

# **RADIO TEST REPORT**

S T S

## Report No.: STS2204018W01

Issued for

Shenzhen Joway Power Supply Co., Ltd.

Blog 10th & 11th, Antuoshan High-Tech Industrial Park, Shajing Street, Shenzhen, China

| Product Name:  | TWS Bluetooth Earphone |  |  |
|----------------|------------------------|--|--|
| Brand Name:    | JOWAY                  |  |  |
| Model Name:    | H112                   |  |  |
| Series Model:  | N/A                    |  |  |
| FCC ID:        | 2AEZ4-H112             |  |  |
| Test Standard: | FCC Part 15.247        |  |  |

Any reproduction of this document must be done in full. No single part of this document may be reproduced with permission from STS, all test data presented in this report is only applicable to presented test sample.

APPROVA

Shenzhen STS Test Services Co., Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com



#### **TEST RESULT CERTIFICATION**

| Applicant's Name:    | Shenzhen Joway Power Supply Co., Ltd.                                                     |
|----------------------|-------------------------------------------------------------------------------------------|
| Address              | Blog 10th & 11th, Antuoshan High-Tech Industrial Park, Shajing Street, Shenzhen, China    |
| Manufacturer's Name: | Shenzhen Joway Power Supply Co., Ltd.                                                     |
| Address              | Blog 10th & 11th, Antuoshan High-Tech Industrial Park, Shajing<br>Street, Shenzhen, China |
| Product Description  |                                                                                           |
| Product Name:        | TWS Bluetooth Earphone                                                                    |
| Brand Name:          | JOWAY                                                                                     |
| Model Name:          | H112                                                                                      |
| Series Model:        | N/A                                                                                       |
| Test Standards       | FCC Part15.247                                                                            |
| Test Procedure:      | ANSI C63.10-2013                                                                          |

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

| Date of receipt of test item:       | 01 Apr. 2022                |
|-------------------------------------|-----------------------------|
| Date (s) of performance of tests .: | 01 Apr. 2022 ~ 21 Apr. 2022 |
| Date of Issue                       | 21 Apr. 2022                |
| Test Result                         | Pass                        |

Testing Engineer : Technical Manager : Authorized Signatory : Testing Engineer : Chris Chen) Sean She (Sean she) Torwy Yung

(Bovey Yang)

Page 3 of 73 Report No.: STS2204018W01



| Table of Contents                                            | Page |
|--------------------------------------------------------------|------|
| 1. SUMMARY OF TEST RESULTS                                   | 6    |
| 1.1 TEST FACTORY                                             | 7    |
| 1.2 MEASUREMENT UNCERTAINTY                                  | 7    |
| 2. GENERAL INFORMATION                                       | 8    |
| 2.1 GENERAL DESCRIPTION OF THE EUT                           | 8    |
| 2.2 DESCRIPTION OF THE TEST MODES                            | 10   |
| 2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS                    | 10   |
| 2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING             | 11   |
| 2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 12   |
| 2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS   | 13   |
| 2.7 EQUIPMENTS LIST                                          | 14   |
| 3. EMC EMISSION TEST                                         | 16   |
| 3.1 CONDUCTED EMISSION MEASUREMENT                           | 16   |
| 3.2 RADIATED EMISSION MEASUREMENT                            | 20   |
| 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION                   | 32   |
| 4.1 LIMIT                                                    | 32   |
| 4.2 TEST PROCEDURE                                           | 32   |
| 4.3 TEST SETUP                                               | 33   |
| 4.4 EUT OPERATION CONDITIONS                                 | 33   |
| 4.5 TEST RESULTS                                             | 34   |
| 5. NUMBER OF HOPPING CHANNEL                                 | 49   |
| 5.1 LIMIT                                                    | 49   |
| 5.2 TEST PROCEDURE                                           | 49   |
| 5.3 TEST SETUP                                               | 49   |
| 5.4 EUT OPERATION CONDITIONS                                 | 49   |
| 5.5 TEST RESULTS                                             | 50   |
| 6. AVERAGE TIME OF OCCUPANCY                                 | 51   |
| 6.1 LIMIT                                                    | 51   |
| 6.2 TEST PROCEDURE                                           | 51   |
| 6.3 TEST SETUP                                               | 51   |
| 6.4 EUT OPERATION CONDITIONS                                 | 51   |
| 6.5 TEST RESULTS                                             | 52   |
| 7. HOPPING CHANNEL SEPARATION MEASUREMEN                     | 56   |

Page 4 of 73 Report No.: STS2204018W01



| Table of Contents            | Page |
|------------------------------|------|
| 7.1 LIMIT                    | 56   |
| 7.2 TEST PROCEDURE           | 56   |
| 7.3 TEST SETUP               | 56   |
| 7.4 EUT OPERATION CONDITIONS | 56   |
| 7.5 TEST RESULTS             | 57   |
| 8. BANDWIDTH TEST            | 63   |
| 8.1 LIMIT                    | 63   |
| 8.2 TEST PROCEDURE           | 63   |
| 8.3 TEST SETUP               | 63   |
| 8.4 EUT OPERATION CONDITIONS | 63   |
| 8.5 TEST RESULTS             | 64   |
| 9. OUTPUT POWER TEST         | 70   |
| 9.1 LIMIT                    | 70   |
| 9.2 TEST PROCEDURE           | 70   |
| 9.3 TEST SETUP               | 70   |
| 9.4 EUT OPERATION CONDITIONS | 70   |
| 9.5 TEST RESULTS             | 71   |
| 10. ANTENNA REQUIREMENT      | 72   |
| 10.1 STANDARD REQUIREMENT    | 72   |
| 10.2 EUT ANTENNA             | 72   |



Page 5 of 73 Report No.: STS2204018W01

#### **Revision History**

| Rev. | Issue Date   | Report NO.    | Effect Page | Contents      |
|------|--------------|---------------|-------------|---------------|
| 00   | 21 Apr. 2022 | STS2204018W01 | ALL         | Initial Issue |
|      |              |               |             |               |



Shenzhen STS Test Services Co., Ltd.

Ш



## 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

|                                  | FCC Part 15.247,Subpart C                  |          |        |  |  |
|----------------------------------|--------------------------------------------|----------|--------|--|--|
| Standard<br>Section              | Test Item                                  | Judgment | Remark |  |  |
| 15.207                           | Conducted Emission                         | PASS     |        |  |  |
| 15.247(a)(1)                     | Hopping Channel Separation                 | PASS     |        |  |  |
| 15.247(a)(1)&(b)(1)              | Output Power                               | PASS     |        |  |  |
| 15.209                           | Radiated Spurious Emission                 | PASS     |        |  |  |
| 15.247(d)                        | Conducted Spurious & Band Edge<br>Emission | PASS     |        |  |  |
| 15.247(a)(1)(iii)                | Number of Hopping Frequency                | PASS     |        |  |  |
| 15.247(a)(1)(iii)                | Dwell Time                                 | PASS     |        |  |  |
| 15.247(a)(1)                     | Bandwidth                                  | PASS     |        |  |  |
| 15.205                           | Restricted bands of operation              | PASS     |        |  |  |
| Part 15.247(d)/part<br>15.209(a) | Band Edge Emission                         | PASS     |        |  |  |
| 15.203                           | Antenna Requirement                        | PASS     |        |  |  |

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.



#### 1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01

#### **1.2 MEASUREMENT UNCERTAINTY**

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                             | Uncertainty |
|-----|----------------------------------|-------------|
| 1   | RF output power, conducted       | ±0.87dB     |
| 2   | Unwanted Emissions, conducted    | ±2.895dB    |
| 3   | All emissions, radiated 9K-30MHz | ±3.80dB     |
| 4   | All emissions, radiated 30M-1GHz | ±4.09dB     |
| 5   | All emissions, radiated 1G-6GHz  | ±4.92dB     |
| 6   | All emissions, radiated>6G       | ±5.49dB     |
| 7   | Conducted Emission (9KHz-30MHz)  | ±2.73dB     |



### 2. GENERAL INFORMATION

#### 2.1 GENERAL DESCRIPTION OF THE EUT

| Product Name            | TWS Bluetooth Earphone                                                                  |
|-------------------------|-----------------------------------------------------------------------------------------|
| Trade Name              | JOWAY                                                                                   |
| Model Name              | H112                                                                                    |
| Series Model            | N/A                                                                                     |
| Model Difference        | N/A                                                                                     |
| Channel List            | Please refer to the Note 2.                                                             |
| Bluetooth               | Frequency:2402 – 2480 MHz<br>Modulation: GFSK(1Mbps), π/4-DQPSK(2Mbps),<br>8DPSK(3Mbps) |
| Bluetooth Version       | 5.0                                                                                     |
| Bluetooth Configuration | BR+EDR                                                                                  |
| Antenna Type            | Please refer to the Note 3.                                                             |
| Adapter                 | Input: 5V/0.5A<br>Output: 5V/0.1A                                                       |
| Battery                 | Rated Voltage: 3.7V<br>Charge Limit Voltage: 4.2V<br>Capacity: 38mAh                    |
| Hardware version number | V3.1                                                                                    |
| Software version number | V1                                                                                      |
| Connecting I/O Port(s)  | Please refer to the Note 1.                                                             |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.





2.

| Channel List |                    |         |                    |         |                    |
|--------------|--------------------|---------|--------------------|---------|--------------------|
| Channel      | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 00           | 2402               | 27      | 2429               | 54      | 2456               |
| 01           | 2403               | 28      | 2430               | 55      | 2457               |
| 02           | 2404               | 29      | 2431               | 56      | 2458               |
| 03           | 2405               | 30      | 2432               | 57      | 2459               |
| 04           | 2406               | 31      | 2433               | 58      | 2460               |
| 05           | 2407               | 32      | 2434               | 59      | 2461               |
| 06           | 2408               | 33      | 2435               | 60      | 2462               |
| 07           | 2409               | 34      | 2436               | 61      | 2463               |
| 08           | 2410               | 35      | 2437               | 62      | 2464               |
| 09           | 2411               | 36      | 2438               | 63      | 2465               |
| 10           | 2412               | 37      | 2439               | 64      | 2466               |
| 11           | 2413               | 38      | 2440               | 65      | 2467               |
| 12           | 2414               | 39      | 2441               | 66      | 2468               |
| 13           | 2415               | 40      | 2442               | 67      | 2469               |
| 14           | 2416               | 41      | 2443               | 68      | 2470               |
| 15           | 2417               | 42      | 2444               | 69      | 2471               |
| 16           | 2418               | 43      | 2445               | 70      | 2472               |
| 17           | 2419               | 44      | 2446               | 71      | 2473               |
| 18           | 2420               | 45      | 2447               | 72      | 2474               |
| 19           | 2421               | 46      | 2448               | 73      | 2475               |
| 20           | 2422               | 47      | 2449               | 74      | 2476               |
| 21           | 2423               | 48      | 2450               | 75      | 2477               |
| 22           | 2424               | 49      | 2451               | 76      | 2478               |
| 23           | 2425               | 50      | 2452               | 77      | 2479               |
| 24           | 2426               | 51      | 2453               | 78      | 2480               |
| 25           | 2427               | 52      | 2454               |         |                    |
| 26           | 2428               | 53      | 2455               |         |                    |

#### 3. Table for Filed Antenna

| Ant. | Brand | Model<br>Name | Antenna Type       | Connector | Gain (dBi) | NOTE          |
|------|-------|---------------|--------------------|-----------|------------|---------------|
| 1    | JOWAY | H112          | Ceramic<br>antenna | N/A       | 2.5 dBi    | BT<br>Antenna |

Note: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.



#### 2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Worst Mode | Description | Data Rate/Modulation |
|------------|-------------|----------------------|
| Mode 1     | TX CH00     | 1Mbps/GFSK           |
| Mode 2     | TX CH39     | 1Mbps/GFSK           |
| Mode 3     | TX CH78     | 1Mbps/GFSK           |
| Mode 4     | TX CH00     | 2 Mbps/π/4-DQPSK     |
| Mode 5     | TX CH39     | 2 Mbps/π/4-DQPSK     |
| Mode 6     | TX CH78     | 2 Mbps/π/4-DQPSK     |
| Mode7      | TX CH00     | 3 Mbps/8DPSK         |
| Mode 8     | TX CH39     | 3 Mbps/8DPSK         |
| Mode 9     | TX CH78     | 3 Mbps/8DPSK         |
| Mode 10    | Hopping     | GFSK                 |
| Mode 11    | Hopping     | π/4-DQPSK            |
| Mode 12    | Hopping     | 8DPSK                |

Note:

The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.

(3) The battery is fully-charged during the radiated and RF conducted test.

For AC Conducted Emission

| Test Case             |                         |  |
|-----------------------|-------------------------|--|
| AC Conducted Emission | Mode 13 : Keeping BT TX |  |

#### 2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS

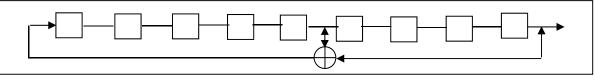
#### (1)Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

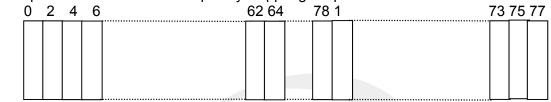
The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Shenzhen STS Test Services Co., Ltd.




Page 11 of 73 Report No.: STS2204018W01

(2)The Pseudorandom sequence may be generated in a nin-stage shift register whose 5<sup>th</sup> and 9<sup>th</sup> stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones: i.e. the shift register is initialized with nine ones.


Numver of shift register stages:9

Length of pseudo-random sequence:29-1=511bits Longest sequence of zeros: 8(non-inverted signal)



Liner Feedback Shift Register for Generator of the PRBS sequence

An example of Pseudorandom Frequency Hoppong Sequence as follow:



Each frequency used equally on th average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies ini synchronization with the transmitted signals.

(3)Frequency Hopping System

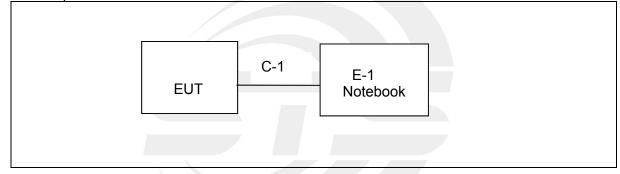
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

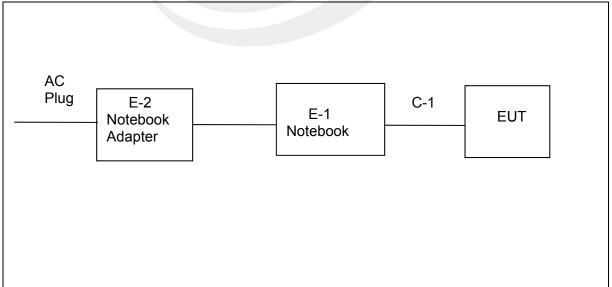
Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.

#### 2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.




| Test software Version                             | Test program: Bluetooth                                             |                                                                         |                                                                          |  |  |
|---------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|
| (Power control software)<br>Parameters(1/2/3Mbps) | Power class:<br>DH1 rate:4:27<br>2DH1 rate:20:54<br>3DH1 rate:24:83 | Power class:<br>DH3 rate:11:183<br>2DH3 rate:26:367<br>3DH3 rate:27:552 | Power class:<br>DH5 rate:15:339<br>2DH5 rate:30:679<br>3DH5 rate:31:1021 |  |  |

| RF Function | Туре   | Mode Or<br>Modulation<br>type | ANT<br>Gain(dBi) | Power<br>Class | Software For<br>Testing |  |
|-------------|--------|-------------------------------|------------------|----------------|-------------------------|--|
|             |        | GFSK                          | 2.5              | 0x00           |                         |  |
| BT          | BR+EDR | π/4-DQPSK                     | 2.5              | 0x00           | AWRDLABV2               |  |
|             |        | 8DPSK                         | 2.5              | 0x00           |                         |  |

#### 2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Radiated Spurious Emission Test



Conducted Emission Test



Shenzhen STS Test Services Co., Ltd.



#### 2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Mfr/Brand | Model/Type No. | Length | Note |
|------|-----------|-----------|----------------|--------|------|
| N/A  | N/A       | N/A       | N/A            | N/A    | N/A  |
|      |           |           |                |        |      |
|      |           |           |                |        |      |
|      |           |           |                |        |      |

#### Necessary accessories

#### Support units

| Item | Equipment        | Mfr/Brand Model/Type No. |                | Length | Note |
|------|------------------|--------------------------|----------------|--------|------|
| E-2  | Notebook Adapter | LENOVO                   | ADLX45DLC3A    | N/A    | N/A  |
| E-1  | Notebook         | LENOVO                   | Think Pad E470 | N/A    | N/A  |
| C-1  | USB Cable        | N/A                      | N/A            | 150cm  | NO   |
|      |                  |                          |                |        |      |

Note:

- (1) For detachable type I/O cable should be specified the length in cm in <sup>r</sup>Length <sup>a</sup> column.
- (2) "YES" is means "with core"; "NO" is means "without core".



## 2.7 EQUIPMENTS LIST

#### Radiation Test equipment

| Kind of Equipment                       | Manufacturer | Type No.                   | Serial No.   | Last calibration | Calibrated until |  |  |
|-----------------------------------------|--------------|----------------------------|--------------|------------------|------------------|--|--|
| Test Receiver                           | R&S          | ESCI                       | 101427       | 2021.09.30       | 2022.09.29       |  |  |
| Signal Analyzer                         | R&S          | FSV 40-N                   | 101823       | 2021.09.30       | 2022.09.29       |  |  |
| Active loop Antenna                     | ZHINAN       | ZN30900C                   | 16035        | 2021.04.11       | 2023.04.10       |  |  |
| Bilog Antenna                           | TESEQ        | CBL6111D                   | 34678        | 2020.10.12       | 2022.10.11       |  |  |
| Horn Antenna                            | SCHWARZBECK  | BBHA 9120D                 | 02014        | 2021.10.11       | 2023.10.10       |  |  |
| SHF-EHF Horn<br>Antenna (18G-<br>40GHz) | A-INFO       | LB-180400-KF               | J211020657   | 2020.10.12       | 2022.10.11       |  |  |
| Pre-Amplifier (0.1M-<br>3GHz)           | EM           | EM330                      | 060665       | 2021.10.08       | 2022.10.07       |  |  |
| Pre-Amplifier (1G-<br>18GHz)            | SKET         | LNPA-01018G-45             | SK2018080901 | 2021.09.30       | 2022.09.29       |  |  |
| Pre-Amplifier (18G-<br>40GHz)           | SKET         | LNPA-1840-50               | SK2018101801 | 2021.09.28       | 2022.09.27       |  |  |
| Temperature &<br>Humidity               | HH660        | Mieo                       | N/A          | 2021.10.09       | 2022.10.08       |  |  |
| Turn table                              | EM           | SC100_1                    | 60531        | N/A              | N/A              |  |  |
| Antenna mast                            | EM           | SC100                      | N/A          | N/A              | N/A              |  |  |
| Test SW                                 | FARAD        | EZ-EMC(Ver.STSLAB-03A1 RE) |              |                  |                  |  |  |

#### **Conduction Test equipment**

| ~~ | nadolion reol equipi      |              |                            |            |                  |                  |  |
|----|---------------------------|--------------|----------------------------|------------|------------------|------------------|--|
|    | Kind of Equipment         | Manufacturer | Type No.                   | Serial No. | Last calibration | Calibrated until |  |
|    | Test Receiver             | R&S          | ESCI                       | 101427     | 2021.09.30       | 2022.09.29       |  |
|    | LISN                      | R&S          | ENV216                     | 101242     | 2021.09.30       | 2022.09.29       |  |
| ſ  | LISN                      | EMCO         | 3810/2NM                   | 23625      | 2021.09.30       | 2022.09.29       |  |
|    | Temperature &<br>Humidity | HH660        | Mieo                       | N/A        | 2021.10.09       | 2022.10.08       |  |
|    | Test SW                   | FARAD        | EZ-EMC(Ver.STSLAB-03A1 RE) |            |                  |                  |  |

Π



Page 15 of 73 Report No.: STS2204018W01

#### **RF** Connected Test

| Kind of Equipment         | Manufacturer | Type No.                   | Serial No. | Last calibration | Calibrated until |  |
|---------------------------|--------------|----------------------------|------------|------------------|------------------|--|
| Power Sensor              | Keysight     | U2021XA                    | MY55520005 | 2021.09.30       | 2022.09.29       |  |
|                           |              |                            | MY55520006 | 2021.09.30       | 2022.09.29       |  |
|                           |              |                            | MY56120038 | 2021.09.30       | 2022.09.29       |  |
|                           |              |                            | MY56280002 | 2021.09.30       | 2022.09.29       |  |
| Signal Analyzer           | Agilent      | N9020A                     | MY51110105 | 2022.03.01       | 2023.02.28       |  |
| Temperature &<br>Humidity | HH660        | Mieo                       | N/A        | 2021.10.09       | 2022.10.08       |  |
| Test SW                   | FARAD        | EZ-EMC(Ver.STSLAB-03A1 RE) |            |                  |                  |  |



Shenzhen STS Test Services Co., Ltd.

П



#### 3. EMC EMISSION TEST

#### 3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

|                 | Conducted Emissionlimit (dBuV) |           |  |
|-----------------|--------------------------------|-----------|--|
| FREQUENCY (MHz) | Quasi-peak                     | Average   |  |
| 0.15 -0.5       | 66 - 56 *                      | 56 - 46 * |  |
| 0.50 -5.0       | 56.00                          | 46.00     |  |
| 5.0 -30.0       | 60.00                          | 50.00     |  |

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

#### The following table is the setting of the receiver

| Receiver Parameters | Setting  |  |  |
|---------------------|----------|--|--|
| Attenuation         | 10 dB    |  |  |
| Start Frequency     | 0.15 MHz |  |  |
| Stop Frequency      | 30 MHz   |  |  |
| IF Bandwidth        | 9 kHz    |  |  |



#### 3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- C. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.



#### 3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

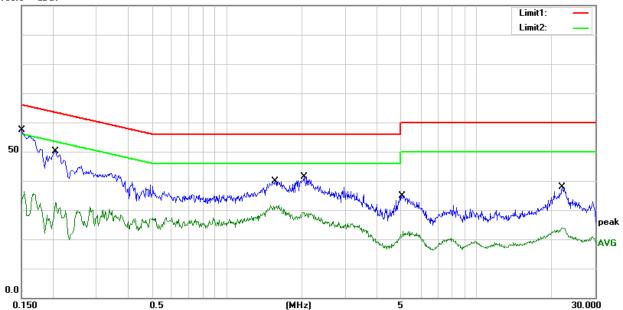
#### 3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



#### 3.1.5 TEST RESULT

| Temperature:  | 23.2(C)      | Relative Humidity: | 62%RH |
|---------------|--------------|--------------------|-------|
| Test Voltage: | AC 120V/60Hz | Phase:             | L     |
| Test Mode:    | Mode 13      |                    |       |


| No. | Frequency | Reading | Correct    | Result | Limit  | Margin | Remark |
|-----|-----------|---------|------------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB) | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1500    | 36.94   | 20.33      | 57.27  | 66.00  | -8.73  | QP     |
| 2   | 0.1500    | 16.09   | 20.33      | 36.42  | 56.00  | -19.58 | AVG    |
| 3   | 0.2060    | 29.75   | 20.34      | 50.09  | 63.37  | -13.28 | QP     |
| 4   | 0.2060    | 12.20   | 20.34      | 32.54  | 53.37  | -20.83 | AVG    |
| 5   | 1.5620    | 19.48   | 20.30      | 39.78  | 56.00  | -16.22 | QP     |
| 6   | 1.5620    | 11.36   | 20.30      | 31.66  | 46.00  | -14.34 | AVG    |
| 7   | 2.0420    | 21.10   | 20.30      | 41.40  | 56.00  | -14.60 | QP     |
| 8   | 2.0420    | 8.91    | 20.30      | 29.21  | 46.00  | -16.79 | AVG    |
| 9   | 5.0540    | 14.42   | 20.46      | 34.88  | 60.00  | -25.12 | QP     |
| 10  | 5.0540    | 2.34    | 20.46      | 22.80  | 50.00  | -27.20 | AVG    |
| 11  | 22.1660   | 15.05   | 22.77      | 37.82  | 60.00  | -22.18 | QP     |
| 12  | 22.1660   | 1.18    | 22.77      | 23.95  | 50.00  | -26.05 | AVG    |

#### Remark:

1. All readings are Quasi-Peak and Average values

2. Margin = Result (Result = Reading + Factor )-Limit

3. Factor=LISN factor+Cable loss+Limiter (10dB)



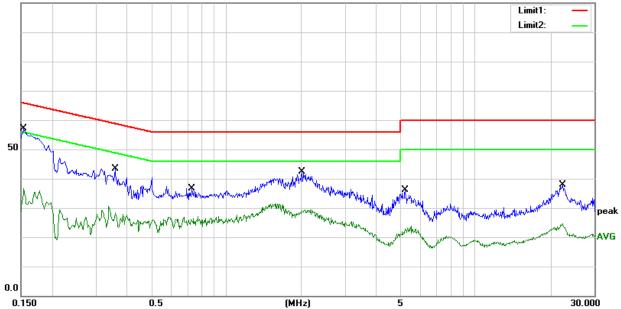
Shenzhen STS Test Services Co., Ltd.



Page 19 of 73 Report No.: STS2204018W01

| Temperature:  | 23.2(C)      | Relative Humidity: | 62%RH |
|---------------|--------------|--------------------|-------|
| Test Voltage: | AC 120V/60Hz | Phase:             | N     |
| Test Mode:    | Mode 13      |                    |       |

| No. | Frequency | Reading | Correct    | Result | Limit  | Margin | Remark |
|-----|-----------|---------|------------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB) | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1540    | 36.71   | 20.30      | 57.01  | 65.78  | -8.77  | QP     |
| 2   | 0.1540    | 16.20   | 20.30      | 36.50  | 55.78  | -19.28 | AVG    |
| 3   | 0.3580    | 22.73   | 20.66      | 43.39  | 58.77  | -15.38 | QP     |
| 4   | 0.3580    | 7.80    | 20.66      | 28.46  | 48.77  | -20.31 | AVG    |
| 5   | 0.7300    | 16.27   | 20.36      | 36.63  | 56.00  | -19.37 | QP     |
| 6   | 0.7300    | 6.71    | 20.36      | 27.07  | 46.00  | -18.93 | AVG    |
| 7   | 2.0140    | 21.97   | 20.39      | 42.36  | 56.00  | -13.64 | QP     |
| 8   | 2.0140    | 8.97    | 20.39      | 29.36  | 46.00  | -16.64 | AVG    |
| 9   | 5.2460    | 15.51   | 20.54      | 36.05  | 60.00  | -23.95 | QP     |
| 10  | 5.2460    | 3.40    | 20.54      | 23.94  | 50.00  | -26.06 | AVG    |
| 11  | 22.5180   | 14.98   | 22.82      | 37.80  | 60.00  | -22.20 | QP     |
| 12  | 22.5180   | 1.79    | 22.82      | 24.61  | 50.00  | -25.39 | AVG    |


#### Remark:

1. All readings are Quasi-Peak and Average values

2. Margin = Result (Result = Reading + Factor )-Limit

3. Factor=LISN factor+Cable loss+Limiter (10dB)

100.0 dBuV



Shenzhen STS Test Services Co., Ltd.

#### 3.2 RADIATED EMISSION MEASUREMENT

#### 3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

#### LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

| FREQUENCY (MHz) | (dBuV/m) (at 3M) |         |  |  |
|-----------------|------------------|---------|--|--|
|                 | PEAK             | AVERAGE |  |  |
| Above 1000      | 74               | 54      |  |  |

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

#### LIMITS OF RESTRICTED FREQUENCY BANDS

| FREQUENCY (MHz)   | FREQUENCY (MHz)     | FREQUENCY (MHz) | FREQUENCY (GHz) |
|-------------------|---------------------|-----------------|-----------------|
| 0.090-0.110       | 16.42-16.423        | 399.9-410       | 4.5-5.15        |
| 0.495-0.505       | 16.69475-16.69525   | 608-614         | 5.35-5.46       |
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240        | 7.25-7.75       |
| 4.125-4.128       | 25.5-25.67          | 1300-1427       | 8.025-8.5       |
| 4.17725-4.17775   | 37.5-38.25          | 1435-1626.5     | 9.0-9.2         |
| 4.20725-4.20775   | 73-74.6             | 1645.5-1646.5   | 9.3-9.5         |
| 6.215-6.218       | 74.8-75.2           | 1660-1710       | 10.6-12.7       |
| 6.26775-6.26825   | 108-121.94          | 1718.8-1722.2   | 13.25-13.4      |
| 6.31175-6.31225   | 123-138             | 2200-2300       | 14.47-14.5      |
| 8.291-8.294       | 149.9-150.05        | 2310-2390       | 15.35-16.2      |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500     | 17.7-21.4       |
| 8.37625-8.38675   | 156.7-156.9         | 2690-2900       | 22.01-23.12     |
| 8.41425-8.41475   | 162.0125-167.17     | 3260-3267       | 23.6-24.0       |
| 12.29-12.293      | 167.72-173.2        | 3332-3339       | 31.2-31.8       |
| 12.51975-12.52025 | 240-285             | 3345.8-3358     | 36.43-36.5      |
| 12.57675-12.57725 | 322-335.4           | 3600-4400       | Above 38.6      |
| 13.36-13.41       |                     |                 |                 |

Shenzhen STS Test Services Co., Ltd.



For Radiated Emission

| Spectrum Parameter              | Setting                       |  |  |
|---------------------------------|-------------------------------|--|--|
| Attenuation                     | Auto                          |  |  |
| Detector                        | Peak/QP/AV                    |  |  |
| Start Frequency                 | 9 KHz/150KHz(Peak/QP/AV)      |  |  |
| Stop Frequency                  | 150KHz/30MHz(Peak/QP/AV)      |  |  |
|                                 | 200Hz (From 9kHz to 0.15MHz)/ |  |  |
| RB / VB (emission in restricted | 9KHz (From 0.15MHz to 30MHz); |  |  |
| band)                           | 200Hz (From 9kHz to 0.15MHz)/ |  |  |
|                                 | 9KHz (From 0.15MHz to 30MHz)  |  |  |

| Spectrum Parameter              | Setting            |  |  |
|---------------------------------|--------------------|--|--|
| Attenuation                     | Auto               |  |  |
| Detector                        | Peak/QP            |  |  |
| Start Frequency                 | 30 MHz(Peak/QP)    |  |  |
| Stop Frequency                  | 1000 MHz (Peak/QP) |  |  |
| RB / VB (emission in restricted |                    |  |  |
| band)                           | 120 KHz / 300 KHz  |  |  |

| Spectrum Parameter              | Setting                       |  |  |
|---------------------------------|-------------------------------|--|--|
| Attenuation                     | Auto                          |  |  |
| Detector                        | Peak/AV                       |  |  |
| Start Frequency                 | 1000 MHz(Peak/AV)             |  |  |
| Stop Frequency                  | 10th carrier hamonic(Peak/AV) |  |  |
| RB / VB (emission in restricted | 1 MHz / 3 MHz(Peak)           |  |  |
| band)                           | 1 MHz/1/T MHz(AVG)            |  |  |

#### For Restricted band

| Spectrum Parameter   | Setting                           |  |  |
|----------------------|-----------------------------------|--|--|
| Detector             | Peak/AV                           |  |  |
| Stort/Stop Eroguopov | Lower Band Edge: 2310 to 2410 MHz |  |  |
| Start/Stop Frequency | Upper Band Edge: 2476 to 2500 MHz |  |  |
| RB / VB              | 1 MHz / 3 MHz(Peak)               |  |  |
| KD/VB                | 1 MHz/1/T MHz(AVG)                |  |  |



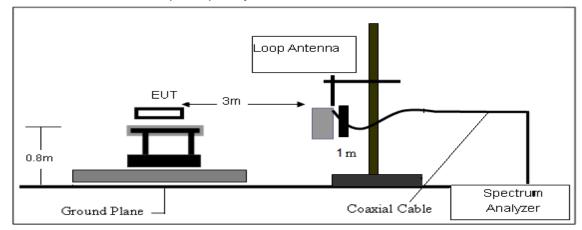
Page 22 of 73 Report No.: STS2204018W01

| Receiver Parameter     | Setting                              |  |  |
|------------------------|--------------------------------------|--|--|
| Attenuation            | Auto                                 |  |  |
| Start ~ Stop Frequency | 9kHz~90kHz / RB 200Hz for PK & AV    |  |  |
| Start ~ Stop Frequency | 90kHz~110kHz / RB 200Hz for QP       |  |  |
| Start ~ Stop Frequency | 110kHz~490kHz / RB 200Hz for PK & AV |  |  |
| Start ~ Stop Frequency | 490kHz~30MHz / RB 9kHz for QP        |  |  |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP     |  |  |

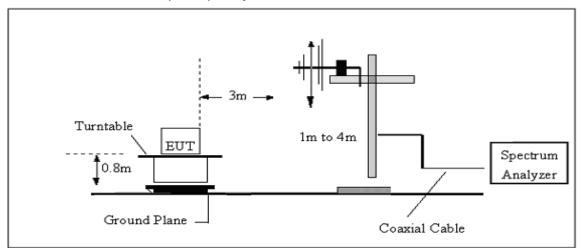
#### 3.2.2 TEST PROCEDURE

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

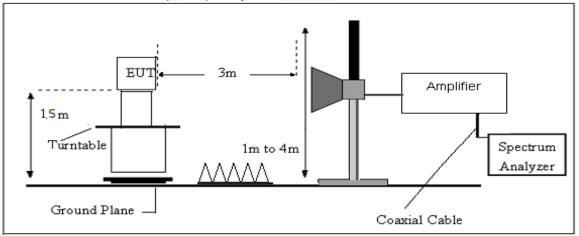
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.


## 3.2.3 DEVIATION FROM TEST STANDARD

No deviation.




#### 3.2.4 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



#### (B) Radiated Emission Test-Up Frequency 30MHz~1GHz



(C) Radiated Emission Test-Up Frequency Above 1GHz



3.2.5 EUT OPERATING CONDITIONS Please refer to section 3.1.4 of this report.



#### 3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain

AF = Antenna Factor

For example

| Frequency | FS       | RA       | AF   | CL   | AG   | Factor |
|-----------|----------|----------|------|------|------|--------|
| (MHz)     | (dBµV/m) | (dBµV/m) | (dB) | (dB) | (dB) | (dB)   |
| 300       | 40       | 58.1     | 12.2 | 1.6  | 31.9 | -18.1  |

Factor=AF+CL-AG





#### 3.2.7 TEST RESULTS

(9KHz-30MHz)

| Temperature:  | 23.1(C) | Relative Humidity: | 60%RH   |
|---------------|---------|--------------------|---------|
| Test Voltage: | DC 3.7V | Test Mode:         | TX Mode |

| Freq. | Reading  | Limit    | Margin | State | Toot Dooult |  |
|-------|----------|----------|--------|-------|-------------|--|
| (MHz) | (dBuV/m) | (dBuV/m) | (dB)   | P/F   | Test Result |  |
|       |          |          |        |       | PASS        |  |
|       |          |          |        |       | PASS        |  |

Note:

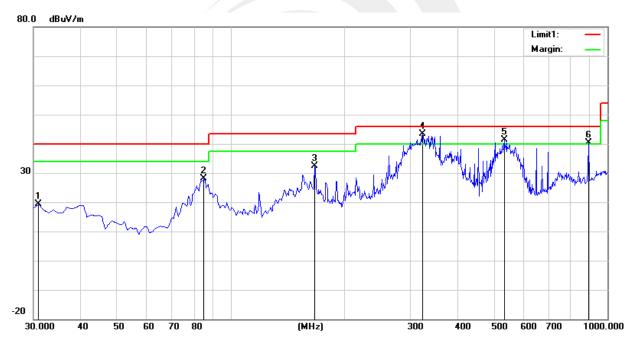
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.






(30MHz-1000MHz)

| Temperature:  | 23.1(C)                                   | Relative Humidity: | 60%RH      |  |  |  |
|---------------|-------------------------------------------|--------------------|------------|--|--|--|
| Test Voltage: | DC 3.7V                                   | Phase:             | Horizontal |  |  |  |
| Test Mode:    | Mode 1/2/3/4/5/6/7/8/9(Mode 7 worst mode) |                    |            |  |  |  |

| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 30.9700   | 32.64   | -13.35       | 19.29    | 40.00    | -20.71 | peak   |
| 2   | 85.2900   | 50.25   | -22.13       | 28.12    | 40.00    | -11.88 | peak   |
| 3   | 167.7400  | 51.91   | -19.58       | 32.33    | 43.50    | -11.17 | peak   |
| 4   | 323.9100  | 57.26   | -13.88       | 43.38    | 46.00    | -2.62  | peak   |
| 5   | 533.4300  | 48.74   | -7.25        | 41.49    | 46.00    | -4.51  | peak   |
| 6   | 893.3000  | 41.06   | -0.61        | 40.45    | 46.00    | -5.55  | peak   |

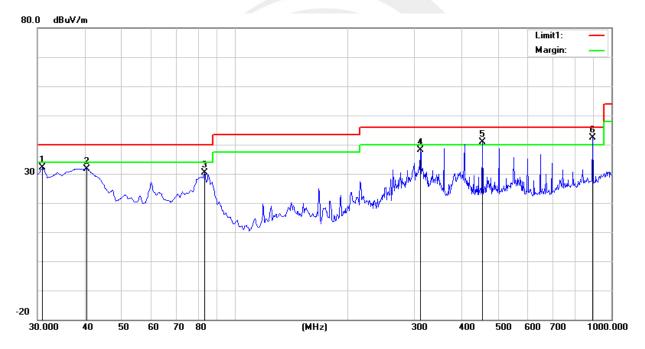
Remark:

- 1. Margin = Result (Result = Reading + Factor )-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain





Page 27 of 73 Report No.: STS2204018W01


| Temperature:  | 23.1(C)                                   | Relative Humidity: | 60%RH    |  |  |
|---------------|-------------------------------------------|--------------------|----------|--|--|
| Test Voltage: | DC 3.7V                                   | Phase:             | Vertical |  |  |
| Test Mode:    | Mode 1/2/3/4/5/6/7/8/9(Mode 7 worst mode) |                    |          |  |  |

| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 30.9700   | 45.55   | -13.35       | 32.20    | 40.00    | -7.80  | peak   |
| 2   | 40.6700   | 50.14   | -18.40       | 31.74    | 40.00    | -8.26  | peak   |
| 3   | 83.3500   | 52.90   | -22.52       | 30.38    | 40.00    | -9.62  | peak   |
| 4   | 311.3000  | 52.53   | -14.40       | 38.13    | 46.00    | -7.87  | peak   |
| 5   | 455.8300  | 50.31   | -9.55        | 40.76    | 46.00    | -5.24  | peak   |
| 6   | 893.3000  | 43.05   | -0.61        | 42.44    | 46.00    | -3.56  | peak   |

Remark:

1. Margin = Result (Result = Reading + Factor )-Limit

2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain



Page 28 of 73 Report No.: STS2204018W01



#### (1GHz~25GHz) Spurious emission Requirements

| Frequency | Meter<br>Reading | Amplifier | Loss  | Antenna<br>Factor | Corrected<br>Factor | Emission<br>Level | Limits   | Margin | Detector | Comment    |
|-----------|------------------|-----------|-------|-------------------|---------------------|-------------------|----------|--------|----------|------------|
| (MHz)     | (dBµV)           | (dB)      | (dB)  | (dB/m)            | (dB)                | (dBµV/m)          | (dBµV/m) | (dB)   | Туре     |            |
|           |                  |           |       | Low Ch            | annel (8DPSK/       | 2402 MHz)         |          |        |          |            |
| 3264.79   | 62.23            | 44.70     | 6.70  | 28.20             | -9.80               | 52.43             | 74.00    | -21.57 | PK       | Vertical   |
| 3264.79   | 51.71            | 44.70     | 6.70  | 28.20             | -9.80               | 41.91             | 54.00    | -12.09 | AV       | Vertical   |
| 3264.84   | 60.82            | 44.70     | 6.70  | 28.20             | -9.80               | 51.02             | 74.00    | -22.98 | PK       | Horizontal |
| 3264.84   | 50.60            | 44.70     | 6.70  | 28.20             | -9.80               | 40.80             | 54.00    | -13.20 | AV       | Horizontal |
| 4804.36   | 58.43            | 44.20     | 9.04  | 31.60             | -3.56               | 54.87             | 74.00    | -19.13 | PK       | Vertical   |
| 4804.36   | 50.48            | 44.20     | 9.04  | 31.60             | -3.56               | 46.92             | 54.00    | -7.08  | AV       | Vertical   |
| 4804.38   | 58.56            | 44.20     | 9.04  | 31.60             | -3.56               | 55.00             | 74.00    | -19.00 | PK       | Horizontal |
| 4804.38   | 49.53            | 44.20     | 9.04  | 31.60             | -3.56               | 45.97             | 54.00    | -8.03  | AV       | Horizontal |
| 5359.86   | 48.56            | 44.20     | 9.86  | 32.00             | -2.34               | 46.21             | 74.00    | -27.79 | PK       | Vertical   |
| 5359.86   | 38.98            | 44.20     | 9.86  | 32.00             | -2.34               | 36.64             | 54.00    | -17.36 | AV       | Vertical   |
| 5359.64   | 47.58            | 44.20     | 9.86  | 32.00             | -2.34               | 45.24             | 74.00    | -28.76 | PK       | Horizontal |
| 5359.64   | 38.78            | 44.20     | 9.86  | 32.00             | -2.34               | 36.43             | 54.00    | -17.57 | AV       | Horizontal |
| 7205.73   | 54.96            | 43.50     | 11.40 | 35.50             | 3.40                | 58.36             | 74.00    | -15.64 | PK       | Vertical   |
| 7205.73   | 43.98            | 43.50     | 11.40 | 35.50             | 3.40                | 47.38             | 54.00    | -6.62  | AV       | Vertical   |
| 7205.68   | 54.47            | 43.50     | 11.40 | 35.50             | 3.40                | 57.87             | 74.00    | -16.13 | PK       | Horizontal |
| 7205.68   | 44.25            | 43.50     | 11.40 | 35.50             | 3.40                | 47.65             | 54.00    | -6.35  | AV       | Horizontal |
|           | •                |           |       | Middle C          | hannel (8DPSł       | (/2441 MHz)       |          |        | •        |            |
| 3264.78   | 61.80            | 44.70     | 6.70  | 28.20             | -9.80               | 52.00             | 74.00    | -22.00 | PK       | Vertical   |
| 3264.78   | 51.35            | 44.70     | 6.70  | 28.20             | -9.80               | 41.55             | 54.00    | -12.45 | AV       | Vertical   |
| 3264.66   | 61.87            | 44.70     | 6.70  | 28.20             | -9.80               | 52.07             | 74.00    | -21.93 | PK       | Horizontal |
| 3264.66   | 50.67            | 44.70     | 6.70  | 28.20             | -9.80               | 40.87             | 54.00    | -13.13 | AV       | Horizontal |
| 4882.50   | 59.20            | 44.20     | 9.04  | 31.60             | -3.56               | 55.64             | 74.00    | -18.36 | PK       | Vertical   |
| 4882.50   | 50.35            | 44.20     | 9.04  | 31.60             | -3.56               | 46.79             | 54.00    | -7.21  | AV       | Vertical   |
| 4882.35   | 58.84            | 44.20     | 9.04  | 31.60             | -3.56               | 55.28             | 74.00    | -18.72 | PK       | Horizontal |
| 4882.35   | 49.99            | 44.20     | 9.04  | 31.60             | -3.56               | 46.43             | 54.00    | -7.57  | AV       | Horizontal |
| 5359.87   | 48.93            | 44.20     | 9.86  | 32.00             | -2.34               | 46.59             | 74.00    | -27.41 | PK       | Vertical   |
| 5359.87   | 39.86            | 44.20     | 9.86  | 32.00             | -2.34               | 37.52             | 54.00    | -16.48 | AV       | Vertical   |
| 5359.72   | 48.37            | 44.20     | 9.86  | 32.00             | -2.34               | 46.03             | 74.00    | -27.97 | PK       | Horizontal |
| 5359.72   | 38.18            | 44.20     | 9.86  | 32.00             | -2.34               | 35.84             | 54.00    | -18.16 | AV       | Horizontal |
| 7323.97   | 54.17            | 43.50     | 11.40 | 35.50             | 3.40                | 57.57             | 74.00    | -16.43 | PK       | Vertical   |
| 7323.97   | 44.23            | 43.50     | 11.40 | 35.50             | 3.40                | 47.63             | 54.00    | -6.37  | AV       | Vertical   |
| 7323.77   | 54.23            | 43.50     | 11.40 | 35.50             | 3.40                | 57.63             | 74.00    | -16.37 | PK       | Horizontal |
| 7323.77   | 43.91            | 43.50     | 11.40 | 35.50             | 3.40                | 47.31             | 54.00    | -6.69  | AV       | Horizontal |



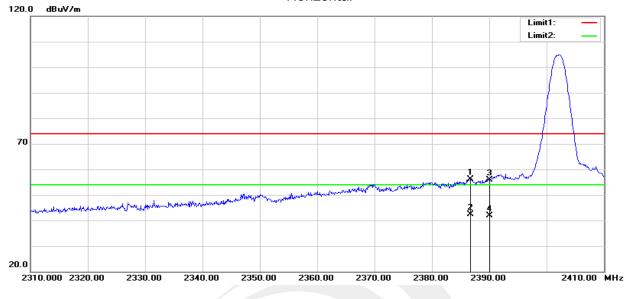
#### Page 29 of 73 Report No.: STS2204018W01

|         |       |       |       | High Chann | el (8DPSK/ | 2480 MHz) |       |        |    |            |
|---------|-------|-------|-------|------------|------------|-----------|-------|--------|----|------------|
| 3264.63 | 61.78 | 44.70 | 6.70  | 28.20      | -9.80      | 51.98     | 74.00 | -22.02 | PK | Vertical   |
| 3264.63 | 50.65 | 44.70 | 6.70  | 28.20      | -9.80      | 40.85     | 54.00 | -13.15 | AV | Vertical   |
| 3264.63 | 61.99 | 44.70 | 6.70  | 28.20      | -9.80      | 52.19     | 74.00 | -21.81 | PK | Horizontal |
| 3264.63 | 50.06 | 44.70 | 6.70  | 28.20      | -9.80      | 40.26     | 54.00 | -13.74 | AV | Horizontal |
| 4960.56 | 59.25 | 44.20 | 9.04  | 31.60      | -3.56      | 55.69     | 74.00 | -18.31 | PK | Vertical   |
| 4960.56 | 50.37 | 44.20 | 9.04  | 31.60      | -3.56      | 46.81     | 54.00 | -7.19  | AV | Vertical   |
| 4960.59 | 58.39 | 44.20 | 9.04  | 31.60      | -3.56      | 54.83     | 74.00 | -19.17 | PK | Horizontal |
| 4960.59 | 49.60 | 44.20 | 9.04  | 31.60      | -3.56      | 46.04     | 54.00 | -7.96  | AV | Horizontal |
| 5359.65 | 48.76 | 44.20 | 9.86  | 32.00      | -2.34      | 46.42     | 74.00 | -27.58 | PK | Vertical   |
| 5359.65 | 39.23 | 44.20 | 9.86  | 32.00      | -2.34      | 36.89     | 54.00 | -17.11 | AV | Vertical   |
| 5359.63 | 47.55 | 44.20 | 9.86  | 32.00      | -2.34      | 45.21     | 74.00 | -28.79 | PK | Horizontal |
| 5359.63 | 38.64 | 44.20 | 9.86  | 32.00      | -2.34      | 36.30     | 54.00 | -17.70 | AV | Horizontal |
| 7439.72 | 54.25 | 43.50 | 11.40 | 35.50      | 3.40       | 57.65     | 74.00 | -16.35 | PK | Vertical   |
| 7439.72 | 44.93 | 43.50 | 11.40 | 35.50      | 3.40       | 48.33     | 54.00 | -5.67  | AV | Vertical   |
| 7439.89 | 53.68 | 43.50 | 11.40 | 35.50      | 3.40       | 57.08     | 74.00 | -16.92 | PK | Horizontal |
| 7439.89 | 44.41 | 43.50 | 11.40 | 35.50      | 3.40       | 47.81     | 54.00 | -6.19  | AV | Horizontal |

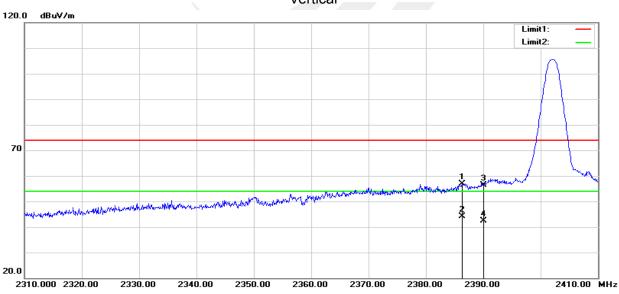
Note:

- 1) Scan with GFSK,  $\pi$ /4-DQPSK, 8DPSK, the worst case is GFSK Mode.
- 2) Factor = Antenna Factor + Cable Loss Pre-amplifier.

Emission Level = Reading + Factor


3) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.






#### **Restricted band Requirements**

**GFSK-Low** Horizontal

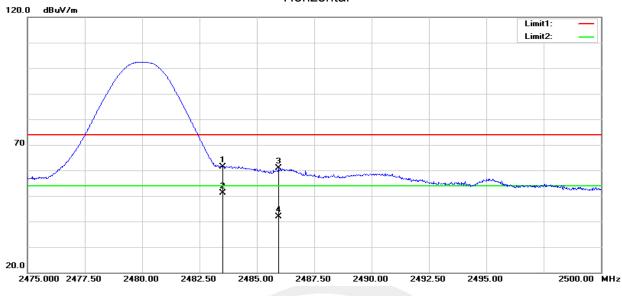


| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2386.700  | 51.80   | 4.29         | 56.09    | 74.00    | -17.91 | peak   |
| 2   | 2386.700  | 38.05   | 4.29         | 42.34    | 54.00    | -11.66 | AVG    |
| 3   | 2390.000  | 51.62   | 4.34         | 55.96    | 74.00    | -18.04 | peak   |
| 4   | 2390.000  | 37.50   | 4.34         | 41.84    | 54.00    | -12.16 | AVG    |



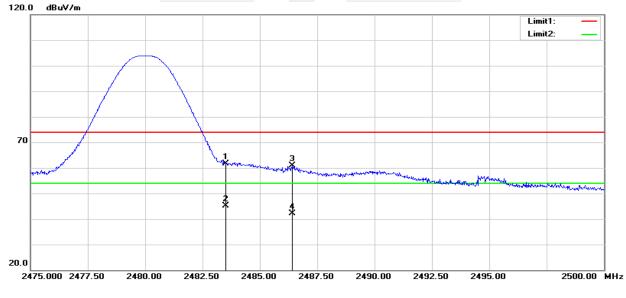
| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2386.300  | 52.59   | 4.28         | 56.87    | 74.00    | -17.13 | peak   |
| 2   | 2386.300  | 39.77   | 4.28         | 44.05    | 54.00    | -9.95  | AVG    |
| 3   | 2390.000  | 52.11   | 4.34         | 56.45    | 74.00    | -17.55 | peak   |
| 4   | 2390.000  | 38.00   | 4.34         | 42.34    | 54.00    | -11.66 | AVG    |

Vertical


Shenzhen STS Test Services Co., Ltd.



Page 31 of 73


Report No.: STS2204018W01

#### **GFSK-High** Horizontal



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2483.500  | 56.69   | 4.60         | 61.29    | 74.00    | -12.71 | peak   |
| 2   | 2483.500  | 46.55   | 4.60         | 51.15    | 54.00    | -2.85  | AVG    |
| 3   | 2485.950  | 56.17   | 4.61         | 60.78    | 74.00    | -13.22 | peak   |
| 4   | 2485.950  | 37.27   | 4.61         | 41.88    | 54.00    | -12.12 | AVG    |

Vertical



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2483.500  | 56.95   | 4.60         | 61.55    | 74.00    | -12.45 | peak   |
| 2   | 2483.500  | 40.43   | 4.60         | 45.03    | 54.00    | -8.97  | AVG    |
| 3   | 2486.425  | 56.15   | 4.61         | 60.76    | 74.00    | -13.24 | peak   |
| 4   | 2486.425  | 37.47   | 4.61         | 42.08    | 54.00    | -11.92 | AVG    |

Note: GFSK,  $\pi$ /4-DQPSK, 8DPSK of the nohopping and hopping mode all have been test, the worst case is GFSK of the nohopping mode, this report only show the worst case.

Shenzhen STS Test Services Co., Ltd.



## 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

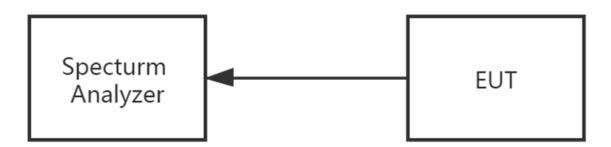
#### 4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

#### 4.2 TEST PROCEDURE

| Spectrum Parameter                    | Setting                         |
|---------------------------------------|---------------------------------|
| Detector                              | Peak                            |
| Start/Stop Frequency                  | 30 MHz to 10th carrier harmonic |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                 |
| Trace-Mode:                           | Max hold                        |

#### For Band edge


| Spectrum Parameter                    | Setting                          |  |  |
|---------------------------------------|----------------------------------|--|--|
| Detector                              | Peak                             |  |  |
| Start/Stop Frequency                  | Lower Band Edge: 2300 – 2407 MHz |  |  |
| Start/Stop Frequency                  | Upper Band Edge: 2475 – 2500 MHz |  |  |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                  |  |  |
| Trace-Mode:                           | Max hold                         |  |  |

#### For Hopping Band edge

| Spectrum Parameter                    | Setting                          |  |  |
|---------------------------------------|----------------------------------|--|--|
| Detector                              | Peak                             |  |  |
| Start/Stan Eraguanay                  | Lower Band Edge: 2300– 2403 MHz  |  |  |
| Start/Stop Frequency                  | Upper Band Edge: 2479 – 2500 MHz |  |  |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                  |  |  |
| Trace-Mode:                           | Max hold                         |  |  |



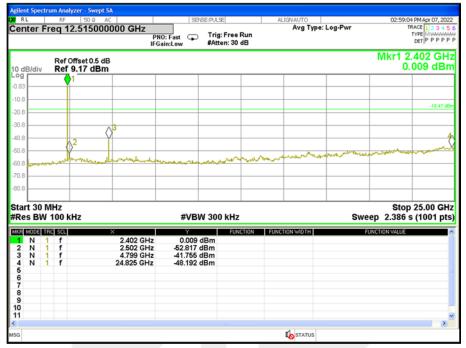




The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Tune the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, the span is set to be greater than RBW.

4.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.






#### 4.5 TEST RESULTS

| Temperature: | <b>25</b> ℃             | Relative Humidity: | 50%     |
|--------------|-------------------------|--------------------|---------|
| Test Mode:   | GFSK(1Mbps)-00/39/78 CH | Test Voltage:      | DC 3.7V |

#### 00 CH

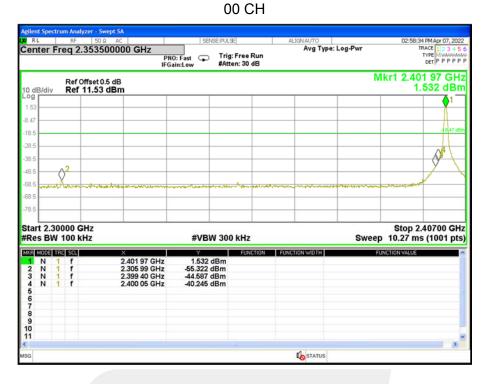


#### 39 CH

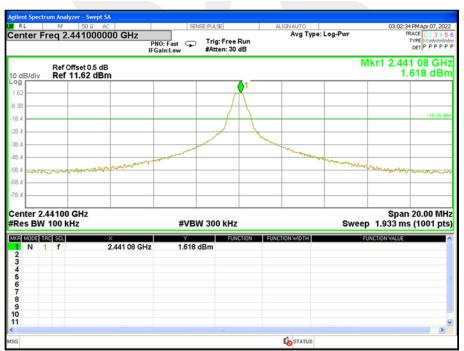
| RL          |        | RF           | yzer - Swept S             |                                                   | SEN                                            | SE:PULSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALIGN AUTO                              |               | 03:03:04            | PM Apr 07, 202   |
|-------------|--------|--------------|----------------------------|---------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|---------------------|------------------|
| ente        | er Fr  | eq 1         | 2.515000                   | PI                                                | NO: Fast 😱<br>Gain:Low                         | Trig: Free Run<br>#Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg                                     | Type: Log-Pwr |                     | ACE 1 2 3 4 1    |
| ) dB/d      | div    |              | offset 0.5 dB<br>10.89 dBn |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               | Mkr1 2.<br>0.3      | 452 GH<br>890 dB |
|             |        |              | 1                          |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |                     |                  |
| 11 -        |        |              |                            |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |                     |                  |
| u –         |        | _            |                            |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |                     | -18.38           |
| 1           |        |              |                            | 3                                                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |                     |                  |
| 11 <b>-</b> |        |              | 2                          |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |                     |                  |
| u –<br>u –  |        |              |                            | a here a                                          |                                                | mar and more thanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and | Man and my    | al market           | verno            |
| -           | e fine | مبيرين       | - And and a start of the   |                                                   | and a specific the second                      | - And a state of the state of t |                                         |               |                     |                  |
| a           |        |              |                            |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |                     |                  |
|             | 30 M   | IHz<br>100 F | Ш7                         |                                                   | #\/B\                                          | V 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | Sw            | Stop<br>eep 2.386 s | 25.00 G          |
|             | DETR   |              |                            | x                                                 | ** <b>*</b>                                    | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N FUNCTION WIDT                         |               | FUNCTION VALUE      | (1001 p          |
|             |        | f<br>f<br>f  |                            | 2.452 GHz<br>2.527 GHz<br>4.874 GHz<br>24.750 GHz | 0.890 (<br>-51.634 (<br>-43.874 (<br>-47.451 ( | dBm<br>dBm<br>dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |               |                     |                  |
|             |        |              |                            |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |                     |                  |
|             |        |              |                            |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |                     |                  |
|             |        |              |                            |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |                     | >                |
|             |        |              |                            |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               |                     |                  |

П




#### 78 CH

| 03:05:29 PM Apr 07, 20                 |                  | ALIGN AI   | JLSE                        | SENSE:PU                   | IC I                   | 50 Q AC                         | RF            |       |         | RL |
|----------------------------------------|------------------|------------|-----------------------------|----------------------------|------------------------|---------------------------------|---------------|-------|---------|----|
| TRACE 1 2 3 4                          | /g Type: Log-Pwr | A          |                             |                            | 0000 GHz               | .515000                         | eq 12.        | Fre   | ter     | en |
| DET P P P P                            |                  |            | ig: Free Run<br>tten: 30 dB | ):Fast 😱 Tri<br>in:Low #A  |                        |                                 |               |       |         |    |
| Mkr1 2.477 GF                          |                  |            |                             |                            | _                      |                                 |               |       |         |    |
| -0.907 dB                              |                  |            |                             |                            |                        | ffset 0.5 dB<br><b>).09 dBm</b> |               |       | 3/div   | dE |
|                                        |                  |            |                             |                            |                        | 1                               | <b>(</b> 1    |       |         | g  |
|                                        |                  |            |                             |                            |                        |                                 | Ť             |       |         | 91 |
| -18.85 d                               |                  |            |                             |                            |                        |                                 | -             |       | -       | .9 |
|                                        |                  |            |                             |                            |                        |                                 |               |       | _       | .9 |
|                                        |                  |            |                             |                            | A3                     | /                               | -             |       |         | .9 |
|                                        |                  |            |                             |                            | Y                      | (                               | -             |       |         | .9 |
| mannente                               | 1 marter marter  |            |                             |                            |                        | <mark>∕2</mark>                 | $\rightarrow$ |       |         | .9 |
|                                        | Messinghetin     | warme -    | manner                      | manyment                   | deman my my            | an produced                     | w will        | ماليد | we have | .9 |
|                                        |                  |            |                             |                            |                        |                                 |               |       | -       | .9 |
|                                        |                  |            |                             |                            |                        |                                 |               |       |         | .9 |
|                                        |                  |            |                             |                            |                        |                                 |               |       |         |    |
| Stop 25.00 GH<br>veep 2.386 s (1001 pt | Swa              |            | 00 447                      | #VBW 30                    |                        | 47                              | HZ<br>00 kH   |       | t 30    |    |
|                                        |                  |            |                             | #4844.30                   |                        |                                 |               | _     | _       |    |
| FUNCTION VALUE                         | NDTH FL          | FUNCTION W | FUNCTION                    | -0.907 dBm                 | × 2.477 GHz            |                                 | SCL           | 1     | N       |    |
|                                        |                  |            | i l                         | -56.051 dBm<br>-41.243 dBm | 2.677 GHz<br>4.949 GHz |                                 | f             | 1     | NN      | 2  |
|                                        |                  |            |                             | -47.556 dBm                | 24.076 GHz             |                                 | f             | 1     | N       | ì  |
|                                        |                  |            |                             |                            |                        |                                 |               |       |         |    |
|                                        |                  |            |                             |                            |                        |                                 |               |       |         | t  |
|                                        |                  |            |                             |                            |                        |                                 |               |       |         |    |
|                                        |                  |            |                             |                            |                        |                                 |               |       |         | )  |
|                                        |                  |            |                             |                            |                        |                                 |               |       |         |    |
| >                                      |                  |            |                             |                            |                        |                                 |               |       |         |    |


Shenzhen STS Test Services Co., Ltd.



## For Band edge(it's also the reference level for conducted spurious emission)



39 CH



Shenzhen STS Test Services Co., Ltd.



## 78 CH

| RL                             | rum Ana<br>RE | lyzer - Swept SA<br>50 Ω AC |                                                          | 65                 | NSE:PULSE |             | ALIGN AUTO   |                            | 03:0              | 1:59 PM Apr 07, 20                          |
|--------------------------------|---------------|-----------------------------|----------------------------------------------------------|--------------------|-----------|-------------|--------------|----------------------------|-------------------|---------------------------------------------|
|                                |               | .48750000                   | 00 GHz                                                   | PNO: Fast Gain:Low |           | Run         | Avg Type:    | _                          |                   | TRACE 1 2 3 4 9<br>TYPE MWWW<br>DET P P P P |
| dB/div                         |               | Offset 0.5 dB<br>11.15 dBm  | <u> </u>                                                 |                    |           |             |              | M                          | kr1 2.48          | 0 075 GH<br>1.149 dBi                       |
| 15                             |               |                             | 1                                                        |                    |           |             |              |                            |                   |                                             |
| .9                             |               | /                           | $\backslash$                                             |                    |           |             |              |                            |                   | -18.85 d                                    |
| .9                             |               |                             |                                                          |                    |           |             |              |                            |                   |                                             |
| .9                             |               |                             |                                                          | $Q^2 Q^3$          |           |             |              |                            | 4                 |                                             |
| .9                             |               |                             |                                                          |                    | man       | wportunitor |              | yh <del>y horyanto</del> o | Y                 |                                             |
| 1.9                            |               |                             |                                                          |                    |           |             |              |                            |                   |                                             |
| art 2.47<br>Res BW             |               |                             |                                                          | #VB                | W 300 kH  | z           |              | Swee                       | Stop<br>p 2.400 i | 2.50000 GH<br>ns (1001 pt                   |
| R MODE T                       |               |                             | ×                                                        | Υ Y                |           | NCTION FUR  | NCTION WIDTH |                            | FUNCTION VALU     | Ε                                           |
| N 1<br>2 N 1<br>3 N 1<br>4 N 1 | f<br>f<br>f   | 2.                          | 480 075 GHz<br>483 500 GHz<br>484 075 GHz<br>495 075 GHz | -48.254<br>-49.709 | dBm       |             |              |                            |                   |                                             |
| N 1                            |               |                             |                                                          |                    |           |             |              |                            |                   |                                             |
| 3                              |               |                             |                                                          |                    |           |             |              |                            |                   |                                             |
| 8<br>9<br>0                    |               |                             |                                                          |                    |           |             |              |                            |                   | >                                           |



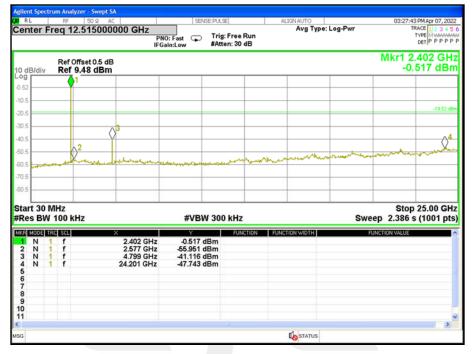
Shenzhen STS Test Services Co., Ltd.



## For Hopping Band edge

GFSK

|                  | rum Analyze                 |                                                      |           |                                              |              |               |                  |                                                             |
|------------------|-----------------------------|------------------------------------------------------|-----------|----------------------------------------------|--------------|---------------|------------------|-------------------------------------------------------------|
| enter F          | ⊮F<br>Freq 2.35             |                                                      | PNO: Fast | NSE:PULSE<br>Trig: Free Run<br>#Atten: 30 dB | ALIGN AUTO   | Type: Log-Pwr | т                | SPM Apr 07, 20<br>RACE 1 2 3 4<br>TYPE MWWWW<br>DET P P P P |
| dB/div           |                             | set 0.5 dB<br>.43 dBm                                |           |                                              |              | N             | 1kr1 2.403<br>1. | 000 GH<br>430 dB                                            |
| g<br>43          |                             |                                                      |           |                                              |              |               |                  |                                                             |
| .6               |                             |                                                      |           |                                              |              |               |                  | -18.57 d                                                    |
| .6               |                             |                                                      |           |                                              |              |               |                  |                                                             |
| .6               |                             |                                                      |           |                                              |              |               |                  | X                                                           |
|                  | Arran                       | mmmmm                                                | wannan    | mannen                                       | ananana      | unananan      | represented      | multim                                                      |
| б<br>б           |                             |                                                      |           |                                              |              |               |                  | -                                                           |
|                  | 0000 GH                     | -                                                    |           |                                              |              |               | Oton 2           | 40300 GI                                                    |
|                  | 100 GH                      |                                                      | #VB       | W 300 kHz                                    |              | Swee          | ep 9.867 ms      |                                                             |
| N<br>N<br>N<br>N | RC SCL<br>1 f<br>1 f<br>1 f | ×<br>2.403 000 GHz<br>2.390 022 GHz<br>2.400 013 GHz | -58.411   | dBm                                          | FUNCTION WID | TH            | FUNCTION VALUE   |                                                             |
|                  |                             |                                                      |           |                                              |              |               |                  |                                                             |
|                  |                             |                                                      |           |                                              |              |               |                  |                                                             |
|                  |                             |                                                      |           |                                              |              |               |                  |                                                             |
|                  |                             |                                                      |           |                                              |              |               |                  | >                                                           |
|                  |                             |                                                      |           |                                              | To STA       | TUS           |                  |                                                             |


|                    | g: Free Run<br>ten: 30 dB | Avg Type: Lo                                                          | g-Pwr                                                                     | TRACE 1 2 3 4 5<br>TYPE MWWWW                                                                                  |
|--------------------|---------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                    |                           |                                                                       |                                                                           | DET PPPP                                                                                                       |
|                    |                           |                                                                       | Mkr1 2.                                                                   | 479 063 GH<br>1.230 dBi                                                                                        |
|                    |                           |                                                                       |                                                                           |                                                                                                                |
|                    |                           |                                                                       |                                                                           |                                                                                                                |
|                    |                           |                                                                       |                                                                           | -18.77 d                                                                                                       |
|                    |                           |                                                                       |                                                                           |                                                                                                                |
|                    |                           |                                                                       |                                                                           | ^3                                                                                                             |
| ha Asia            |                           |                                                                       |                                                                           | 2 0                                                                                                            |
| M Dry War war war  | man mar                   | anound                                                                | handhand                                                                  | mar har Th                                                                                                     |
|                    |                           |                                                                       |                                                                           |                                                                                                                |
|                    |                           |                                                                       |                                                                           |                                                                                                                |
| #VBW 30            | 0 kHz                     |                                                                       |                                                                           | op 2.50000 GH<br>7 ms (1001 pt                                                                                 |
| Y                  | FUNCTION                  | FUNCTION WIDTH                                                        | FUNCTION V                                                                | ALUE                                                                                                           |
| 5 GHz -49.375 dBm  |                           |                                                                       |                                                                           |                                                                                                                |
| 15 GHZ -51.430 dBm |                           |                                                                       |                                                                           |                                                                                                                |
|                    |                           |                                                                       |                                                                           |                                                                                                                |
|                    |                           |                                                                       |                                                                           |                                                                                                                |
|                    |                           |                                                                       |                                                                           |                                                                                                                |
|                    |                           |                                                                       |                                                                           |                                                                                                                |
|                    |                           |                                                                       |                                                                           | >                                                                                                              |
|                    | 3 GHz 1.230 dBm           | #VBW 300 kHz<br>#UBW 300 kHz<br>S3 GHz 1.230 dBm<br>5 GHz 4.9.375 dBm | #VBW 300 kHz<br>#VBW 300 kHz<br>53 GHz 1.230 dBm 5<br>5 GHz 4.9.375 dBm 5 | #VBW 300 kHz     Stress       #VBW 300 kHz     Sweep 2.06       3 GHz     1.230 dBm       5 GHz     49.375 dBm |



## Page 39 of 73 Report No.: STS2204018W01

| Temperature: | <b>25</b> ℃                      | Relative Humidity: | 50%     |
|--------------|----------------------------------|--------------------|---------|
|              | π/4-DQPSK(2Mbps)–<br>00/39/78 CH | Test Voltage:      | DC 3.7V |

# 00 CH



## 39 CH

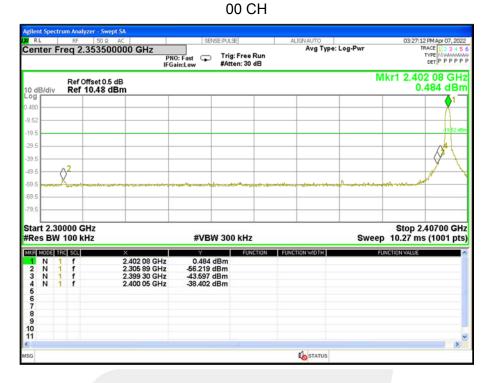
| RL         |                      | RF          | 50 Q /                 | AC                                                                                                              | S                  | ENSE:PULSE                   | A         | LIGN AUTO  |           | 03:30:           | 51 PM Apr 07, 202        |
|------------|----------------------|-------------|------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|-----------|------------|-----------|------------------|--------------------------|
| enter      | Fre                  | eq 12.      | 515000                 |                                                                                                                 | PNO: Fast Gain:Low | Trig: Free F<br>#Atten: 30 d | lun<br>IB | Avg Type   | : Log-Pwr |                  | TYPE MWWW<br>DET P P P P |
| dB/di      |                      |             | fset 0.5 di<br>.09 dBn |                                                                                                                 |                    |                              |           |            |           |                  | 2.452 GH<br>.912 dBi     |
|            |                      | <b>(</b> 1  |                        |                                                                                                                 |                    |                              |           |            |           |                  |                          |
| 9          |                      |             |                        |                                                                                                                 |                    |                              |           |            |           |                  |                          |
| 9          |                      |             |                        |                                                                                                                 |                    |                              |           |            |           |                  | -19.51 d                 |
|            |                      |             |                        |                                                                                                                 |                    |                              |           |            |           |                  |                          |
| _          |                      | -           |                        |                                                                                                                 |                    |                              |           |            |           |                  |                          |
|            |                      | -0          | 2 Y                    |                                                                                                                 |                    | -                            |           | mm         |           | manuman          | man                      |
| , <b> </b> | <u> ۲۰</u> ۰۰ در طور | North       | Man mar                | and a second and a s | mangaber           | menersonon                   | www       |            |           |                  |                          |
| -          |                      |             |                        | -                                                                                                               |                    |                              |           |            | _         |                  |                          |
| -          |                      |             |                        |                                                                                                                 |                    |                              |           |            |           | -                |                          |
| rt 3       |                      | lz<br>00 kH | z                      |                                                                                                                 | #VE                | W 300 kHz                    |           |            | Sw        | Sto<br>eep 2.386 | o 25.00 GI<br>s (1001 pi |
| MODE       | EL TRC               | SCL         |                        | ×                                                                                                               | Y                  | FUNC                         | TION FUNC | TION WIDTH |           | FUNCTION VALUE   | · ·                      |
| NN         | 1                    | f           |                        | 2.452 GHz<br>2.677 GHz                                                                                          |                    | dBm                          | 1         |            |           |                  |                          |
| NN         | 1                    | f           |                        | 4.075 GHz<br>24.700 GHz                                                                                         |                    | dBm                          |           |            |           |                  |                          |
| IN         | 1                    | 1           |                        | 24.700 GHZ                                                                                                      | -47.904            | abm                          |           |            |           |                  |                          |
|            |                      |             |                        |                                                                                                                 |                    |                              |           |            |           |                  |                          |
|            |                      |             |                        |                                                                                                                 |                    |                              |           |            |           |                  |                          |
|            |                      |             |                        |                                                                                                                 |                    |                              |           |            |           |                  |                          |
|            |                      |             |                        |                                                                                                                 |                    |                              |           |            |           |                  |                          |
|            |                      |             |                        |                                                                                                                 |                    |                              |           | STATUS     |           |                  | >                        |

Shenzhen STS Test Services Co., Ltd.

Π



## 78 CH


| ۲L.        |       | RF          | 50 Q AC                   |                                                   | SEI                                     | VSE:PULSE      | ALI   | IGN AUTO   |           | 03:32:                                                                                                           | 53 PM Apr 07, 20       |
|------------|-------|-------------|---------------------------|---------------------------------------------------|-----------------------------------------|----------------|-------|------------|-----------|------------------------------------------------------------------------------------------------------------------|------------------------|
| nter       | Fre   | q 12.5      | 5150000                   |                                                   | NO: Fast                                | Trig: Free Run |       | Avg Type   | : Log-Pwr |                                                                                                                  | TYPE MWWW              |
|            |       |             |                           |                                                   | Sain:Low                                | #Atten: 30 dB  |       |            |           |                                                                                                                  | DET P P P P            |
| dB/div     |       |             | et 0.5 dB<br>4 <b>dBm</b> |                                                   |                                         |                |       |            |           |                                                                                                                  | 2.477 GI<br>2.563 dB   |
|            |       | <b>(</b> 1  |                           |                                                   |                                         |                |       |            |           |                                                                                                                  |                        |
| 6 —        |       | _           |                           |                                                   |                                         |                |       |            |           |                                                                                                                  |                        |
|            |       | +           |                           |                                                   |                                         |                |       |            |           |                                                                                                                  | -19.97 (               |
| 5 <b> </b> |       | -           |                           | 3                                                 |                                         |                |       |            |           |                                                                                                                  |                        |
|            |       | 2           | Y                         |                                                   |                                         |                |       |            |           |                                                                                                                  |                        |
|            |       | - Sear      |                           | manderly                                          | www.entres                              | mulanter       | mo    | ala marken | mar       | and the second | www.wer                |
|            |       |             |                           |                                                   |                                         |                |       |            |           |                                                                                                                  |                        |
|            |       |             |                           |                                                   |                                         |                |       |            |           |                                                                                                                  |                        |
|            |       |             |                           |                                                   |                                         |                |       |            |           |                                                                                                                  |                        |
| es BV      |       | z<br>)0 kHz |                           |                                                   | #VB                                     | W 300 kHz      |       |            | Sw        | Sto<br>eep 2.386                                                                                                 | p 25.00 G<br>s (1001 p |
| MODE       | TRC   |             | ×                         |                                                   | Y                                       | FUNCTION       | FUNCT | ION WIDTH  |           | FUNCTION VALUE                                                                                                   |                        |
| NNNN       | 1 1 1 | f<br>f<br>f |                           | 2.477 GHz<br>2.502 GHz<br>4.949 GHz<br>24.276 GHz | -2.563<br>-56.042<br>-42.943<br>-47.909 | dBm<br>dBm     |       |            |           |                                                                                                                  |                        |
|            | -     |             |                           |                                                   |                                         |                |       |            |           |                                                                                                                  |                        |
|            |       |             |                           |                                                   |                                         |                |       |            |           |                                                                                                                  |                        |
|            |       |             |                           |                                                   |                                         |                |       |            |           |                                                                                                                  |                        |
|            |       |             |                           |                                                   |                                         |                |       |            |           |                                                                                                                  |                        |
|            |       |             |                           |                                                   |                                         |                |       |            |           |                                                                                                                  |                        |



Shenzhen STS Test Services Co., Ltd.



# For Band edge(it's also the reference level for conducted spurious emission)



39 CH



Shenzhen STS Test Services Co., Ltd.



## 78 CH

| nter Freq 2.48750000            |                                    | SENSE:PULSE                              | ALIGN AUTO<br>Avg Type: Log-P | 03:32:22 PM Apr 07, 20                                         |
|---------------------------------|------------------------------------|------------------------------------------|-------------------------------|----------------------------------------------------------------|
| iter Freq 2.48750000            | PNO: Fast<br>IFGain:Low            | Trig: Free Run<br>#Atten: 30 dB          | nig 196. 2091                 | TYPE MWWW<br>DET P P P                                         |
| Ref Offset 0.5 dB               |                                    |                                          |                               | Mkr1 2.480 050 G<br>0.033 dE                                   |
|                                 | 1                                  |                                          |                               |                                                                |
|                                 |                                    |                                          |                               | .19.97                                                         |
|                                 |                                    |                                          |                               | -19.97                                                         |
|                                 | Window O2                          | 2                                        |                               |                                                                |
|                                 |                                    | )°                                       |                               |                                                                |
|                                 |                                    | mannen                                   |                               | an mar |
| 0                               |                                    |                                          |                               |                                                                |
|                                 |                                    |                                          |                               |                                                                |
| rt 2.47500 GHz<br>es BW 100 kHz | #                                  | VBW 300 kHz                              |                               | Stop 2.50000 G<br>Sweep 2.400 ms (1001 p                       |
| MODE TRC SCL                    |                                    | Y FUNCTION                               | FUNCTION WIDTH                | FUNCTION VALUE                                                 |
| N 1 f 24<br>N 1 f 24            | 483 500 GHz -49<br>484 125 GHz -50 | 033 dBm<br>853 dBm<br>064 dBm<br>398 dBm |                               |                                                                |
|                                 |                                    |                                          |                               |                                                                |
|                                 |                                    |                                          |                               |                                                                |
|                                 |                                    |                                          |                               |                                                                |
|                                 |                                    |                                          |                               |                                                                |



Shenzhen STS Test Services Co., Ltd.





## For Hopping Band edge

## π/4-DQPSK

|                                                 | rum Analyzer - Si                 |                                                 |                                |                                           |                         |                 |                   |                                                                |
|-------------------------------------------------|-----------------------------------|-------------------------------------------------|--------------------------------|-------------------------------------------|-------------------------|-----------------|-------------------|----------------------------------------------------------------|
| enter F                                         |                                   |                                                 | NO: Fast                       | :PULSE<br>Trig: Free Run<br>#Atten: 30 dB | ALIGN AUTO<br>Avg Type: | Log-Pwr         | TR.<br>T          | PM Apr 07, 202<br>ACE 1 2 3 4 5<br>YPE MWWWWW<br>DET P P P P P |
| 0 dB/div                                        | Ref Offset 0<br>Ref 9.52 (        |                                                 |                                |                                           |                         | MI              | kr1 2.403<br>-0.4 | 000 GH:<br>183 dBn                                             |
| .48                                             |                                   |                                                 |                                |                                           |                         |                 |                   | 1                                                              |
| 0.5                                             |                                   |                                                 |                                |                                           |                         |                 |                   | -20.48 dB                                                      |
| 0.5                                             |                                   |                                                 |                                |                                           |                         |                 |                   | -20,46 dp                                                      |
| 0.5                                             |                                   |                                                 |                                |                                           |                         |                 |                   |                                                                |
| 0.5                                             |                                   |                                                 |                                |                                           |                         |                 | 2                 | - di                                                           |
| 1.5                                             | wednessewher                      | en ser and the service of the                   | المرواد المحمد المراجع المراجع | manulan                                   | mansenser               | nat contraction | manthe            | n. Mil                                                         |
| 0.5                                             |                                   |                                                 |                                |                                           |                         |                 |                   |                                                                |
|                                                 |                                   |                                                 |                                |                                           |                         |                 | Stop 2.4          | 0300 GH                                                        |
| tart 2.3                                        | 0000 GHz                          |                                                 |                                |                                           |                         |                 |                   |                                                                |
|                                                 | 0000 GHz<br>/ 100 kHz             |                                                 | #VBW                           | 300 kHz                                   |                         | Sweep           | 9.867 ms          | (1001 pts                                                      |
| Res BW                                          | 100 kHz                           | X                                               | Y                              | FUNCTION                                  | FUNCTION WIDTH          |                 | 0 9.867 ms        | (1001 pts                                                      |
| Res BW<br>7000000000000000000000000000000000000 | 100 kHz                           | 2:403 000 GHz<br>2:390 022 GHz<br>2:400 013 GHz | a                              | FUNCTION                                  | FUNCTION WIDTH          |                 | 9.867 ms          | (1001 pt:                                                      |
| Res BW                                          | / 100 kHz<br>RC SCL<br>1 f<br>1 f | 2.403 000 GHz<br>2.390 022 GHz                  | -0.483 dE<br>-58.748 dE        | FUNCTION                                  | FUNCTION WADTH          |                 | 9.867 ms          | (1001 pts                                                      |

|                                          | F 50 Q AC                       |                            | SENSE:PI                   | JLSE                          | ALIGN AUTO     | e: Log-Pwr | 03:56:16 PM Apr 07,<br>TRACE 1 2 3 |
|------------------------------------------|---------------------------------|----------------------------|----------------------------|-------------------------------|----------------|------------|------------------------------------|
| iter Freq                                | 2.48950000                      | PN                         | 0: Fast 😱 Ti<br>ain:Low #4 | rig: Free Run<br>Atten: 30 dB | Avg Typ        | e: Log-rwr | TYPE MWW<br>DET P P                |
|                                          | ef Offset 0.5 dB<br>ef 9.92 dBm |                            |                            |                               |                | M          | kr1 2.480 050 G<br>-0.080 dl       |
|                                          |                                 |                            |                            |                               |                |            |                                    |
| $\sim$                                   |                                 |                            |                            |                               |                |            |                                    |
|                                          |                                 |                            |                            |                               |                |            | -20.0                              |
|                                          |                                 |                            |                            |                               |                |            |                                    |
| L                                        | MARA.                           |                            |                            |                               |                |            |                                    |
| L                                        | - VI WANNA                      | 10 <sup>2</sup>            |                            |                               |                |            |                                    |
|                                          |                                 | Waymar and                 | monnoh                     | m                             | mmm            | m          | with my have                       |
| -                                        |                                 |                            |                            |                               |                |            |                                    |
|                                          | -                               |                            |                            |                               |                |            |                                    |
|                                          |                                 |                            |                            |                               |                |            | Stop 2.50000 0                     |
| rt 2.47900                               | GHz                             |                            |                            |                               |                |            | p 2.067 ms (1001                   |
|                                          |                                 |                            | #VBW 3                     | 00 kHz                        |                | Swee       | p 2.007 ms (1001                   |
| S BW 100                                 | ) kHz                           | ×                          | Y                          | FUNCTION                      | FUNCTION WIDTH |            | UNITION WALUE                      |
| SBW 100<br>MODE TRO SO<br>N 1 f<br>N 1 f | 2.4<br>2.4<br>2.4<br>2.4        | 480 050 GHz<br>483 515 GHz | -0.080 dBm<br>-57.716 dBm  | FUNCTION                      | FUNCTION WIDTH |            |                                    |
| N 1 F                                    | 2.4<br>2.4<br>2.4<br>2.4        | 480 050 GHz                | Y<br>-0.080 dBm            | FUNCTION                      | FUNCTION WIDTH |            |                                    |
| SBW 100<br>MODE TRO SO<br>N 1 f          | 2.4<br>2.4<br>2.4<br>2.4        | 480 050 GHz<br>483 515 GHz | -0.080 dBm<br>-57.716 dBm  | FUNCTION                      | FUNCTION WIDTH |            |                                    |
| SBW 100<br>MODE TRO SO<br>N 1 f          | 2.4<br>2.4<br>2.4<br>2.4        | 480 050 GHz<br>483 515 GHz | -0.080 dBm<br>-57.716 dBm  | FUNCTION                      | FUNCTION WIDTH |            |                                    |
| SBW 100<br>MODE TRO SO<br>N 1 f          | 2.4<br>2.4<br>2.4<br>2.4        | 480 050 GHz<br>483 515 GHz | -0.080 dBm<br>-57.716 dBm  | FUNCTION                      | FUNCTION WIDTH |            |                                    |
| N 1 f                                    | 2.4<br>2.4<br>2.4<br>2.4        | 480 050 GHz<br>483 515 GHz | -0.080 dBm<br>-57.716 dBm  | FUNCTION                      | FUNCTION WIDTH |            |                                    |



# Page 44 of 73 Report No.: STS2204018W01

| Temperature: | <b>25</b> ℃               | Relative Humidity: | 50%     |
|--------------|---------------------------|--------------------|---------|
| Test Mode:   | 8DPSK(3Mbps) -00/39/78 CH | Test Voltage:      | DC 3.7V |

| RL            |             |             | RF          | 50               | Ω A0                 |                               |           | SEN                          | ISE:PULSE                      |               | AL             | IGN AUTO        |             |          | 03:59:00 P         | M Apr 07, 2022                       |
|---------------|-------------|-------------|-------------|------------------|----------------------|-------------------------------|-----------|------------------------------|--------------------------------|---------------|----------------|-----------------|-------------|----------|--------------------|--------------------------------------|
| ent           | er          | Fre         | eq 1        | 2.515            | 5000                 | 000 GHz                       |           | ]<br>ast 🖵<br>Low            | Trig: Fre<br>#Atten: 3         | e Run<br>0 dB |                | Avg Ty          | pe: Log-Pwr |          | TV                 | CE 12345<br>PE MWWWW<br>ET P P P P P |
| ) dE          | Idis        |             |             | Offset (<br>8.67 |                      |                               |           |                              |                                |               |                |                 |             | MI       |                    | 102 GHz<br>77 dBm                    |
| <sup>pg</sup> | // 6// 1    |             |             | 1                | <b>aB</b> <i>iii</i> |                               |           |                              |                                |               |                |                 |             |          |                    |                                      |
| .33           |             |             | Ť           |                  |                      |                               |           |                              |                                |               |                |                 |             |          |                    |                                      |
| 1.3           |             |             |             |                  |                      |                               |           |                              |                                | -             |                |                 |             |          |                    | -19.65 dBr                           |
| 1.3           |             |             |             |                  |                      |                               |           |                              |                                |               |                |                 |             |          |                    |                                      |
| 1.3           |             |             |             |                  | ^3                   |                               |           |                              |                                |               |                |                 |             |          |                    | . 4                                  |
| 1.3           |             |             |             | 2                | Υ                    |                               |           |                              |                                | -             |                |                 |             |          |                    | Ô.                                   |
| 1.3           |             |             |             | $\geq$           |                      | have                          |           |                              | مىرىنى<br>مەرىپى مەلمەرمەدىمەم | hund          | and the second | mount           | man         | marker   | - and the second   | a service                            |
| 1.3           | لرجير       | ليشعرن      | human       |                  | والعسورامة           |                               | - Marcana | er anna                      | and a start of the             | -             |                |                 | _           |          |                    |                                      |
| 1.3           | _           |             |             |                  |                      |                               | -         |                              |                                | -             |                |                 | _           |          |                    |                                      |
| 1.3           |             |             |             |                  |                      |                               |           |                              |                                |               |                |                 |             |          |                    |                                      |
|               |             | ) MI<br>W 1 | Hz<br>00 k  | Hz               |                      |                               |           | #VB\                         | V 300 kH                       | z             |                |                 | s           | weep 2   | Stop 2<br>.386 s ( | 5.00 GHz<br>1001 pts                 |
|               |             | TRC         | SCL         |                  |                      | X                             |           | Y                            |                                | INCTION       | FUNCT          | TION WIDTH      |             | FUNCTION | VALUE              | 1                                    |
| 2<br>3        | N<br>N<br>N | 1           | f<br>f<br>f |                  |                      | 2.402 G<br>2.552 G<br>4.000 G | Hz<br>Hz  | -0.177<br>-56.436<br>-43.446 | dBm<br>dBm                     |               |                |                 |             |          |                    |                                      |
| 5             | N           | 1           | f           |                  |                      | 24.301 G                      | Hz        | -48.020                      | dBm                            |               |                |                 |             |          |                    |                                      |
| 3             |             |             |             |                  |                      |                               |           |                              |                                |               |                |                 |             |          |                    |                                      |
|               |             |             |             |                  |                      |                               |           |                              |                                |               |                |                 |             |          |                    |                                      |
|               |             |             |             |                  |                      |                               |           |                              |                                |               |                |                 |             |          |                    | >                                    |
|               |             |             |             |                  |                      |                               |           |                              |                                |               |                | <b>K</b> STATUS |             |          |                    |                                      |

# 00 CH

## 39 CH

| -                                                             |             | RF                             | 50 Q AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SENSE:                                            | PULSE                          | ALIGN AUTO     |                       | 04:01:01              | PM Apr 07, 202               |
|---------------------------------------------------------------|-------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------|----------------|-----------------------|-----------------------|------------------------------|
| ente                                                          | er Fr       | eq 1                           | 2.515000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   | Trig: Free Run<br>Atten: 30 dB | Avg Type: L    | .og-Pwr               | TF                    | TYPE MUMMUM<br>DET P P P P P |
| 0 dB/                                                         | div         |                                | Offset 0.5 dB<br>9.55 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |                                |                |                       |                       | .452 GH<br>450 dBr           |
| <sup>og</sup>                                                 |             | ~                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                |                |                       |                       |                              |
|                                                               |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                |                |                       |                       |                              |
| 10.5 -                                                        |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                |                |                       |                       | -19.58 dt                    |
| 0.5                                                           |             | _                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                |                |                       |                       |                              |
| 0.5                                                           |             |                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                |                |                       |                       |                              |
| 0.5                                                           |             | _                              | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                                |                |                       |                       | - O                          |
| 0.5                                                           |             | _                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                | mummen         | مليون مالا معرب يعليه | and the second police | man                          |
| 0.5 🗖                                                         | No.         | ممم                            | and the second and the second s | resolder and when the second                      |                                |                |                       |                       |                              |
| 0.5                                                           |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                |                |                       |                       |                              |
| 30.5 -                                                        |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                |                |                       |                       |                              |
| tart                                                          | 30 N        | 1H7                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                |                |                       | Stop                  | 25.00 GH                     |
|                                                               |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                |                |                       |                       |                              |
|                                                               |             | 100                            | KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #VBW 3                                            | 300 kHz                        |                | Swe                   | ep 2.386 s            | (1001 pt                     |
| Res<br>KR MO                                                  | BW          | 100                            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y                                                 | FUNCTION                       | FUNCTION WIDTH |                       |                       | : (1001 pt                   |
| Res                                                           | BW<br>DE TO | 100                            | ×<br>2.452 Gł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hz -0.450 dBr                                     | FUNCTION                       | FUNCTION WIDTH |                       | ep 2.386 s            | i (1001 pt                   |
| Res<br>1 N<br>2 N<br>3 N                                      |             | 100  <br>f<br>f                | ×<br>2.452 Gł<br>3.151 Gł<br>4.874 Gł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hz -0.450 dBr<br>Hz -55.812 dBr<br>Hz -41.134 dBr | FUNCTION<br>m<br>m             | FUNCTION WIDTH |                       | ep 2.386 s            | : (1001 pt                   |
| Res<br>1 N<br>2 N<br>3 N<br>4 N<br>5                          |             | 100  <br>100  <br>100  <br>100 | ×<br>2.452 Gł<br>3.151 Gł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hz -0.450 dBr<br>Hz -55.812 dBr<br>Hz -41.134 dBr | FUNCTION<br>m<br>m             | FUNCTION WIDTH |                       | ep 2.386 s            | : (1001 pt                   |
| Res<br>1 N<br>2 N<br>3 N<br>4 N<br>5                          |             | 100  <br>f<br>f                | ×<br>2.452 Gł<br>3.151 Gł<br>4.874 Gł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hz -0.450 dBr<br>Hz -55.812 dBr<br>Hz -41.134 dBr | FUNCTION<br>m<br>m             | FUNCTION WIDTH |                       | ep 2.386 s            | : (1001 pt                   |
| Res<br>1 N<br>2 N<br>3 N<br>4 N<br>5                          |             | 100  <br>f<br>f                | ×<br>2.452 Gł<br>3.151 Gł<br>4.874 Gł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hz -0.450 dBr<br>Hz -55.812 dBr<br>Hz -41.134 dBr | FUNCTION<br>m<br>m             | FUNCTION WIDTH |                       | ep 2.386 s            | : (1001 pt                   |
| Res<br>1 N<br>2 N<br>3 N<br>4 N<br>5<br>6<br>7<br>8<br>9<br>0 |             | 100  <br>f<br>f                | ×<br>2.452 Gł<br>3.151 Gł<br>4.874 Gł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hz -0.450 dBr<br>Hz -55.812 dBr<br>Hz -41.134 dBr | FUNCTION<br>m<br>m             | FUNCTION WIDTH |                       | ep 2.386 s            | : (1001 pt                   |
| Res<br>1 N<br>2 N<br>3 N<br>4 N                               |             | 100  <br>f<br>f                | ×<br>2.452 Gł<br>3.151 Gł<br>4.874 Gł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hz -0.450 dBr<br>Hz -55.812 dBr<br>Hz -41.134 dBr | FUNCTION<br>m<br>m             | FUNCTION WIDTH |                       | ep 2.386 s            | : (1001 pt                   |

П



## 78 CH

| Ient Spectrum Analyzer - S<br>RL RF SD                | wept SA<br>Ω AC                                   | SENSE:PULSE                                             |                                         | ALIGNAUTO                   |               | 04:03:40 PM Apr 07, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|-----------------------------------------|-----------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| enter Freq 12.515                                     | 5000000 GHz                                       |                                                         | ree Run<br>30 dB                        | Avg Type: L                 | og-Pwr        | TRACE 1234<br>TYPE WWWW<br>DET P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ref Offset 0                                          |                                                   |                                                         |                                         |                             |               | Mkr1 2.477 GI<br>-0.249 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25                                                    |                                                   |                                                         |                                         |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ).3                                                   |                                                   |                                                         |                                         |                             |               | -20.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.3                                                   |                                                   |                                                         |                                         |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                       | A3                                                |                                                         |                                         |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.3<br>1.3                                            |                                                   | and a life from the load                                | and | and and a stand and a stand | - July market | and the second and the second s |
| ).3                                                   |                                                   |                                                         | -                                       |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.3                                                   |                                                   |                                                         | _                                       |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| art 30 MHz<br>Res BW 100 kHz                          |                                                   | #VBW 300 k                                              | Hz                                      |                             | Sweep         | Stop 25.00 G<br>2.386 s (1001 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| R MODE TRC SCL                                        | ×                                                 | Y                                                       | FUNCTION FU                             | NCTION WIDTH                | FUNC          | TION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| N 1 f<br>2 N 1 f<br>3 N 1 f<br>4 N 1 f<br>5<br>5<br>7 | 2.477 GHz<br>2.652 GHz<br>4.874 GHz<br>24.351 GHz | -0.249 dBm<br>-56.411 dBm<br>-54.965 dBm<br>-47.513 dBm |                                         |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3<br>9<br>0                                           |                                                   |                                                         |                                         |                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                       |                                                   |                                                         |                                         | 41 1                        |               | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3                                                     |                                                   |                                                         |                                         | STATUS                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Shenzhen STS Test Services Co., Ltd.





#### For Band edge(it's also the reference level for conducted spuriousemission)

|                               | ctrum Ar | nalyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X RL                          | Ri       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ISE:PULSE                       | ALIGN AUTO     | 03:58:30 PM Apr 07, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Center                        | Freq     | 2.353500000 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PNO: Fast<br>IFGain:Low | Trig: Free Run<br>#Atten: 30 dB | Avg Type: Lo   | g-Pwr TRACE 12345<br>TYPE MWWWWW<br>DET P P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10 dB/div                     | Re<br>Re | f Offset 0.5 dB<br>ef 10.35 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                | Mkr1 2.402 08 GHz<br>0.346 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                | <b>≬</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ).350                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                | n i n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9.65                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                | -19.65 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -19.7                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                | - 1905 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 29.7                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -39.7                         | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 49.7                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 59.7                          | arter    | of encoderated as a set of the se |                         |                                 |                | and a second and the |
| 69.7                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 79.7                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Start 2.3<br>#Res BV          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VB                     | V 300 kHz                       |                | Stop 2.40700 GH<br>Sweep 10.27 ms (1001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MKR MODE                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y                       | FUNCTION                        | FUNCTION WIDTH | FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 N<br>2 N                    |          | 2.402 08 2.306 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3 N                           | 1 f      | 2.399 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GHz -43.503 (           | dBm                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4 N<br>5                      | 1 f      | 2.400 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GHz -39.127             | dBm                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 N<br>3 4 5<br>6 7 8 9<br>10 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ¢                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 | 41             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SG                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                 | STATUS         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### 00 CH

39 CH





## 78 CH

|                          | RF               | 50 Q AC                  |                                                      | SE                                      | NSE:PULSE                       | ALIGN AUTO     |        |                        | M Apr 07, 20                         |
|--------------------------|------------------|--------------------------|------------------------------------------------------|-----------------------------------------|---------------------------------|----------------|--------|------------------------|--------------------------------------|
| ter Fi                   | req 2.4          | 48750000                 | F                                                    | PNO: Fast 😱<br>Gain:Low                 | Trig: Free Run<br>#Atten: 30 dB | Avg Type: Lo   | og-Pwr | TRA<br>TY<br>D         | CE 1 2 3 4<br>PE MWAAW<br>ET P P P P |
| B/div                    |                  | ffset 0.5 dB<br>0.87 dBm |                                                      |                                         |                                 |                | Mk     | 1 2.480 1<br>-0.1      | 00 GH<br>33 dB                       |
|                          |                  |                          | <mark>ן 1</mark>                                     |                                         |                                 |                |        |                        |                                      |
|                          |                  |                          |                                                      |                                         |                                 |                |        |                        | -20.13 d                             |
| <u> </u>                 |                  | and                      | h                                                    |                                         |                                 |                |        |                        |                                      |
|                          | my               | and a                    | JAN A                                                | $\sqrt{2}^{3}$                          |                                 |                |        |                        |                                      |
| VANA                     |                  |                          |                                                      | - Carlor                                | manna                           |                |        |                        |                                      |
| -                        |                  |                          |                                                      |                                         |                                 |                |        |                        |                                      |
|                          |                  |                          |                                                      |                                         |                                 |                |        |                        |                                      |
|                          | 500 GI<br>100 kH |                          |                                                      | #VB                                     | W 300 kHz                       |                | Sweep  | Stop 2.5<br>2.400 ms ( |                                      |
| MODE TH                  |                  | ×                        |                                                      | N 100                                   |                                 | FUNCTION WIDTH | FUN    | ICTION VALUE           |                                      |
| N 1<br>N 1<br>N 1<br>N 1 | f<br>f<br>f      | 2.4                      | 80 100 GHz<br>83 500 GHz<br>84 000 GHz<br>92 175 GHz | -0.133<br>-49.125<br>-51.100<br>-58.148 | dBm<br>dBm                      |                |        |                        |                                      |
|                          |                  |                          |                                                      |                                         |                                 |                |        |                        |                                      |
|                          |                  |                          |                                                      |                                         | 1                               |                |        |                        | >                                    |
|                          |                  |                          |                                                      |                                         |                                 | TATUS          |        |                        |                                      |



Shenzhen STS Test Services Co., Ltd.



## For Hopping Band edge

8DPSK

|            |                          | er - Swept SA                 |                            |                          |                         |        |                       |            |                       |                                                                  |
|------------|--------------------------|-------------------------------|----------------------------|--------------------------|-------------------------|--------|-----------------------|------------|-----------------------|------------------------------------------------------------------|
| enter F    | <sup>RF</sup><br>req 2.3 | 50 Q AC                       |                            | PNO: Fast G<br>FGain:Low | Trig: Free<br>#Atten: 3 |        | ALIGN AUTO<br>Avg Typ | e: Log-Pwr |                       | 7 PM Apr 07, 202<br>RACE 1 2 3 4 5<br>TYPE MWWW<br>DET P P P P F |
| ) dB/div   |                          | fset 0.5 dB<br><b>.58 dBm</b> |                            |                          |                         |        |                       | N          | 1kr1 2.402<br>-0.     | 794 GH<br>423 dBr                                                |
| .42        |                          |                               |                            |                          |                         |        |                       |            |                       |                                                                  |
| 0.4        |                          |                               |                            |                          |                         |        |                       |            |                       | -20.42 d                                                         |
| ).4        |                          |                               |                            |                          |                         |        |                       |            |                       |                                                                  |
| .4         |                          |                               |                            |                          |                         |        |                       |            |                       | Ŷ                                                                |
| ).4<br>).4 | num                      | man                           | and a second sub-          | umpeles                  | man                     | woman  | more allerand         | une-mound  | manual                | mush                                                             |
| 0.4        |                          |                               |                            |                          |                         |        |                       |            |                       | -                                                                |
| .4         |                          |                               |                            |                          |                         |        |                       |            |                       |                                                                  |
|            | 100 GH                   |                               |                            | #V                       | BW 300 kH               | z      |                       | Swe        | Stop 2.<br>ep 9.867 m | .40300 GH<br>s (1001 pt                                          |
| R MODE T   | RC SCL                   | 2/                            | 102 794 GHz                | -0.42                    | 3 dBm                   | NCTION | FUNCTION WIDTH        |            | FUNCTION VALUE        |                                                                  |
| 2 N<br>3 N | †<br>†                   | 2.3                           | 890 022 GHz<br>100 013 GHz | -58.05                   | 0 dBm<br>7 dBm          |        |                       |            |                       |                                                                  |
|            |                          |                               |                            |                          |                         |        |                       |            |                       |                                                                  |
| 3          |                          |                               |                            |                          |                         |        |                       |            |                       |                                                                  |
|            |                          |                               |                            |                          |                         |        |                       |            |                       |                                                                  |
|            |                          |                               |                            |                          |                         |        |                       |            |                       | >                                                                |

| L RF 50 Ω AC                                                                 | SENSE:PULS                           | ε                       | ALIGN AUTO      | 05:08:47 PM Apr                    |            |
|------------------------------------------------------------------------------|--------------------------------------|-------------------------|-----------------|------------------------------------|------------|
| iter Freq 2.489500000 GHz                                                    | PNO: Fast 🖵 Trig<br>IFGain:Low #Atto | : Free Run<br>en: 30 dB | Avg Type: Log-F | Pwr TRACE 1<br>TYPE M<br>DET P     | 234<br>PPP |
| Ref Offset 0.5 dB<br>IB/div Ref 9.64 dBm                                     |                                      |                         |                 | Mkr1 2.479 126<br>-0.357           |            |
|                                                                              |                                      |                         |                 |                                    |            |
| mon                                                                          |                                      |                         |                 |                                    |            |
|                                                                              |                                      |                         |                 |                                    | 20.36 d    |
| h                                                                            |                                      |                         |                 |                                    |            |
|                                                                              | 3                                    |                         |                 |                                    |            |
| TPI MININA DAMA &                                                            |                                      |                         |                 |                                    |            |
| 1.1.1.0.0.4.4.M                                                              | Marrow war                           | - marine                | mannon          | Mr. marman                         |            |
|                                                                              |                                      |                         |                 |                                    |            |
|                                                                              |                                      |                         |                 |                                    |            |
|                                                                              |                                      |                         |                 |                                    |            |
| rt 2.47900 GHz                                                               | #VBW 300                             | ) kHz                   |                 | Stop 2.5000<br>Sweep 2.067 ms (100 |            |
| rt 2.47900 GHz<br>Is BW 100 kHz<br>MODE TRO SCL X                            | Y                                    |                         | FUNCTION WIDTH  |                                    |            |
| rt 2.47900 GHz<br>s BW 100 kHz                                               | z -0.357 dBm<br>z -50.908 dBm        |                         | FUNCTION WIDTH  | Sweep 2.067 ms (100                |            |
| N 1 f 2.479 126 GHz<br>N 1 f 2.483 515 GHz                                   | z -0.357 dBm<br>z -50.908 dBm        |                         | FUNCTION WIDTH  | Sweep 2.067 ms (100                |            |
| rt 2.47900 GHz<br>s BW 100 kHz<br>N 1 f 2.479 126 GHz<br>N 1 f 2.433 515 GHz | z -0.357 dBm<br>z -50.908 dBm        |                         | FUNCTION WIDTH  | Sweep 2.067 ms (100                |            |
| rt 2.47900 GHz<br>s BW 100 KHz<br>N 1 f 2.479 126 GHz<br>N 1 f 2.433 515 GHz | z -0.357 dBm<br>z -50.908 dBm        |                         | FUNCTION WIDTH  | Sweep 2.067 ms (100                |            |
| rt 2.47900 GHz<br>s BW 100 KHz<br>N 1 f 2.479 126 GHz<br>N 1 f 2.433 515 GHz | z -0.357 dBm<br>z -50.908 dBm        |                         | FUNCTION WIDTH  | Sweep 2.067 ms (100                |            |



# 5. NUMBER OF HOPPING CHANNEL

## 5.1 LIMIT

| FCC Part 15.247,Subpart C |                              |       |                         |        |  |  |  |
|---------------------------|------------------------------|-------|-------------------------|--------|--|--|--|
| Section                   | Test Item                    | Limit | FrequencyRange<br>(MHz) | Result |  |  |  |
| 15.247<br>(a)(1)(iii)     | Number of Hopping<br>Channel | ≥15   | 2400-2483.5             | PASS   |  |  |  |

| Spectrum Parameters | Setting                    |
|---------------------|----------------------------|
| Attenuation         | Auto                       |
| Span Frequency      | > Operating FrequencyRange |
| RB                  | 300KHz                     |
| VB                  | 300KHz                     |
| Detector            | Peak                       |
| Trace               | Max Hold                   |
| Sweep Time          | Auto                       |

## 5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 300KHz, VBW=300KHz, Sweep time = Auto.

## 5.3 TEST SETUP



## 5.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.



## 5.5 TEST RESULTS

| Temperature: | <b>25</b> ℃             | Relative Humidity: | 60%     |
|--------------|-------------------------|--------------------|---------|
| Test Mode:   | Hopping Mode -GFSK Mode | Test Voltage:      | DC 3.7V |

## Number of Hopping Channel

79

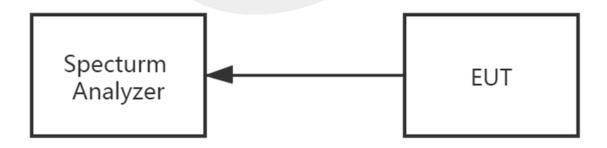
## Hopping channel

| RL                                                                                           | R             |                                |                            | SENSE:PU             | LSE                         | ALIGNAUTO      |            |                | 15 PM Apr 07, 20         |
|----------------------------------------------------------------------------------------------|---------------|--------------------------------|----------------------------|----------------------|-----------------------------|----------------|------------|----------------|--------------------------|
| enter                                                                                        | Freq          | 2.44175000                     | PNO:                       | Fast Tr<br>n:Low #A  | ig: Free Run<br>tten: 30 dB | Avg Typ        | e: Log-Pwr | 1              | TYPE MWMM<br>DET P P P P |
| ) dB/div                                                                                     |               | f Offset 0.5 dB<br>f 12.16 dBm |                            |                      |                             |                | Mkr        | 2 2.479 9      | 93 0 GH<br>1.72 dB       |
| 99   .16   .84   7.8   7.8   7.8   7.8   7.8   7.8   7.8   7.8   7.8   7.8   7.8   7.8   7.8 | 1<br>YYYY<br> |                                |                            |                      |                             |                |            |                | 2<br>//////              |
| 7.8<br>7.8<br>tart 2.4<br>Res BV                                                             | N 300         | kHz                            |                            | #VBW 30              |                             |                |            | p 1.133 m      | .48350 Gi<br>s (1001 pi  |
| 2 N<br>2 N<br>3 4<br>5 6<br>6 7<br>8 9<br>9 0<br>1                                           | 1 f           | 2.40                           | 2 087 5 GHz<br>9 993 0 GHz | 2.06 dBm<br>1.72 dBm |                             | FUNCTION WIDTH |            | FUNCTION VALUE |                          |

Shenzhen STS Test Services Co., Ltd.



# 6. AVERAGE TIME OF OCCUPANCY


## 6.1 LIMIT

| FCC Part 15.247,Subpart C |                              |        |                         |        |  |  |  |
|---------------------------|------------------------------|--------|-------------------------|--------|--|--|--|
| Section                   | Test Item                    | Limit  | FrequencyRange<br>(MHz) | Result |  |  |  |
| 15.247<br>(a)(1)(iii)     | Average Time<br>of Occupancy | 0.4sec | 2400-2483.5             | PASS   |  |  |  |

## 6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to e. zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- $\tilde{h}$ . Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 3.37 x 31.6 = 106.6.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 5.06 x 31.6 = 160.
- k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 10.12 x 31.6 = 320.

6.3 TEST SETUP



6.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

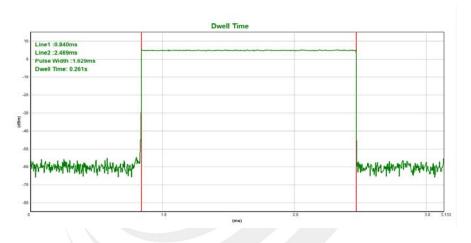


## 6.5 TEST RESULTS

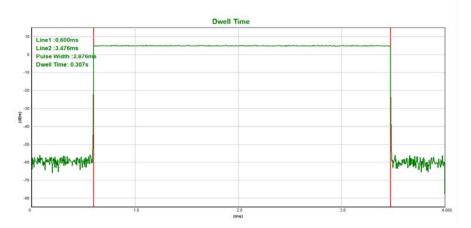
| Temperature: | <b>25</b> ℃            | Relative Humidity: | 50%     |
|--------------|------------------------|--------------------|---------|
| Test Mode:   | GFSK/ π/4-DQPSK/ 8DPSK | Test Voltage:      | DC 3.7V |

| Modulation | Pocket<br>Type | Frequency<br>(MHz) | Single<br>Pulse<br>Time<br>(ms) | Dwell<br>Time<br>(s) | Limit<br>(s) | Result |
|------------|----------------|--------------------|---------------------------------|----------------------|--------------|--------|
|            | DH1            | 2441               | 0.373                           | 0.119                | 0.4          | Pass   |
| GFSK       | DH3            | 2441               | 1.629                           | 0.261                | 0.4          | Pass   |
|            | DH5            | 2441               | 2.876                           | 0.307                | 0.4          | Pass   |
|            | 2DH1           | 2441               | 0.382                           | 0.122                | 0.4          | Pass   |
| π/4DQPSK   | 2DH3           | 2441               | 1.633                           | 0.261                | 0.4          | Pass   |
|            | 2DH5           | 2441               | 2.880                           | 0.307                | 0.4          | Pass   |
|            | 3DH1           | 2441               | 0.382                           | 0.122                | 0.4          | Pass   |
| 8DPSK      | 3DH3           | 2441               | 1.632                           | 0.261                | 0.4          | Pass   |
|            | 3DH5           | 2441               | 2.884                           | 0.308                | 0.4          | Pass   |

Shenzhen STS Test Services Co., Ltd.



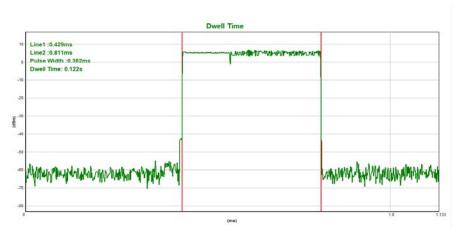

Page 53 of 73 Report No.: STS2204018W01


## CH39-DH1



## CH39-DH3

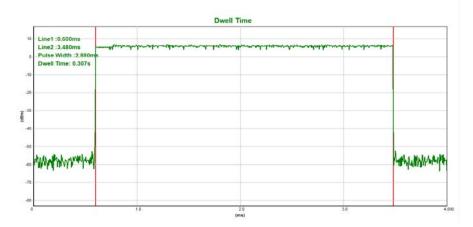







Shenzhen STS Test Services Co., Ltd.

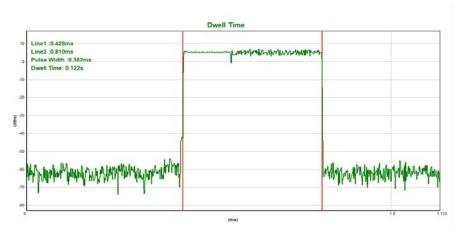



## CH39-2DH1

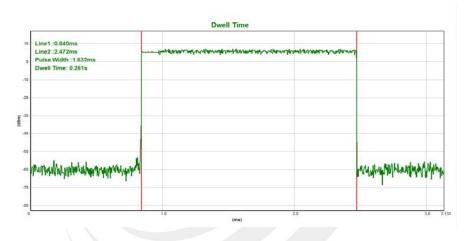




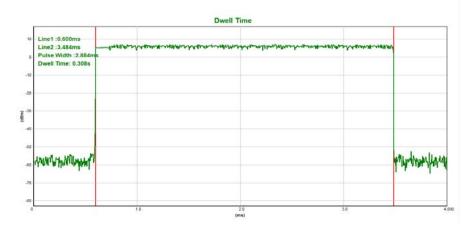








Shenzhen STS Test Services Co., Ltd.




## CH39-3DH1



## CH39-3DH3







Shenzhen STS Test Services Co., Ltd.

П



# 7. HOPPING CHANNEL SEPARATION MEASUREMEN

7.1 LIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

| Spectrum Parameter | Setting                                                 |
|--------------------|---------------------------------------------------------|
| Attenuation        | Auto                                                    |
| Span Frequency     | > 20 dB Bandwidth or Channel Separation                 |
| RB                 | 30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)   |
| VB                 | 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) |
| Detector           | Peak                                                    |
| Trace              | Max Hold                                                |
| Sweep Time         | Auto                                                    |

## 7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

## 7.3 TEST SETUP



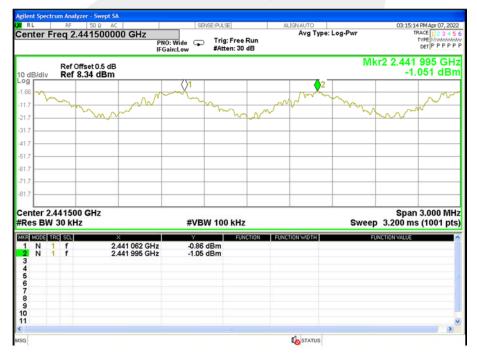
## 7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.



## 7.5 TEST RESULTS

| Temperature: | <b>25</b> ℃          | Relative Humidity: | 50%     |
|--------------|----------------------|--------------------|---------|
| Test Mode:   | GFSK/π/4-DQPSK/8DPSK | Test Voltage:      | DC 3.7V |


| Modulation | Frequency<br>(MHz) | Mark1<br>Frequency<br>(MHz) | Mark2<br>Frequency<br>(MHz) | Channel<br>Separation<br>(MHz) | Limit<br>(MHz) | Result |
|------------|--------------------|-----------------------------|-----------------------------|--------------------------------|----------------|--------|
|            | 2402               | 2401.978                    | 2402.998                    | 1.020                          | 0.685          | Pass   |
| GFSK       | 2441               | 2441.062                    | 2441.995                    | 0.933                          | 0.686          | Pass   |
|            | 2480               | 2478.996                    | 2480.067                    | 1.071                          | 0.686          | Pass   |
|            | 2402               | 2401.819                    | 2402.983                    | 1.164                          | 0.903          | Pass   |
| π/4DQPSK   | 2441               | 2440.875                    | 2441.989                    | 1.114                          | 0.903          | Pass   |
|            | 2480               | 2478.993                    | 2480.067                    | 1.074                          | 0.902          | Pass   |
|            | 2402               | 2402.128                    | 2403.112                    | 0.984                          | 0.898          | Pass   |
| 8DPSK      | 2441               | 2441.140                    | 2442.109                    | 0.969                          | 0.895          | Pass   |
|            | 2480               | 2479.113                    | 2480.142                    | 1.029                          | 0.896          | Pass   |



#### CH00 -1Mbps



#### CH39 -1Mbps



Shenzhen STS Test Services Co., Ltd.



## CH78 -1Mbps



#### CH00 -2Mbps

|                                  |              | er - Swept SA                       |                                |                            |                                         |            |                                         |                                                             |
|----------------------------------|--------------|-------------------------------------|--------------------------------|----------------------------|-----------------------------------------|------------|-----------------------------------------|-------------------------------------------------------------|
| enter Fr                         | ⊮<br>req 2.4 |                                     | ): Wide - Trig<br>ain:Low #Att | ≡<br>:Free Run<br>en:30 dB | ALIGN AUTO<br>Avg Type                  | ≥: Log-Pwr |                                         | 8 PM Apr 07, 20<br>RACE 1 2 3 4<br>TYPE MWWW<br>DET P P P P |
| ) dB/div                         |              | fset 0.5 dB<br>. <b>64 dBm</b>      |                                |                            |                                         | Μ          | kr2 2.402<br>-4                         | 983 GH<br>836 dB                                            |
| 36<br>5.4                        |              | mannin                              |                                | m                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | u          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | www                                                         |
| 5.4<br>5.4<br>5.4                | $\sim$       |                                     |                                |                            |                                         |            |                                         |                                                             |
| i.4<br>i.4                       |              |                                     |                                |                            |                                         |            |                                         |                                                             |
| enter 2.4                        | 102500       | GH7                                 |                                |                            |                                         |            | Spar                                    | 1 3.000 MI                                                  |
| Res BW                           |              |                                     | #VBW 100                       | ) kHz                      |                                         | Swee       | p 3.200 m                               |                                                             |
| E MODE TR<br>1 N 1<br>2 N 1<br>3 | f<br>f       | X<br>2.401 819 GHz<br>2.402 983 GHz | 4.70 dBm<br>-4.84 dBm          | FUNCTION                   | FUNCTION WIDTH                          |            | FUNCTION VALUE                          |                                                             |
| 5<br>7<br>8<br>9                 |              |                                     |                                |                            |                                         |            |                                         |                                                             |
| 1                                |              |                                     |                                |                            |                                         |            |                                         | >                                                           |
| G                                |              |                                     |                                |                            | 10 STATUS                               |            |                                         |                                                             |

Shenzhen STS Test Services Co., Ltd.

П



#### CH39 -2Mbps

| nter F           | req    | 50 Q AC  <br>2.441500000 GH |                              | NSE:PULSE                       | ALIGN AUTO     |         | 03:47:38 PM Apr (              |        |
|------------------|--------|-----------------------------|------------------------------|---------------------------------|----------------|---------|--------------------------------|--------|
|                  |        | 2.441500000 GH              | Z<br>PNO: Wide<br>IFGain:Low | Trig: Free Run<br>#Atten: 30 dB | Avg Type:      | Log-Pwr | TRACE 12<br>TYPE MY<br>DET P P |        |
| dB/div           |        | Offset 0.5 dB<br>f 5.36 dBm |                              |                                 |                | Mki     | 2 2.441 989<br>-4.607          |        |
| 4                |        |                             | Q1                           |                                 | 2              |         |                                |        |
| 6 m              | $\sim$ | m                           | w march                      | m                               | en march       | mm      | m                              | $\sim$ |
| 6                |        |                             |                              |                                 |                |         |                                |        |
| 6                |        |                             |                              |                                 |                |         |                                |        |
| 6                |        |                             |                              |                                 |                |         |                                |        |
| 6                |        |                             |                              |                                 |                |         |                                |        |
| 6                |        |                             |                              |                                 |                |         |                                |        |
| 6                |        |                             |                              |                                 |                |         |                                |        |
| 6                |        |                             |                              |                                 |                |         |                                |        |
|                  |        |                             |                              |                                 |                |         |                                |        |
| nter 2.<br>es BW |        | 00 GHz<br>Hz                | #VB                          | W 100 kHz                       |                | Sweep   | Span 3.000<br>3.200 ms (100    | ) MH   |
| MODE T           | RC SCL |                             | Y                            |                                 | FUNCTION WIDTH | FUN     | CTION VALUE                    |        |
| NN               |        | 2.440 876<br>2.441 989      |                              |                                 |                |         |                                |        |
|                  |        |                             |                              |                                 |                |         |                                |        |
|                  |        |                             |                              |                                 |                |         |                                |        |
|                  |        |                             |                              |                                 |                |         |                                |        |
|                  |        |                             |                              |                                 |                |         |                                |        |
|                  |        |                             |                              |                                 |                |         |                                |        |
|                  |        |                             |                              |                                 | <b>STATUS</b>  |         |                                | >      |

#### CH78 -2Mbps



Shenzhen STS Test Services Co., Ltd.

Π



#### CH00 -3Mbps

| Spectrum Analyzer - Swept SA<br>RF 50 Q AC | SENSE:PULSE                                     | ALIGNAUTO         | 04:57:31 PM Apr              |
|--------------------------------------------|-------------------------------------------------|-------------------|------------------------------|
|                                            | ): Wide Trig: Free Run<br>ain:Low #Atten: 30 dB | Avg Type: Log-Pwr | TRACE 1<br>TYPE M<br>DET P   |
| Ref Offset 0.5 dB<br>/div Ref 4.32 dBm     |                                                 | Μ                 | kr2 2.403 112<br>-4.251      |
| - mmmmm                                    |                                                 | man 22 m          | mm                           |
|                                            |                                                 |                   | un in                        |
|                                            |                                                 |                   |                              |
| n. M                                       |                                                 |                   |                              |
| 1                                          |                                                 |                   |                              |
|                                            |                                                 |                   |                              |
|                                            |                                                 |                   |                              |
|                                            |                                                 |                   |                              |
| er 2.402500 GHz<br>BW 30 kHz               | #VBW 100 kHz                                    | Swee              | Span 3.00<br>p 3.200 ms (100 |
| ODE TRC SCL                                | Y FUNCTION                                      | FUNCTION WIDTH    | FUNCTION VALUE               |
| N 1 f 2.402 128 GHz<br>N 1 f 2.403 112 GHz | -4.23 dBm<br>-4.25 dBm                          |                   |                              |
|                                            |                                                 |                   |                              |
|                                            |                                                 |                   |                              |
|                                            |                                                 |                   |                              |
|                                            |                                                 |                   |                              |
|                                            |                                                 |                   |                              |
|                                            |                                                 | <b>K</b> STATUS   |                              |

## CH39 -3Mbps

| gilent Spectrum Analyze         | er - Swept SA               |                                  |                      |                |          |                  |                                            |
|---------------------------------|-----------------------------|----------------------------------|----------------------|----------------|----------|------------------|--------------------------------------------|
| RL RF                           | 50 Q AC                     | SENSE:PULS                       |                      | ALIGN AUTO     |          |                  | PM Apr 07, 202                             |
| enter Freq 2.4                  | 41500000 GHz<br>PNO<br>IFGa | ): Wide 🖵 Trig:<br>ain:Low #Atte | Free Run<br>m: 30 dB | Avg Type:      | Log-Pwr  |                  | ACE 1 2 3 4 5<br>YPE MWWW<br>DET P P P P F |
|                                 | set 0.5 dB<br>35 dBm        |                                  |                      |                | Mk       | r2 2.442<br>-4.( | 109 GH<br>070 dBi                          |
| og                              | 55 dBm                      | ()1                              |                      |                | <b>2</b> |                  |                                            |
| .65                             | - mmw                       | mar and                          |                      | mm             | -        |                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     |
| 4.7                             | when a marked when the      |                                  | Vmvr v -             |                | ~ ~      | Mr. M. M. M.     |                                            |
| 4.7                             |                             |                                  |                      |                |          |                  |                                            |
| 4.7                             |                             |                                  |                      |                |          |                  |                                            |
|                                 |                             |                                  |                      |                |          |                  |                                            |
| 4.7                             |                             |                                  |                      |                |          |                  |                                            |
| 4.7                             |                             |                                  |                      |                |          |                  |                                            |
| 4.7                             |                             |                                  |                      |                |          |                  |                                            |
| 4.7                             |                             |                                  |                      |                |          |                  |                                            |
| 4.7                             |                             |                                  |                      |                |          |                  |                                            |
| 151                             |                             |                                  |                      | <u>(</u>       |          |                  |                                            |
| enter 2.441500<br>Res BW 30 kHz | GHz                         | #VBW 100                         | kHz                  |                | Sweep    | Span<br>3.200 ms | 3.000 Mi<br>(1001 pt                       |
| R MODE TRC SCL                  | ×                           | Y                                | FUNCTION             | FUNCTION WIDTH | FU       | NCTION VALUE     |                                            |
| 1 N 1 f<br>2 N 1 f              | 2.441 140 GHz               | -4.37 dBm                        |                      |                |          |                  |                                            |
| 2 N 1 f<br>3                    | 2.442 109 GHz               | -4.07 dBm                        |                      |                |          |                  |                                            |
| 4                               |                             |                                  |                      |                |          |                  |                                            |
| 5<br>5<br>7                     |                             |                                  |                      |                |          |                  |                                            |
|                                 |                             |                                  |                      |                |          |                  |                                            |
| 8<br>9                          |                             |                                  |                      |                |          |                  |                                            |
| 0                               |                             |                                  |                      |                |          |                  |                                            |
| 1                               |                             |                                  |                      |                |          |                  |                                            |
|                                 |                             |                                  |                      |                |          |                  | >                                          |
| G                               |                             |                                  |                      | STATUS         |          |                  |                                            |

Shenzhen STS Test Services Co., Ltd.



## CH78 -3Mbps

| RL                   |     | RF     | 50 Q AC                   |                        | SEN            | ISE:PULSE              |        | ALIGN AUTO     |           | 05:02:0            | 4 PM Apr 07, 202                     |
|----------------------|-----|--------|---------------------------|------------------------|----------------|------------------------|--------|----------------|-----------|--------------------|--------------------------------------|
| enter                | Fre | eq 2.  | 479500000                 | PNO                    | :Wide 🖵        | Trig: Fre<br>#Atten: 3 |        | Avg Type       | : Log-Pwr | т                  | RACE 12345<br>TYPE MWWW<br>DET PPPPP |
| dB/di                | v   |        | offset 0.5 dB<br>5.41 dBm |                        |                |                        |        |                | M         | 1kr2 2.480<br>-4.  | 142 GH<br>953 dBn                    |
| 59                   | m   |        |                           |                        | ()1            |                        |        | 0 M -          | 2         |                    |                                      |
| 4.6                  | - 1 | $\sim$ | m                         | June                   | www.ww         |                        | -m     | www.w.w.       | - mar     | m                  |                                      |
| 4.6                  |     |        |                           |                        |                |                        |        |                |           |                    |                                      |
| .6                   |     |        |                           |                        |                |                        |        |                |           |                    | M                                    |
| .6                   |     |        |                           |                        |                |                        |        |                |           |                    |                                      |
| .6                   |     |        |                           |                        |                |                        |        |                |           |                    |                                      |
| 4.6                  |     |        |                           |                        |                |                        |        |                |           |                    |                                      |
|                      |     |        |                           |                        |                |                        |        |                |           |                    |                                      |
| enter<br>Res B       |     |        | 0 GHz<br>Iz               |                        | #VB\           | N 100 kH               | z      |                | Swee      | span<br>sp 3.200 m | s (1001 pts                          |
| R MODE               | TRO |        | ×                         |                        | Y              |                        | NCTION | FUNCTION WIDTH |           | FUNCTION VALUE     | _                                    |
| 1 N<br>2 N<br>3<br>4 | 1   | f      |                           | 9 113 GHz<br>0 142 GHz | -4.40<br>-4.95 | dBm<br>dBm             |        |                |           |                    |                                      |
| 5<br>5<br>7<br>8     |     |        |                           |                        |                |                        |        |                |           |                    |                                      |
| Ď                    |     |        |                           |                        |                |                        |        |                |           |                    | >                                    |
| 3                    |     |        |                           |                        |                |                        |        | STATUS         |           |                    |                                      |



Shenzhen STS Test Services Co., Ltd.



# 8. BANDWIDTH TEST

## 8.1 LIMIT

| FCC Part15 15.247,Subpart C |                         |     |                         |        |  |  |
|-----------------------------|-------------------------|-----|-------------------------|--------|--|--|
| Section                     | Section Test Item Limit |     | FrequencyRange<br>(MHz) | Result |  |  |
| 15.247 (a)(1)               | Bandwidth               | N/A | 2400-2483.5             | PASS   |  |  |

| Spectrum Parameter | Setting                                                 |
|--------------------|---------------------------------------------------------|
| Attenuation        | Auto                                                    |
| Span Frequency     | > Measurement Bandwidth or Channel Separation           |
| RB                 | 30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)   |
| VB                 | 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) |
| Detector           | Peak                                                    |
| Trace              | Max Hold                                                |
| Sweep Time         | Auto                                                    |

#### **8.2 TEST PROCEDURE**

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

#### 8.3 TEST SETUP



## 8.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.



## 8.5 TEST RESULTS

| Temperature: | <b>25</b> ℃          | Relative Humidity: | 50%     |
|--------------|----------------------|--------------------|---------|
| Test Mode:   | GFSK/π/4-DQPSK/8DPSK | Test Voltage:      | DC 3.7V |

| Modulation | Frequency (MHz) | -20 dB Bandwidth<br>(MHz) | Result |
|------------|-----------------|---------------------------|--------|
|            | 2402            | 1.028                     | Pass   |
| GFSK       | 2441            | 1.029                     | Pass   |
|            | 2480            | 1.029                     | Pass   |
|            | 2402            | 1.354                     | Pass   |
| π/4DQPSK   | 2441            | 1.355                     | Pass   |
|            | 2480            | 1.353                     | Pass   |
|            | 2402            | 1.347                     | Pass   |
| 8DPSK      | 2441            | 1.343                     | Pass   |
|            | 2480            | 1.344                     | Pass   |



П



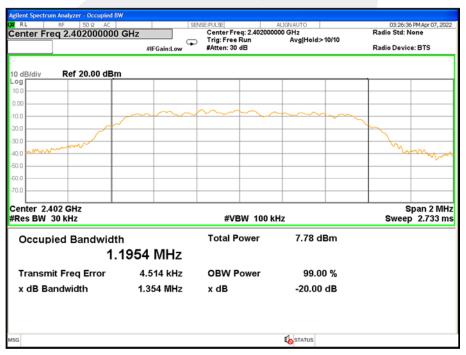
#### CH00 -1Mbps



CH39 -1 Mbps



Shenzhen STS Test Services Co., Ltd.




#### CH78 -1Mbps

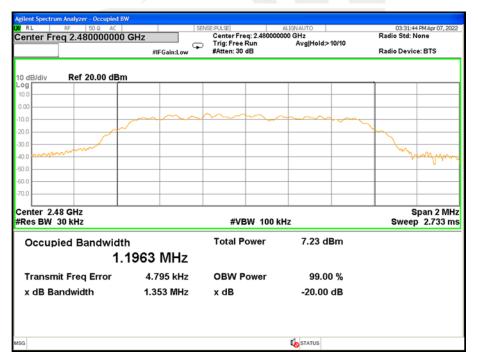


#### CH00 -2Mbps

**K**STATUS



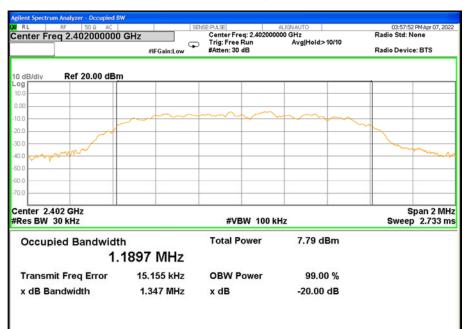
Shenzhen STS Test Services Co., Ltd. Tel: +86-755 3688 6288 Fax: +86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com




## Page 67 of 73

#### CH39 -2Mbps

| RL RF 50 Q AC              | S           | ENSE:PULSE                      | ALIGNAUTO      | 03:29:48 PM Apr 07, 2022 |  |
|----------------------------|-------------|---------------------------------|----------------|--------------------------|--|
| enter Freq 2.441000000 GHz |             | Center Freq: 2.4410000          |                | Radio Std: None          |  |
|                            | #IFGain:Low | Trig: Free Run<br>#Atten: 30 dB | Avg Hold>10/10 | Radio Device: BTS        |  |
|                            |             |                                 |                |                          |  |
| 0 dB/div Ref 20.00 dBm     |             |                                 |                |                          |  |
| 0.0                        |             |                                 |                |                          |  |
| .00                        |             | mon                             |                |                          |  |
| 0.0                        |             |                                 |                |                          |  |
| 0.0                        |             |                                 |                |                          |  |
| 0.0 anone market           |             |                                 |                | mon                      |  |
| 0.0                        |             |                                 |                | · · · · ·                |  |
| 0.0                        |             |                                 |                |                          |  |
| 0.0                        |             |                                 |                |                          |  |
| enter 2.441 GHz            |             |                                 |                | Span 2 MH                |  |
| Res BW 30 kHz              |             | #VBW 100 kHz                    |                | Sweep 2.733 m            |  |
| Occupied Bandwidth         | ı           | <b>Total Power</b>              | 7.79 dBm       |                          |  |
| 1.1                        | 1938 MHz    |                                 |                |                          |  |
| Transmit Freq Error        | 4.784 kHz   | <b>OBW Power</b>                | 99.00 %        |                          |  |
| x dB Bandwidth             | 1.355 MHz   | x dB                            | -20.00 dB      |                          |  |
|                            |             |                                 |                |                          |  |
| G                          |             |                                 | STATUS         |                          |  |


#### CH78 -2Mbps



П



#### CH00 -3Mbps



#### CH39 -3Mbps

TATUS



Shenzhen STS Test Services Co., Ltd.



## CH78 -3Mbps

| Agilent Spectrum Analyzer - Occupied BV<br>XI RL RF 50 Ω AC |                    | NSE:PULSE                                                | ALIGN AUTO | 04:02:32 PM Apr 07, 2022             |
|-------------------------------------------------------------|--------------------|----------------------------------------------------------|------------|--------------------------------------|
| Center Freq 2.48000000                                      | GHz<br>#IFGain:Low | Center Freq: 2.480000<br>Trig: Free Run<br>#Atten: 30 dB |            | Radio Std: None<br>Radio Device: BTS |
|                                                             |                    |                                                          |            |                                      |
| 10 dB/div Ref 20.00 dBm                                     | ۱ <u> </u>         |                                                          |            |                                      |
| 10.0                                                        |                    |                                                          |            |                                      |
| 0.00                                                        |                    |                                                          |            |                                      |
| 10.0                                                        | ~~~~~~             |                                                          |            | ~                                    |
| 30.0                                                        |                    |                                                          |            |                                      |
| 40.0 www.www.                                               |                    |                                                          |            | - marine and a second                |
| -50.0                                                       |                    |                                                          |            |                                      |
| 60.0                                                        |                    | · · · · ·                                                |            |                                      |
| -70.0                                                       |                    |                                                          |            |                                      |
| Center 2.48 GHz<br>#Res BW 30 kHz                           |                    | #VBW 100 k                                               | Hz         | Span 2 MHz<br>Sweep 2.733 ms         |
| Occupied Bandwidth                                          | n                  | Total Power                                              | 7.32 dBm   |                                      |
|                                                             | 1892 MHz           |                                                          |            |                                      |
| Transmit Freq Error                                         | 15.505 kHz         | OBW Power                                                | 99.00 %    |                                      |
| x dB Bandwidth                                              | 1.344 MHz          | x dB                                                     | -20.00 dB  |                                      |
| X dB Bandwidth                                              | 1.344 WHZ          | хав                                                      | -20.00 dB  |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          | 4          |                                      |
| ISG                                                         |                    |                                                          | STATUS     |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          |            |                                      |
|                                                             |                    |                                                          |            |                                      |



# 9. OUTPUT POWER TEST

## 9.1 LIMIT

| FCC Part 15.247,Subpart C            |           |                                                                               |                         |      |  |
|--------------------------------------|-----------|-------------------------------------------------------------------------------|-------------------------|------|--|
| Section                              | Test Item | Limit                                                                         | Frequency Range (MHz) R |      |  |
|                                      |           | 1 W or 0.125W                                                                 |                         | PASS |  |
| 15.247 Output<br>(a)(1)&(b)(1) Power |           | if channel separation ><br>2/3 bandwidthprovided<br>thesystems operatewith an | 2400-2483.5             |      |  |
|                                      |           | output power no greater<br>than125 mW(20.97dBm)                               |                         |      |  |

## 9.2 TEST PROCEDURE

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:

a) Use the following spectrum analyzer settings:

1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.

2) RBW > 20 dB bandwidth of the emission being measured.

3) VBW  $\geq$  RBW.

4) Sweep: Auto.

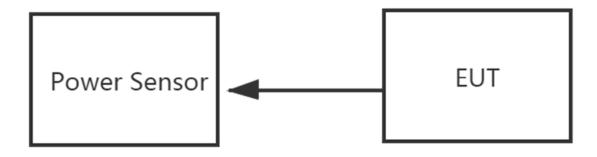
5) Detector function: Peak.

6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.


e) A plot of the test results and setup description shall be included in the test report.

NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DSS bandwidth and shall use a fast-responding diode detector.

9.3 TEST SETUP



## 9.4 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

Shenzhen STS Test Services Co., Ltd.



## 9.5 TEST RESULTS

| Temperature:  | <b>25</b> ℃ | Relative Humidity: | 60% |
|---------------|-------------|--------------------|-----|
| Test Voltage: | DC 3.7V     |                    |     |

| Modulation        | Frequency (MHz) | Peak<br>Power<br>(dBm) | Average Power<br>(dBm) | Limit<br>(dBm) |
|-------------------|-----------------|------------------------|------------------------|----------------|
| GFSK<br>(1M)      | 2402            | 2.87                   | 0.47                   | 20.97          |
|                   | 2441            | 2.68                   | 0.40                   | 20.97          |
|                   | 2480            | 2.58                   | 0.28                   | 20.97          |
| π/4-DQPSK<br>(2M) | 2402            | 3.47                   | -1.04                  | 20.97          |
|                   | 2441            | 3.58                   | -0.91                  | 20.97          |
|                   | 2480            | 3.62                   | -0.81                  | 20.97          |
| 8-DPSK<br>(3M)    | 2402            | 3.63                   | -0.03                  | 20.97          |
|                   | 2441            | 3.60                   | -0.23                  | 20.97          |
|                   | 2480            | 3.50                   | -0.41                  | 20.97          |



## 10. ANTENNA REQUIREMENT

## **10.1 STANDARD REQUIREMENT**

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

## 10.2 EUT ANTENNA

The EUT antenna is Ceramic antenna Antenna. It comply with the standard requirement.



Shenzhen STS Test Services Co., Ltd.



## **APPENDIX-PHOTOS OF TEST SETUP**

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

\* \* \* \* \* END OF THE REPORT \* \* \* \*



Shenzhen STS Test Services Co., Ltd.