MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Fax: +86-512-66308368 Web: www.mrt-cert.com Report No.: 1611RSU01003 Report Version: V01 Issue Date: 03-26-2017 # **MEASUREMENT REPORT** # FCC PART 15.247 Bluetooth BLE **FCC ID:** 2AEY7-S8A002 **APPLICANT:** Bak USB Technologies Corp. **Application Type:** Certification **Product:** MID Model No.: Seal 8 pro FCC Classification: Digital Transmission System (DTS) FCC Rule Part(s): Part 15.247 Test Procedure(s): ANSI C63.10-2013, KDB 558074 D01v03r05 **Test Date:** November 08, 2017 ~ March 25, 2017 Reviewed By Manager Approved By **CEO** (Robin Wu) (Marlin Chen) Page Number: 1 of 46 The test results relate only to the samples tested. This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 D01v03r05. Test results reported herein relate only to the item(s) tested. The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd. FCC ID: 2AEY7-S8A002 # **Revision History** | Report No. | Version | Description | Issue Date | Note | |--------------|---------|----------------|------------|-------| | 1611RSU01003 | Rev. 01 | Initial report | 03-26-2017 | Valid | | | | | | | FCC ID: 2AEY7-S8A002 Page Number: 2 of 46 # CONTENTS | De | scriptio | n F | age | |----|----------|---|-----| | 1. | INTR | ODUCTION | 6 | | | 1.1. | Scope | 6 | | | 1.2. | MRT Test Location | 6 | | 2. | PROD | DUCT INFORMATION | 7 | | | 2.1. | Feature of Equipment under Test | 7 | | | 2.2. | Product Specification Subjective to this Report | | | | 2.3. | Working Frequencies | | | | 2.4. | Device Capabilities | 9 | | | 2.5. | Test Configuration | 9 | | | 2.6. | EMI Suppression Device(s)/Modifications | 9 | | | 2.7. | Labeling Requirements | 9 | | | 2.8. | Test Software | 9 | | 3. | DESC | RIPTION OF TEST | 10 | | | 3.1. | Evaluation Procedure | 10 | | | 3.2. | AC Line Conducted Emissions | | | | 3.3. | Radiated Emissions | | | 4. | ANTE | NNA REQUIREMENTS | 12 | | | | | | | 5. | | EQUIPMENT CALIBRATION DATE | | | 6. | MEAS | SUREMENT UNCERTAINTY | 14 | | 7. | TEST | RESULT | 15 | | | 7.1. | Summary | 15 | | | 7.2. | 6dB Bandwidth Measurement | 16 | | | 7.2.1. | Test Limit | 16 | | | 7.2.2. | Test Procedure used | 16 | | | 7.2.3. | Test Setting | 16 | | | 7.2.4. | Test Setup | 16 | | | 7.2.5. | Test Result | 17 | | | 7.3. | Output Power Measurement | 18 | | | 7.3.1. | Test Limit | 18 | | | 7.3.2. | Test Procedure Used | 18 | | | 7.3.3. | Test Setting | 18 | | | 7.3.4. | Test Setup | 18 | | | 7.3.5. | Test Result of Output Power | 19 | | | 7.4. | Power Spectral Density Measurement | 20 | | 7.4.1. | Test Limit | 20 | |--------|---|----| | 7.4.2. | Test Procedure Used | 20 | | 7.4.3. | Test Setting | 20 | | 7.4.4. | Test Setup | 20 | | 7.4.5. | Test Result | 21 | | 7.5. | Conducted Band Edge and Out-of-Band Emissions | 22 | | 7.5.1. | Test Limit | 22 | | 7.5.2. | Test Procedure Used | 22 | | 7.5.3. | Test Settitng | 22 | | 7.5.4. | Test Setup | 23 | | 7.5.5. | Test Result | 24 | | 7.6. | Radiated Spurious Emission Measurement | 26 | | 7.6.1. | Test Limit | 26 | | 7.6.2. | Test Procedure Used | 26 | | 7.6.3. | Test Setting | 26 | | 7.6.4. | Test Setup | 28 | | 7.6.5. | Test Result | 30 | | 7.7. | Radiated Restricted Band Edge Measurement | 35 | | 7.7.1. | Test Result | 35 | | 7.8. | AC Conducted Emissions Measurement | 43 | | 7.8.1. | Test Limit | 43 | | 7.8.2. | Test Setup | 43 | | 7.8.3. | Test Result | 44 | | CONC | CLUSION | 44 | 8. # §2.1033 General Information | Applicant: | Bak USB Technologies Corp. | | | | |-------------------------|--|--|--|--| | Applicant Address: | 125 Michigan Avenue, Buffalo, NY 14203, USA | | | | | Manufacturer: | Shenzhen Wisky Technology Co., Ltd. | | | | | Manufacturer Address: | 5th Floor, W2-A Building, Hi-tech Park South 1st Road, Nanshan District, | | | | | | Shenzhen, China | | | | | Test Site: | MRT Technology (Suzhou) Co., Ltd | | | | | Test Site Address: | D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong | | | | | | Economic Development Zone, Suzhou, China | | | | | MRT Registration No.: | 809388 | | | | | FCC Rule Part(s): | Part 15.247 | | | | | Model No.: | Seal 8 pro | | | | | FCC ID: | 2AEY7-S8A002 | | | | | Test Device Serial No.: | N/A ☐ Production ☐ Pre-Production ☐ Engineering | | | | | FCC Classification: | Digital Transmission System (DTS) | | | | ### **Test Facility / Accreditations** Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China. - MRT facility is a FCC registered (MRT Reg. No. 809388) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules. - MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada. - MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council. - MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules. FCC ID: 2AEY7-S8A002 Page Number: 5 of 46 ### 1. INTRODUCTION ## 1.1. Scope Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau. ### 1.2. MRT Test Location The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013. # 2. PRODUCT INFORMATION # 2.1. Feature of Equipment under Test | Product Name | MID | | |---------------------|-------------------------------------|--| | FCC ID | 2AEY7-S8A002 | | | Model No. | Seal 8 pro | | | LTE Specification | LTE Band 2 / 4 / 5 / 13 / 17 | | | Wi-Fi Specification | 802.11a//b/g/n/ac | | | Bluetooth Version | v4.0 dual mode | | | NFC | 13.56MHz | | | RF ID | 920.25 ~ 924.75MHz | | | Components | | | | Adapter | M/N: BCT050500-C02U | | | | INPUT: 100-240V ~ 50/60Hz, 0.6A Max | | | | OUTPUT: 5Vdc, 5.0A | | # 2.2. Product Specification Subjective to this Report | Bluetooth Frequency | 2402~2480MHz | |---------------------|--------------| | Bluetooth Version | v4.0 | | Type of modulation | FHSS | | Data Rate | 1Mbps(GFSK) | | Antenna Type | PIFA Antenna | | Antenna Gain | 3.21dBi | Note: For other features of this EUT, test report will be issued separately. FCC ID: 2AEY7-S8A002 Page Number: 7 of 46 # 2.3. Working Frequencies Channel List for BLE | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------| | 00 | 2402 MHz | 01 | 2404 MHz | 02 | 2406 MHz | | 03 | 2408 MHz | 04 | 2410 MHz | 05 | 2412 MHz | | 06 | 2414 MHz | 07 | 2416 MHz | 08 | 2418 MHz | | 09 | 2420 MHz | 10 | 2422 MHz | 11 | 2424 MHz | | 12 | 2426 MHz | 13 | 2428 MHz | 14 | 2430 MHz | | 15 | 2432 MHz | 16 | 2434 MHz | 17 | 2436 MHz | | 18 | 2438 MHz | 19 | 2440 MHz | 20 | 2442 MHz | | 21 | 2444 MHz | 22 | 2446 MHz | 23 | 2448 MHz | | 24 | 2450 MHz | 25 | 2452 MHz | 26 | 2454 MHz | | 27 | 2456 MHz | 28 | 2458 MHz | 29 | 2460 MHz | | 30 | 2462 MHz | 31 | 2464 MHz | 32 | 2466 MHz | | 33 | 2468 MHz | 34 | 2470 MHz | 35 | 2472 MHz | | 36 | 2474 MHz | 37 | 2476 MHz | 38 | 2478 MHz | | 39 | 2480 MHz | | | | | ### 2.4. Device Capabilities This device contains the following capabilities: 5GHz WLAN (UNII), 2.4GHz WLAN (DTS), Bluetooth (v4.0 Dual mode), Multi-Band LTE, RF ID, NFC ### 2.5. Test Configuration The **MID** was tested per the guidance of KDB 558074 D01v03r05. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. ### 2.6. EMI Suppression Device(s)/Modifications No EMI suppression device(s) were added and/or no modifications were made during testing. ## 2.7. Labeling Requirements ### Per 2.1074 & 15.19; Docket 95-19 The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location. ### 2.8. Test Software The test utility software used during testing was engineering directive ordered by applicant. FCC ID: 2AEY7-S8A002 Page Number: 9 of 46 ### 3. DESCRIPTION OF TEST ### 3.1. Evaluation Procedure The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in KDB 558074 D01v03r05 were used in the measurement of the **MID**. Deviation from measurement procedure......None ### 3.2. AC Line Conducted Emissions The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50uH$ Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure. The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions were used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements. An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013. Line conducted emissions test results are shown in Section 7.8. FCC ID: 2AEY7-S8A002 Page Number: 10 of 46 #### 3.3. Radiated Emissions The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the Antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive Antenna height using a broadband Antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn Antennas were used. For frequencies below 30MHz, a calibrated loop Antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband Antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive Antenna height was noted for each frequency found. Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn Antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive Antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive Antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn Antenna, the horn Antenna should be always directed to the EUT when rising height. FCC ID: 2AEY7-S8A002 Page Number: 11 of 46 ## 4. ANTENNA REQUIREMENTS ### **Excerpt from §15.203 of the FCC Rules/Regulations:** "An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section." - The antenna of the MID is permanently attached. - There are no provisions for connection to an external antenna. #### Conclusion: The MID unit complies with the requirement of §15.203. FCC ID: 2AEY7-S8A002 Page Number: 12 of 46 # 5. TEST EQUIPMENT CALIBRATION DATE ### Conducted Emissions - SR2 | Instrument | Manufacturer | Type No. | Serial No. | Cali. Interval | Cali. Due Date | |----------------------------|--------------|-------------|------------|----------------|----------------| | EMI Test Receiver | R&S | ESR7 | 102030 | 1 year | 2017/05/08 | | Two-Line V-Network | R&S | ENV216 | 101683 | 1 year | 2017/06/21 | | Two-Line V-Network | R&S | ENV216 | 101684 | 1 year | 2017/06/21 | | Temperature/Humidity Meter | Yuhuaze | HTC-2 | N/A | 1 year | 2017/12/22 | | Shielding Anechoic Chamber | MIX-BEP | Chamber-SR2 | N/A | 1 year | 2017/05/10 | ### Radiated Emissions - AC2 | Instrument | Manufacturer | Type No. | Serial No. | Cali. Interval | Cali. Due Date | |-----------------------------------|--------------|-------------|-------------|----------------|----------------| | MXE EMI Receiver | Agilent | N9038A | MY51210182 | 1 year | 2017/08/03 | | Broadband Coaxial Preamplifier | Schwarzbeck | BBV 9718 | MY52090106 | 1 year | 2017/12/10 | | Preamplifier | Schwarzbeck | BBV 9721 | 9721-008 | 1 year | 2017/04/16 | | Loop Antenna | Schwarzbeck | FMZB1519 | 100982 | 1 year | 2017/12/21 | | TRILOG Antenna | Schwarzbeck | VULB9162 | 9162-047 | 1 year | 2017/10/22 | | Broad-Band Horn Antenna | Schwarzbeck | BBHA9120D | 1457 | 1 year | 2017/11/19 | | Broadband Horn Antenna | Schwarzbeck | BBHA9170 | BBHA9170549 | 1 year | 2018/01/04 | | Digitial Thermometer & Hygrometer | Minggao | ETH529 | N/A | 1 year | 2017/11/30 | | Anechoic Chamber | RIKEN | Chamber-AC2 | N/A | 1 year | 2017/05/10 | ### Conducted Test Equipment - TR3 | Instrument | Manufacturer | Type No. | Serial No. | Cali. Interval | Cali. Due Date | |----------------------------|--------------|----------|------------|----------------|----------------| | Spectrum Analyzer | Agilent | N9020A | MY52090106 | 1 year | 2017/05/08 | | USB wideband power sensor | Boonton | 55006 | 8911 | 1 year | 2017/05/08 | | Temperature/Humidity Meter | Yuhuaze | HTC-2 | N/A | 1 year | 2017/12/22 | | Software | Version | Function | |----------|---------|-------------------| | e3 | V8.3.5 | EMI Test Software | FCC ID: 2AEY7-S8A002 Page Number: 13 of 46 ### 6. MEASUREMENT UNCERTAINTY Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2. ### AC Conducted Emission Measurement - SR2 Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): 150kHz~30MHz: 3.46dB ### Radiated Emission Measurement - AC2 Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): 9kHz ~ 1GHz: 4.18dB 1GHz ~ 25GHz: 4.76dB FCC ID: 2AEY7-S8A002 Page Number: 14 of 46 ### 7. TEST RESULT ### 7.1. Summary Company Name: <u>Bak USB Technologies Corp.</u> FCC ID: N/A FCC Classification: <u>Digital Transmission System (DTS)</u> Data Rate(s) Tested: 1Mbps(GFSK) (BLE) | FCC Part
Section(s) | Test Description | Test Limit | Test
Condition | Test
Result | Reference | | | |------------------------|---|--|-------------------|----------------|----------------------|----------------|----------------| | 15.247(a)(2) | 6dB Bandwidth | ≥ 500kHz | - Conducted | | | Pass | Section
7.2 | | 15.247(b)(3) | Output Power | ≤ 1Watt | | | Pass | Section
7.3 | | | 15.247(e) | Power Spectral Density | ≤ 8dBm / 3kHz | | Pass | Section
7.4 | | | | 15.247(d) | Band Edge / Out-of-Band Emissions | ≥ 20dBc(Peak) | | Pass | Section
7.5 | | | | 15.205
15.209 | General Field Strength Limits (Restricted Bands and Radiated Emission Limits) | Emissions in restricted bands must meet the radiated limits detailed in 15.209 | Radiated | Pass | Section
7.6 & 7.7 | | | | 15.207 | AC Conducted Emissions 150kHz - 30MHz | < FCC 15.207 limits | Line
Conducted | Pass | Section
7.8 | | | #### Notes: - 1) All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions. - 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest. - 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators. FCC ID: 2AEY7-S8A002 Page Number: 15 of 46 ### 7.2. 6dB Bandwidth Measurement #### 7.2.1. Test Limit The minimum 6dB bandwidth shall be at least 500 kHz. #### 7.2.2. Test Procedure used KDB 558074 D01v03r05 - Section 8.2 Option 2 ### 7.2.3. Test Setting - The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission. - 2. Set RBW = 100 kHz - 3. VBW ≥ 3 × RBW - 4. Detector = Peak - 5. Trace mode = max hold - 6. Sweep = auto couple - 7. Allow the trace was allowed to stabilize ### 7.2.4. Test Setup FCC ID: 2AEY7-S8A002 Page Number: 16 of 46 #### 7.2.5. Test Result | Test Mode | Data Rate
(Mbps) | Channel No. | Frequency
(MHz) | 6dB Bandwidth
(MHz) | Limit
(MHz) | Result | |-----------|---------------------|-------------|--------------------|------------------------|----------------|--------| | BLE | 1 | 00 | 2402 | 0.51 | ≥ 0.5 | Pass | | BLE | 1 | 19 | 2440 | 0.51 | ≥ 0.5 | Pass | | BLE | 1 | 39 | 2480 | 0.51 | ≥ 0.5 | Pass | ### 7.3. Output Power Measurement ### 7.3.1. Test Limit The maximum out power shall be less 1 Watt (30dBm). ### 7.3.2. Test Procedure Used KDB 558074 D01v03r05 - Section 9.1.2 PKPM1 - Peak Power Method ### 7.3.3. Test Setting # Method PKPM1 (Peak Power Measurement of Signals with DTS BW ≤ 50MHz) Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz. ### 7.3.4. Test Setup FCC ID: 2AEY7-S8A002 Page Number: 18 of 46 # 7.3.5. Test Result of Output Power # **Test Result of Peak Output Power** | Test Mode | Data Rate
(Mbps) | Channel No. | Frequency
(MHz) | Peak Power
(dBm) | Limit
(dBm) | Result | |-----------|---------------------|-------------|--------------------|---------------------|----------------|--------| | BLE | 1 | 00 | 2402 | 0.12 | ≤ 30 | Pass | | BLE | 1 | 19 | 2440 | 0.71 | ≤ 30 | Pass | | BLE | 1 | 39 | 2480 | 0.36 | ≤ 30 | Pass | # **Test Result of Average Output Power (Reporting Only)** | Test Mode | Data Rate | Channel No. | Frequency | Average | Limit | Result | |-----------|-----------|-------------|-----------|-------------|-------|--------| | | (Mbps) | | (MHz) | Power (dBm) | (dBm) | | | BLE | 1 | 00 | 2402 | -0.31 | ≤ 30 | Pass | | BLE | 1 | 19 | 2440 | 0.25 | ≤ 30 | Pass | | BLE | 1 | 39 | 2480 | -0.13 | ≤ 30 | Pass | FCC ID: 2AEY7-S8A002 Page Number: 19 of 46 ### 7.4. Power Spectral Density Measurement ### 7.4.1. Test Limit The maximum permissible power spectral density is 8dBm in any 3 kHz band. #### 7.4.2. Test Procedure Used KDB 558074 D01v03r05 - Section 10.2 Method PKPSD ### 7.4.3. Test Setting - 1. Analyzer was set to the center frequency of the DTS channel under investigation - 2. Span = 1.5 times the DTS channel bandwidth - 3. RBW = 3kHz - 4. VBW = 10kHz - 5. Detector = peak - 6. Sweep time = auto couple - 7. Trace mode = max hold - 8. Trace was allowed to stabilize ### 7.4.4. Test Setup FCC ID: 2AEY7-S8A002 Page Number: 20 of 46 Report No.: 1611RSU01003 ### 7.4.5. Test Result | Test Mode | Data Rate
(Mbps) | Channel No. | Frequency
(MHz) | PSD Result
(dBm / 3kHz) | Limit
(dBm / 3kHz) | Result | |-----------|---------------------|-------------|--------------------|----------------------------|-----------------------|--------| | BLE | 1 | 00 | 2402 | -17.60 | ≤ 8 | Pass | | BLE | 1 | 19 | 2440 | -17.00 | ≤ 8 | Pass | | BLE | 1 | 39 | 2480 | -17.25 | ≤ 8 | Pass | ### 7.5. Conducted Band Edge and Out-of-Band Emissions #### 7.5.1. Test Limit The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure. #### 7.5.2. Test Procedure Used KDB 558074 D01v03r05 - Section 11.2 & Section 11.3 ### 7.5.3. Test Settitng ### 1. Reference level measurement - (a) Set instrument center frequency to DTS channel center frequency - (b) Set the span to ≥ 1.5 times the DTS bandwidth - (c) Set the RBW = 100 kHz - (d) Set the VBW \geq 3 x RBW - (e) Detector = peak - (f) Sweep time = auto couple - (g) Trace mode = max hold - (h) Allow trace to fully stabilize #### 2. Emission level measurement - (a) Set the center frequency and span to encompass frequency range to be measured - (b) RBW = 100kHz - (c) VBW = 300kHz - (d) Detector = Peak - (e) Number of sweep points ≥ 2 x Span/RBW - (f) Trace mode = max hold - (g) Sweep time = auto couple - (h) The trace was allowed to stabilize FCC ID: 2AEY7-S8A002 Page Number: 22 of 46 Page Number: 23 of 46 # 7.5.4. Test Setup #### 7.5.5. Test Result | Test Mode | Data Rate
(Mbps) | Channel No. | Frequency
(MHz) | Limit | Result | |-----------|---------------------|-------------|--------------------|-------|--------| | BLE | 1 | 00 | 2402 | 20dBc | Pass | | BLE | 1 | 19 | 2440 | 20dBc | Pass | | BLE | 1 | 39 | 2480 | 20dBc | Pass | ### 7.6. Radiated Spurious Emission Measurement ### 7.6.1. Test Limit All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209. | FCC Part 15 Subpart C Paragraph 15.209 | | | | | | | | | |--|--------------------------|-------------------------------|--|--|--|--|--|--| | Frequency
[MHz] | Field Strength
[uV/m] | Measured Distance
[Meters] | | | | | | | | 0.009 - 0.490 | 2400/F (kHz) | 300 | | | | | | | | 0.490 - 1.705 | 24000/F (kHz) | 30 | | | | | | | | 1.705 - 30 | 30 | 30 | | | | | | | | 30 - 88 | 100 | 3 | | | | | | | | 88 - 216 | 150 | 3 | | | | | | | | 216 - 960 | 200 | 3 | | | | | | | | Above 960 | 500 | 3 | | | | | | | ### 7.6.2. Test Procedure Used KDB 558074 D01v03r05 - Section 12.2.3 (quasi-peak measurements) KDB 558074 D01v03r05 - Section 12.2.4 (peak power measurements) KDB 558074 D01v03r05 - Section 12.2.5 (average power measurements) ### 7.6.3. Test Setting ### Peak Field Strength Measurements per Section 12.2.4 of KDB 558074 D01v03r05 - 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest - 2. RBW = as specified in Table 1 - 3. VBW = 3MHz - 4. Detector = peak - 5. Sweep time = auto couple FCC ID: 2AEY7-S8A002 Page Number: 26 of 46 - 6. Trace mode = max hold - 7. Trace was allowed to stabilize Table 1 - RBW as a function of frequency | Frequency | RBW | | | |---------------|---------------|--|--| | 9 ~ 150 kHz | 200 ~ 300 Hz | | | | 0.15 ~ 30 MHz | 9 ~ 10 kHz | | | | 30 ~ 1000 MHz | 100 ~ 120 kHz | | | | > 1000 MHz | 1 MHz | | | ### Average Field Strength Measurements per Section 12.2.4 of KDB 558074 D01v03r05 - 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest - 2. RBW = 1MHz - 3. VBW ≥ 1/T - 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode - 5. Detector = Peak - 6. Sweep time = auto - 7. Trace mode = max hold - 8. Allow max hold to run for at least 50 times (1/duty cycle) traces FCC ID: 2AEY7-S8A002 Page Number: 27 of 46 # 7.6.4. Test Setup # 9kHz ~ 30MHz Test Setup: # 30MHz ~ 1GHz Test Setup: FCC ID: 2AEY7-S8A002 Page Number: 28 of 46 ## 1GHz ~ 18GHz Test Setup: ## 18GHz ~25GHz Test Setup: #### 7.6.5. Test Result **Remark:** There are the ambient noise within frequency range 9 kHz \sim 30 MHz and 18GHz \sim 25GHz, the permissible value is not show in the report. | Test Mode: | BLE | Test Site: | AC2 | | | | |---------------|--|----------------|------------|--|--|--| | Test Channel: | 00 | Test Engineer: | Bruce Wang | | | | | Remark: | Average measurement was not performed if peak level lower than average | | | | | | | | limit. | | | | | | | | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show | | | | | | | | in the report. | | | | | | | Mark | Frequency | Reading | Factor | Measure | Limit | Margin | Detector | Polarization | |------|-----------|---------|--------|----------|----------|--------|----------|--------------| | | (MHz) | Level | (dB) | Level | (dBµV/m) | (dB) | | | | | | (dBµV) | | (dBµV/m) | | | | | | | 3839.0 | 37.8 | -0.6 | 37.2 | 74.0 | -36.8 | Peak | Horizontal | | | 4876.0 | 34.9 | 2.6 | 37.5 | 74.0 | -36.5 | Peak | Horizontal | | * | 6584.5 | 34.5 | 7.5 | 42.0 | 76.0 | -34.0 | Peak | Horizontal | | * | 9670.0 | 34.5 | 12.6 | 47.1 | 76.0 | -28.9 | Peak | Horizontal | | | 3839.0 | 37.8 | -0.6 | 37.2 | 74.0 | -36.8 | Peak | Vertical | | | 4884.5 | 35.9 | 2.7 | 38.6 | 74.0 | -35.4 | Peak | Vertical | | * | 6550.5 | 33.7 | 7.4 | 41.1 | 76.0 | -34.9 | Peak | Vertical | | * | 9865.5 | 32.1 | 13.2 | 45.3 | 76.0 | -30.7 | Peak | Vertical | Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (96.0dBµV/m) or 15.209 which is higher. Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB) Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB) FCC ID: 2AEY7-S8A002 Page Number: 30 of 46 | Test Mode: | BLE | Test Site: | AC2 | | | | |---------------|---|------------------------|---------------------------|--|--|--| | Test Channel: | 19 | Test Engineer: | Bruce Wang | | | | | Remark: | Average measurement was not performed if peak level lower than average limit. | | | | | | | | Other frequency was 20dB bel in the report. | ow limit line within 1 | -18GHz, there is not show | | | | | Mark | Frequency | Reading | Factor | Measure | Limit | Margin | Detector | Polarization | |------|-----------|---------|--------|----------|----------|--------|----------|--------------| | | (MHz) | Level | (dB) | Level | (dBµV/m) | (dB) | | | | | | (dBµV) | | (dBµV/m) | | | | | | | 3839.0 | 39.3 | -0.6 | 38.7 | 74.0 | -35.3 | Peak | Horizontal | | | 4961.0 | 36.4 | 2.7 | 39.1 | 74.0 | -34.9 | Peak | Horizontal | | * | 6644.0 | 35.1 | 7.7 | 42.8 | 77.5 | -34.7 | Peak | Horizontal | | * | 9865.5 | 33.2 | 13.2 | 46.4 | 77.5 | -31.1 | Peak | Horizontal | | | 3754.0 | 36.5 | -0.6 | 35.9 | 74.0 | -38.1 | Peak | Vertical | | | 4876.0 | 34.0 | 2.6 | 36.6 | 74.0 | -37.4 | Peak | Vertical | | * | 6907.5 | 34.2 | 8.4 | 42.6 | 77.5 | -34.9 | Peak | Vertical | | * | 9882.5 | 32.7 | 13.3 | 46.0 | 77.5 | -31.5 | Peak | Vertical | Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (97.5dB μ V/m) or 15.209 which is higher. Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB) Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB) FCC ID: 2AEY7-S8A002 Page Number: 31 of 46 | Test Mode: | BLE | Test Site: | AC2 | | | | |---------------|--|----------------|------------|--|--|--| | Test Channel: | 39 | Test Engineer: | Bruce Wang | | | | | Remark: | Average measurement was not performed if peak level lower than average | | | | | | | | limit. | | | | | | | | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show | | | | | | | | in the report. | | | | | | | Mark | Frequency
(MHz) | Reading
Level | Factor
(dB) | Measure
Level | Limit
(dBµV/m) | Margin
(dB) | Detector | Polarization | |------|--------------------|------------------|----------------|------------------|-------------------|----------------|----------|--------------| | | | (dBµV) | | (dBµV/m) | | | | | | | 3839.0 | 38.0 | -0.6 | 37.4 | 74.0 | -36.6 | Peak | Horizontal | | | 4731.5 | 36.8 | 2.7 | 39.5 | 74.0 | -34.5 | Peak | Horizontal | | * | 6414.5 | 34.6 | 6.7 | 41.3 | 76.6 | -35.3 | Peak | Horizontal | | * | 9840.0 | 32.6 | 13.5 | 46.1 | 76.6 | -30.5 | Peak | Horizontal | | | 3839.0 | 37.0 | -0.6 | 36.4 | 74.0 | -37.6 | Peak | Vertical | | | 4799.5 | 35.9 | 2.8 | 38.7 | 74.0 | -35.3 | Peak | Vertical | | * | 6525.0 | 33.9 | 7.3 | 41.2 | 76.6 | -35.4 | Peak | Vertical | | * | 10120.5 | 33.5 | 13.5 | 47.0 | 76.6 | -29.6 | Peak | Vertical | Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (96.6dB μ V/m) or 15.209 which is higher. Note 2: Measure Level (dBμV/m) = Reading Level (dBμV) + Factor (dB) Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB) FCC ID: 2AEY7-S8A002 Page Number: 32 of 46 ## The worst case of Radiated Emission below 1GHz: | Worse Case Mode: Transmit by BLE at channel 2402MHz | | | | | | |---|--------------------------|--|--|--|--| | EUT: MID | Power: By Battery | | | | | | Probe: VULB9162_0.03-8GHz | Polarity: Horizontal | | | | | | Limit: FCC_Part15.209_RE(3m) | Engineer: Bruce Wang | | | | | | Site: AC2 | Time: 2016/12/24 - 13:24 | | | | | | No | Flag | Mark | Frequency | Measure | Reading | Over Limit | Limit | Factor | Туре | |----|------|------|-----------|----------|---------|------------|----------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | | 34.365 | 12.174 | -1.633 | -27.826 | 40.000 | 13.807 | QP | | 2 | | | 54.735 | 10.112 | -3.620 | -29.888 | 40.000 | 13.732 | QP | | 3 | | | 149.310 | 12.794 | -2.316 | -30.706 | 43.500 | 15.110 | QP | | 4 | | | 403.450 | 14.107 | -2.474 | -31.893 | 46.000 | 16.581 | QP | | 5 | | | 624.610 | 19.028 | -1.994 | -26.972 | 46.000 | 21.022 | QP | | 6 | | * | 925.795 | 22.416 | -2.298 | -23.584 | 46.000 | 24.714 | QP | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) | Site: AC2 | Time: 2016/12/24 - 13:37 | | | | | |---|--------------------------|--|--|--|--| | Limit: FCC_Part15.209_RE(3m) | Engineer: Bruce Wang | | | | | | Probe: VULB9162_0.03-8GHz | Polarity: Vertical | | | | | | EUT: MID | Power: By Battery | | | | | | Worse Case Mode: Transmit by BLF at channel 2402MHz | | | | | | Worse Case Mode: Transmit by BLE at channel 2402MHz | No | Flag | Mark | Frequency | Measure | Reading | Over Limit | Limit | Factor | Туре | |----|------|------|-----------|----------|---------|------------|----------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | * | 33.395 | 21.763 | 8.017 | -18.237 | 40.000 | 13.746 | QP | | 2 | | | 79.955 | 17.302 | 7.218 | -22.698 | 40.000 | 10.084 | QP | | 3 | | | 154.645 | 12.377 | -2.809 | -31.123 | 43.500 | 15.186 | QP | | 4 | | | 533.430 | 22.396 | 3.250 | -23.604 | 46.000 | 19.146 | QP | | 5 | | | 728.855 | 23.673 | 1.245 | -22.327 | 46.000 | 22.428 | QP | | 6 | | | 955.380 | 26.171 | 1.245 | -19.829 | 46.000 | 24.926 | QP | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) # 7.7. Radiated Restricted Band Edge Measurement ### 7.7.1. Test Result | Site: AC2 | Time: 2016/12/24 - 14:42 | | | | | |---|--------------------------|--|--|--|--| | Limit: FCC_Part15.209_RE(3m) | Engineer: Vince Yu | | | | | | Probe: BBHA9120D_1-18GHz | Polarity: Horizontal | | | | | | EUT: MID | Power: AC 120V/60Hz | | | | | | Test Mode: Transmit by BLE at Channel 2402MHz | | | | | | 120 80 70 60 40 30 20 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 Frequency(MHz) | No | Flag | Mark | Frequency | Measure | Reading | Over Limit | Limit | Factor | Туре | |----|------|------|-----------|----------|---------|------------|----------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | | 2389.183 | 60.377 | 28.103 | -13.623 | 74.000 | 32.274 | PK | | 2 | | | 2390.000 | 58.649 | 26.371 | -15.351 | 74.000 | 32.278 | PK | | 3 | | * | 2402.008 | 95.961 | 63.687 | N/A | N/A | 32.274 | PK | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) FCC ID: 2AEY7-S8A002 Page Number: 35 of 46 | Site: AC2 | Time: 2016/12/24 - 14:47 | | | | | |---|--------------------------|--|--|--|--| | Limit: FCC_Part15.209_RE(3m) | Engineer: Vince Yu | | | | | | Probe: BBHA9120D_1-18GHz | Polarity: Horizontal | | | | | | EUT: MID | Power: AC 120V/60Hz | | | | | | Test Mode: Transmit by BLE at Channel 2402MHz | | | | | | | No | Flag | Mark | Frequency | Measure | Reading | Over Limit | Limit | Factor | Туре | |----|------|------|-----------|----------|---------|------------|----------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | | 2375.692 | 49.465 | 17.256 | -4.535 | 54.000 | 32.209 | AV | | 2 | | | 2390.000 | 48.429 | 16.151 | -5.571 | 54.000 | 32.278 | AV | | 3 | | * | 2401.913 | 95.055 | 62.781 | N/A | N/A | 32.274 | AV | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) | Site: AC2 | Time: 2016/12/24 - 14:50 | | | | | |---|--------------------------|--|--|--|--| | Limit: FCC_Part15.209_RE(3m) | Engineer: Vince Yu | | | | | | Probe: BBHA9120D_1-18GHz | Polarity: Vertical | | | | | | EUT: MID | Power: AC 120V/60Hz | | | | | | Test Mode: Transmit by BLE at Channel 2402MHz | | | | | | 120 80 70 60 40 30 20 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 Frequency(MHz) | No | Flag | Mark | Frequency | Measure | Reading | Over Limit | Limit | Factor | Туре | |----|------|------|-----------|----------|---------|------------|----------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | | 2385.905 | 60.827 | 28.572 | -13.173 | 74.000 | 32.255 | PK | | 2 | | | 2390.000 | 59.101 | 26.823 | -14.899 | 74.000 | 32.278 | PK | | 3 | | * | 2402.055 | 94.428 | 62.154 | N/A | N/A | 32.273 | PK | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) | Site: AC2 | Time: 2016/12/24 - 14:53 | | | | | |---|--------------------------|--|--|--|--| | Limit: FCC_Part15.209_RE(3m) | Engineer: Vince Yu | | | | | | Probe: BBHA9120D_1-18GHz | Polarity: Vertical | | | | | | EUT: MID | Power: AC 120V/60Hz | | | | | | Test Mode: Transmit by BLE at Channel 2402MHz | | | | | | 120 2 80 70 40 30 20 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 Frequency(MHz) | No | Flag | Mark | Frequency | Measure | Reading | Over Limit | Limit | Factor | Туре | |----|------|------|-----------|----------|---------|------------|----------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | | 2390.000 | 47.972 | 15.694 | -6.028 | 54.000 | 32.278 | AV | | 2 | | * | 2401.865 | 93.217 | 60.943 | N/A | N/A | 32.274 | AV | Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB) | Site: AC2 | Time: 2016/12/24 - 14:54 | |---|--------------------------| | Limit: FCC_Part15.209_RE(3m) | Engineer: Vince Yu | | Probe: BBHA9120D_1-18GHz | Polarity: Horizontal | | EUT: MID | Power: AC 120V/60Hz | | Test Mode: Transmit by BLE at Channel 2480MHz | | Level(dBuV/m) 2477 2478 | No | Flag | Mark | Frequency | Measure | Reading | Over Limit | Limit | Factor | Туре | |----|------|------|-----------|----------|---------|------------|----------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | * | 2480.220 | 96.555 | 64.285 | N/A | N/A | 32.270 | PK | | 2 | | | 2483.500 | 58.507 | 26.226 | -15.493 | 74.000 | 32.282 | PK | | 3 | | | 2486.246 | 60.606 | 28.315 | -13.394 | 74.000 | 32.291 | PK | Frequency(MHz) Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB) | Site: AC2 | Time: 2016/12/24 - 15:00 | |---|--------------------------| | Limit: FCC_Part15.209_RE(3m) | Engineer: Vince Yu | | Probe: BBHA9120D_1-18GHz | Polarity: Horizontal | | EUT: MID | Power: AC 120V/60Hz | | Test Mode: Transmit by BLE at Channel 2480MHz | | Level(dBuV/m) 2477 2478 | No | Flag | Mark | Frequency | Measure | Reading | Over Limit | Limit | Factor | Туре | |----|------|------|-----------|----------|---------|------------|----------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | * | 2479.956 | 95.860 | 63.591 | N/A | N/A | 32.269 | AV | | 2 | | | 2483.500 | 48.358 | 16.077 | -5.642 | 54.000 | 32.282 | AV | | 3 | | | 2493.640 | 48.967 | 16.651 | -5.033 | 54.000 | 32.316 | AV | Frequency(MHz) Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB) | Site: AC2 | Time: 2016/12/24 - 15:00 | |---|--------------------------| | Limit: FCC_Part15.209_RE(3m) | Engineer: Vince Yu | | Probe: BBHA9120D_1-18GHz | Polarity: Vertical | | EUT: MID | Power: AC 120V/60Hz | | Test Mode: Transmit by BLE at Channel 2480MHz | | | No | Flag | Mark | Frequency | Measure | Reading | Over Limit | Limit | Factor | Туре | |----|------|------|-----------|----------|---------|------------|----------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | * | 2479.794 | 94.730 | 62.462 | N/A | N/A | 32.269 | PK | | 2 | | | 2483.500 | 58.309 | 26.028 | -15.691 | 74.000 | 32.282 | PK | | 3 | | | 2488.914 | 60.618 | 28.318 | -13.382 | 74.000 | 32.300 | PK | Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB) | Site: AC2 | Time: 2016/12/24 - 15:02 | |---|--------------------------| | Limit: FCC_Part15.209_RE(3m) | Engineer: Vince Yu | | Probe: BBHA9120D_1-18GHz | Polarity: Vertical | | EUT: MID | Power: AC 120V/60Hz | | Test Mode: Transmit by BLE at Channel 2480MHz | | | No | Flag | Mark | Frequency | Measure | Reading | Over Limit | Limit | Factor | Туре | |----|------|------|-----------|----------|---------|------------|----------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV/m) | (dB) | | | | | | | (dBuV/m) | (dBuV) | | | | | | 1 | | * | 2479.921 | 93.918 | 61.649 | N/A | N/A | 32.269 | AV | | 2 | | | 2483.500 | 48.022 | 15.741 | -5.978 | 54.000 | 32.282 | AV | | 3 | | | 2490.432 | 48.962 | 16.657 | -5.038 | 54.000 | 32.305 | AV | Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB) ## 7.8. AC Conducted Emissions Measurement ### 7.8.1. Test Limit | FCC Part 15 Subpart C Paragraph 15.207 Limits | | | | | | | | | | | |---|--------------|--------------|--|--|--|--|--|--|--|--| | Frequency
(MHz) | QP
(dBuV) | AV
(dBuV) | | | | | | | | | | 0.15 - 0.50 | 66 - 56 | 56 - 46 | | | | | | | | | | 0.50 - 5.0 | 56 | 46 | | | | | | | | | | 5.0 - 30 | 60 | 50 | | | | | | | | | Note 1: The lower limit shall apply at the transition frequencies. Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz. ## 7.8.2. Test Setup FCC ID: 2AEY7-S8A002 Page Number: 43 of 46 ### 7.8.3. Test Result | Site: SR2 | Time: 2017/03/23 - 13:50 | | | | | |---|--------------------------|--|--|--|--| | Limit: FCC_Part15.207_CE_AC Power | Engineer: Bruce Wang | | | | | | Probe: ENV216_101683_Filter On | Polarity: Line | | | | | | EUT: MID | Power: AC 120V/60Hz | | | | | | Worst Case Mode: Transmit by BLE at channel 2402MHz | | | | | | 90 80 70 60 50 30 20 10 0 0.15 1 10 30 Frequency(MHz) | No | Flag | Mark | Frequency | Measure | Reading | Over Limit | Limit | Factor | Туре | |----|------|------|-----------|---------|---------|------------|--------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV) | (dB) | | | | | | | (dBuV) | (dBuV) | | | | | | 1 | | | 0.156 | 53.304 | 42.810 | -12.355 | 65.659 | 10.494 | QP | | 2 | | | 0.156 | 36.267 | 25.773 | -19.391 | 55.659 | 10.494 | AV | | 3 | | | 0.230 | 48.128 | 38.181 | -14.321 | 62.450 | 9.947 | QP | | 4 | | | 0.230 | 33.760 | 23.813 | -18.690 | 52.450 | 9.947 | AV | | 5 | | | 0.586 | 43.265 | 33.143 | -12.735 | 56.000 | 10.122 | QP | | 6 | | | 0.586 | 36.956 | 26.834 | -9.044 | 46.000 | 10.122 | AV | | 7 | | | 1.786 | 41.254 | 31.375 | -14.746 | 56.000 | 9.879 | QP | | 8 | | | 1.786 | 32.385 | 22.506 | -13.615 | 46.000 | 9.879 | AV | | 9 | | | 3.558 | 46.398 | 36.484 | -9.602 | 56.000 | 9.913 | QP | | 10 | | * | 3.558 | 39.703 | 29.789 | -6.297 | 46.000 | 9.913 | AV | | 11 | | | 5.530 | 40.307 | 30.235 | -19.693 | 60.000 | 10.072 | QP | | 12 | | | 5.530 | 34.975 | 24.903 | -15.025 | 50.000 | 10.072 | AV | Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB) | Site: SR2 | Time: 2017/03/23 - 13:57 | | | | | |---|--------------------------|--|--|--|--| | Limit: FCC_Part15.207_CE_AC Power | Engineer: Bruce Wang | | | | | | Probe: ENV216_101683_Filter On | Polarity: Neutral | | | | | | EUT: MID | Power: AC 120V/60Hz | | | | | | Worst Case Mode: Transmit by BLE at channel 2402MHz | | | | | | | No | Flag | Mark | Frequency | Measure | Reading | Over Limit | Limit | Factor | Туре | |----|------|------|-----------|---------|---------|------------|--------|--------|------| | | | | (MHz) | Level | Level | (dB) | (dBuV) | (dB) | | | | | | | (dBuV) | (dBuV) | | | | | | 1 | | | 0.154 | 52.976 | 42.260 | -12.805 | 65.781 | 10.716 | QP | | 2 | | | 0.154 | 35.719 | 25.003 | -20.063 | 55.781 | 10.716 | AV | | 3 | | | 0.238 | 47.778 | 37.786 | -14.388 | 62.166 | 9.992 | QP | | 4 | | | 0.238 | 34.474 | 24.482 | -17.692 | 52.166 | 9.992 | AV | | 5 | | | 0.574 | 44.642 | 34.497 | -11.358 | 56.000 | 10.145 | QP | | 6 | | | 0.574 | 36.334 | 26.189 | -9.666 | 46.000 | 10.145 | AV | | 7 | | | 1.786 | 40.825 | 30.945 | -15.175 | 56.000 | 9.881 | QP | | 8 | | | 1.786 | 31.729 | 21.849 | -14.271 | 46.000 | 9.881 | AV | | 9 | | | 3.510 | 46.887 | 36.972 | -9.113 | 56.000 | 9.915 | QP | | 10 | | * | 3.510 | 39.645 | 29.730 | -6.355 | 46.000 | 9.915 | AV | | 11 | | | 5.430 | 40.474 | 30.391 | -19.526 | 60.000 | 10.083 | QP | | 12 | | | 5.430 | 35.301 | 25.218 | -14.699 | 50.000 | 10.083 | AV | Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB) # 8. CONCLUSION The data collected relate only the item(s) tested and show that the **MID** is in compliance with Part 15C of the FCC Rules. The End