

TEST Report

Applicant:	SHENZHEN COMISO DIGITAL TECHNOLOGY LIMITED
Address of Applicant:	12/F,XinLong Technology Park,SongGang Town,BaoAn District,ShenZhen City,China
Manufacturer :	SHENZHEN COMISO DIGITAL TECHNOLOGY LIMITED
Address of Manufacturer :	12/F,XinLong Technology Park,SongGang Town,BaoAn District,ShenZhen City,China
Equipment Under Test (El	JT)
Product Name:	Wireless speaker
Model No.:	X26
Trade Mark:	COMISO, INSMY
FCC ID:	2AEZG-0260
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	Mar.03,2021
Date of Test:	Mar.03,2021- Mar.10,2021
Date of report issued:	Mar.10,2021
Test Result :	PASS *

In the configuration tested, the EUT complied with the standards specified above. *

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	Mar.10,2021	Original

Jamellu Mar.10,2021 Tested/ Prepared By Date: Project Engineer oppinson (un) Mar.10,2021 Check By: Date: Reviewer

3 Contents

9	EUT CONSTRUCTIONAL DETAILS4	
7 7 7 7 7 7 7 7	1 ANTENNA REQUIREMENT 1 2 CONDUCTED EMISSIONS 1 3 CONDUCTED PEAK OUTPUT POWER 1 4 20DB EMISSION BANDWIDTH 1 5 FREQUENCIES SEPARATION 1 6 HOPPING CHANNEL NUMBER 2 7 DWELL TIME 2 8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 2 9 BAND EDGE 2 7.9.1 Conducted Emission Method 3 7.9.2 Radiated Emission Method 3 7.10.1 Conducted Emission Method 3 7.10.2 Radiated Emission Method 4	1 4 5 9 1 23 28 9 9 33 66 6 4 1
6 7	TEST INSTRUMENTS LIST TEST RESULTS AND MEASUREMENT DATA1	
5 5 5 5 5 5 5	 GENERAL DESCRIPTION OF EUT	.7 .7 .7 .7 .7 .7
1 2 3 4 5	COVER PAGE VERSION CONTENTS TEST SUMMARY GENERAL INFORMATION	.2 .3 .4

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes
Radiated Emission	30MHz-200MHz 3.8039dB		(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz 4.29dB		(1)
Radiated Emission	18GHz-40GHz 3.30dB		(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of §	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Wireless speaker
Model No.:	X26
Series model:	ONBEAT360
Test sample(s) ID:	GTSL202103000053-1(Engineer sample) GTSL202103000053-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π /4-DQPSK, 8-DPSK
Antenna Type:	PCB ANT
Antenna gain:	0.00dBi
Power supply:	DC 3.7V/2200mAh From Battery and DC 5V From External Circuit
Adapter Information (auxiliary test equipment supplied by test Lab)	Mode: CD122 Input: AC100-240V, 50/60Hz, 500mA Output: DC 5V, 2A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 **Description of Support Units**

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

	None.
5.6	Test Facility
	The test facility is recognized, certified, or accredited by the following organizations: • FCC —Registration No.: 381383
	Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383. • IC — Registration No.: 9079A
	The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A
	 NVLAP (LAB CODE:600179-0) Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0
5.7	Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

6 Test Instruments list

Rad	Radiated Emission:							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021		
7	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021		
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021		
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021		
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021		
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021		
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021		

Con	Conducted Emission								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021			
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A			
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021			
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021			

RF C	onducted Test:					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021
9	Power Sensor	Agilent	E9300A	GTS589	June. 25 2020	June. 24 2021
10	Spectrum analyzer	Agilent	N9020A	GTS591	June. 25 2020	June. 24 2021

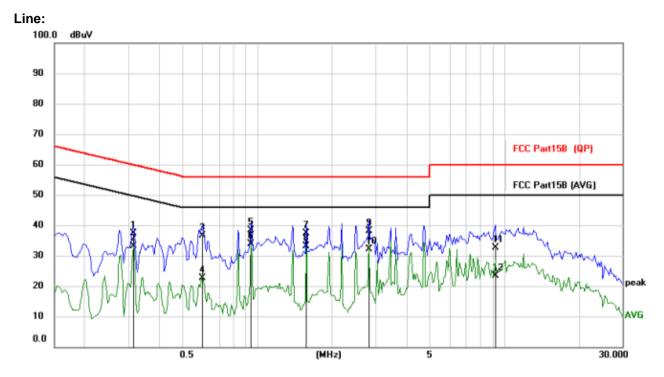
Gene	General used equipment:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021				
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021				

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
15.203 requirement:	
responsible party shall be us antenna that uses a unique	t: te designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit so e replaced by the user, but the use of a standard antenna jack or electrical t:
(i) Systems operating in the operations may employ trans	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the
E.U.T Antenna:	
The antenna is PCB ANT, t	he best case gain of the is 0.00dBi, reference to the appendix II for details

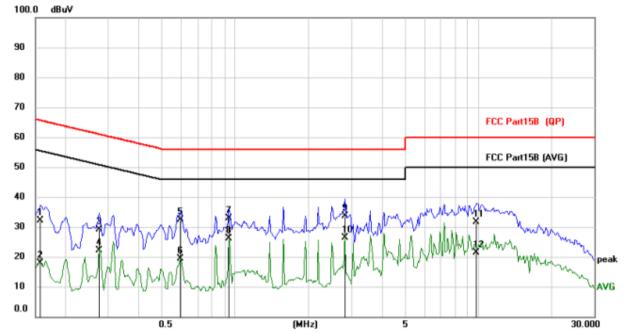

	Test Requirement:	FCC Part15	5 C Section 15	.207					
	Test Method:	ANSI C63.1	0:2013						
	Test Frequency Range:	150KHz to 3	30MHz						
	Class / Severity:	Class B RBW=9KHz, VBW=30KHz, Sweep time=auto							
	Receiver setup:								
	Limit:	Бладинал		_)	Limit	: (dBuV)			
		Frequen	cy range (MH	²⁾ Qi	uasi-peak	Ave	rage		
		0.15-0.5 66 to 56* 56 to 46							
			0.5-5		56	4			
			5-30		60	5	0		
		* Decrease:	s with the loga	rithm of the	frequency.				
	Test setup:	. <u> </u>	Reference	Plane					
		LISN 40cm 80cm Filter AC power Full E U.T E <t< th=""></t<>							
	Test procedure:	line impe 50ohm/5 2. The peri LISN tha terminati photogra 3. Both side interferen positions	T and simulat edance stabiliz i0uH coupling pheral devices it provides a 5 ion. (Please re aphs). es of A.C. line nce. In order to s of equipment g to ANSI C63	ation netwo impedance are also cc 0ohm/50uH ifer to the blo are checker o find the main and all of the	rk (L.I.S.N.). for the measu onnected to th coupling imp ock diagram of d for maximul aximum emis ne interface c	This provides uring equipm he main powe edance with of the test set of the test set of the test set of the test set ables must b	a ent. r through a 50ohm tup and tive e changed		
	Test Instruments:	Refer to section 6.0 for details							
	Test mode:	Refer to section 5.2 for details							
	Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
	Test voltage:	AC 120V, 6	0Hz		1	1	1		
	Test results:	Pass							
-									

7.2 Conducted Emissions

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

GTS

Report No.: GTSL202103000053F02


Measurement data:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.3138	26.41	10.92	37.33	59.87	-22.54	QP	
2	0.3138	22.12	10.92	33.04	49.87	-16.83	AVG	
3	0.5985	25.67	10.92	36.59	56.00	-19.41	QP	
4	0.5985	11.78	10.92	22.70	46.00	-23.30	AVG	
5	0.9417	27.46	10.92	38.38	56.00	-17.62	QP	
6 *	0.9417	22.93	10.92	33.85	46.00	-12.15	AVG	
7	1.5735	26.41	10.94	37.35	56.00	-18.65	QP	
8	1.5735	22.13	10.94	33.07	46.00	-12.93	AVG	
9	2.8293	27.11	11.00	38.11	56.00	-17.89	QP	
10	2.8293	21.19	11.00	32.19	46.00	-13.81	AVG	
11	9.1620	21.31	11.31	32.62	60.00	-27.38	QP	
12	9.1620	12.03	11.31	23.34	50.00	-26.66	AVG	

GTS

Report No.: GTSL202103000053F02

Neutral:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1578	21.22	10.93	32.15	65.58	-33.43	QP	
2	0.1578	6.89	10.93	17.82	55.58	-37.76	AVG	
3	0.2748	18.24	10.92	29.16	60.97	-31.81	QP	
4	0.2748	11.17	10.92	22.09	50.97	-28.88	AVG	
5	0.5946	21.37	10.92	32.29	56.00	-23.71	QP	
6	0.5946	8.55	10.92	19.47	46.00	-26.53	AVG	
7	0.9417	22.03	10.92	32.95	56.00	-23.05	QP	
8	0.9417	15.26	10.92	26.18	46.00	-19.82	AVG	
9	2.8293	22.75	11.00	33.75	56.00	-22.25	QP	
10 *	2.8293	15.44	11.00	26.44	46.00	-19.56	AVG	
11	9.8211	20.36	11.35	31.71	60.00	-28.29	QP	
12	9.8211	9.99	11.35	21.34	50.00	-28.66	AVG	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

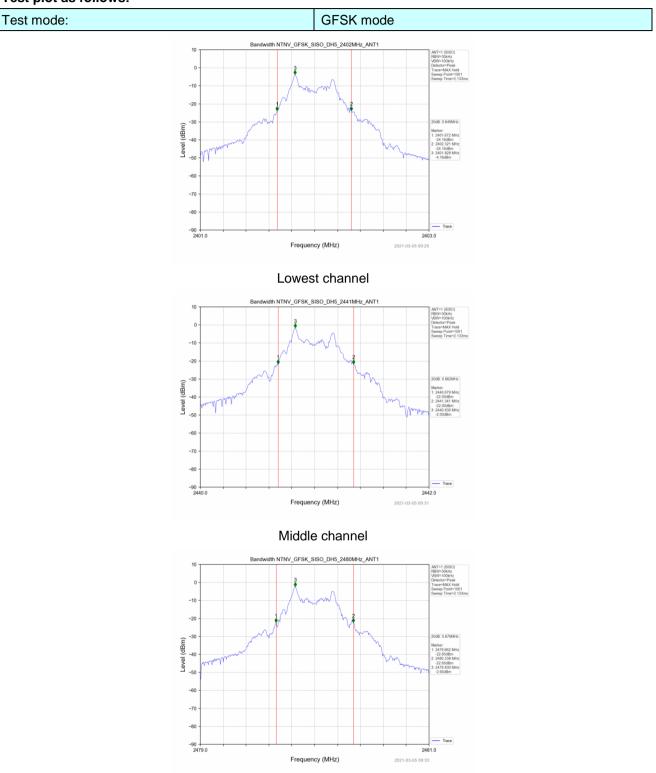
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.1	ANSI C63.10:2013					
Limit:	30dBm(for	GFSK),20.97	dBm(for EDF	R)			
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to see	ction 6.0 for d	letails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

7.3 Conducted Peak Output Power

Measurement Data

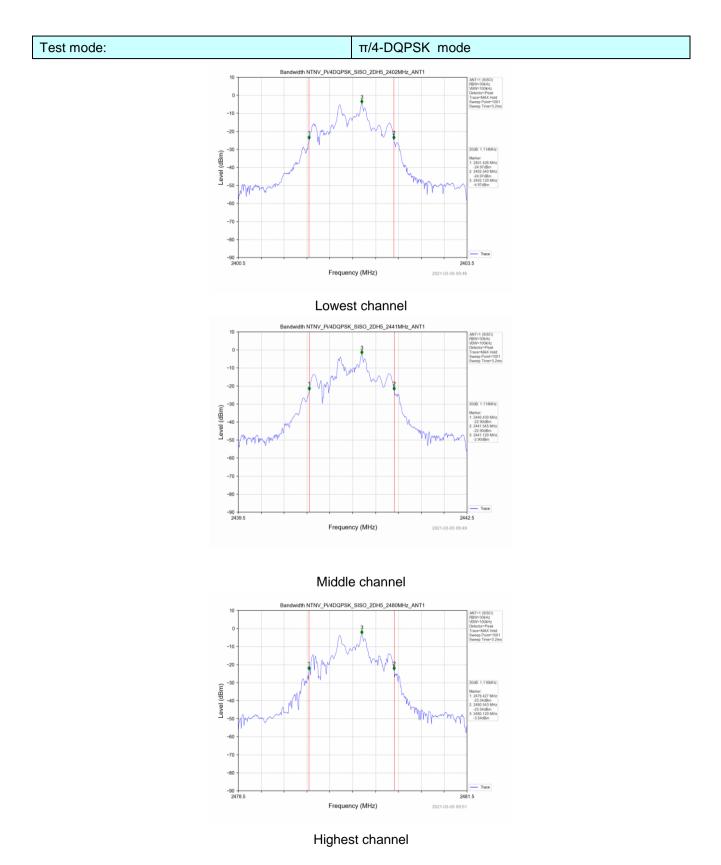
Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	-3.77		
GFSK	Middle	-1.61	30.00	Pass
	Highest	-2.24		
	Lowest	-2.02		
π/4-DQPSK	Middle	0.14	20.97	Pass
	Highest	-0.50		
	Lowest	-3.55		
8-DPSK	Middle	-2.47	20.97	Pass
	Highest	-2.49		

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)							
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Limit:	N/A							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

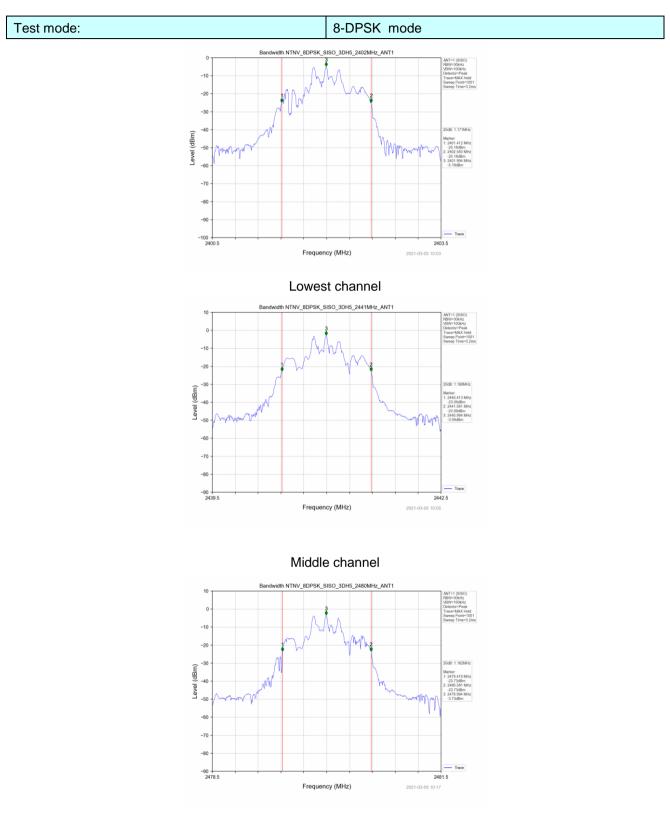

7.4 20dB Emission Bandwidth

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result	
	Lowest	0.649		
GFSK	Middle	0.662	Pass	
	Highest	0.676		
	Lowest	1.114		
π/4-DQPSK	Middle	1.114	Pass	
	Highest	1.116		
	Lowest	1.171		
8-DPSK	Middle	1.168	Pass	
	Highest	1.162		



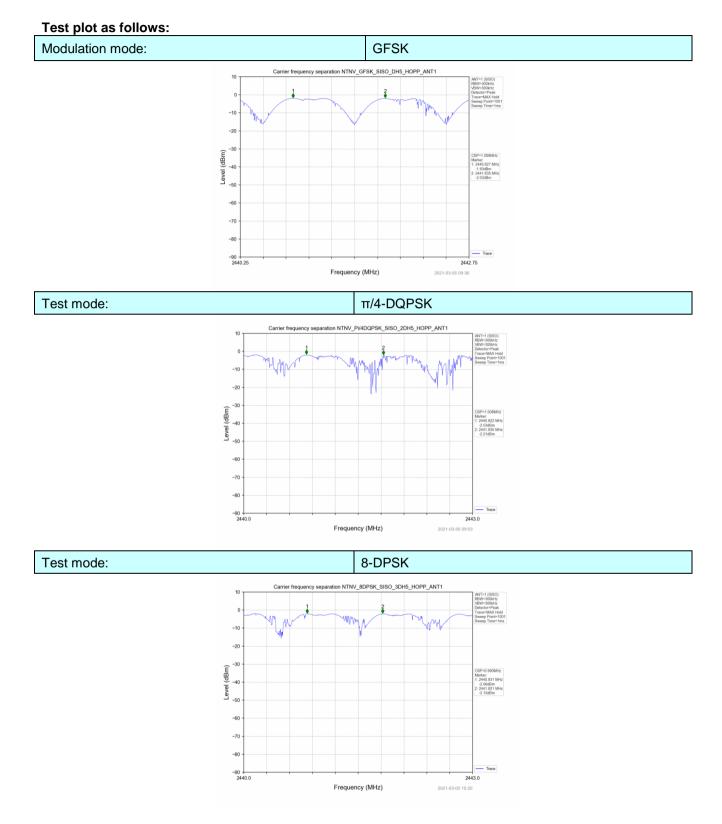
Test plot as follows:



Highest channel

Highest channel

Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (a)(1)							
Test Method:	ANSI C63.	ANSI C63.10:2013							
Receiver setup:	RBW=100	RBW=100KHz, VBW=300KHz, detector=Peak							
Limit:		GFSK: 20dB bandwidth $\pi/4$ -DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)							
Test setup:		Non							
Test Instruments:	Refer to se	ction 6.0 for	details						
Test mode:	Refer to se	Refer to section 5.2 for details							
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

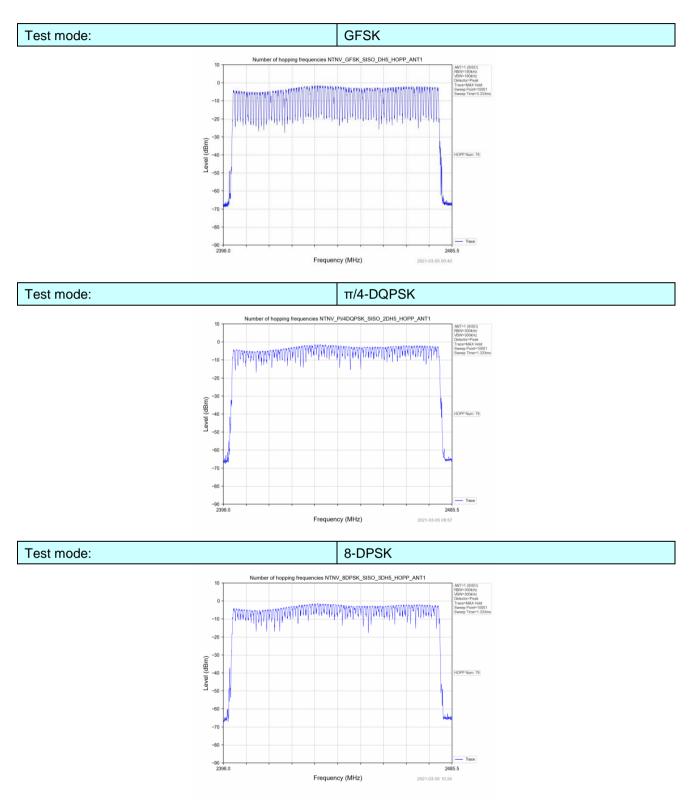

7.5 Frequencies Separation

Measurement Data

Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	1.008	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	1.008	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	0.990	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)							
Test Method:	ANSI C63.10:2013							
Receiver setup:		RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak						
Limit:	15 channels	3						
Test setup:	Spec			2.U.T				
Test Instruments:	Refer to see	ction 6.0 for d	etails					
Test mode:	Refer to sec	ction 5.2 for d	etails					
Test results:	Pass							
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							


7.6 Hopping Channel Number

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	≥15	Pass
π/4-DQPSK	79		Pass
8-DPSK	79		Pass

Test plot as follows:

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)								
Test Method:	ANSI C63.1	ANSI C63.10:2013							
Receiver setup:	RBW=1MH	z, VBW=1M⊦	lz, Span=0Hz	z, Detector=P	Peak				
Limit:	0.4 Second								
Test setup:	Sp								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to see	ction 5.2 for d	etails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	0.393	125.760	400	Pass
2441MHz	DH3	1.648	271.920	400	Pass
2441MHz	DH5	2.792	284.784	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5

π /4-DQPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz	2DH1	0.386	123.520	400	Pass
2441MHz	2DH3	1.638	276.822	400	Pass
2441MHz	2DH5	2.886	282.828	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) x (1600 ÷ 4 ÷ 79) x31.6 Second for DH3, 2-DH3

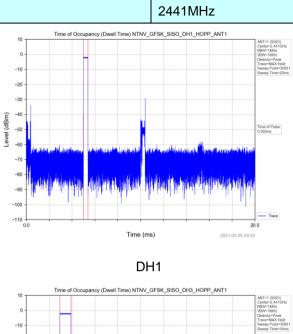
Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5

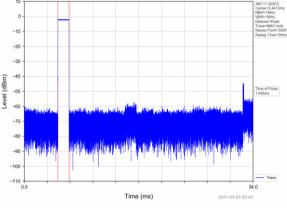
8-DPSK mode:

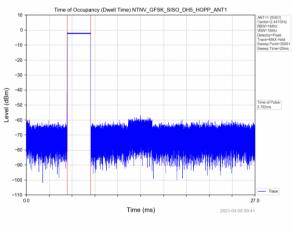
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz	3DH1	0.383	122.560	400	Pass
2441MHz	3DH3	1.634	269.610	400	Pass
2441MHz	3DH5	2.780	305.800	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1

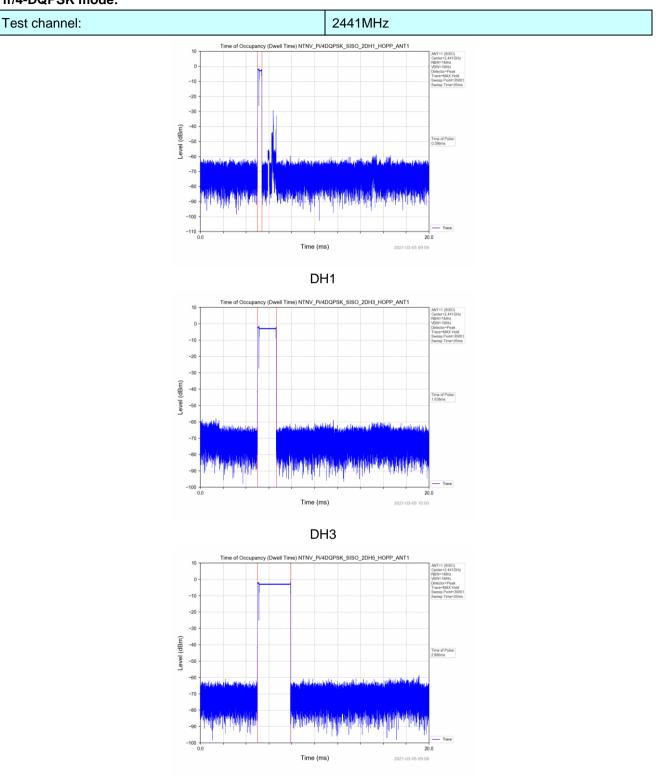

Dwell time=Pulse time (ms) x (1600 ÷ 4 ÷ 79) x31.6 Second for DH3, 2-DH3, 3-DH3


Dwell time=Pulse time (ms) x (1600 \div 6 \div 79) x31.6 Second for DH5, 2-DH5, 3-DH5


Test plot as follows: GFSK mode:

Test channel:

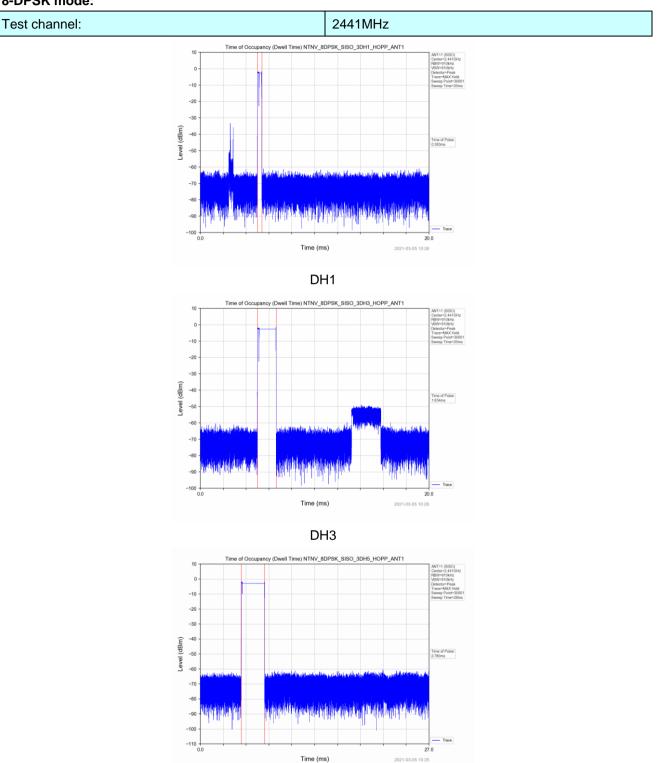
DH3



DH5

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

π /4-DQPSK mode:

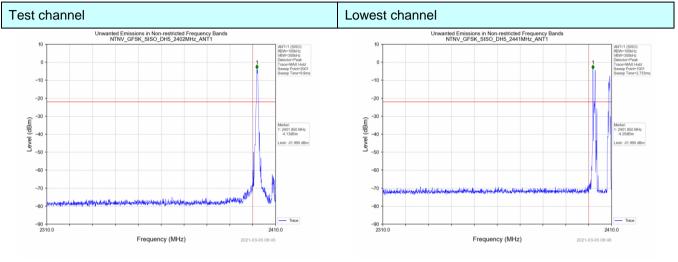


Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

8-DPSK mode:

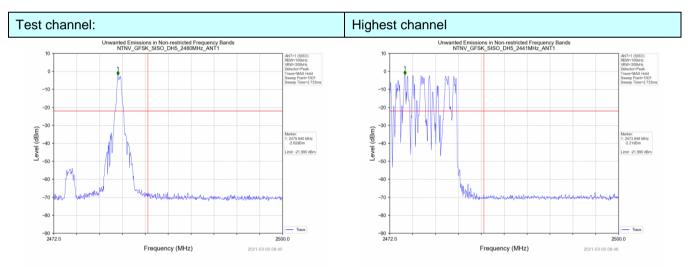
7.8 Pseudorandom Frequency Hopping Sequence

_	Pseudorandom Fre		
	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)/g/h requirement:	
		ystems shall have hopping channel carrier frequencies separated by a minimu h of the hopping channel, whichever is greater.	um of 25
	carrier frequencies that are whichever is greater, provid shall hop to channel freque hopping frequencies. Each receivers shall have input b	opping systems operating in the 2400-2483.5 MHz band may have hopping classeparated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping classed the systems operate with an output power no greater than 125 mW. The sencies that are selected at the system hopping rate from a Pseudorandom or of frequency must be used equally on the average by each transmitter. The system dwidths that match the hopping channel bandwidths of their corresponding frequencies in synchronization with the transmitted signals.	annel, system dered list stem
	each transmission. Howeve comply with all of the regula information) stream. In add	ead spectrum systems are not required to employ all available hopping chann er, the system, consisting of both the transmitter and the receiver, must be de ations in this section should the transmitter be presented with a continuous da lition, a system employing short transmission bursts must comply with the def and must distribute its transmissions over the minimum number of hopping cl	esigned to ata (or finition of
	recognize other users within hopsets to avoid hopping of	elligence within a frequency hopping spread spectrum system that permits the in the spectrum band so that it individually and independently chooses and ac on occupied channels is permitted. The coordination of frequency hopping sys xpress purpose of avoiding the simultaneous occupancy of individual hopping nsmitters is not permitted.	dapts its stems in
	EUT Pseudorandom Fre		
	The pseudorandom sequer added in a modulo-two add begins with the first ONE of • Number of shift register st	nce may be generated in a nine-stage shift register whose 5th and 9th stage of lition stage. And the result is fed back to the input of the first stage. The sequ f 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. tages: 9	
	The pseudorandom sequer added in a modulo-two add begins with the first ONE of	nce may be generated in a nine-stage shift register whose 5th and 9th stage of lition stage. And the result is fed back to the input of the first stage. The sequence of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. tages: 9 In sequence: $2^9 - 1 = 511$ bits	
	The pseudorandom sequer added in a modulo-two add begins with the first ONE of • Number of shift register st • Length of pseudo-random	nce may be generated in a nine-stage shift register whose 5th and 9th stage of lition stage. And the result is fed back to the input of the first stage. The sequence of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. tages: 9 In sequence: $2^9 - 1 = 511$ bits	
	The pseudorandom sequent added in a modulo-two add begins with the first ONE of • Number of shift register st • Length of pseudo-random • Longest sequence of zero	And the result is fed back to the input of the first stage. The sequence of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. tages: 9 in sequence: 2 ⁹ - 1 = 511 bits bits of (non-inverted signal) 	
	The pseudorandom sequent added in a modulo-two add begins with the first ONE of • Number of shift register st • Length of pseudo-random • Longest sequence of zero Linear Feedback An example of Pseudorand	And the result is fed back to the input of the first stage. The sequences: 9 a sequence: 2 ⁹ - 1 = 511 bits bits (non-inverted signal) A Shift Register for Generation of the PRBS sequence dom Frequency Hopping Sequence as follow:	
	The pseudorandom sequent added in a modulo-two add begins with the first ONE of • Number of shift register st • Length of pseudo-random • Longest sequence of zero	And the result is fed back to the input of the first stage. The sequence of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. tages: 9 in sequence: 2 ⁹ - 1 = 511 bits bits of (non-inverted signal) 	
	The pseudorandom sequent added in a modulo-two add begins with the first ONE of • Number of shift register st • Length of pseudo-random • Longest sequence of zero Linear Feedback An example of Pseudorand	And the result is fed back to the input of the first stage. The sequences: 9 a sequence: 2 ⁹ - 1 = 511 bits bits (non-inverted signal) A Shift Register for Generation of the PRBS sequence dom Frequency Hopping Sequence as follow:	
	The pseudorandom sequent added in a modulo-two add begins with the first ONE of • Number of shift register st • Length of pseudo-random • Longest sequence of zero Linear Feedback An example of Pseudorand 0 2 4 6	And the result is fed back to the input of the first stage. The sequences: 9 a sequence: 2 ⁹ - 1 = 511 bits bits (non-inverted signal) A Shift Register for Generation of the PRBS sequence dom Frequency Hopping Sequence as follow:	
	The pseudorandom sequent added in a modulo-two add begins with the first ONE of • Number of shift register st • Length of pseudo-random • Longest sequence of zero Linear Feedback An example of Pseudorand 0 2 4 6 Each frequency used equal	And the result is fed back to the input of the first stage. The sequences: a consecutive ONEs; i.e. the shift register is initialized with nine ones. tages: 9 in sequence: 2 ⁹ - 1 = 511 bits bits is: 8 (non-inverted signal)	lence
	The pseudorandom sequent added in a modulo-two add begins with the first ONE of • Number of shift register st • Length of pseudo-random • Longest sequence of zero Linear Feedback An example of Pseudorand 0 2 4 6 Each frequency used equal The system receivers have	nce may be generated in a nine-stage shift register whose 5th and 9th stage of lition stage. And the result is fed back to the input of the first stage. The sequence tages: 9 in sequence: 2 ⁹ -1 = 511 bits bits: 8 (non-inverted signal)	lence
	The pseudorandom sequent added in a modulo-two add begins with the first ONE of • Number of shift register st • Length of pseudo-random • Longest sequence of zero Linear Feedback An example of Pseudorand 0 2 4 6 Each frequency used equal The system receivers have transmitters and shift freque	Ince may be generated in a nine-stage shift register whose 5th and 9th stage of lition stage. And the result is fed back to the input of the first stage. The seque f 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. tages: 9 in sequence: 2 ⁹ - 1 = 511 bits is 20: 8 (non-inverted signal) Image: Provide the input of the first stage. The sequence: 2 ⁹ - 1 = 511 bits is 20: 8 (non-inverted signal) Image: Provide the input of the first stage. The sequence: 2 ⁹ - 1 = 511 bits is 20: 8 (non-inverted signal) Image: Provide the input of the provide the input of the first stage. The sequence is a sequence as follow: Image: Provide the input of the provide the input of the provide the input of the provide the input bandwidths that match the hopping channel bandwidths of their correspondence is a sequence input bandwidths that match the hopping channel bandwidths of their correspondence is a sequence input bandwidth of the input of the provide the input bandwidth of the input bandwidth of the input bandwidth is that match the hopping channel bandwidth of the input bandwidth is the input the input band	ponding


7.9 Band Edge

7.9.1 Conducted Emission Method

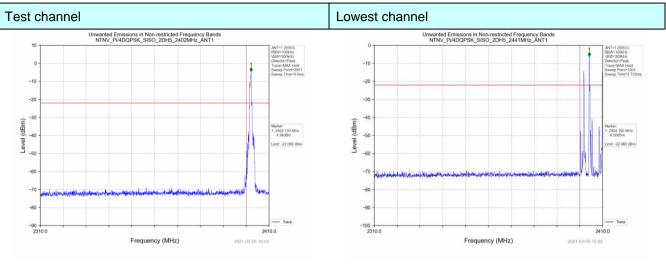
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.1	ANSI C63.10:2013							
Receiver setup:	RBW=100k	RBW=100kHz, VBW=300kHz, Detector=Peak							
Limit:	spectrum in produced by 100 kHz bar desired pow	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spect	measurement. Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to sec	ction 6.0 for c	letails						
Test mode:	Refer to sec	tion 5.2 for c	letails						
Test results:	Pass	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			



Test plot as follows: GFSK Mode:

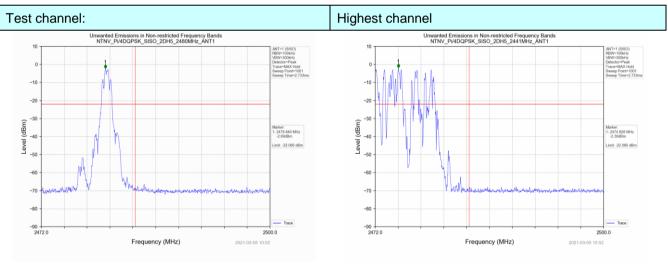
No-hopping mode

Hopping mode



No-hopping mode

Hopping mode



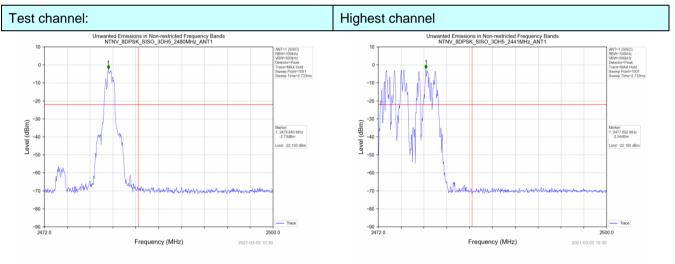
π/4-DQPSK Mode:

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode



Test channel Lowest channel Unwanted Emissions in Non-restricted Frequency Bands NTNV_8DPSK_SISO_3DH5_2402MHz_ANT1 Unwanted Emissions in Non-restricted Frequency Bands NTNV_8DPSK_SISO_3DH5_2441MHz_ANT1 -10 -10 -20 -30 -2 -40 Level (dBm) Level (dBm) 4.21dBm 2403.000 -5.41dBm -40 -50 -22 100 4 -5 -60 -70 -80 -90 Trace -90 -100 2410.0 2410.0 Frequency (MHz) Frequency (MHz)

8-DPSK Mode:

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

							7.9.2 Raulateu Emission Metrioù							
Test Requirement:	FCC Part15 C Section 15.209 and 15.205													
Test Method:	ANSI C63.10:2013													
Test Frequency Range:		estrict bands ata was sho		ested, on	ly the wo	orst band's (2310MHz to							
Test site:	Measurement Distance: 3m													
Receiver setup:	Frequenc	Frequency Detector RBW VBW Remark												
	Above 1GHz Peak 1MHz 3MHz Peak Value						k Value							
	Above IGH2 Peak 1MHz 10Hz Average Value													
Limit:	Fre	Frequency Limit (dBuV/m @3m) Remark												
	Aboy	ve 1GHz		54			ge Value							
	7 100			74	.00	Pea	k Value							
	Tum Table- <150cm>		< 3m	Test Anten	1									
Test Procedure:		t a 3 meter c	amber.	top of a ro The table	tating tab was rota									
	 The EUT antenna, tower. The anter ground to 	which was m nna height is determine t I and vertical	eters a nounted varied he max	way from d on the to from one kimum valu	the interfe p of a vai meter to ue of the t	riable-height four meters field strength	antenna above the n. Both							
		the antenna ota table was	was tu	ned to hei	ghts from	1 meter to 4	l meters							
		h with Maxim	num Ho	old Mode.										
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.													
Test Instruments:	Refer to sec	tion 6.0 for d	etails											
Test mode:	Refer to sec	tion 5.2 for d	etails											
Test results:	Pass													
Test environment:	Temp.:	25 °C	Humi	d.: 52	%	Press.:	1012mbar							

7.9.2 Radiated Emission Method

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement Data

Remark: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	59.56	-5.68	53.88	74	-20.12	peak
2390	43.75	-5.68	38.07	54	-15.93	AVG
	–		5			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

	1					
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	62.36	-5.68	56.68	74	-17.32	peak
2390	45.49	-5.68	39.81	54	-14.19	AVG
Remark: Facto	or = Antenna Fac	tor + Cable Los	ss – Pre-amplifier.		•	

Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	60.52	-5.85	54.67	74	-19.33	peak
2483.5	43.63	-5.85	37.78	54	-16.22	AVG
Remark: Facto	or = Antenna Fac	tor + Cable Los	s – Pre-amplifier.			!

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.5	62.71	-5.85	56.86	74	-17.14	peak
2483.5	45.03	-5.85	39.18	54	-14.82	AVG
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Test results:

Test environment:

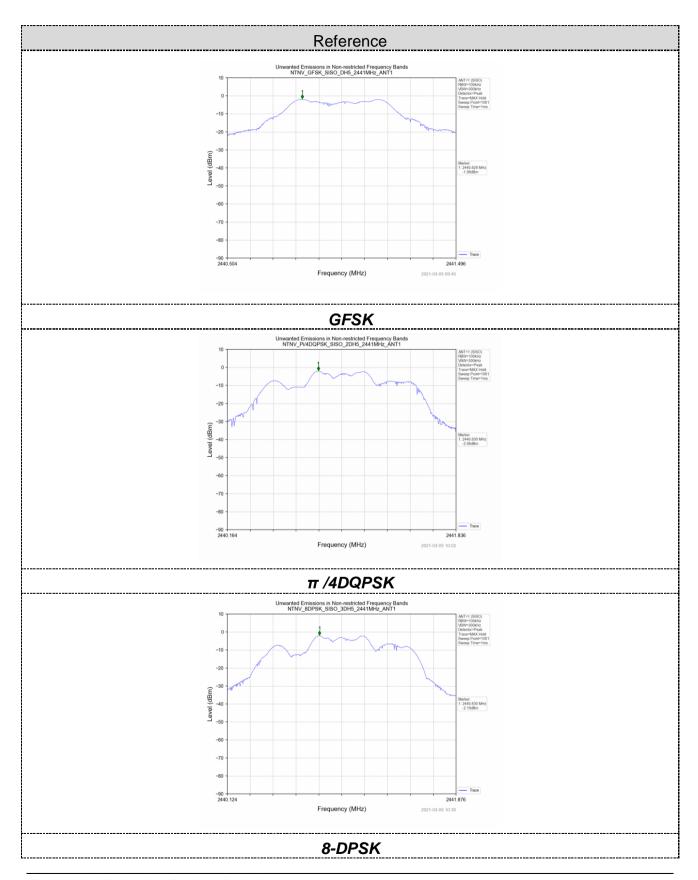
Test Requirement: FCC Part15 C Section 15.247 (d) Test Method: ANSI C63.10:2013 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Test Instruments: Refer to section 6.0 for details Refer to section 5.2 for details Test mode:

25 °C

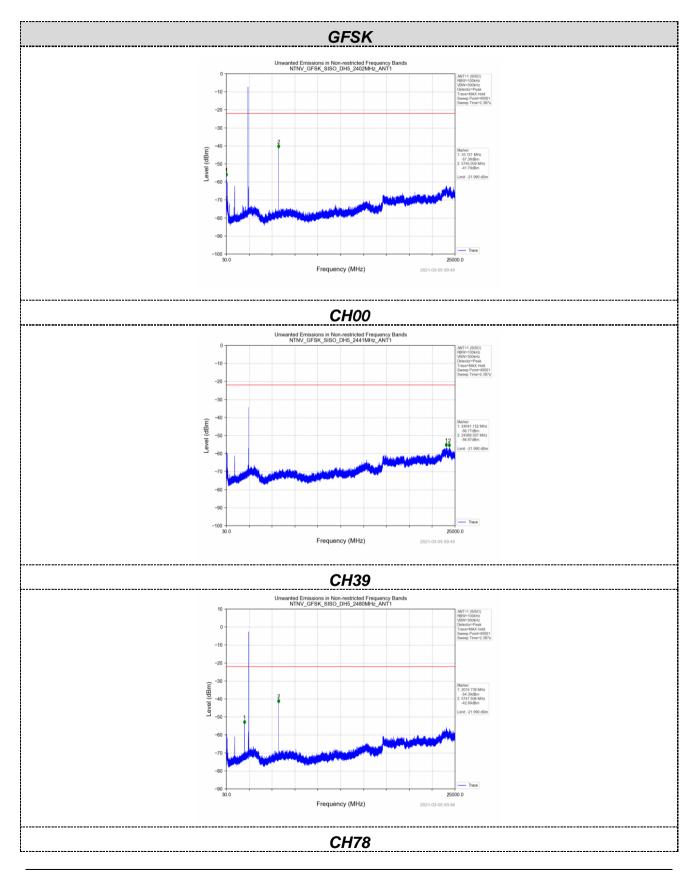
Humid .:

52%

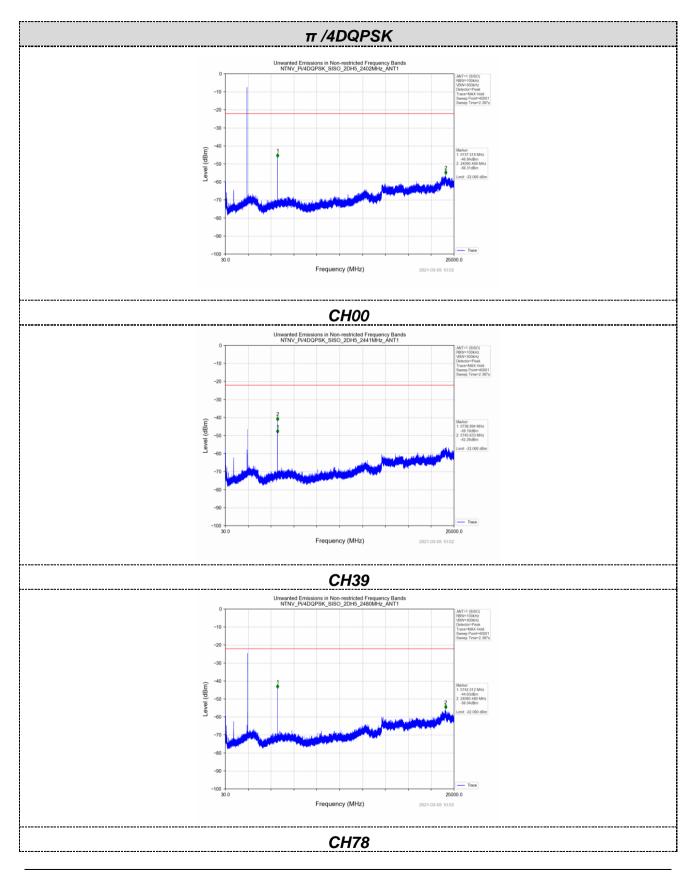
Press.:

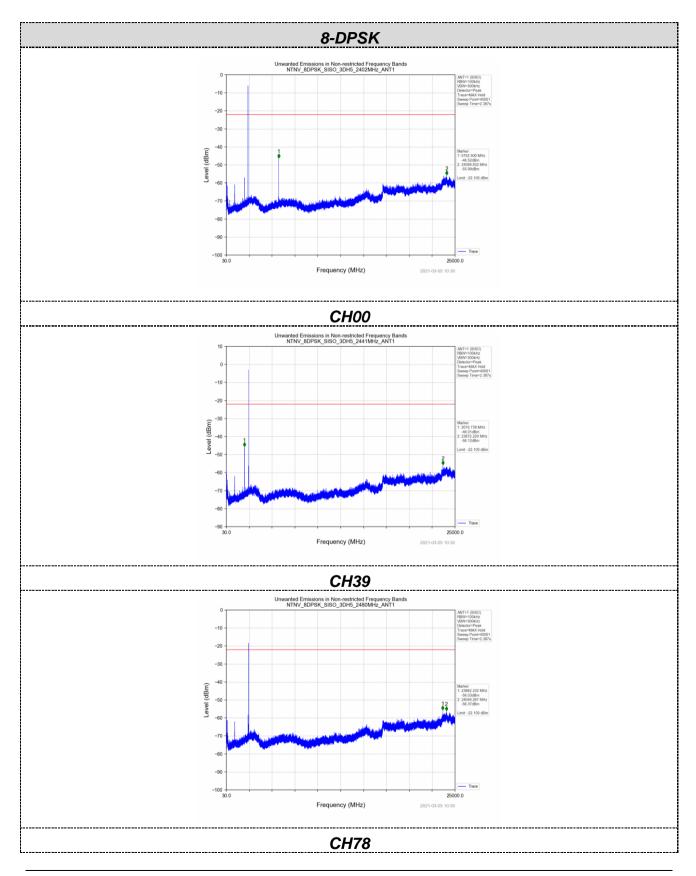

1012mbar

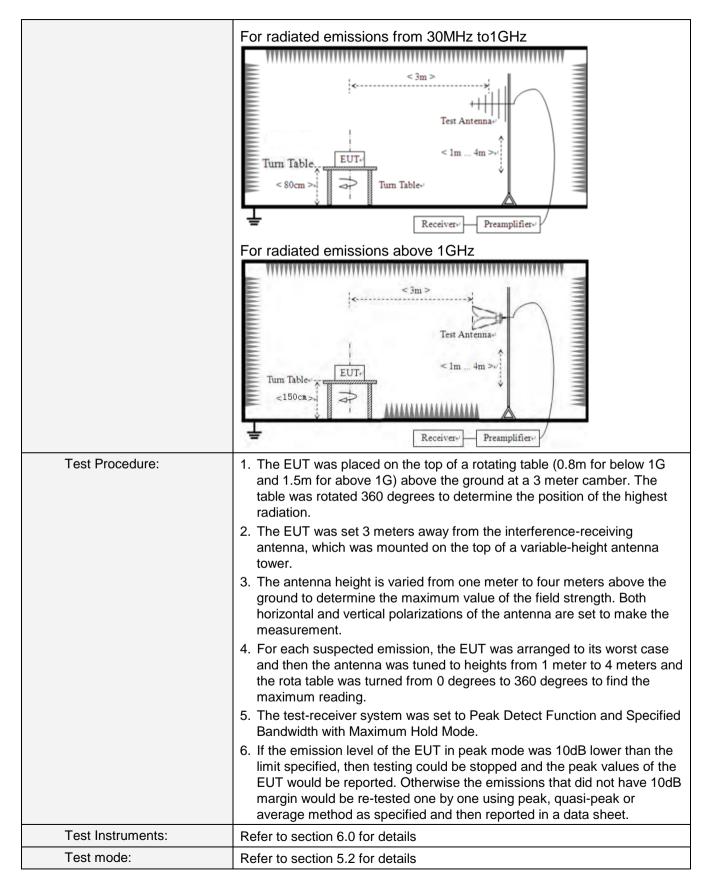
7.10 Spurious Emission7.10.1 Conducted Emission Method


Pass

Temp.:







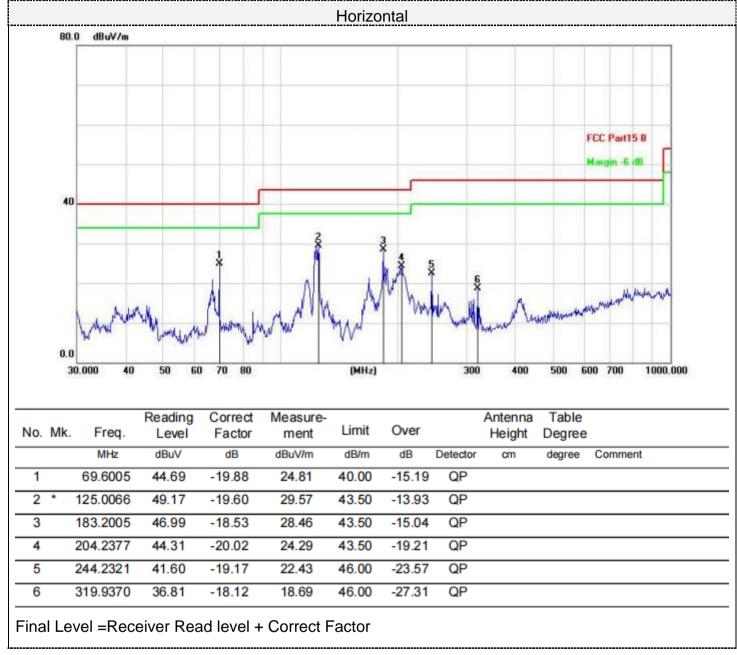
Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Frequency Detector RBW		V VBW		Value			
	9KHz-150KHz	Qı	lasi-peak	200	Hz	600H	z	Quasi-peak	
	150KHz-30MHz	Qı	uasi-peak	9KH	Ηz	30KH:	z	Quasi-peak	
	30MHz-1GHz	Qu	uasi-peak	120k	Ήz	300KH	lz	Quasi-peak	
	Above 1GHz		Peak	1Mł	Ηz	3MHz	2	Peak	
	Above ronz		Peak	1Mł	Ηz	10Hz		Average	
Limit:	Frequency	Limit (u∖	//m)	V	alue	Ν	Measurement Distance		
	0.009MHz-0.490M	Hz	2400/F(k	24000/F(KHz) (30 (QP	300m 30m		
	0.490MHz-1.705M	Hz	24000/F(QP			
	1.705MHz-30MH	Z	30			QP		30m	
	30MHz-88MHz		100			QP			
	88MHz-216MHz	<u>.</u>				QP			
	216MHz-960MH	Z				QP		3m	
	960MHz-1GHz					QP			
	Above 1GHz					erage			
			5000		F	Peak			
Test setup:	For radiated emiss	ions	from 9kH	z to 30	омн	Z		_	
		1111		1111111	11111				
	Tum Table EUT		< 3m > Test A um Table~	ntenna 1m Receive					

7.10.2 Radiated Emission Method

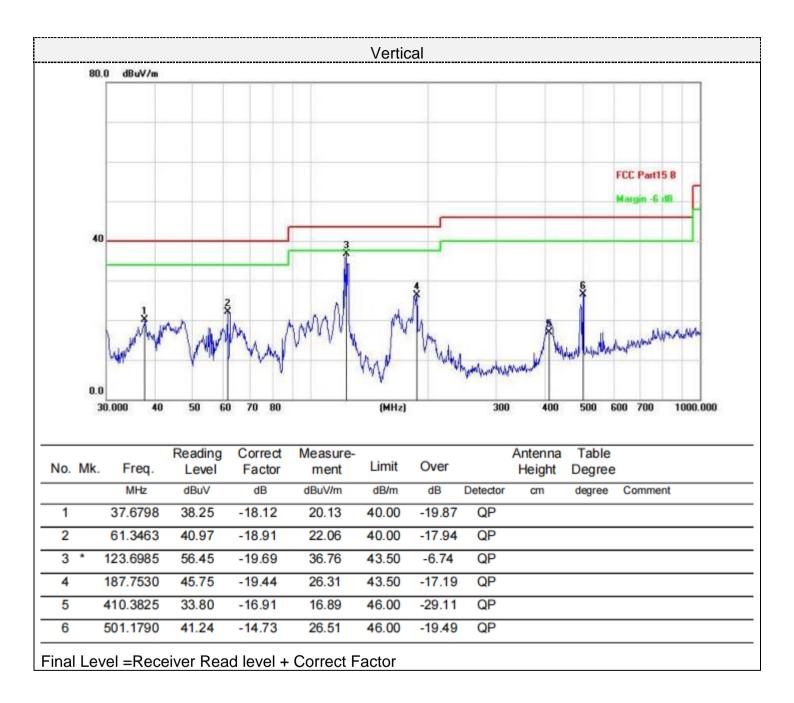
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



For 30MHz-1GHz

GTS

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK and Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
61.15	-3.61	57.54	74	-16.46	peak
46.49	-3.61	42.88	54	-11.12	AVG
57.37	-0.85	56.52	74	-17.48	peak
44.26	-0.85	43.41	54	-10.59	AVG
	61.15 46.49 57.37 44.26 	(dBµV) (dB) 61.15 -3.61 46.49 -3.61 57.37 -0.85 44.26 -0.85 	(dBµV) (dB) (dBµV/m) 61.15 -3.61 57.54 46.49 -3.61 42.88 57.37 -0.85 56.52 44.26 -0.85 43.41	(dBµV) (dB) (dBµV/m) (dBµV/m) 61.15 -3.61 57.54 74 46.49 -3.61 42.88 54 57.37 -0.85 56.52 74 44.26 -0.85 43.41 54	(dBµV) (dB) (dBµV/m) (dBµV/m) (dB) 61.15 -3.61 57.54 74 -16.46 46.49 -3.61 42.88 54 -11.12 57.37 -0.85 56.52 74 -17.48 44.26 -0.85 43.41 54 -10.59

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	
(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector Type
			· · · /		
60.11	-3.01	50.5	74	-17.5	peak
47.69	-3.61	44.08	54	-9.92	AVG
56.72	-0.85	55.87	74	-18.13	peak
45.36	-0.85	44.51	54	-9.49	AVG
	(dBµV) 60.11 47.69 56.72 45.36 	(dBµV) (dB) 60.11 -3.61 47.69 -3.61 56.72 -0.85 45.36 -0.85	(dBµV) (dB) (dBµV/m) 60.11 -3.61 56.5 47.69 -3.61 44.08 56.72 -0.85 55.87 45.36 -0.85 44.51	(dBµV) (dB) (dBµV/m) (dBµV/m) 60.11 -3.61 56.5 74 47.69 -3.61 44.08 54 56.72 -0.85 55.87 74 45.36 -0.85 44.51 54	(dBµV) (dB) (dBµV/m) (dBµV/m) (dB) 60.11 -3.61 56.5 74 -17.5 47.69 -3.61 44.08 54 -9.92 56.72 -0.85 55.87 74 -18.13 45.36 -0.85 44.51 54 -9.49

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

CH Middle (2441MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4882	61.57	-3.49	58.08	74	-15.92	peak			
4882	46.36	-3.49	42.87	54	-11.13	AVG			
7326	59.86	-0.8	59.06	74	-14.94	peak			
7326	44.96	-0.8	44.16	54	-9.84	AVG			
Remark: Facto	emark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4882	61.09	-3.49	57.6	74	-16.4	peak			
4882	45.54	-3.49	42.05	54	-11.95	AVG			
7326	55.36	-0.80	54.56	74	-19.44	peak			
7326	43.28	-0.8	42.48	54	-11.52	AVG			
Remark: Facto	emark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	61.46	-3.41	58.05	74	-15.95	peak
4960	46.23	-3.41	42.82	54	-11.18	AVG
7440	57.57	-0.72	56.85	74	-17.15	peak
7440	44.55	-0.8	43.75	54	-10.25	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	62.07	-3.41	58.66	74	-15.34	peak
						·
4960	46.83	-3.41	43.42	54	-10.58	AVG
7440	56.88	-0.72	56.16	74	-17.84	peak
7440	43.13	-0.8	42.33	54	-11.67	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
 (2) When the test results of Peak Detected below the limits of Average Detected,

the Average Detected is not need completed.

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----