								
-10								
-20								
30.000		60.00		(MHz)	300.	00		1000.000
No.	Frequer (MHz	-	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	66.034	12	49.84	-24.11	25.73	40.00	-14.27	peak
			54.00	22.24	20.50	43.50	40.00	
2	162.04	14	54.89	-22.31	32.58	43.50	-10.92	peak
	162.04 197.89		54.89 54.83	-22.31	32.58	43.50	-10.92 -13.46	peak peak
2		28						•
2	197.89	28 43	54.83	-24.79	30.04	43.50	-13.46	peak

Tempera	ature:	24.3°	C			Relative	Humidity:	45%	
Test Vol	ltage:	AC 12	20V/60	HZ					
Ant. Po	Ι.	Vertic	al						
Test Mo	de:	Mode	4 Ada	pter2	#				
Remark		Only	worse	case	is reported				
80.0 dE	3uV/m								
70									
60									
								C 3M Radiatio	n
50							Margin -6-dl	3	
40					2 X	2	4 ×		a X
30		1 X				3 X			ul Alipeak
20	Mary A	mart			MM have a			MULALAUR	
10	awa v	V * \	Mayna	ULIAN ANAMAN	(Trimmung)	May marked Wellerstreet	William of .		
o				<u> </u>					
-10									
-10									
20 000		CO 00			(FIII)	200	nn		1000 000
No.	Freque	-	Read		Factor		Limit	Margin	Detector
	(MH	<i>'</i>	(dBu	<u> </u>	(dB/m)		(dBuV/m)	(dB)	
1	53.88	318	51.	94	-22.96	28.98	40.00	-11.02	peak
2 *	162.0	414	60.4	44	-22.31	38.13	43.50	-5.37	peak
3	197.8	928	55.	80	-24.79	31.01	43.50	-12.49	peak
4	378.5	843	53.	21	-18.54	34.67	46.00	-11.33	peak
5	522.7	180	51.	35	-14.79	36.56	46.00	-9.44	peak
6	925.7	563	44.	97	-7.11	37.86	46.00	-8.14	peak
*:Maximu	m data x:	Over limi	t !:ove	r margir	י ו		1	1	·

Emission Level= Read Level+ Correct Factor

Above 1GHz (Only worse case is reported)

	•			. /				
Temper	ature:	26 ℃			Relative	Humidity:	54%	
Test Vo	Itage:	AC 120V/60HZ						
Ant. Po	Ι.	Hori	zontal					
Test Mo	de:	ТХ (GFSK Mode	2412MHz				
No.	Frequer (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10970.5	500	44.70	-1.82	42.88	74.00	-31.12	peak
2 *	13342.0	000	43.34	-0.04	43.30	74.00	-30.70	peak
Domonis								

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

٦	Tempera	ature:	26 ℃			Relative Hu	imidity:	54%	
٦	AC 120V/60HZ								
Ant. Pol. Vertical									
٦				GFSK Mode	2412MHz				
	No.	Freque (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1 11251.000 43.57 -1.61 41.96 74.00 -32.04 pea						peak		
	2 *	2 * 13138.000 42.49 -0.17 42.32 74.00 -31.68 peak						peak	
F	emark.	1				1	1	1	<u> </u>

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

٦	Temper	ature:	26 °C			Relative Hu	imidity:	54%	
Test Voltage: AC 120V/60HZ									
/	Ant. Po	I.	Hori	izontal					
٦	Fest Mo	ode:	TX	GFSK Mode	2442MHz				
	No.	Frequer (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1 * 10919.500 43.				-1.79	42.16	74.00	-31.84	peak
	2 12628.000 41.24 -0.36 40.88 74.00 -33.12 peak						peak		
	Domorki								

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

•	Tempera	ature:	26 ℃	1		Relative	Humidity:	54%		
•	Test Vol	tage:	AC [·]	120V/60HZ						
	Ant. Po	I.	Vert	Vertical						
•	Test Mo	de:	тх (GFSK Mode	2442MHz					
	No.	Frequer (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1 10894.000			43.92	-1.80	42.12	74.00	-31.88	peak	
2 * 13189.000 42.70 -0.19 42.51 74.00					-31.49	peak				
	Pomark:									

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

Tempera	ature:	26 ℃	1		Relative	Humidity:	54%	
Test Voltage: AC 120V/60HZ								
Ant. Pol. Horizontal								
Test Mode: TX GFSK Mode 2469MHz								
No.	Frequer (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector

42.22

42.72

74.00

74.00

-31.78

-31.28

peak

peak

2 * Remark:

1

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

11021.500

14158.000

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

-1.92

0.22

5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

44.14

42.50

26 ℃			Relative H	lumidity:	54%	
AC 12	20V/60HZ					
Vertic	al					
TX G	FSK Mode	2469MHz				
-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
000	43.53	-1.02	42.51	74.00	-31.49	peak
000	42.42	1.01	43.43	74.00	-30.57	peak
	Vertic	ency Reading (dBuV) .000 43.53	VerticalTX GFSK Mode 2469MHzencyReading (dBuV)Factor (dB/m).00043.53-1.02	Vertical TX GFSK Mode 2469MHz ency Reading (dBuV) Factor (dB/m) Level (dBuV/m) .000 43.53 -1.02 42.51	Vertical TX GFSK Mode 2469MHz ency Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) .000 43.53 -1.02 42.51 74.00	Vertical TX GFSK Mode 2469MHz ency Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) .000 43.53 -1.02 42.51 74.00 -31.49

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

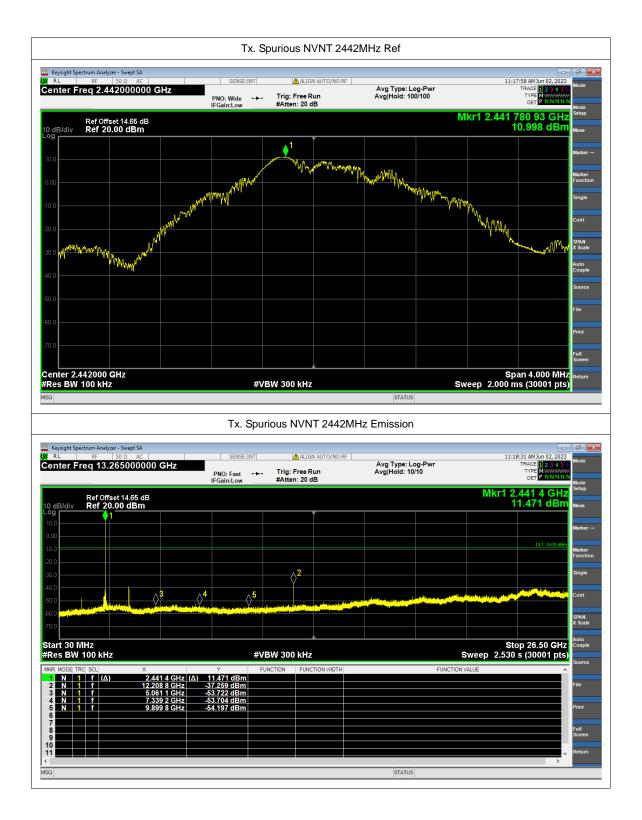
2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

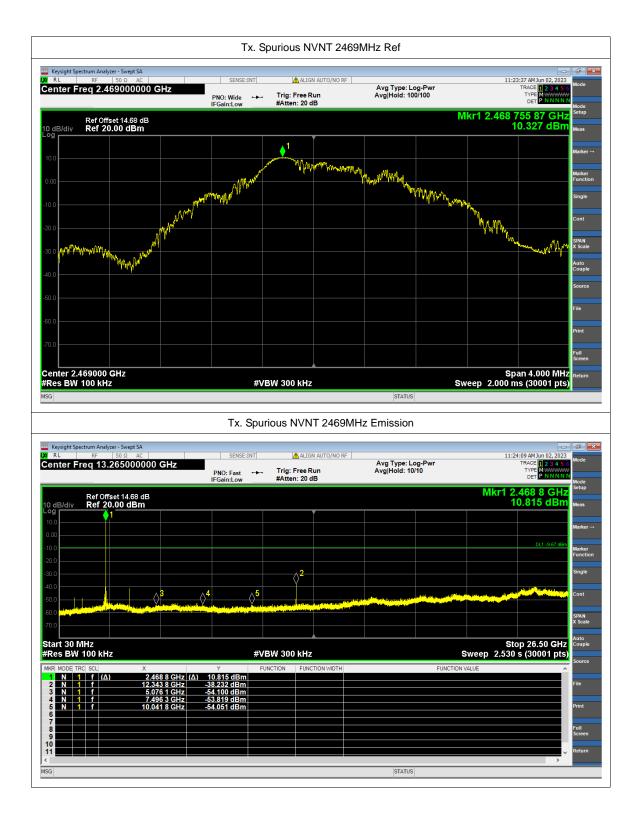
4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

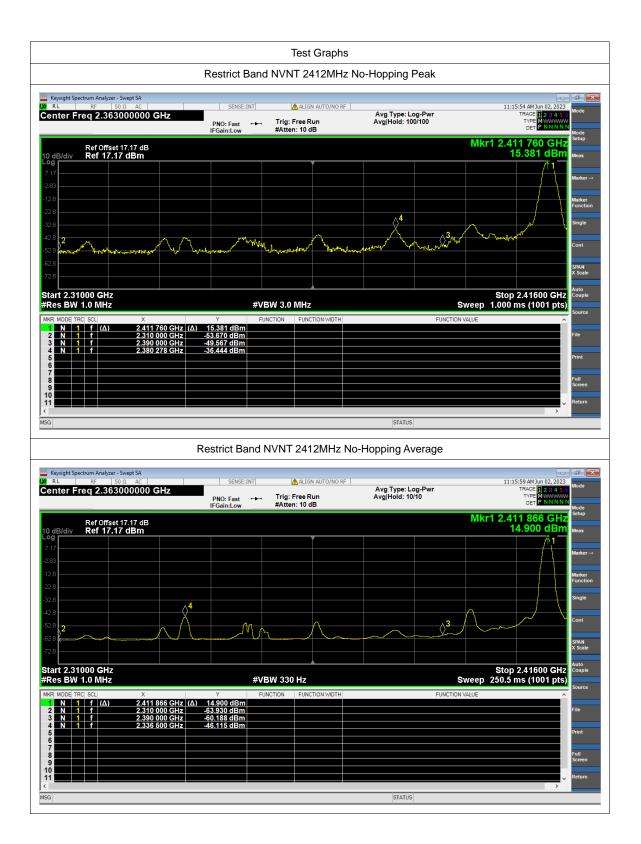
5. No report for the emission which more than 20dB below the prescribed limit.

6. The peak value < average limit, So only show the peak value.


Conducted Emission Test Data

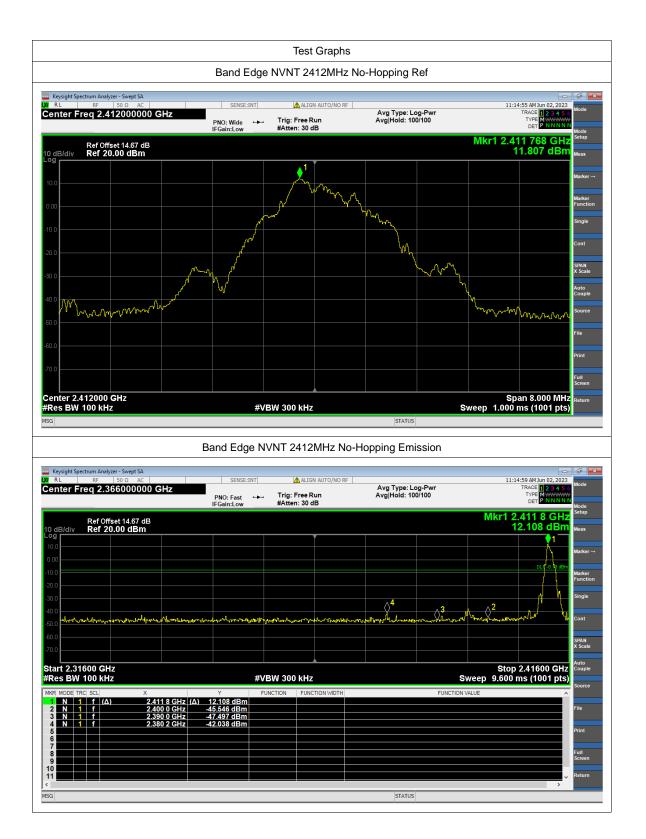
Condition	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2412	-44.7	-20	Pass
NVNT	2442	-48.26	-20	Pass
NVNT	2469	-48.56	-20	Pass





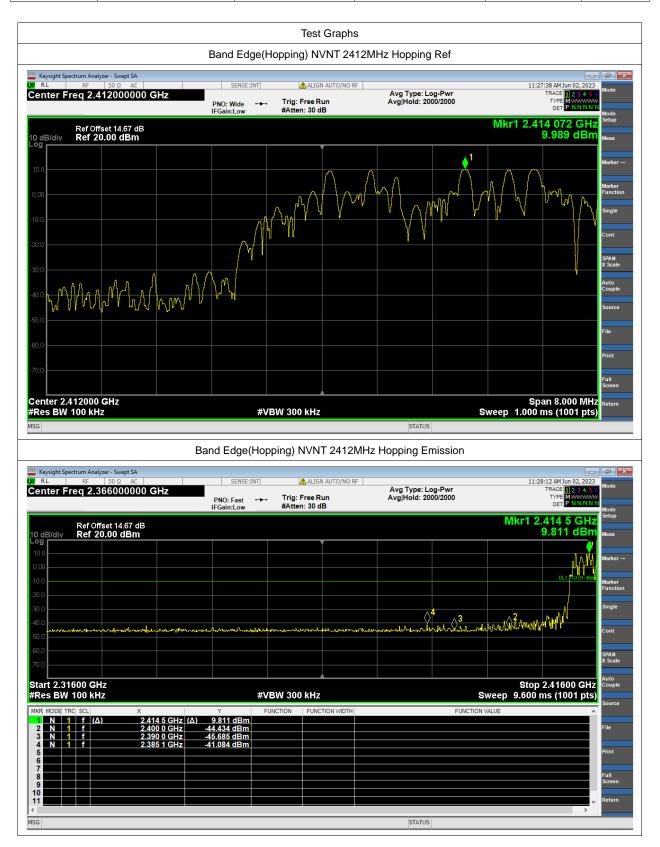
Attachment C-- Restricted Bands Requirement Test Data


Condition	Frequency	Hopping	Spur Freq	Power	Gain	E	Detector	Limit	Verdict
	(MHz)	Mode	(MHz)	(dBm)	(dBi)	(dBuV/m)		(dBuV/m)	
NVNT	2412	No-Hopping	2310	-53.67	2.5	44.09	Peak	74	Pass
NVNT	2412	No-Hopping	2310	-63.93	2.5	33.83	Average	54	Pass
NVNT	2412	No-Hopping	2380.278	-36.44	2.5	61.32	Peak	74	Pass
NVNT	2412	No-Hopping	2336.5	-46.11	2.5	51.65	Average	54	Pass
NVNT	2412	No-Hopping	2390	-49.57	2.5	48.19	Peak	74	Pass
NVNT	2412	No-Hopping	2390	-60.19	2.5	37.57	Average	54	Pass
NVNT	2469	No-Hopping	2483.5	-42.34	2.5	55.42	Peak	74	Pass
NVNT	2469	No-Hopping	2483.5	-56.11	2.5	41.65	Average	54	Pass
NVNT	2469	No-Hopping	2485.335	-35.36	2.5	62.4	Peak	74	Pass
NVNT	2469	No-Hopping	2484.845	-46.96	2.5	50.8	Average	54	Pass
NVNT	2469	No-Hopping	2500	-43.21	2.5	54.55	Peak	74	Pass
NVNT	2469	No-Hopping	2500	-59.33	2.5	38.43	Average	54	Pass



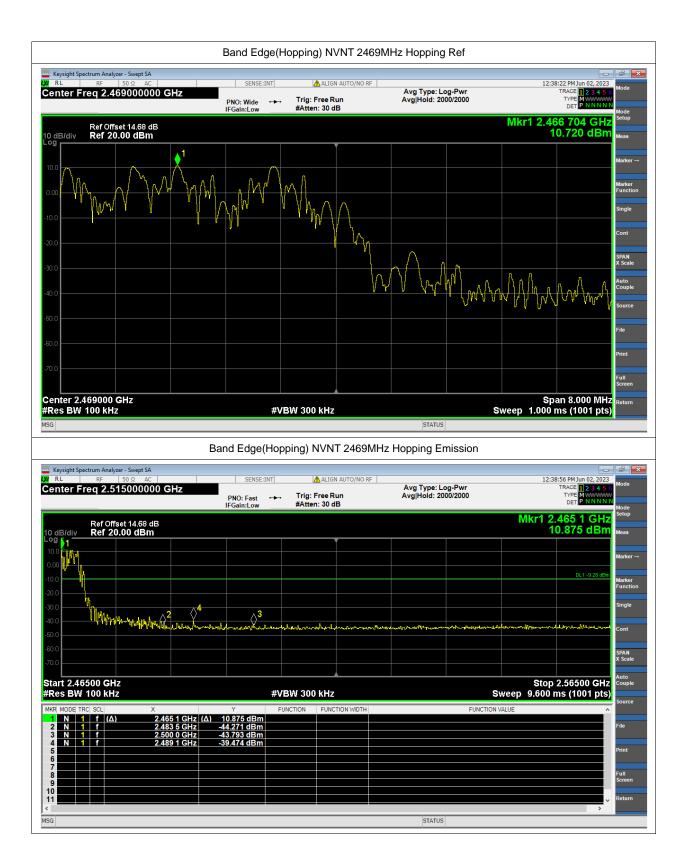
(2) Band Edge

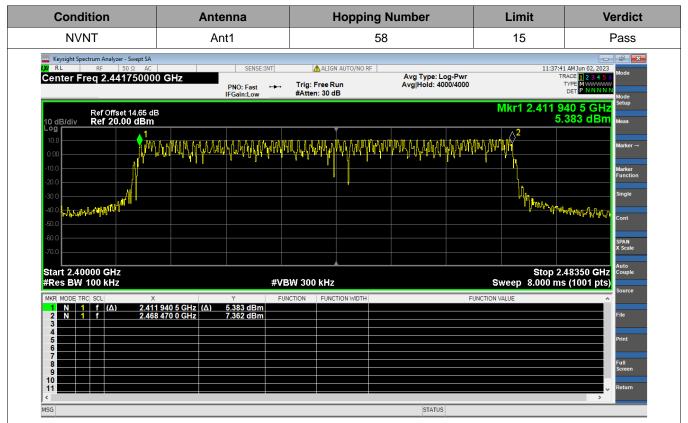
Condition	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2412	No-Hopping	-53.85	-20	Pass
NVNT	2469	No-Hopping	-53.15	-20	Pass





(3) Band Edge(Hopping)

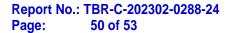

Condition	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2412	Hopping	-51.07	-20	Pass
NVNT	2469	Hopping	-50.19	-20	Pass



Attachment D-- Number of Hopping Channel Test Data

Attachment E-- Average Time of Occupancy Test Data

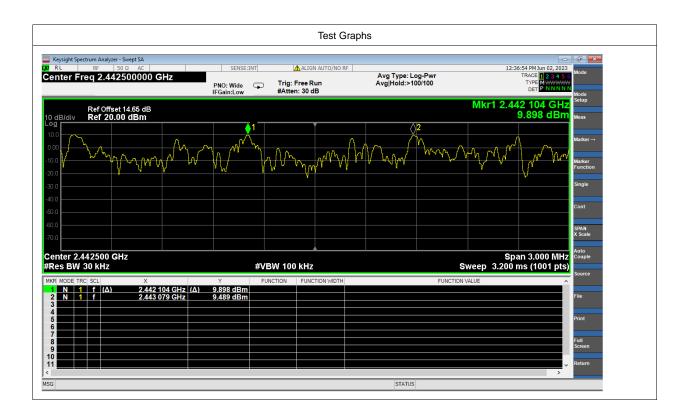
	ature:	25°	C	F	Relative Humidity:	: 55%	
Test Vo	Itage:	AC	120V/60HZ				
Test Mo	de:	Нор	ping Mode (G	GFSK)			
Test	Chan	nel	Reading	-	Test Result	Limit	
Mode	(MH	z)	Time (ms)	Total hops	(ms)	(ms)	Resu
GFSK	241	2	0.84	64	53.76	400	PASS
he Dwe	II Time =	Burst	Width * Total Ho	ops. The detailed c	alculations are showe	d as follows:	
he dura	tion for d	well ti	me calculation: (0.4 [s] * hopping n	umber = 0.4 [s] * 58 [c	h] =23.2[s*ch	ı];
he burst	t width, w	hich i	s directly measu	ired, refers to the c	luration on one chann	el hop.	
he maxi	mum nur	nber o	of hopping chan	nels in 23.2s is 64((23.2/8*22).		
Reading	Time=0.2	210*4=	=0.84				
				GFSK Hopping	y Mode		
LXI RL		50 Ω AC	SENS	ie:INT ALIGN AUTO/NO RF		03:25:51 PM May 06, 2	2023 Mode
Ref	Level 20.00	dBm	PNO: Fast IFGain:Low	→→ Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 TYPE WWW DET P NNN	Mode
10 dB Log	Vdiv Ref 20.	00 dBm					Setup Meas
							Marker →
10.0 -	(1	Marker
0.00							Marker Function
-10.0 =							Single
20.0	. 11						Cont
-20.0		hilli	lilli. In hilli			1	SPAN X Scale
-30.0 +							
-40.0							Auto Couple
-50.0	المعرفين وتعاريبهم	بمناه المالية	م متزور مسر البند البانين	المتأوين والمحمد ومرور كالمراجر وكالمراج	الارج والمتعدية بالمراجع والعظاف ومريعة أحتاق أحجاجها	والمعادية والمعالمين ألمنا والمعادية	Source
-30.0		Direct direct of				and the model time and a local of a balance	File
-60.0 -							Print
-70.0							Full
							Full Screen
	er 2.4420000 BW 1.0 MHz	00 GHz		VBW 1.0 MHz	Sw	Span 0 eep 8.000 s (1001 p	HZ _{Return} ots)
MSG					STATUS		
LXI RL	sight Spectrum Analyze RF cer 1 Δ 210.0	50 Ω AC			Avg Type: Log-Pwr	03:27:19 PM May 06, 2 TRACE 2 3 4 TYPE W	2023 Mode
			PNO: Fast IFGain:Low	, Trig: Free Run , Atten: 30 dB		ΔCnt1	Mode Satur
10 dE Logv	3/div Ref 20	.00 dBm			1Δ2	0.68 0	
10.0					X2	n n .	Marker →
-10.0							Marker Function
-20.0							Single
-40.0							
-50.0	her lyggelly yn er lir fr	interlation of the	Holina & Willywlan og gilly gaar to the	ขางกำลได้อาสกอนๆอน/อนสุลลุกๆอนุโดสสุด	where the second way was a second with the second	at the transle	
-60.0 -70.0							SPAN X Scale
	ter 2.4420000	00 GHz				Span 0	Hz Auto Couple
	BW 1.0 MHz			VBW 1.0 MHz		ep 10.00 ms (1001 p	
	MODE TRC SCL	X	Υ 210.0 μs (Δ) 0.68 d	FUNCTION FUNCTION WIDTH	FUNCTION VALUE		File
1	Δ2 <u>1</u> t (Δ) F <u>1</u> t		7.220 ms 7.11 dB				
1 2 3 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.220 ms 7.11 dB				
1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.220 ms 7.11 dBi				Print
1 2 3 4 5 6 7 8 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.220 ms 7.11 dB				
1 2 3 4 5 6 7 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.220 ms 7.11 dB				Print Full Screen


Attachment F-- Channel Separation and Bandwidth Test

Data

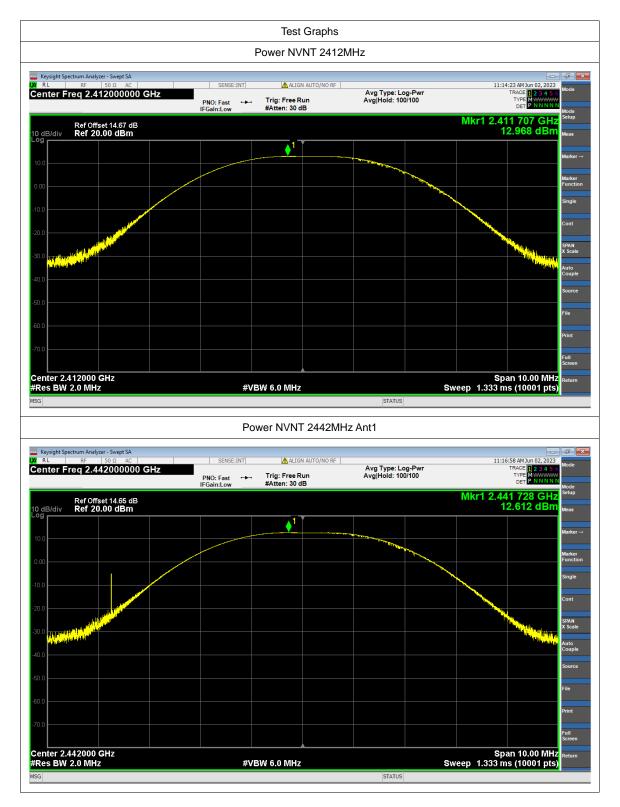
Bandwidth Test Data:

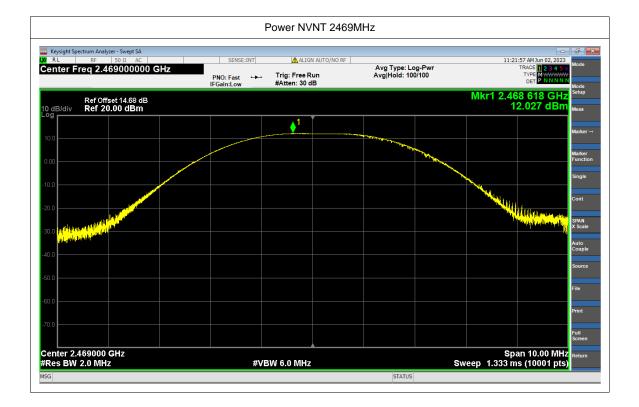
Condition	Frequency (MHz)	-20 dB Bandwidth (MHz)	2/3 *20dB BW (MHz)
NVNT	2412	1.300	0.866
NVNT	2442	1.304	0.869
NVNT	2469	1.280	0.853



Channel Separation Test data:

Condition	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	2442.104	2443.079	0.975	0.869	Pass




Attachment G-- Peak Output Power Test Data

Condition	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	2412	12.968	21	Pass
NVNT	2442	12.612	21	Pass
NVNT	2469	12.027	21	Pass

-----END OF REPORT-----

