SGS

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM141100650203 Page: 1 of 109

FCC REPORT

Test Result:	PASS *
Date of Issue:	2015-06-15
Date of Test:	2015-03-04 to 2015-06-04
Date of Receipt:	2015-02-27
Standards:	47 CFR Part 15, Subpart C (2014)
FCC ID:	2AEY7-BBY001
Trade Mark:	BAK
Model No.(EUT):	BAK BOARD WIFI
Product Name:	Tablet PC
Factory:	BAK USA LLC
Manufacturer:	BAK USA LLC
Applicant:	BAK USA LLC
Application No:	SZEM1411006502HR

.* In the configuration tested, the EUT complied with the standards specified above. Authorized Signature:

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM141100650203 Page: 2 of 109

2 Version

Revision Record								
Version Chapter Date Modifier Remark								
00		2015-06-15		Original				

Authorized for issue by:		
Tested By	Eric Fu (Eric Fu) /Project Engineer	2015-06-04
Prepared By	Vivi Zhou	2015-06-15
	(Vivi Zhou) /Clerk	Date
Checked By	Emen-Li	2015-06-15
	(Emen Li) /Reviewer	Date

Report No.: SZEM141100650203 Page: 3 of 109

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2009	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2009	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2009	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2009	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2009	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2009	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2009	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100650203 Page: 4 of 109

4 Contents

			Page
1	COV	ER PAGE	
2	VER	SION	
3	TES [.]	T SUMMARY	
4	CON	ITENTS	
5	GEN	ERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.2 5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	EQUIPMENT LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS RF CONDUCTED SPURIOUS EMISSIONS	
	6.7 6.8	RF CONDUCTED SPURIOUS EMISSIONS	
	0.0 6.8.1		
	6.8.2		
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	РНО	TOGRAPHS - EUT TEST SETUP	
	7.1	CONDUCTED EMISSION	
	7.2	RADIATED SPURIOUS EMISSION	
8	PHO	TOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

Report No.: SZEM141100650203 Page: 5 of 109

5 General Information

5.1 Client Information

Applicant:	BAK USA LLC
Address of Applicant:	425 Michigan Avenue, Buffalo, New York 14203, USA
Manufacturer:	BAK USA LLC
Address of Manufacturer:	425 Michigan Avenue, Buffalo, New York 14203, USA
Factory:	BAK USA LLC
Address of Factory:	425 Michigan Avenue, Buffalo, New York 14203, USA

5.2 General Description of EUT

Product Name:	Tablet PC
Model No.:	BAK BOARD WIFI
Trade Mark:	ВАК
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
	IEEE 802.11n(HT40): 2422MHz to 2452MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n(HT20): 11 Channels
	IEEE 802.11n(HT40): 7 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM, QPSK,BPSK)
Sample Type:	Portable production
Test power grade	802.11b:14; 802.11g:12; 802.11n(HT20) and 802.11n(HT40):10 (manufacturer declare)
Test software of EUT	3646633(manufacturer declare)
EUT Function:	Tablet PC(GPS,;BT;wifi;ITE;FM)
Antenna Type:	Integral
Antenna Gain:	2.11dBi
Battery:	Lithium-ion battery:3.7V 4000mAh
EUT power supply:	MODEL:KA23-0502000USU
	INPUT:100-240VAC 50/60Hz 0.35A
	OUTPUT:5V == 2000mA
USB Cable:	80cm
Earphone:	150cm

Report No.: SZEM141100650203 Page: 6 of 109

Operation Frequency each of channel(802.11b/g/n HT20)										
Channel	Fr	equency	Channe	I Frequency	Channel	Fre	quency	Chann	el	Frequency
1	24	412MHz	4	2427MHz	7	244	42MHz	10		2457MHz
2	24	417MHz	5	2432MHz	8	244	47MHz	11		2462MHz
3	24	422MHz	6	2437MHz	9	245	52MHz			
Operation F	Frequ	ency each	of channe	l(802.11n HT40)						
Channe	I	Frequ	ency	Channel	Frequen	су	Chan	nel		Frequency
1		2422	MHz	4	2437MHz		z 7 2452MHz		2452MHz	
2		24271	MHz	5	2442MHz					
3		2432	MHz	6	2447MF	lz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

For 802.11n (HT40):

Channel	Frequency
The Lowest channel	2422MHz
The Middle channel	2437MHz
The Highest channel	2452MHz

Report No.: SZEM141100650203 Page: 7 of 109

Operating Environment:Temperature:26.0 °CHumidity:52 % RHAtmospheric Pressure:1010 mbarTest mode:Transmitting mode:Keep the EUT in transmitting mode with all kinds of modulation and all
kinds of data rate.Charge +Transmitting
mode:Keep the EUT in charging and transmitting mode with all kinds of
modulation and all kinds of data rate.

5.3 Test Environment and Mode

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM141100650203 Page: 8 of 109

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 10m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM141100650203 Page: 9 of 109

5.10 Equipment List

	Conducted Emission							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)			
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2016-05-13			
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-24			
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2016-05-13			
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2015-08-30			
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2015-08-30			
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2015-08-30			
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2016-05-13			
8	Coaxial Cable	SGS	N/A	SEL0025	2016-05-13			
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24			
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24			
11	Barometer	Chang Chun	DYM3	SEL0088	2016-05-13			

Report No.: SZEM141100650203 Page: 10 of 109

RE in Chamber							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)		
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2016-05-13		
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16		
3	EMI Test software	AUDIX	E3	SEL0050	N/A		
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2015-10-24		
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-24		
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2015-10-24		
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2016-05-13		
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-24		
9	Coaxial cable	SGS	N/A	SEL0027	2016-05-13		
10	Coaxial cable	SGS	N/A	SEL0189	2016-05-13		
11	Coaxial cable	SGS	N/A	SEL0121	2016-05-13		
12	Coaxial cable	SGS	N/A	SEL0178	2016-05-13		
13	Band filter	Amindeon	82346	SEL0094	2016-05-13		
14	Barometer	Chang Chun	DYM3	SEL0088	2016-05-13		
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24		
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24		
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2016-05-13		
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2015-10-24		
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2016-05-13		

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100650203 Page: 11 of 109

	RF connected test									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)					
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24					
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24					
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-24					
4	Coaxial cable	SGS	N/A	SEL0178	2016-05-13					
5	Coaxial cable	SGS	N/A	SEL0179	2016-05-13					
6	Barometer	ChangChun	DYM3	SEL0088	2016-05-13					
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2016-04-25					
8	Band filter	amideon	82346	SEL0094	2016-05-13					
9	POWER METER	R & S	NRVS	SEL0144	2015-10-24					
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2016-04-25					
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2015-10-24					

Note: The calibration interval is one year, all the instruments are valid.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100650203 Page: 12 of 109

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
15.203 requirement:	
An intentional radiator s	hall be designed to ensure that no antenna other than that furnished by the
responsible party shall b	be used with the device. The use of a permanently attached antenna or of an
antenna that uses a unio	que coupling to the intentional radiator, the manufacturer may design the unit
so that a broken antenn	a can be replaced by the user, but the use of a standard antenna jack or
electrical connector is p	rohibited.
15.247(b) (4) requireme	
	ower limit specified in paragraph (b) of this section is based on the use of
	al gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this
	ntennas of directional gain greater than 6 dBi are used, the conducted output
	nal radiator shall be reduced below the stated values in paragraphs (b)(1),
•	section, as appropriate, by the amount in dB that the directional gain of the
antenna exceeds 6 dBi.	
EUT Antenna:	9 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 3 4 5 6 7 8 9 10 1

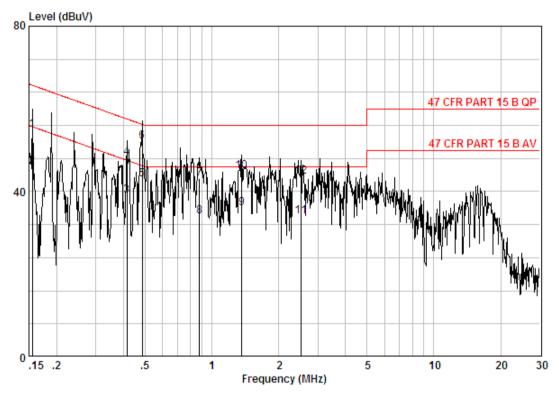
Report No.: SZEM141100650203 Page: 13 of 109

Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2009						
Test Frequency Range:	150kHz to 30MHz						
Limit:	Frequency range (MHz)						
	Frequency range (MHZ)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	50					
	* Decreases with the logarithm	n of the frequency.					
Test Procedure:	 The mains terminal disturt room. The EUT was connected to Impedance Stabilization No impedance. The power cal connected to a second LIS plane in the same way as to multiple socket outlet strip 	oance voltage test was o AC power source thro etwork) which provides oles of all other units of N 2, which was bonded the LISN 1 for the unit b was used to connect m	bugh a LISN 1 (Line a 50Ω/50µH + 5Ω line the EUT were d to the ground refer being measured. A multiple power cables	near ence			
	 single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The tist are plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. 						

6.2 Conducted Emissions

Report No.: SZEM141100650203 Page: 14 of 109

Test Setup:	Shielding Room Image: Complexity of the second se					
Exploratory Test Mode:	Transmitting with all kinds of modulations, data rates at lowest, middle and highest channel.					
	Charge + Transmitting mode.					
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.					
	Charge + Transmitting mode.					
	Only the worst case is recorded in the report.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					

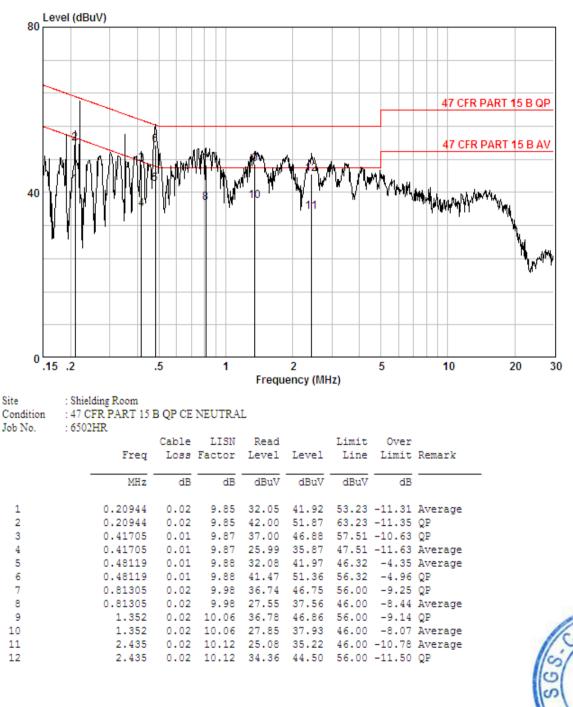

Report No.: SZEM141100650203 Page: 15 of 109

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:


Site	: Shielding Room
Condition	: 47 CFR PART 15 B QP CE LINE
Job No.	: 6502HR

Free					Limit	Over	Bomanic
rreq	TORR	ractor	rever	rever	LINE	LIMIC	Remark
MHz	dB	dB	dBuV	dBuV	dBuV	dB	
0.15567	0.02	9.82	45.03	54.88	65.69	-10.82	QP
0.15567	0.02	9.82	36.06	45.90	55.69	-9.79	Average
0.41485	0.01	9.85	29.05	38.91	47.55	-8.64	Average
0.41485	0.01	9.85	38.40	48.27	57.55	-9.29	QP
0.48632	0.01	9.86	33.05	42.92	46.23	-3.31	Average
0.48632	0.01	9.86	42.15	52.02	56.23	-4.21	QP
0.88031	0.02	9.89	33.16	43.07	56.00	-12.93	QP
0.88031	0.02	9.89	24.08	33.99	46.00	-12.01	Average
1.367	0.02	9.92	25.99	35.93	46.00	-10.07	Average
1.367	0.02	9.92	34.88	44.81	56.00	-11.19	QP
2.513	0.02	9.99	24.08	34.09	46.00	-11.91	Average
2.513	0.02	9.99	33.61	43.62	56.00	-12.38	QP
	0.15567 0.15567 0.41485 0.41485 0.48632 0.48632 0.48632 0.88031 0.88031 1.367 1.367 2.513	Freq Loss MHz dB 0.15567 0.02 0.15567 0.02 0.41485 0.01 0.41485 0.01 0.48632 0.01 0.48632 0.01 0.48632 0.01 0.48631 0.02 1.367 0.02 1.367 0.02 2.513 0.02	Freq Loss Factor MHz dB dB 0.15567 0.02 9.82 0.15567 0.02 9.82 0.41485 0.01 9.85 0.41485 0.01 9.85 0.48632 0.01 9.86 0.48632 0.01 9.86 0.88031 0.02 9.89 1.367 0.02 9.92 1.367 0.02 9.92 2.513 0.02 9.99	Freq Loss Factor Level MHz dB dB dBuV 0.15567 0.02 9.82 45.03 0.15567 0.02 9.82 36.06 0.41485 0.01 9.85 29.05 0.41485 0.01 9.85 38.40 0.48632 0.01 9.86 33.05 0.48632 0.01 9.86 42.15 0.88031 0.02 9.89 33.16 0.88031 0.02 9.89 24.08 1.367 0.02 9.92 25.99 1.367 0.02 9.99 24.08	Freq Loss Factor Level Level MHz dB dB dBuV dBuV 0.15567 0.02 9.82 45.03 54.88 0.15567 0.02 9.82 36.06 45.90 0.41485 0.01 9.85 29.05 38.91 0.41485 0.01 9.85 38.40 48.27 0.48632 0.01 9.86 33.05 42.92 0.48632 0.01 9.86 42.15 52.02 0.88031 0.02 9.89 33.16 43.07 0.88031 0.02 9.89 24.08 33.99 1.367 0.02 9.92 25.99 35.93 1.367 0.02 9.92 34.88 44.81 2.513 0.02 9.99 24.08 34.09	Freq Loss Factor Level Level Line MHz dB dB dBuV dBuV dBuV dBuV 0.15567 0.02 9.82 45.03 54.88 65.69 0.15567 0.02 9.82 36.06 45.90 55.69 0.41485 0.01 9.85 29.05 38.91 47.55 0.41485 0.01 9.85 38.40 48.27 57.55 0.48632 0.01 9.86 33.05 42.92 46.23 0.48632 0.01 9.86 42.15 52.02 56.23 0.88031 0.02 9.89 33.16 43.07 56.00 0.88031 0.02 9.92 25.99 35.93 46.00 1.367 0.02 9.92 25.99 35.93 46.00 2.513 0.02 9.99 24.08 34.09 46.00	Freq Loss Factor Level Level Line Limit MHz dB dB dBuV dBuV dBuV dBuV dBuV dB 0.15567 0.02 9.82 45.03 54.88 65.69 -10.82 0.15567 0.02 9.82 36.06 45.90 55.69 -9.79 0.41485 0.01 9.85 29.05 38.91 47.55 -8.64 0.41485 0.01 9.85 38.40 48.27 57.55 -9.29 0.48632 0.01 9.86 33.05 42.92 46.23 -3.31 0.48632 0.01 9.86 42.15 52.02 56.23 -4.21 0.88031 0.02 9.89 33.16 43.07 56.00 -12.93 0.88031 0.02 9.89 24.08 33.99 46.00 -10.07 1.367 0.02 9.92 25.99 35.93 46.00 -10.07 1.367

Report No.: SZEM141100650203 Page: 16 of 109

Neutral Line:

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM141100650203 Page: 17 of 109

6.3 Conducted Peak Output Power

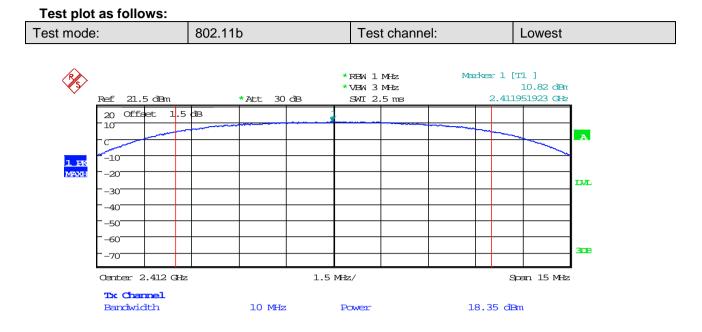
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10 2009				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
	Ground Reference Plane				
	Remark:				
Test Instruments:	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Refer to section 5.10 for details				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates				
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;				
	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case				
	of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40)				
Limit:	30dBm				
Test Results:	Pass				

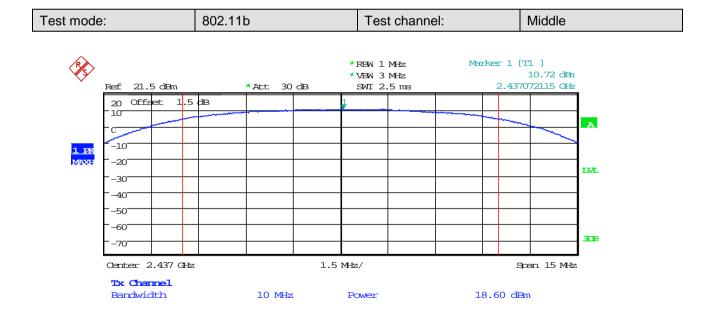
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100650203 Page: 18 of 109

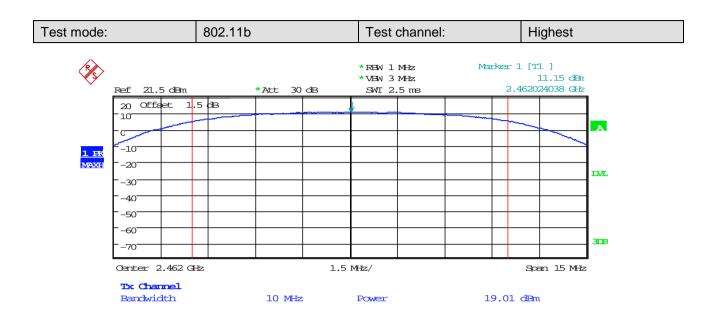
Pre-scan under all rate at lowest channel 1								
Mode	802.11b							
Data Rate	1Mbps	2Mbps	5.5Mbps	11Mbps				
Power (dBm)	18.35	18.14	17.92	17.03				
Mode	802.11g							
Data Rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
Power (dBm)	19.00	18.88	18.62	18.47	18.45	18.24	17.93	17.01
Mode				802.11	n(HT20)			
Data Rate	6.5Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power (dBm)	16.95	16.78	16.55	16.32	16.01	15.87	15.66	14.78
Mode				802.11	n(HT40)			
Data Rate	13.5Mbps	27Mbps	40.5Mbps	54Mbps	81Mbps	108Mbps	121.5Mbps	135Mbps
Power (dBm)	16.96	16.67	16.43	16.13	15.67	15.33	14.80	14.11
Through Pre-scan, 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).								

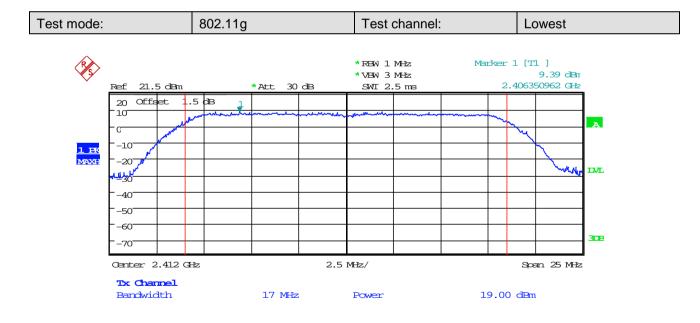
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

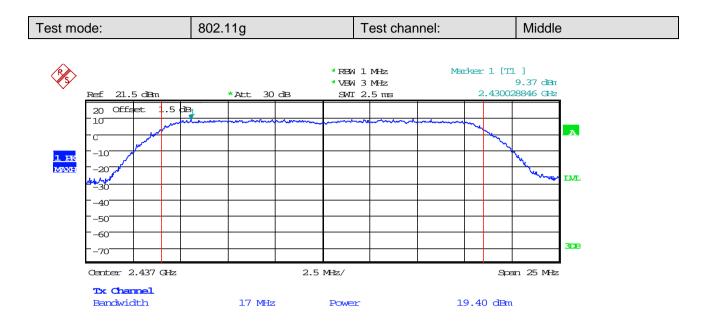

Report No.: SZEM141100650203 Page: 19 of 109

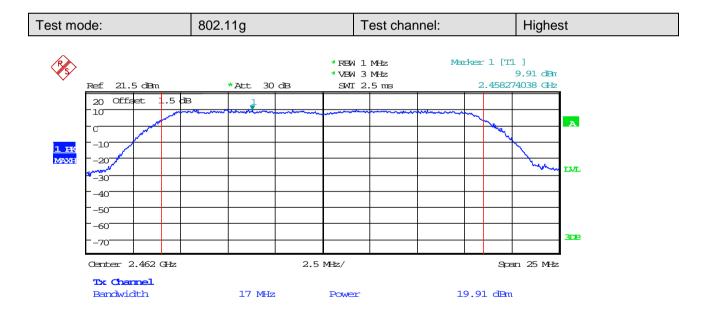

Weasurement Data									
	802.11b mode								
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result						
Lowest	18.35	30.00	Pass						
Middle	18.60	30.00	Pass						
Highest	19.01	30.00	Pass						
	802.11g mo	de							
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result						
Lowest	19.00	30.00	Pass						
Middle	19.40	30.00	Pass						
Highest	19.91	30.00	Pass						
	802.11n(HT20)	mode							
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result						
Lowest	16.95	30.00	Pass						
Middle	17.51	30.00	Pass						
Highest	17.74	30.00	Pass						
	802.11n(HT40)	mode							
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result						
Lowest	16.96	30.00	Pass						
Middle	17.26	30.00	Pass						
Highest	17.25	30.00	Pass						

Measurement Data


Report No.: SZEM141100650203 Page: 20 of 109




Report No.: SZEM141100650203 Page: 21 of 109



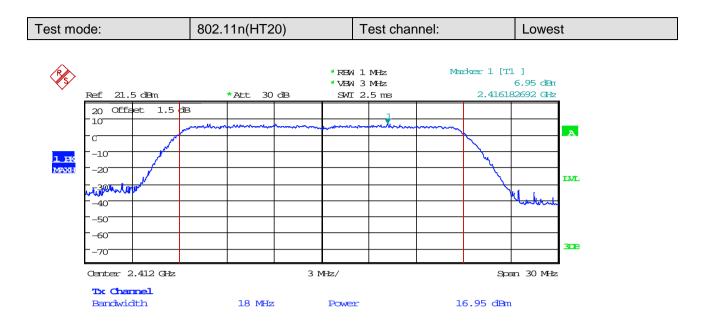
Report No.: SZEM141100650203 Page: 22 of 109

-40 -50 -60

-70

Center 2.437 GHz

Tx Channel Bandwidth


SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

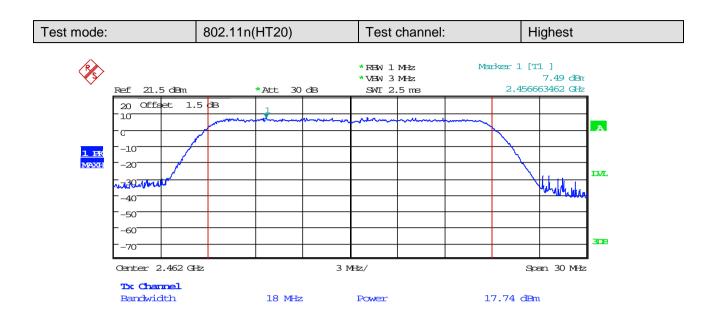
Report No.: SZEM141100650203 Page: 23 of 109

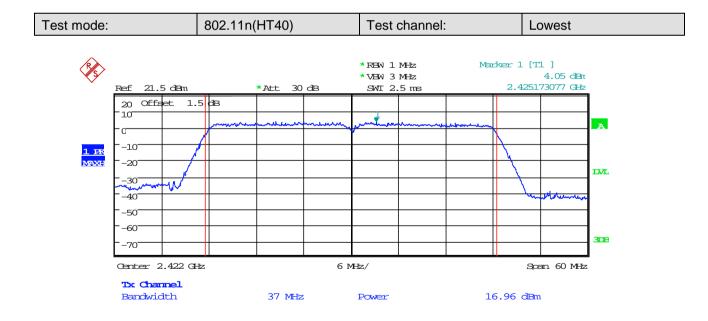
3DB

Span 30 MHz

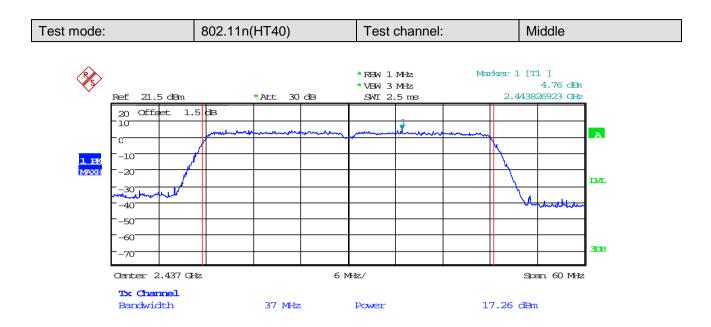
17.51 dBm

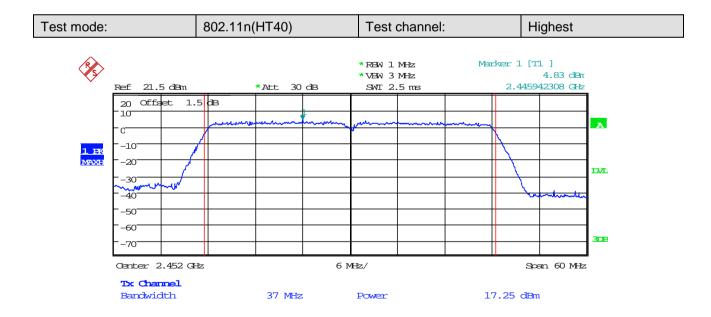
Test mo	de:		802.	11n(HT	20)	Т	est char	nnel:		Middle)
(e)						* RBW 1	MHz	Mai	rker 1 [T	1 1	
×.	Ref 21.	5 dBm		*Att 3	0 dB	* VBW 3 SWI 2	MHz	-		7.38 dBm 36538 GHz	_
	20 Offs 10	et 1.5	dB	1							
	-0			v		- American Amb		many	<u> </u>		A
1 FK	-10				_				<u> </u>		
MAXH	-20	a server									IML
	NINGOUMAN	C.							¥	Minerikalin	


3 MHz/


Power

18 MHz


Report No.: SZEM141100650203 Page: 24 of 109



Report No.: SZEM141100650203 Page: 25 of 109

Report No.: SZEM141100650203 Page: 26 of 109

6.4 6dB Occupy Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10 2009			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Instruments Used:	Refer to section 5.10 for details			
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates			
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;			
	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20) ; 13.5Mbps of rate is the worst case of 802.11n(HT40)			
Limit:	≥ 500 kHz			
Test Results:	Pass			

Report No.: SZEM141100650203 Page: 27 of 109

	802.11b mode									
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result							
Lowest	9.279	≥500	Pass							
Middle	9.279	≥500	Pass							
Highest	9.615	≥500	Pass							
	802.11g mode									
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result							
Lowest	16.635	≥500	Pass							
Middle	16.635	≥500	Pass							
Highest	16.635	≥500	Pass							
	802.11n(HT20) mode									
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result							
Lowest	17.788	≥500	Pass							
Middle	17.837	≥500	Pass							
Highest	17.788	≥500	Pass							
	802.11n(HT40)mode									
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result							
Lowest	36.538	≥500	Pass							
Middle	36.603	≥500	Pass							
Highest	36.587	≥500	Pass							

Measurement Data

Report No.: SZEM141100650203 Page: 28 of 109

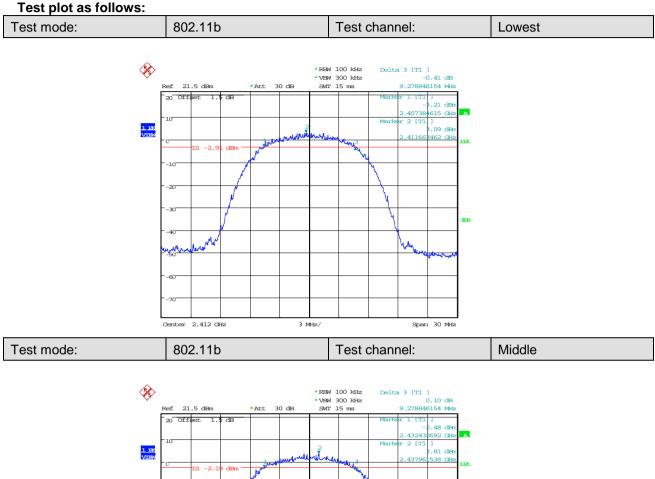
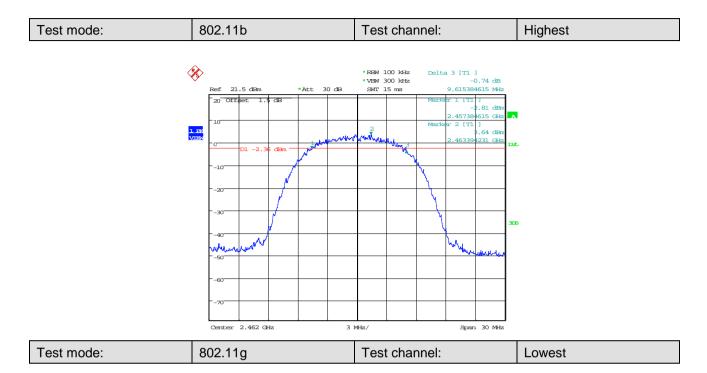
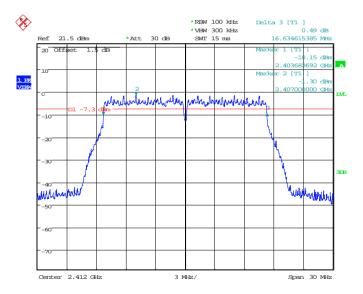
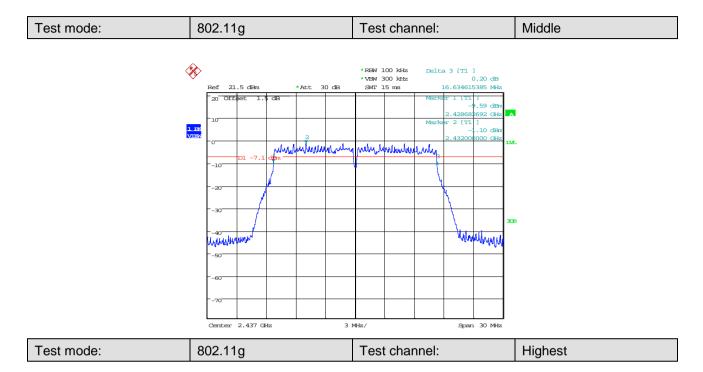
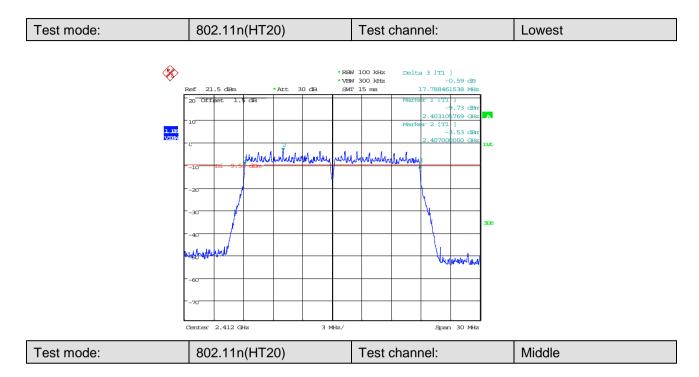
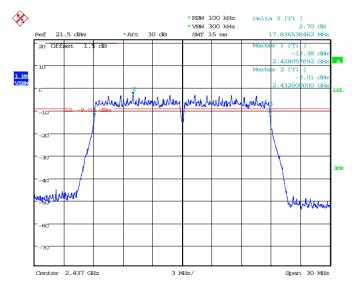
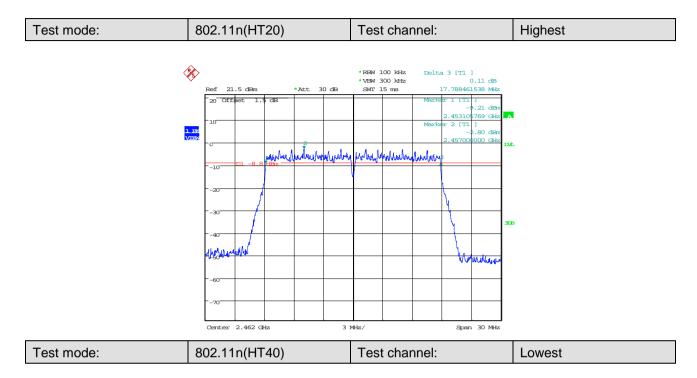




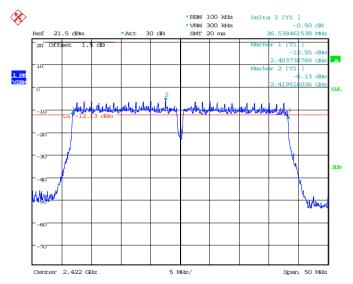
 Image: Second second

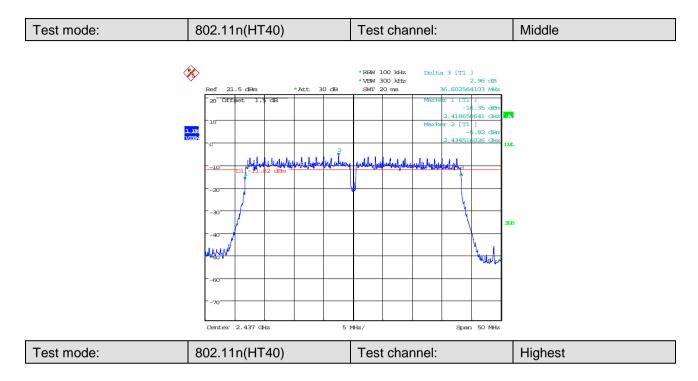

Report No.: SZEM141100650203 Page: 29 of 109

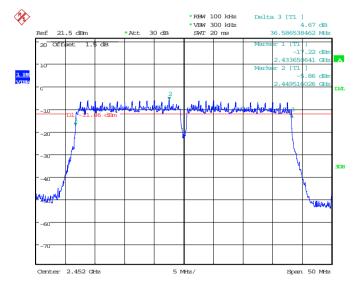

Report No.: SZEM141100650203 Page: 30 of 109




Report No.: SZEM141100650203 Page: 31 of 109




Report No.: SZEM141100650203 Page: 32 of 109

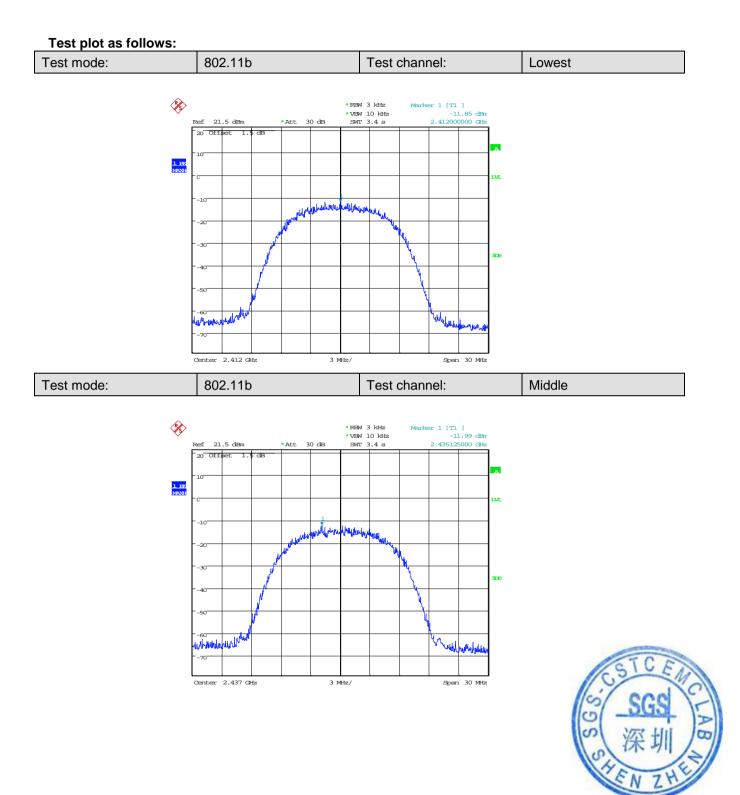


Report No.: SZEM141100650203 Page: 33 of 109

Report No.: SZEM141100650203 Page: 34 of 109

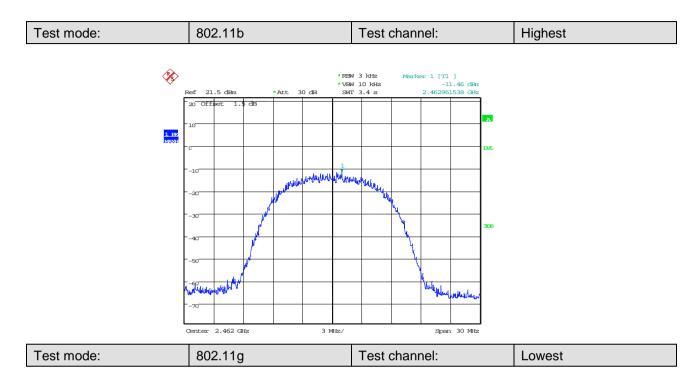
6.5 Power Spectral Density

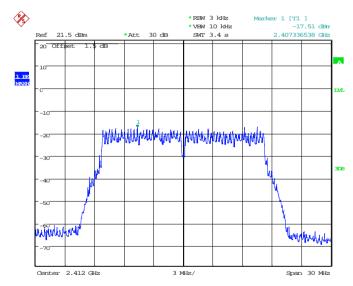
Test Requirement:	47 CFR Part 15C Section 15.247 (e)		
Test Method:	ANSI C63.10 2009		
Test Setup:	Spectrum Analyzer F.U.T Non-Conducted Table Ground Reference Plane Remark:		
	fset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Test Instruments:	Refer to section 5.10 for details		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;		
	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20) ; 13.5Mbps of rate is the worst case of 802.11n(HT40)		
Limit:	≤8.00dBm/3kHz		
Test Results:	Pass		

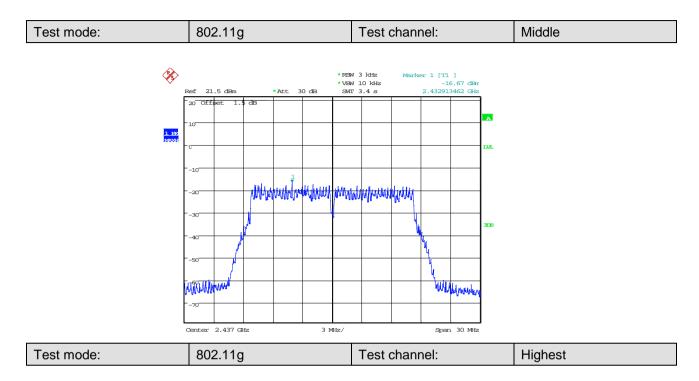

Report No.: SZEM141100650203 Page: 35 of 109

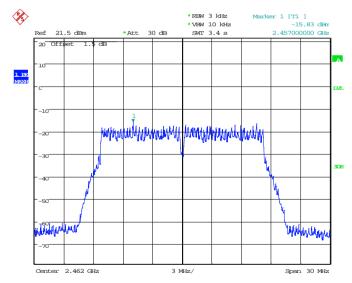
802.11b mode			
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-11.85	≤8.00	Pass
Middle	-11.99	≤8.00	Pass
Highest	-11.46	≤8.00	Pass
802.11g mode			
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-17.51	≤8.00	Pass
Middle	-16.67	≤8.00	Pass
Highest	-15.83	≤8.00	Pass
802.11n(HT20) mode			
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-19.43	≤8.00	Pass
Middle	-18.56	≤8.00	Pass
Highest	-18.21	≤8.00	Pass
802.11n(HT40) mode			
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-23.33	≤8.00	Pass
Middle	-22.88	≤8.00	Pass
Highest	-22.61	≤8.00	Pass

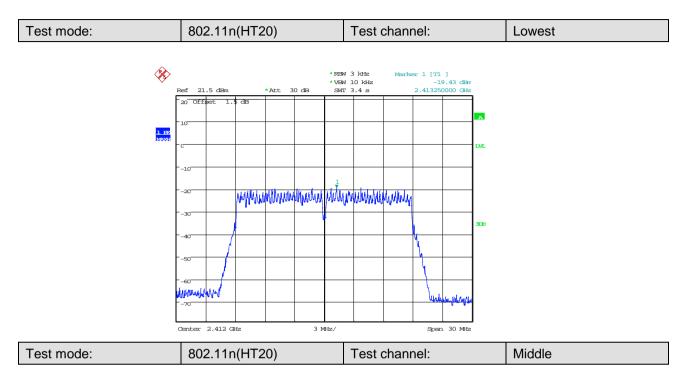
Measurement Data

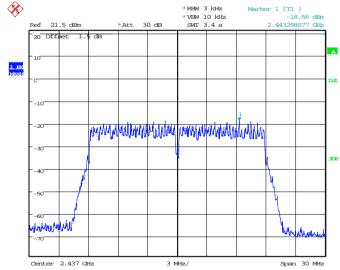


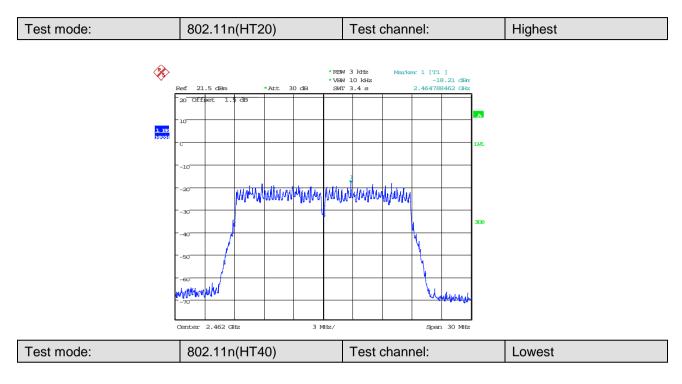

Report No.: SZEM141100650203 Page: 36 of 109

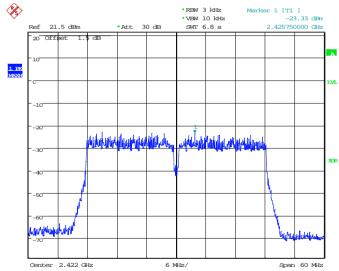

Report No.: SZEM141100650203 Page: 37 of 109




Report No.: SZEM141100650203 Page: 38 of 109

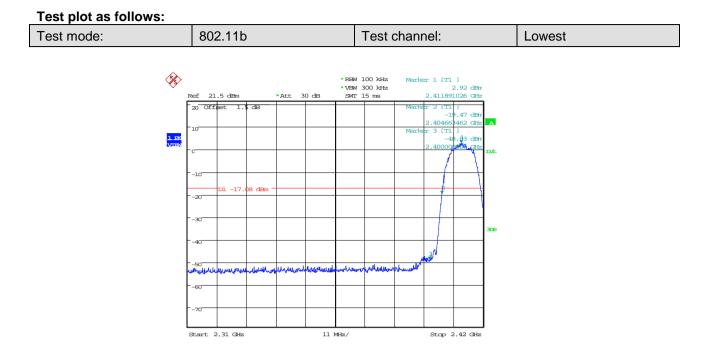



Report No.: SZEM141100650203 Page: 39 of 109

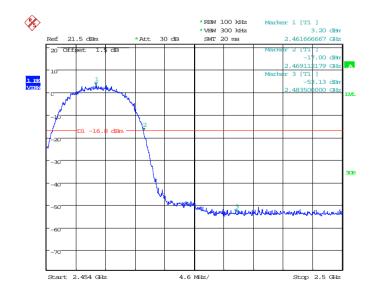


Report No.: SZEM141100650203 Page: 40 of 109

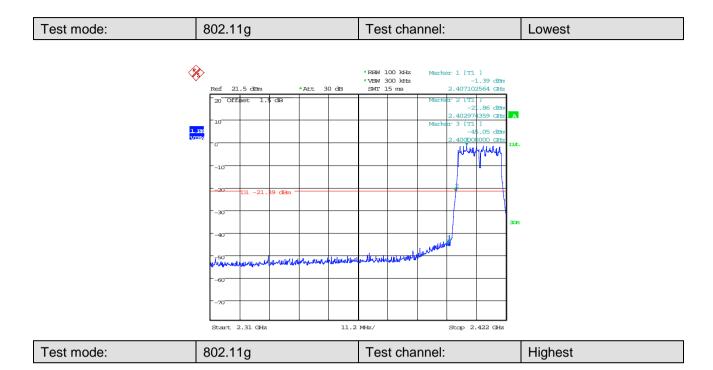
Report No.: SZEM141100650203 Page: 41 of 109

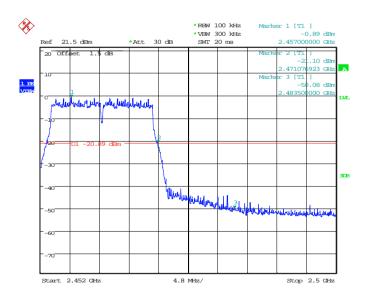

Report No.: SZEM141100650203 Page: 42 of 109

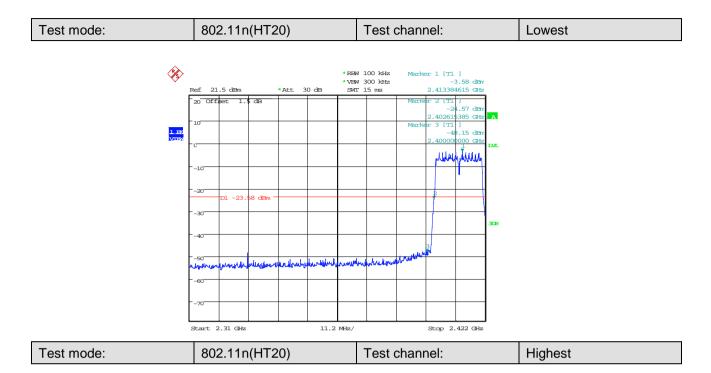
6.6 Band-edge for RF Conducted Emissions

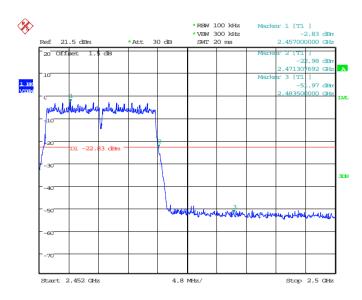

Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10 2009			
Test Setup:	Spectrum Analyzer F.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.			
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates			
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case			
Limit:	of 802.11n(HT20) ; 13.5Mbps of rate is the worst case of 802.11n(HT40) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Instruments Used:	Refer to section 5.10 for details			
Test Results:	Pass			

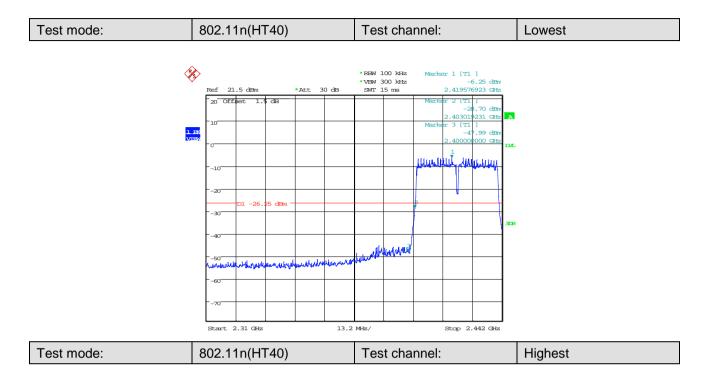
Report No.: SZEM141100650203 Page: 43 of 109

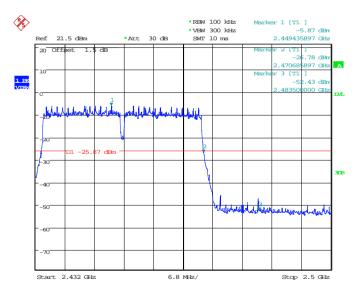



Test mode:	802.11b	Test channel:	Highest
------------	---------	---------------	---------


Report No.: SZEM141100650203 Page: 44 of 109

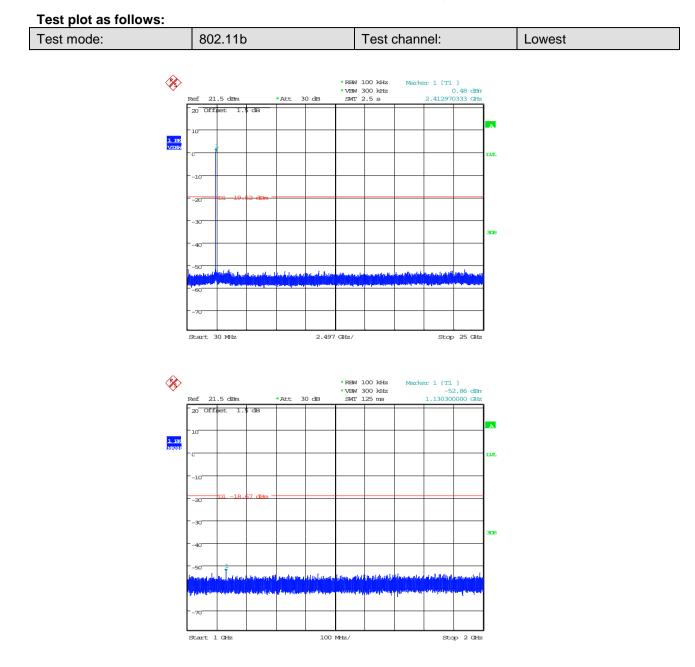



Report No.: SZEM141100650203 Page: 45 of 109



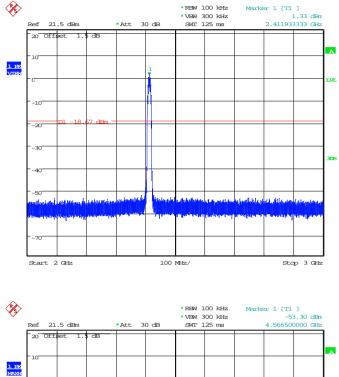
Report No.: SZEM141100650203 Page: 46 of 109

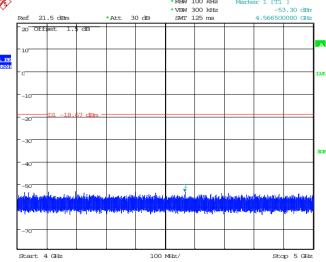
Report No.: SZEM141100650203 Page: 47 of 109

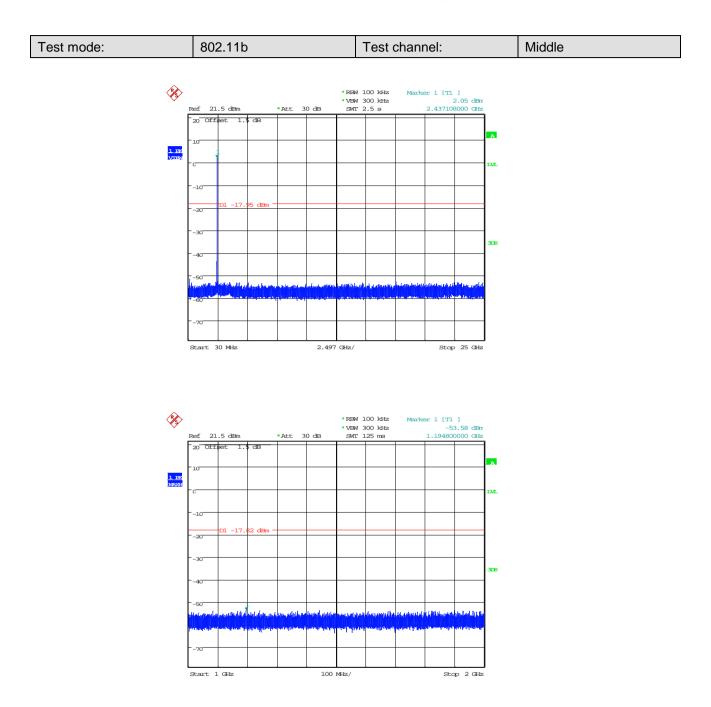

6.7 RF Conducted Spurious Emissions

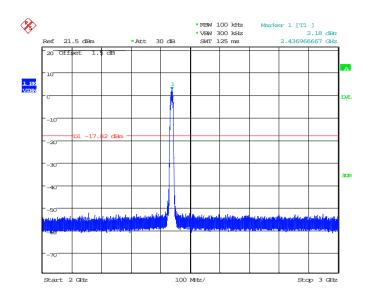
Test Requirement:	47 CFR Part 15C Section 15.247 (d)				
Test Method:	ANSI C63.10 2009				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offeet the Uigh Frequency eaching lago 1 EdD in the spectrum analyzer				
Exploratory Test Mode:	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Transmitting with all kind of modulations, data rates				
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20) ; 13.5Mbps of rate is the worst case of 802.11n(HT40)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				

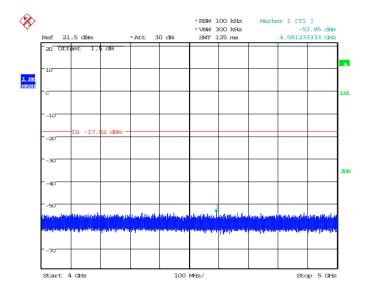
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

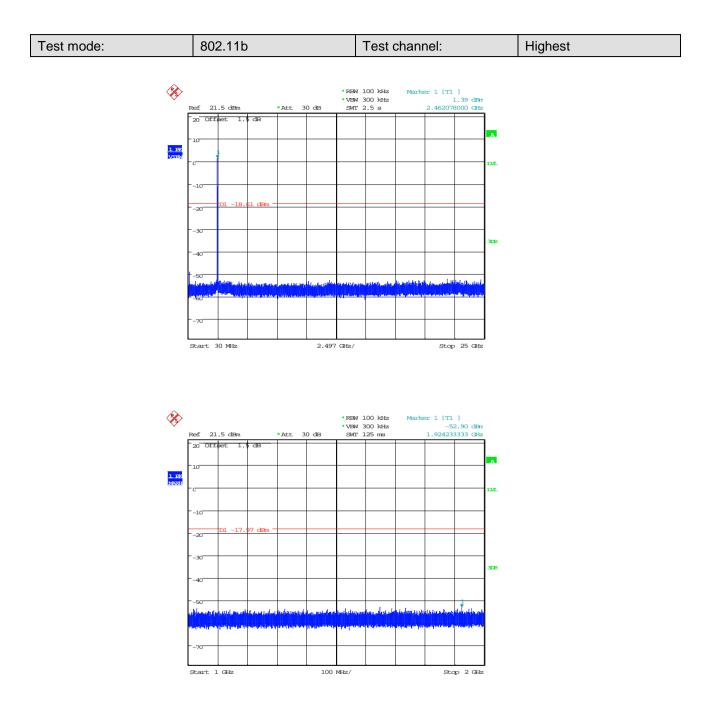


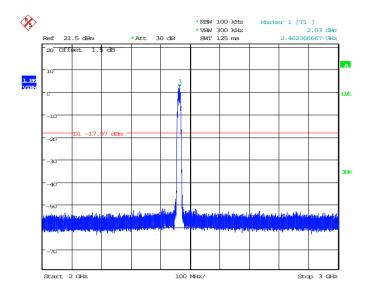

Report No.: SZEM141100650203 Page: 48 of 109

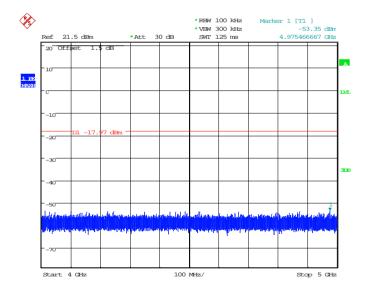

Report No.: SZEM141100650203 Page: 49 of 109

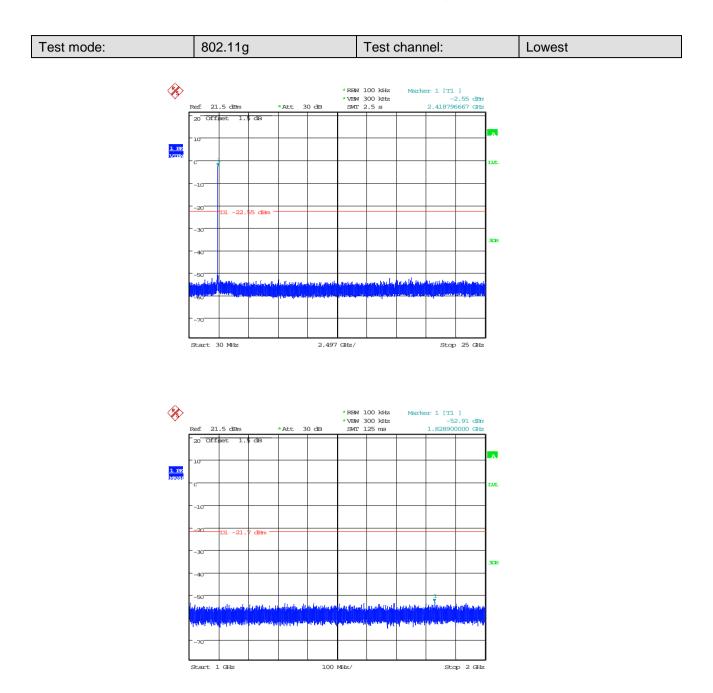


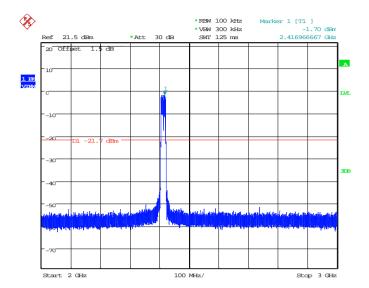

Report No.: SZEM141100650203 Page: 50 of 109

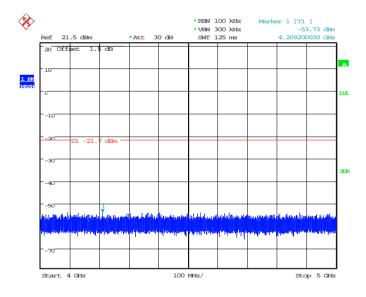

Report No.: SZEM141100650203 Page: 51 of 109

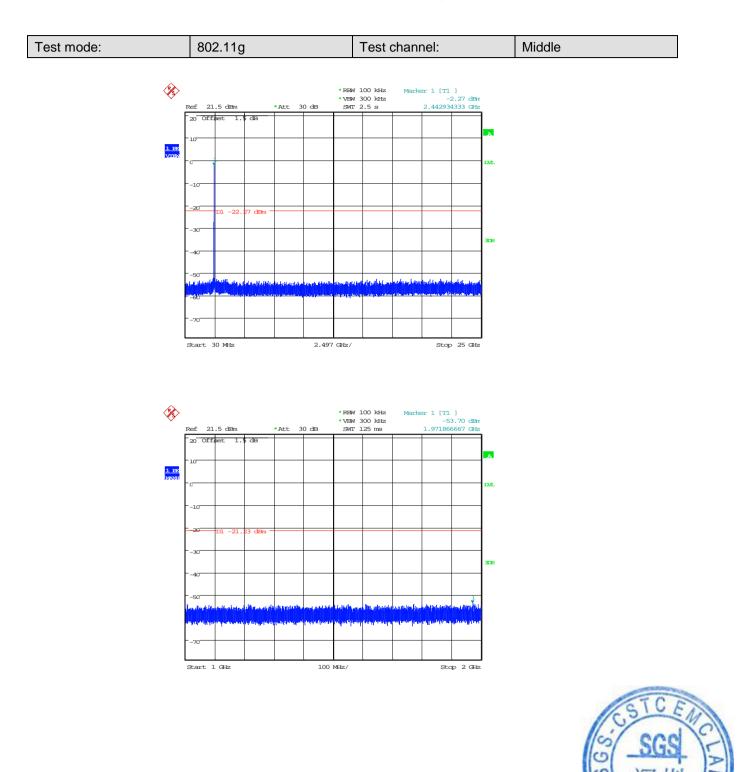


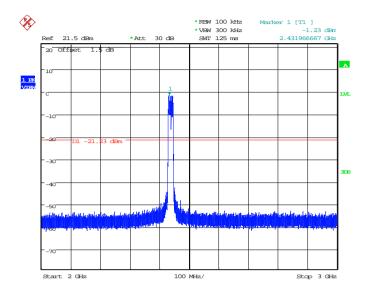

Report No.: SZEM141100650203 Page: 52 of 109

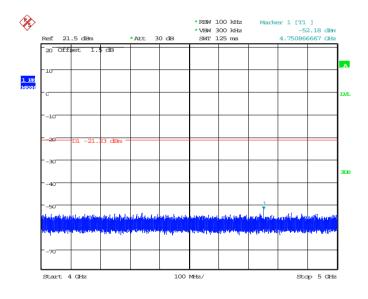

Report No.: SZEM141100650203 Page: 53 of 109

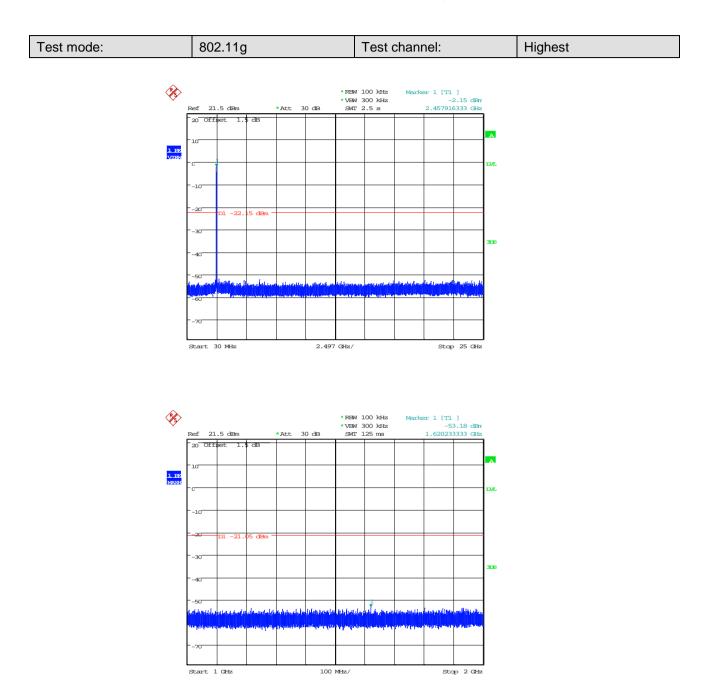


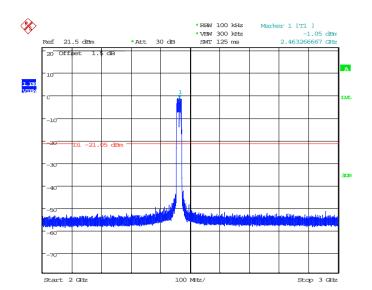

Report No.: SZEM141100650203 Page: 54 of 109

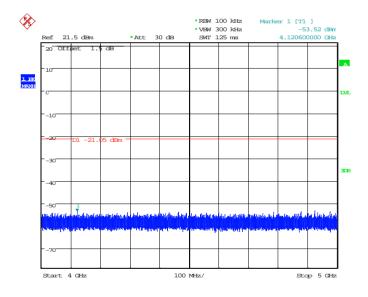

Report No.: SZEM141100650203 Page: 55 of 109

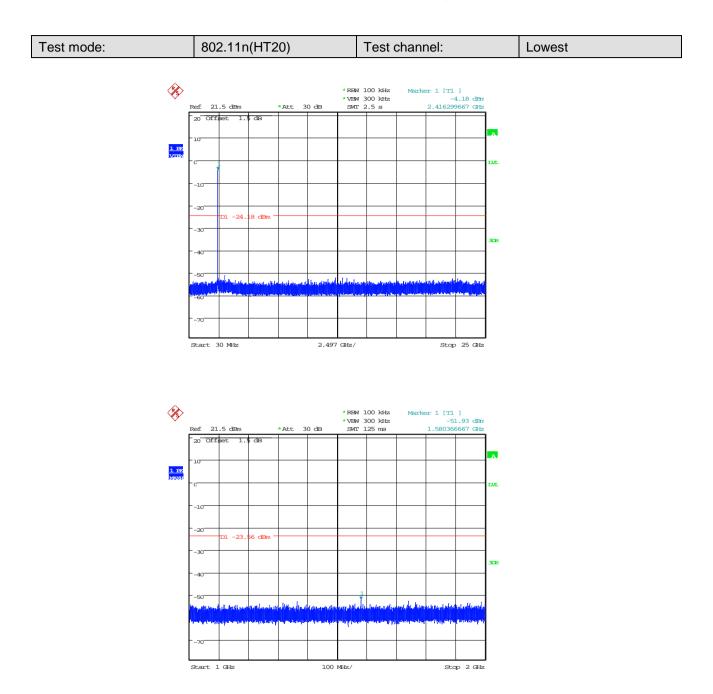


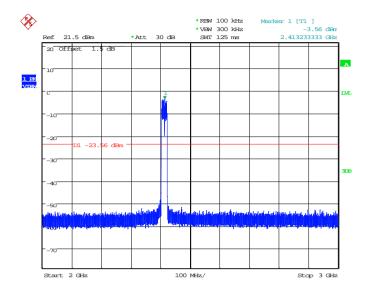

Report No.: SZEM141100650203 Page: 56 of 109

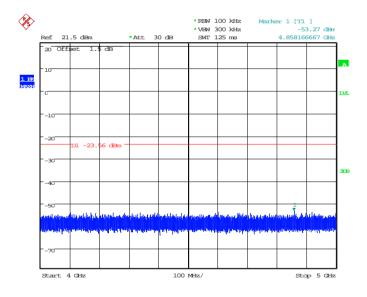

Report No.: SZEM141100650203 Page: 57 of 109

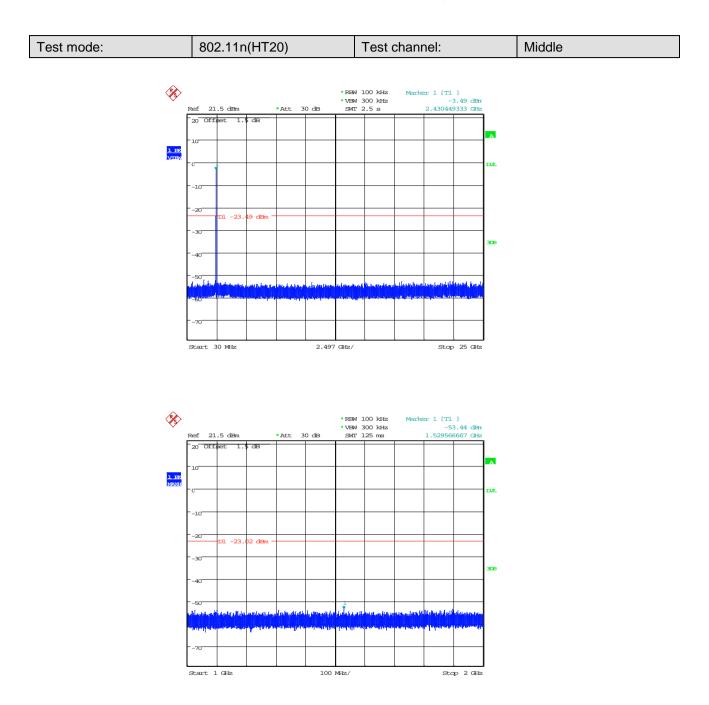


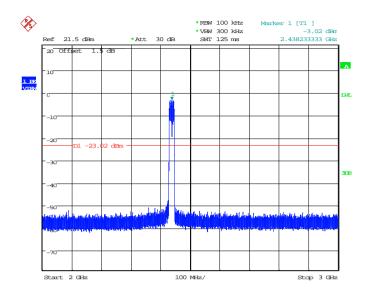

Report No.: SZEM141100650203 Page: 58 of 109

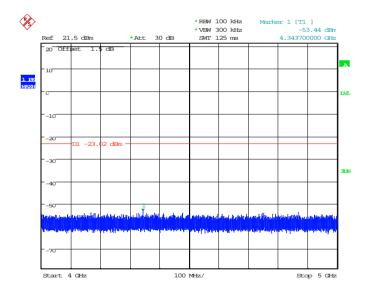

Report No.: SZEM141100650203 Page: 59 of 109

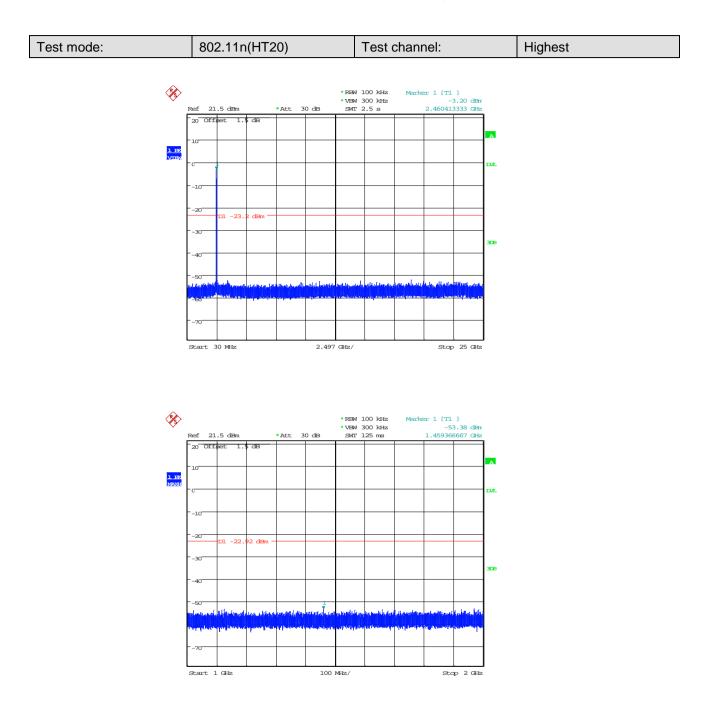



Report No.: SZEM141100650203 Page: 60 of 109

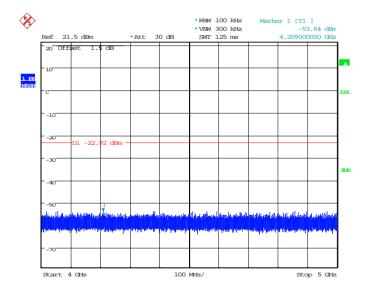

Report No.: SZEM141100650203 Page: 61 of 109

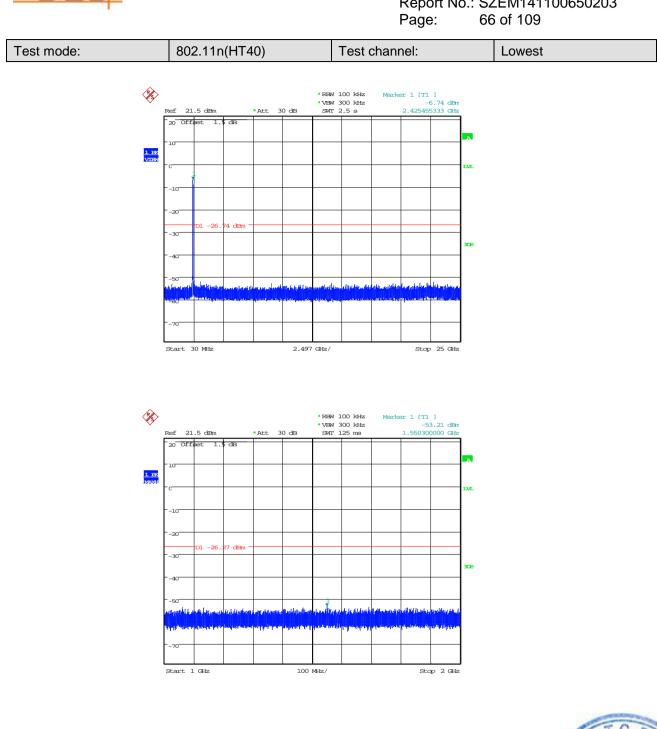


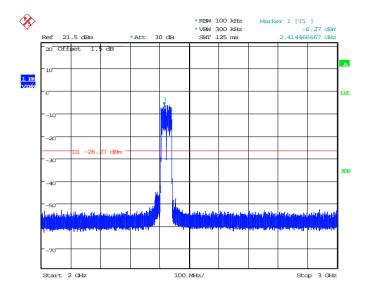

Report No.: SZEM141100650203 Page: 62 of 109

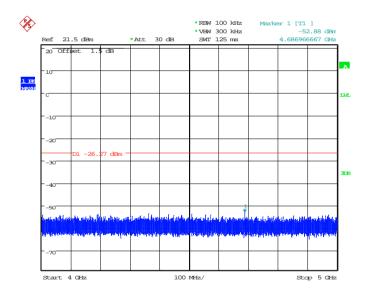

Report No.: SZEM141100650203 Page: 63 of 109



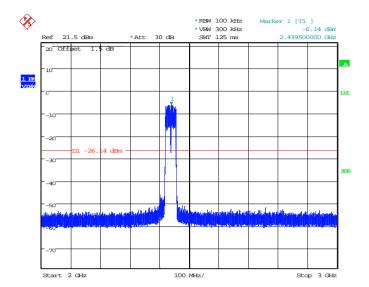

Report No.: SZEM141100650203 Page: 64 of 109

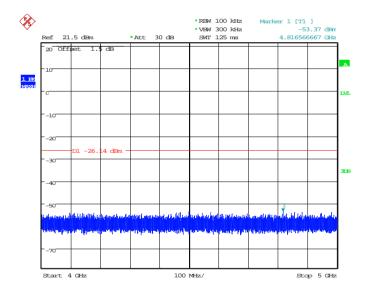

Report No.: SZEM141100650203 Page: 65 of 109

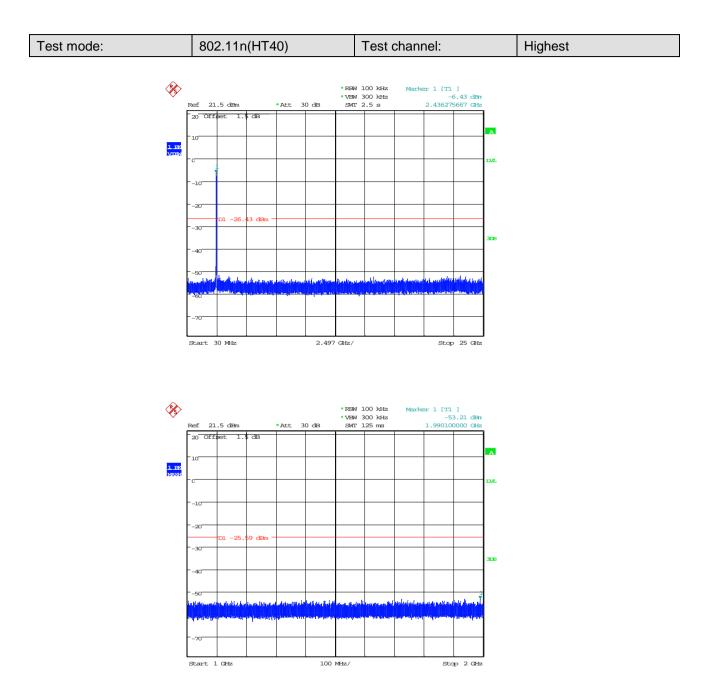


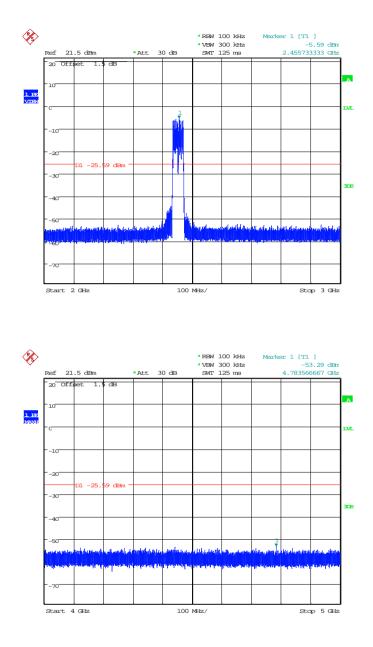

Report No.: SZEM141100650203 66 of 109

Report No.: SZEM141100650203 Page: 67 of 109




Report No.: SZEM141100650203 Page: 68 of 109


Report No.: SZEM141100650203 Page: 69 of 109



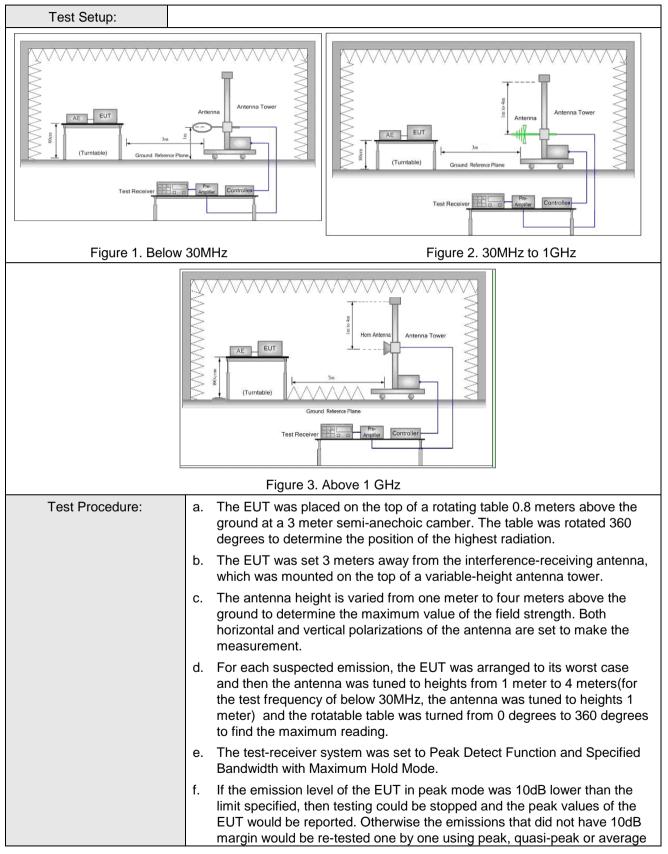
Report No.: SZEM141100650203 Page: 70 of 109

Report No.: SZEM141100650203 Page: 71 of 109

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

Report No.: SZEM141100650203 Page: 72 of 109


6.8 Radiated Spurious Emissions

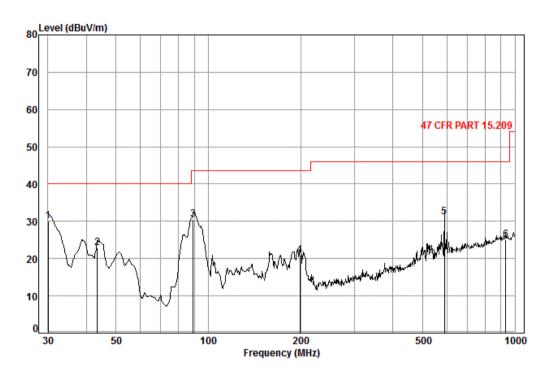
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2009							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak			
		Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10Hz	Average			
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
	1.705MHz-30MHz	30	-	-	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
	88MHz-216MHz	150	43.5	Quasi-peak	3			
	216MHz-960MHz	200	46.0	Quasi-peak	3			
	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	500	54.0	Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.							

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100650203 Page: 73 of 109

Report No.: SZEM141100650203 Page: 74 of 109

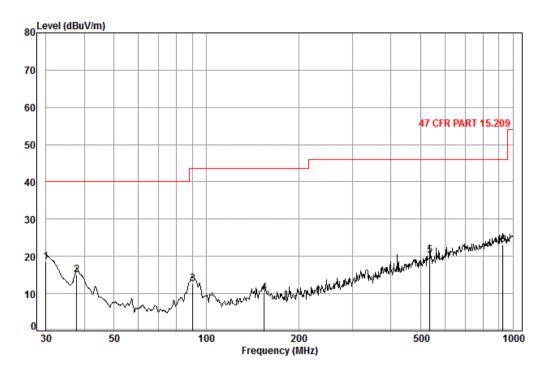
method as specified and then reported in a data sheet.					
g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel					
 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. 					
i. Repeat above procedures until all frequencies measured was complete.					
Transmitting with all kind of modulations, data rates.					
Transmitting mode, Charge + Transmitting mode.					
Pretest the EUT at Transmitting mode and Charge +Transmitting mode, found the Charge +Transmitting mode which it is worse case					
Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;					
6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case					
of 802.11n(HT20) ; 13.5Mbps of rate is the worst case of 802.11n(HT40)					
For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.					
Only the worst case is recorded in the report.					
Refer to section 5.10 for details					
Pass					


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100650203 Page: 75 of 109

6.8.1 Radiated emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge +Transmitting mode	Vertical


Condition: 47 CFR PART 15.209 3m 3142C Vertical Job No. : 6502HR

	Freq	Cable Loss		Preamp Factor		Level	Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5	30.09 43.50 89.27 199.26 589.08	0.60 0.68 1.10 1.40 2.69	11.56 8.63 10.19	27.36 27.31 27.22 26.70 27.56	37.93 47.90 36.05	22.86 30.41 20.94		-13.09 -22.56
6	933.01	3.63		26.61				

Report No.: SZEM141100650203 Page: 76 of 109

Test mode: C	Charge +Transmitting mode	Horizontal
--------------	---------------------------	------------

Condition: 47 CFR PART 15.209 3m 3142C Horizontal Job No. : 6502HR

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3	30.00 37.81 90.22	0.60 1.10	14.33 8.71	27.36 27.33 27.21	27.36 29.96	14.96 12.56	40.00 43.50	-25.04 -30.94
4 5 6	154.28 535.71 929.01	2.64	18.67	26.89 27.64 26.64	26.51	20.18	46.00	-25.82

Report No.: SZEM141100650203 Page: 77 of 109

Test mode:	802	802.11b		annel:	Lowest	Remark		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3614.506	6.80	32.40	35.50	47.70	51.40	74	-22.60	Vertical
4824.000	7.60	34.40	35.10	45.60	52.50	74	-21.50	Vertical
6242.882	8.60	34.90	33.70	44.70	54.50	74	-19.50	Vertical
7236.000	9.90	35.80	33.80	46.30	58.20	74	-15.80	Vertical
9648.000	12.10	37.20	32.40	44.20	61.10	74	-12.90	Vertical
11175.945	13.40	37.50	31.10	44.50	64.30	74	-9.70	Vertical
3614.506	6.80	32.40	35.50	47.00	50.70	74	-23.30	Horizontal
4824.000	7.60	34.40	35.10	45.90	52.80	74	-21.20	Horizontal
5863.404	8.00	34.50	34.50	45.90	53.90	74	-20.10	Horizontal
7236.000	9.90	35.80	33.80	44.30	56.20	74	-17.80	Horizontal
9648.000	12.10	37.20	32.40	45.20	62.10	74	-11.90	Horizontal
11236.181	13.50	37.50	31.10	44.90	64.80	74	-9.20	Horizontal

6.8.2 Transmitter emission above 1GHz

Test mode:	802	802.11b		annel:	Lowest	Remark	:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3614.506	6.80	32.40	35.50	34.50	38.20	54	-15.80	Vertical
4824.000	7.60	34.40	35.10	32.40	39.30	54	-14.70	Vertical
6242.882	8.60	34.90	33.70	32.20	42.00	54	-12.00	Vertical
7236.000	9.90	35.80	33.80	31.60	43.50	54	-10.50	Vertical
9648.000	12.10	37.20	32.40	30.90	47.80	54	-6.20	Vertical
11175.945	13.40	37.50	31.10	31.10	50.90	54	-3.10	Vertical
3614.506	6.80	32.40	35.50	34.00	37.70	54	-16.30	Horizontal
4824.000	7.60	34.40	35.10	32.50	39.40	54	-14.60	Horizontal
5863.404	8.00	34.50	34.50	32.40	40.40	54	-13.60	Horizontal
7236.000	9.90	35.80	33.80	32.10	44.00	54	-10.00	Horizontal
9648.000	12.10	37.20	32.40	30.90	47.80	54	-6.20	Horizontal
11236.181	13.50	37.50	31.10	30.20	50.10	54	-3.90	Horizontal

Report No.: SZEM141100650203 Page: 78 of 109

Test mode:	802	.11b	Test ch	annel:	Middle	Remark		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3673.266	6.80	32.60	35.60	46.90	50.70	74	-23.30	Vertical
4874.000	7.60	34.50	35.20	46.30	53.20	74	-20.80	Vertical
6611.510	9.00	35.40	33.70	45.10	55.80	74	-18.20	Vertical
7311.000	10.00	35.70	33.80	46.30	58.20	74	-15.80	Vertical
9748.000	12.30	37.30	32.10	44.70	62.20	74	-11.80	Vertical
11296.741	13.60	37.50	31.20	44.80	64.70	74	-9.30	Vertical
3897.008	6.90	33.20	35.40	45.50	50.20	74	-23.80	Horizontal
4874.000	7.60	34.50	35.20	46.40	53.30	74	-20.70	Horizontal
6287.786	8.60	34.80	33.70	46.40	56.10	74	-17.90	Horizontal
7311.000	10.00	35.70	33.80	46.20	58.10	74	-15.90	Horizontal
9748.000	12.30	37.30	32.10	44.30	61.80	74	-12.20	Horizontal
11296.741	13.60	37.50	31.20	44.20	64.10	74	-9.90	Horizontal

Test mode:	802	.11b	Test ch	annel:	Middle	Remark	:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3673.266	6.80	32.60	35.60	33.40	37.20	54	-16.80	Vertical
4874.000	7.60	34.50	35.20	32.20	39.10	54	-14.90	Vertical
6611.510	9.00	35.40	33.70	32.40	43.10	54	-10.90	Vertical
7311.000	10.00	35.70	33.80	31.70	43.60	54	-10.40	Vertical
9748.000	12.30	37.30	32.10	30.60	48.10	54	-5.90	Vertical
11296.741	13.60	37.50	31.20	30.90	50.80	54	-3.20	Vertical
3897.008	6.90	33.20	35.40	33.00	37.70	54	-16.30	Horizontal
4874.000	7.60	34.50	35.20	32.10	39.00	54	-15.00	Horizontal
6287.786	8.60	34.80	33.70	32.40	42.10	54	-11.90	Horizontal
7311.000	10.00	35.70	33.80	31.70	43.60	54	-10.40	Horizontal
9748.000	12.30	37.30	32.10	30.60	48.10	54	-5.90	Horizontal
11296.741	13.60	37.50	31.20	31.00	50.90	54	-3.10	Horizontal

Report No.: SZEM141100650203 Page: 79 of 109

Test mode:	Test mode: 802.11		Test ch	annel:	Highest	Remark		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3468.578	6.90	32.20	35.30	45.90	49.70	74	-24.30	Vertical
4924.000	7.60	34.60	35.20	45.50	52.50	74	-21.50	Vertical
6187.203	8.50	34.90	33.90	45.80	55.30	74	-18.70	Vertical
7386.000	10.00	35.70	33.90	46.10	57.90	74	-16.10	Vertical
9848.000	12.30	37.30	32.10	43.40	60.90	74	-13.10	Vertical
11175.945	13.40	37.50	31.10	44.10	63.90	74	-10.10	Vertical
3443.808	6.90	32.10	35.30	45.90	49.60	74	-24.40	Horizontal
4924.000	7.60	34.60	35.20	45.80	52.80	74	-21.20	Horizontal
6265.293	8.60	34.80	33.70	46.10	55.80	74	-18.20	Horizontal
7386.000	10.00	35.70	33.90	46.00	57.80	74	-16.20	Horizontal
9848.000	12.30	37.30	32.10	44.80	62.30	74	-11.70	Horizontal
11459.836	13.50	37.60	31.60	45.10	64.60	74	-9.40	Horizontal

Test mode:	802	.11b	Test ch	annel:	Highest	Remark	:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3468.578	6.90	32.20	35.30	32.60	36.40	54	-17.60	Vertical
4924.000	7.60	34.60	35.20	33.00	40.00	54	-14.00	Vertical
6187.203	8.50	34.90	33.90	32.50	42.00	54	-12.00	Vertical
7386.000	10.00	35.70	33.90	32.20	44.00	54	-10.00	Vertical
9848.000	12.30	37.30	32.10	31.40	48.90	54	-5.10	Vertical
11175.945	13.40	37.50	31.10	30.50	50.30	54	-3.70	Vertical
3443.808	6.90	32.10	35.30	32.70	36.40	54	-17.60	Horizontal
4924.000	7.60	34.60	35.20	32.80	39.80	54	-14.20	Horizontal
6265.293	8.60	34.80	33.70	32.40	42.10	54	-11.90	Horizontal
7386.000	10.00	35.70	33.90	32.10	43.90	54	-10.10	Horizontal
9848.000	12.30	37.30	32.10	31.40	48.90	54	-5.10	Horizontal
11459.836	13.50	37.60	31.60	30.80	50.30	54	-3.70	Horizontal

Report No.: SZEM141100650203 Page: 80 of 109

Test mode:	Test mode: 802		Test ch	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3614.506	6.80	32.40	35.50	46.60	50.30	74	-23.70	Vertical
4824.000	7.60	34.40	35.10	45.70	52.60	74	-21.40	Vertical
6299.062	8.70	34.80	33.70	45.80	55.60	74	-18.40	Vertical
7236.000	9.90	35.80	33.80	45.60	57.50	74	-16.50	Vertical
9648.000	12.10	37.20	32.40	44.90	61.80	74	-12.20	Vertical
11459.836	13.50	37.60	31.50	44.50	64.10	74	-9.90	Vertical
3620.988	6.80	32.40	35.50	46.20	49.90	74	-24.10	Horizontal
4824.000	7.60	34.40	35.10	45.50	52.40	74	-21.60	Horizontal
6176.127	8.50	34.90	33.90	45.20	54.70	74	19.30	Horizontal
7236.000	9.90	35.80	33.80	45.90	57.80	74	-16.20	Horizontal
9648.000	12.10	37.20	32.40	44.30	61.20	74	-12.80	Horizontal
11096.133	13.20	37.60	31.20	44.70	64.30	74	-9.70	Horizontal

Test mode:	802	.11g	Test ch	annel:	Lowest	Remark:		Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3614.506	6.80	32.40	35.50	34.60	38.30	54	-15.70	Vertical
4824.000	7.60	34.40	35.10	32.70	39.60	54	-14.40	Vertical
6299.062	8.70	34.80	33.70	32.00	41.80	54	-12.20	Vertical
7236.000	9.90	35.80	33.80	31.60	43.50	54	-10.50	Vertical
9648.000	12.10	37.20	32.40	31.00	47.90	54	-6.10	Vertical
11459.836	13.50	37.60	31.50	30.70	50.30	54	-3.70	Vertical
3620.988	6.80	32.40	35.50	33.60	37.30	54	-16.70	Horizontal
4824.000	7.60	34.40	35.10	32.60	39.50	54	-14.50	Horizontal
6176.127	8.50	34.90	33.90	32.40	41.90	54	-12.10	Horizontal
7236.000	9.90	35.80	33.80	31.60	43.50	54	-10.50	Horizontal
9648.000	12.10	37.20	32.40	30.90	47.80	54	-6.20	Horizontal
11096.133	13.20	37.60	31.20	31.40	51.00	54	-3.00	Horizontal

Report No.: SZEM141100650203 Page: 81 of 109

Test mode:	802	.11g	Test ch	annel:	Middle	Remark		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3726.298	6.80	32.80	35.60	46.00	50.00	74	-24.00	Vertical
4874.000	7.60	34.50	35.20	45.60	52.50	74	-21.50	Vertical
6220.550	8.50	34.90	33.80	44.70	54.30	74	-19.70	Vertical
7311.000	10.00	35.70	33.80	46.20	58.10	74	-15.90	Vertical
9748.000	12.30	37.30	32.10	43.40	60.90	74	-13.10	Vertical
10938.215	12.80	37.40	31.20	45.20	64.20	74	-9.80	Vertical
3673.266	6.80	32.60	35.60	47.00	50.80	74	-23.20	Horizontal
4874.000	7.60	34.50	35.20	45.40	52.30	74	-21.70	Horizontal
6077.330	8.30	35.00	34.20	46.30	55.40	74	-18.60	Horizontal
7311.000	10.00	35.70	33.80	45.90	57.80	74	-16.20	Horizontal
9748.000	12.30	37.30	32.10	44.80	62.30	74	-11.70	Horizontal
11296.741	13.60	37.50	31.20	44.30	64.20	74	-9.80	Horizontal

Test mode:	802	.11g	Test ch	annel:	Middle	Remark		Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3726.298	6.80	32.80	35.60	32.80	36.80	54	-17.20	Vertical
4874.000	7.60	34.50	35.10	31.80	38.80	54	-15.20	Vertical
6220.550	8.60	34.90	33.80	31.90	41.60	54	-12.40	Vertical
7311.000	10.00	35.70	33.80	31.60	43.50	54	-10.50	Vertical
9748.000	12.30	37.30	32.10	30.50	48.00	54	-6.00	Vertical
10938.215	12.80	37.40	31.20	31.40	50.40	54	-3.60	Vertical
3673.266	6.80	32.60	35.60	33.20	37.00	54	-17.00	Horizontal
4874.000	7.60	34.50	35.20	32.10	39.00	54	-15.00	Horizontal
6077.330	8.30	35.00	34.20	32.20	41.30	54	-12.70	Horizontal
7311.000	10.00	35.70	33.80	31.60	43.50	54	-10.50	Horizontal
9748.000	12.30	37.30	32.10	30.50	48.00	54	-6.00	Horizontal
11296.741	13.60	37.50	31.20	30.90	50.80	54	-3.20	Horizontal

Report No.: SZEM141100650203 Page: 82 of 109

Test mode:	802	.11g	Test ch	annel:	Highest	Remark		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3443.808	6.90	32.10	35.30	46.00	49.70	74	-24.30	Vertical
4924.000	7.60	34.60	35.20	44.70	51.70	74	-22.30	Vertical
6658.840	9.10	35.40	33.70	45.70	56.50	74	-17.50	Vertical
7386.000	10.00	35.70	33.90	45.80	57.60	74	-16.40	Vertical
9848.000	12.30	37.30	32.10	44.00	61.50	74	-12.50	Vertical
11096.133	13.20	37.60	31.20	44.30	63.90	74	-10.10	Vertical
3699.687	6.80	32.70	35.60	46.70	50.60	74	-23.40	Horizontal
4924.000	7.60	34.60	35.20	45.80	52.80	74	-21.20	Horizontal
6165.071	8.50	35.00	33.90	45.40	55.00	74	-19.00	Horizontal
7386.000	10.00	35.70	33.90	46.30	58.10	74	-15.90	Horizontal
9848.000	12.30	37.30	32.10	43.50	61.00	74	-13.00	Horizontal
11096.133	13.20	37.60	31.20	44.20	63.80	74	-10.20	Horizontal
Test mode:	802	.11g	Test ch	annel:	Highest	Remark	:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3443.808	6.90	32.10	35.30	32.60	36.30	54	-17.70	Vertical
4924.000	7.60	34.60	35.20	32.60	39.60	54	-14.40	Vertical
6658.840	9.10	35.40	33.70	32.20	43.00	54	-11.00	Vertical
7386.000	10.00	35.70	33.90	32.10	43.90	54	-10.10	Vertical
9848.000	12.30	37.30	32.10	31.40	48.90	54	-5.10	Vertical
11096.133	13.20	37.60	31.20	31.40	51.00	54	-3.00	Vertical
3699.687	6.80	32.70	35.60	33.40	37.30	54	-16.70	Horizontal
4924.000	7.60	34.60	35.20	32.60	39.60	54	-14.40	Horizontal
6165.071	8.50	35.00	33.90	32.30	41.90	54	-12.10	Horizontal
7386.000	10.00	35.70	33.90	32.10	43.90	54	-10.10	Horizontal
9848.000	12.30	37.30	32.10	31.30	48.80	54	-5.20	Horizontal
11096.133	13.20	37.60	31.20	31.20	50.80	54	-3.20	Horizontal

Report No.: SZEM141100650203 Page: 83 of 109

Test mode:	80	2.11n(HT20)	Test ch	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3512.356	6.80	32.30	35.40	46.70	50.40	74	-23.60	Vertical
4824.000	7.60	34.40	35.10	46.40	53.30	74	-20.70	Vertical
6528.883	8.90	35.30	33.70	44.80	55.30	74	-18.70	Vertical
7236.000	9.90	35.80	33.80	46.30	58.20	74	-15.80	Vertical
9648.000	12.10	37.20	32.40	44.50	61.40	74	-12.60	Vertical
11459.836	13.50	37.60	31.60	45.00	64.50	74	-9.50	Vertical
3666.690	6.80	32.60	35.50	46.30	50.20	74	-23.80	Horizontal
4824.000	7.60	34.40	35.10	46.30	53.20	74	-20.80	Horizontal
6564.072	9.00	35.40	33.70	45.30	56.00	74	-18.00	Horizontal
7236.000	9.90	35.80	33.80	46.20	58.10	74	-15.90	Horizontal
9648.000	12.10	37.20	32.40	44.10	61.00	74	-13.00	Horizontal
10938.215	12.80	37.40	31.20	44.90	63.90	74	-10.10	Horizontal

Test mode:	80)2.11n(HT20)	Test ch	annel:	Lowest	Remark	:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3512.356	6.80	32.30	35.40	32.80	36.50	54	-17.50	Vertical
4824.000	7.60	34.40	35.10	32.50	39.40	54	-14.60	Vertical
6528.883	8.90	35.30	33.70	32.40	42.90	54	-11.10	Vertical
7236.000	9.90	35.80	33.80	31.60	43.50	54	-10.50	Vertical
9648.000	12.10	37.20	32.40	31.00	47.90	54	-6.10	Vertical
11459.836	13.50	37.60	31.60	30.90	50.40	54	-3.60	Vertical
3666.690	6.80	32.60	35.50	33.00	36.90	54	-17.10	Horizontal
4824.000	7.60	34.40	35.10	32.70	39.60	54	-14.40	Horizontal
6564.072	9.00	35.40	33.60	32.30	43.10	54	-10.90	Horizontal
7236.000	9.90	35.80	33.80	31.60	43.50	54	-10.50	Horizontal
9648.000	12.10	37.20	32.40	31.00	47.90	54	-6.10	Horizontal
10938.215	12.80	37.40	31.20	31.40	50.40	54	-3.60	Horizontal

Report No.: SZEM141100650203 Page: 84 of 109

Test mode:	80	2.11n(HT20)	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3431.489	6.90	32.10	35.30	46.30	50.00	74	-24.00	Vertical
4874.000	7.60	34.50	35.20	46.20	53.10	74	-20.90	Vertical
6355.747	8.70	34.80	33.70	46.10	55.90	74	-18.10	Vertical
7311.000	10.00	35.70	33.80	45.80	57.70	74	-16.30	Vertical
9748.000	12.30	37.30	32.10	44.20	61.70	74	-12.30	Vertical
10977.483	12.90	37.50	31.20	44.60	63.80	74	-10.20	Vertical
3660.126	6.80	32.60	35.50	46.40	50.30	74	-23.70	Horizontal
4874.000	7.60	34.50	35.20	45.40	52.30	74	-21.70	Horizontal
6055.591	8.30	35.00	34.30	45.40	54.40	74	-19.60	Horizontal
7311.000	10.00	35.70	33.80	45.60	57.50	74	-16.50	Horizontal
9748.000	12.30	37.30	32.10	43.80	61.30	74	-12.70	Horizontal
11076.270	13.10	37.60	31.20	44.60	64.10	74	-9.90	Horizontal

Test mode:	80	2.11n(HT20)	Test ch	annel:	Middle	Remark	:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3431.489	6.90	32.10	35.30	32.60	36.30	54	-17.70	Vertical
4874.000	7.60	34.50	35.10	31.90	38.90	54	-15.10	Vertical
6355.747	8.70	34.80	33.70	32.00	41.80	54	-12.20	Vertical
7311.000	10.00	35.70	33.80	31.60	43.50	54	-10.50	Vertical
9748.000	12.30	37.30	32.10	30.50	48.00	54	-6.00	Vertical
10977.483	12.90	37.50	31.20	31.20	50.40	54	-3.60	Vertical
3660.126	6.80	32.60	35.50	32.90	36.80	54	-17.20	Horizontal
4874.000	7.60	34.50	35.20	32.20	39.10	54	-14.90	Horizontal
6055.591	8.30	35.00	34.30	32.20	41.20	54	-12.80	Horizontal
7311.000	10.00	35.70	33.80	31.60	43.50	54	-10.50	Horizontal
9748.000	12.30	37.30	32.10	30.50	48.00	54	-6.00	Horizontal
11076.270	13.10	37.60	31.20	30.90	50.40	54	-3.60	Horizontal

Report No.: SZEM141100650203 Page: 85 of 109

Test mode:	802	.11n(HT20)	Test ch	annel:	Highest	Remark	•	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3595.129	6.80	32.40	35.50	46.20	49.90	74	-24.10	Vertical
4924.000	7.60	34.60	35.20	45.20	52.20	74	-21.80	Vertical
6333.012	8.70	34.80	33.70	45.30	55.10	74	-18.90	Vertical
7386.000	10.00	35.70	33.90	45.40	57.20	74	-16.80	Vertical
9848.000	12.30	37.30	32.10	43.20	60.70	74	-13.30	Vertical
11276.518	13.60	37.50	31.20	44.10	64.00	74	-10.00	Vertical
3693.064	6.80	32.70	35.60	47.10	51.00	74	-23.00	Horizontal
4924.000	7.60	34.60	35.20	45.10	52.10	74	-21.90	Horizontal
6482.258	8.90	35.20	33.70	45.50	55.90	74	-18.10	Horizontal
7386.000	10.00	35.70	33.90	45.30	57.10	74	-16.90	Horizontal
9848.000	12.30	37.30	32.10	43.20	60.70	74	-13.30	Horizontal
11016.891	13.00	37.50	31.20	45.10	64.40	74	-9.60	Horizontal
Test mode:	802	.11n(HT20)	Test ch	annel:	Highest	Remark	:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3595.129	6.80	32.40	35.50	33.00	36.70	54	-17.30	Vertical
4924.000	7.60	34.60	35.20	32.60	39.60	54	-14.40	Vertical
6333.012	8.70	34.80	33.70	32.30	42.10	54	-11.90	Vertical
7386.000	10.00	35.70	33.90	32.10	43.90	54	-10.10	Vertical
9848.000	12.30	37.30	32.10	31.30	48.80	54	-5.20	Vertical
11276.518	13.60	37.50	31.20	31.10	51.00	54	-3.00	Vertical
3693.064	6.80	32.70	35.60	33.60	37.50	54	-16.50	Horizontal
4924.000	7.60	34.60	35.20	32.60	39.60	54	-14.40	Horizontal
6482.258	8.90	35.20	33.70	32.20	42.60	54	-11.40	Horizontal
7386.000	10.00	35.70	33.90	32.10	43.90	54	-10.10	Horizontal
9848.000	12.30	37.30	32.10	31.30	48.80	54	-5.20	Horizontal
11016.891	13.00	37.50	31.20	31.40	50.70	54	-3.30	Horizontal

Report No.: SZEM141100650203 Page: 86 of 109

Test mode:	80	02.11n(HT40)	Test ch	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3759.831	6.80	32.90	35.60	46.80	50.90	74	-23.10	Vertical
4844.000	7.60	34.40	35.10	45.90	52.80	74	-21.20	Vertical
6517.195	8.90	35.30	33.70	45.80	56.30	74	-17.70	Vertical
7266.000	9.90	35.70	33.80	46.20	58.00	74	-16.00	Vertical
9688.000	12.20	37.20	32.30	44.60	61.70	74	-12.30	Vertical
11116.033	13.20	37.60	31.20	46.60	66.20	74	-7.80	Vertical
3647.033	6.80	32.50	35.50	46.30	50.10	74	-23.90	Horizontal
4844.000	7.60	34.50	35.10	45.30	52.30	74	-21.70	Horizontal
6344.370	8.70	34.80	33.70	45.60	55.40	74	-18.60	Horizontal
7266.000	9.90	35.70	33.80	46.20	58.00	74	-16.00	Horizontal
9688.000	12.10	37.20	32.30	44.40	61.40	74	-12.60	Horizontal
11016.891	13.00	37.50	31.20	44.60	63.90	74	-10.10	Horizontal

Test mode:	802	2.11n(HT40)	Test ch	annel:	Lowest	Remark	:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3759.831	6.80	32.90	35.60	32.70	36.80	54	-17.20	Vertical
4844.000	7.60	34.40	35.10	32.50	39.40	54	-14.60	Vertical
6517.195	8.90	35.30	33.70	32.30	42.80	54	-11.20	Vertical
7266.000	9.90	35.70	33.80	31.70	43.50	54	-10.50	Vertical
9688.000	12.20	37.20	32.30	30.80	47.90	54	-6.10	Vertical
11116.033	13.30	37.60	31.20	30.40	50.10	54	-3.90	Vertical
3647.033	6.80	32.50	35.50	32.90	36.70	54	-17.30	Horizontal
4844.000	7.60	34.50	35.10	32.30	39.30	54	-14.70	Horizontal
6344.370	8.70	34.80	33.70	32.70	42.50	54	-11.50	Horizontal
7266.000	9.90	35.70	33.80	32.00	43.80	54	-10.20	Horizontal
9688.000	12.10	37.20	32.30	31.00	48.00	54	-6.00	Horizontal
11016.891	13.00	37.50	31.20	31.60	50.90	54	-3.10	Horizontal

Report No.: SZEM141100650203 Page: 87 of 109

Test mode:	80	2.11n(HT40)	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3647.033	6.80	32.50	35.50	46.10	49.90	74	-24.10	Vertical
4874.000	7.60	34.50	35.20	45.90	52.80	74	-21.20	Vertical
6265.293	8.60	34.80	33.70	45.10	54.80	74	-19.20	Vertical
7311.000	10.00	35.70	33.80	46.20	58.10	74	-15.90	Vertical
9748.000	12.30	37.30	32.10	42.90	60.40	74	-13.60	Vertical
11056.441	13.10	37.60	31.20	44.50	64.00	74	-10.00	Vertical
3653.574	6.80	32.60	35.50	46.10	50.00	74	-24.00	Horizontal
4874.000	7.60	34.50	35.20	45.50	52.40	74	-21.60	Horizontal
6121.043	8.40	35.00	34.10	45.90	55.20	74	-18.80	Horizontal
7311.000	10.00	35.70	33.80	46.90	58.80	74	-15.20	Horizontal
9748.000	12.30	37.30	32.10	43.70	61.20	74	-12.80	Horizontal
11175.945	13.40	37.50	31.10	44.30	64.10	74	-9.90	Horizontal

Test mode:	8)2.11n(HT40)	Test ch	annel:	Middle	Remark	:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3647.033	6.80	32.50	35.50	32.80	36.60	54	-17.40	Vertical
4874.000	7.60	34.50	35.20	32.20	39.10	54	-14.90	Vertical
6265.293	8.60	34.80	33.70	32.50	42.20	54	-11.80	Vertical
7311.000	10.00	35.70	33.80	31.60	43.50	54	-10.50	Vertical
9748.000	12.30	37.30	32.10	30.50	48.00	54	-6.00	Vertical
11056.441	13.10	37.60	31.20	31.50	51.00	54	-3.00	Vertical
3653.574	6.80	32.60	35.50	32.90	36.80	54	-17.20	Horizontal
4874.000	7.60	34.50	35.20	32.10	39.00	54	-15.00	Horizontal
6121.043	8.40	35.00	34.10	32.60	41.90	54	-12.10	Horizontal
7311.000	10.00	35.70	33.80	31.60	43.50	54	-10.50	Horizontal
9748.000	12.30	37.30	32.10	30.60	48.10	54	-5.90	Horizontal
11175.945	13.40	37.50	31.10	31.20	51.00	54	-3.00	Horizontal

Report No.: SZEM141100650203 Page: 88 of 109

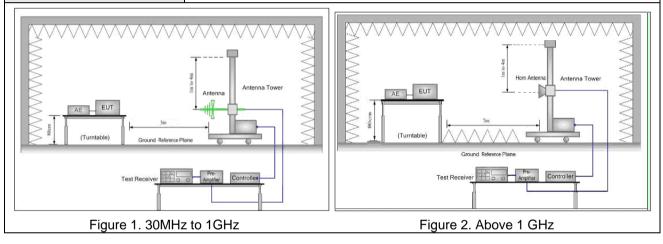
Test mode:	802	.11n(HT40)	Test ch	annel:	Highest	Remark		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3608.036	6.80	32.40	35.50	46.90	50.60	74	-23.40	Vertical
4904.000	7.60	34.60	35.20	45.50	52.50	74	-21.50	Vertical
6198.299	8.50	34.90	33.80	45.80	55.40	74	-18.60	Vertical
7356.000	10.00	35.70	33.80	45.90	57.80	74	-16.20	Vertical
9808.000	12.30	37.30	32.10	43.40	60.90	74	-13.10	Vertical
11175.945	13.40	37.50	31.10	44.20	64.00	74	-10.00	Vertical
3569.455	6.80	32.30	35.50	46.10	49.70	74	-24.30	Horizontal
4904.000	7.60	34.60	35.20	46.20	53.20	74	-20.80	Horizontal
6187.203	8.50	34.90	33.90	45.50	55.00	74	-19.00	Horizontal
7356.000	10.00	35.70	33.80	45.70	57.60	74	-16.40	Horizontal
9808.000	12.30	37.30	32.10	42.40	59.90	74	-14.10	Horizontal
10273.328	12.30	37.30	31.70	44.20	62.10	74	-11.90	Horizontal
Test mode:	802	.11n(HT40)	Test ch	annel:	Highest	Remark	:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3608.036	6.80	32.40	35.50	33.40	37.10	54	-16.90	Vertical
4904.000	7.60	34.60	35.20	32.40	39.40	54	-14.60	Vertical
6198.299	8.50	34.90	33.80	32.30	41.90	54	-12.10	Vertical
7356.000	10.00	35.70	33.80	31.90	43.80	54	-10.20	Vertical
9808.000	12.30	37.30	32.10	31.10	48.60	54	-5.40	Vertical
11175.945	13.40	37.50	31.10	31.20	51.00	54	-3.00	Vertical
3569.455	6.80	32.30	35.50	32.90	36.50	54	-17.50	Horizontal
4904.000	7.60	34.60	35.20	32.40	39.40	54	-14.60	Horizontal
6187.203	8.50	34.90	33.90	32.60	42.10	54	-11.90	Horizontal
7356.000	10.00	35.70	33.80	31.90	43.80	54	-10.20	Horizontal
9808.000	12.30	37.30	32.10	31.10	48.60	54	-5.40	Horizontal
10273.328	12.30	37.30	31.70	31.40	49.30	54	-4.70	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

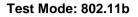


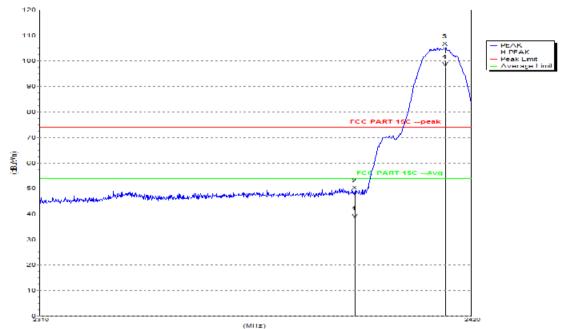
Report No.: SZEM141100650203 Page: 89 of 109

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	7 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2009	NSI C63.10 2009							
Test Site:	Measurement Distance: 3n	easurement Distance: 3m (Semi-Anechoic Chamber)							
Limit:	Frequency	Limit (dBuV/m @3m)	Remark						
	30MHz-88MHz	30MHz-88MHz 40.0 Quasi-peak Valu							
	88MHz-216MHz	43.5	Quasi-peak Value						
	216MHz-960MHz	46.0	Quasi-peak Value						
	960MHz-1GHz	54.0	Quasi-peak Value						
	Above 1GHz	54.0	Average Value						
	Above IGHZ	74.0 Peak Val							
Test Cature									

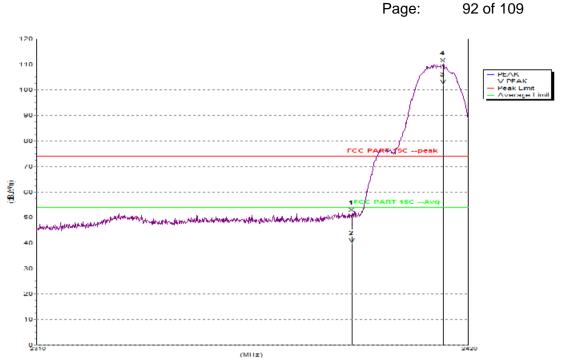
Test Setup:


Report No.: SZEM141100650203 Page: 90 of 109

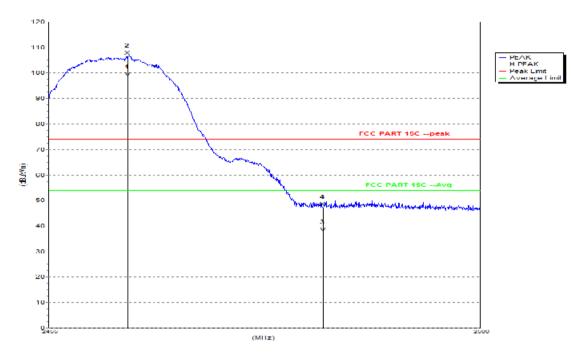

	-
Test Procedure:	 a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	g. Test the EUT in the lowest channel , the Highest channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode,And found the X axis positioning which it is worse case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Transmitting mode, Charge + Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode and Charge +Transmitting mode, found the Charge +Transmitting mode which it is worse case
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case
	of 802.11n(HT20) ; 13.5Mbps of rate is the worst case of 802.11n(HT40)
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

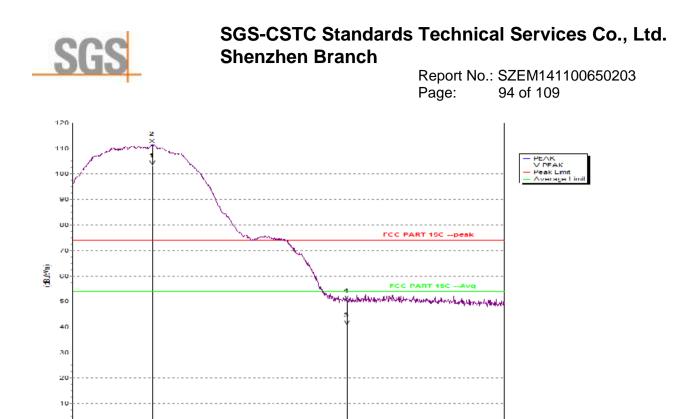
Report No.: SZEM141100650203 Page: 91 of 109

Test plot as follows:



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	49.1	74.0	24.9	28.8	34.8	4.6	Н
2 F	2413.290	105.6	74.0	-31.6	28.8	34.9	4.6	Н
Avg								
1	2390	38.1	54.0	15.9	28.8	34.8	4.6	Н
2 F	2413.290	97.5	54.0	-43.5	28.9	34.9	4.6	Н

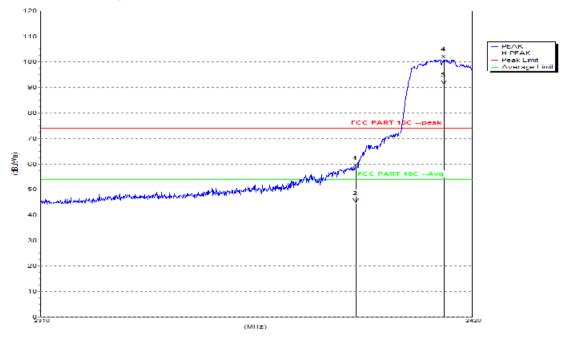

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch Report No.: SZEM141100650203


Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	51.8	74.0	22.2	28.7	34.8	4.6	V
2 F	2413.510	110.3	74.0	-36.3	28.9	34.9	4.6	V
Avg								
1	2390	39.8	54.0	14.2	28.7	34.8	4.6	V
2 F	2413.510	102.1	54.0	-48.1	28.9	34.9	4.6	V

Report No.: SZEM141100650203 Page: 93 of 109

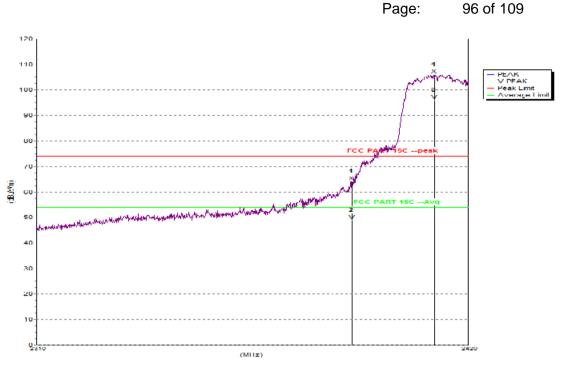
Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2463.235	106.7	74.0	-32.7	29.2	35.0	4.6	Н
2	2483.5	47.3	74.0	26.7	29.3	35.0	4.5	Н
Avg								
1 F	2463.235	98.4	54.0	-44.4	29.2	35.0	4.6	Н
2	2483.5	37.5	54.0	16.5	29.3	35.0	4.5	Н

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2463.280	111.6	74.0	-37.6	29.2	35.0	4.6	V
2	2483.5	50.3	74.0	23.7	29.3	35.0	4.5	V
Avg								
1 F	2463.280	103.2	54.0	-49.2	29.2	35.0	4.6	V
2	2483.5	40.5	54.0	13.5	29.3	35.0	4.5	V

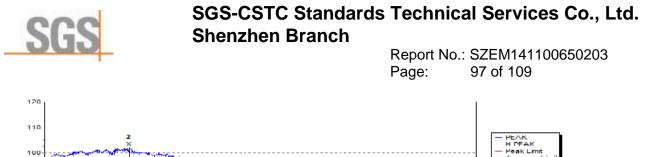

(MILZ)

Q.

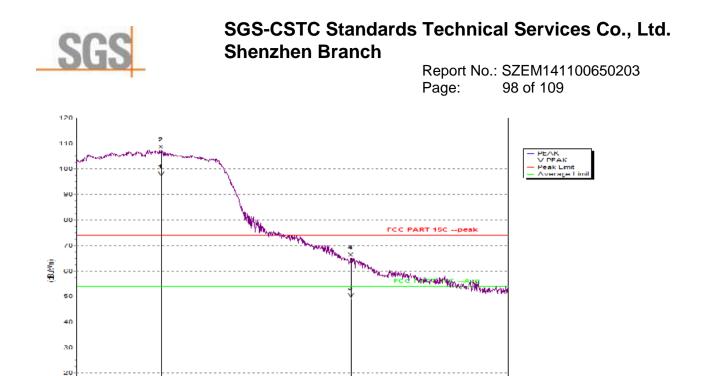
Report No.: SZEM141100650203 Page: 95 of 109


Test Mode: 802.11g

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	58.1	74.0	15.9	28.7	34.8	4.6	Н
2 F	2412.850	100.9	74.0	-26.9	28.8	34.9	4.6	Н
Avg								
1	2390	44.4	54.0	9.6	28.7	34.8	4.6	Н
2 F	2412.850	90.9	54.0	-36.9	28.8	34.9	4.6	Н

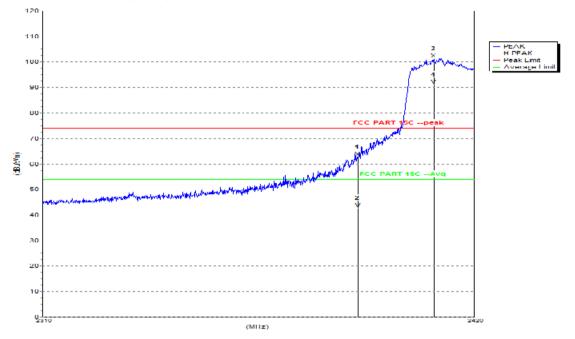


SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch Report No.: SZEM141100650203

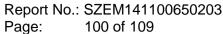

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	64.1	74.0	9.9	28.7	34.8	4.6	V
2 F	2411.420	106.1	74.0	-32.1	28.8	34.9	4.6	V
Avg								
1	2390	48.8	54.0	5.2	28.7	34.8	4.6	V
2 F	2411.420	96.0	54.0	-42.0	28.8	34.9	4.6	V

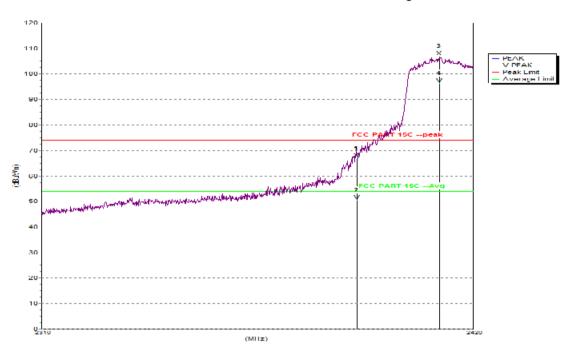
Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2463.820	102.2	74.0	-28.2	29.2	35.0	4.6	Н
2	2483.5	59.2	74.0	14.8	29.3	35.0	4.5	Н
Avg								
1 F	2463.820	91.3	54.0	-37.3	29.2	35.0	4.6	Н
2	2483.5	42.4	54.0	11.6	29.3	35.0	4.5	Н

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2463.820	107.4	74.0	-33.4	29.2	35.0	4.6	V
2	2483.5	65.2	74.0	8.8	29.3	35.0	4.5	V
Avg								
1 F	2463.820	96.8	54.0	-42.8	29.2	35.0	4.6	V
2	2483.5	49.3	54.0	4.7	29.3	35.0	4.5	V

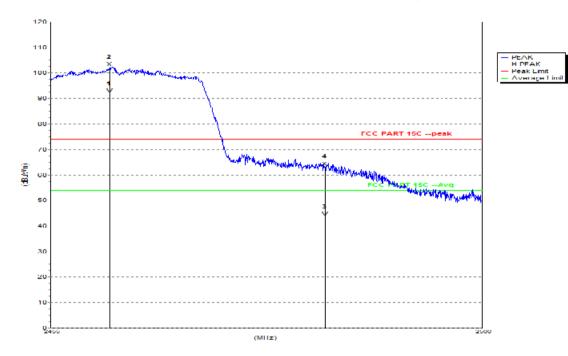

(MILZ)

10-

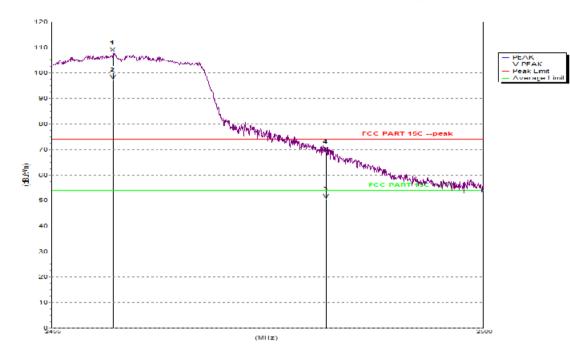

Report No.: SZEM141100650203 Page: 99 of 109


Test Mode: 802.11n (HT20)

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	62.6	74.0	11.4	28.7	34.8	4.6	Н
2 F	2409.550	101.3	74.0	-27.3	28.8	34.9	4.6	Н
Avg								
1	2390	42.8	54.0	11.2	28.7	34.8	4.6	Н
2 F	2409.550	91.0	54.0	-37.0	28.8	34.9	4.6	Н

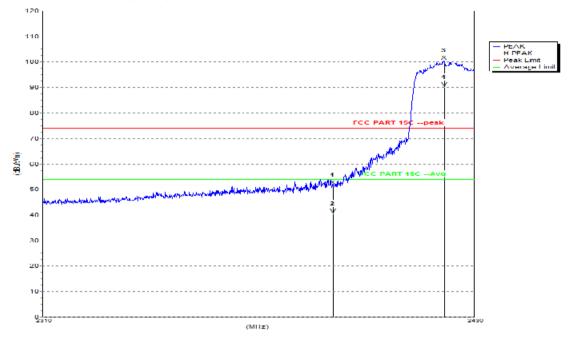


Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	66.9	74.0	7.1	28.8	34.8	4.6	V
2 F	2411.420	106.8	74.0	-32.8	28.8	34.9	4.6	V
Avg								
1	2390	50.4	54.0	3.6	28.8	34.8	4.6	V
2 F	2411.420	96.3	54.0	-42.3	28.9	34.9	4.6	V


Report No.: SZEM141100650203 Page: 101 of 109

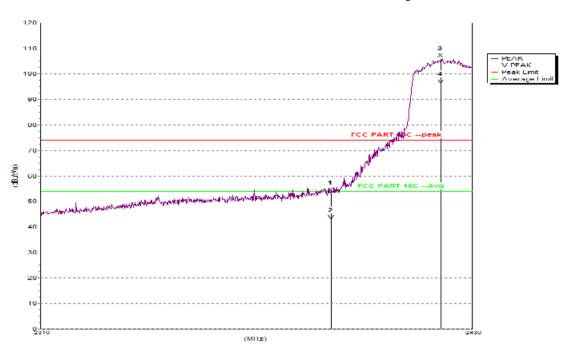
Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2461.165	102.3	74.0	-28.3	29.2	35.0	4.6	Н
2	2483.5	63.1	74.0	10.9	29.3	35.0	4.5	Н
Avg								
1 F	2461.165	91.7	54.0	-37.7	29.2	35.0	4.6	Н
2	2483.5	43.5	54.0	10.5	29.3	35.0	4.5	Н

Report No.: SZEM141100650203 Page: 102 of 109

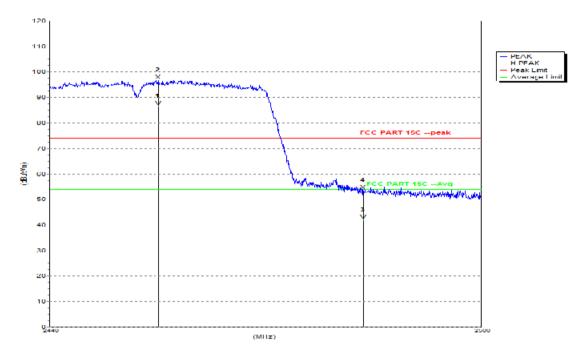


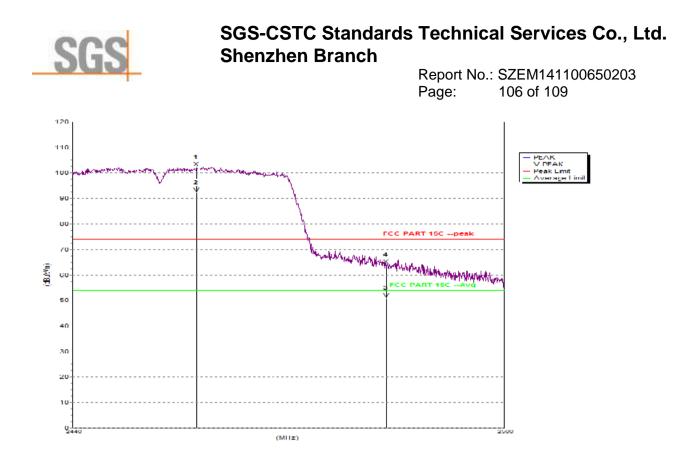
Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2461.390	107.8	74.0	-33.8	29.2	35.0	4.6	V
2	2483.5	68.9	74.0	5.1	29.3	35.0	4.5	V
Avg								
1 F	2461.390	97.2	54.0	-43.2	29.2	35.0	4.6	V
2	2483.5	50.5	54.0	3.5	29.3	35.0	4.5	V

Report No.: SZEM141100650203 Page: 103 of 109


Test Mode: 802.11n (HT40)

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	51.6	74.0	22.4	28.7	34.8	4.6	Н
2 F	2421.600	100.5	74.0	-26.5	28.9	34.9	4.6	Н
Avg								
1	2390	40.3	54.0	13.7	28.7	34.8	4.6	Н
2 F	2421.600	90.1	54.0	-36.1	28.9	34.9	4.6	Н


Report No.: SZEM141100650203 Page: 104 of 109


Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	53.4	74.0	20.6	28.7	34.8	4.6	V
2 F	2421.240	106.0	74.0	-32.0	28.9	34.9	4.6	V
Avg								
1	2390	42.5	54.0	11.5	28.7	34.8	4.6	V
2 F	2421.240	95.8	54.0	-41.8	28.9	34.9	4.6	V

Report No.: SZEM141100650203 Page: 105 of 109

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2455.120	96.8	74.0	-22.8	29.1	35.0	4.6	Н
2	2483.5	53.5	74.0	20.5	29.ss3	35.0	4.5	Н
Avg								
1 F	2455.120	86.5	54.0	-32.5	29.1	35.0	4.6	Н
2	2483.5	42.0	54.0	12.0	29.3	35.0	4.5	Н

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2457.220	102.2	74.0	-28.2	29.1	35.0	4.6	V
2	2483.5	63.9	74.0	10.1	29.3	35.0	4.5	V
Avg								
1 F	2457.220	92.1	54.0	-38.1	29.1	35.0	4.6	V
2	2483.5	50.9	54.0	3.1	29.3	35.0	4.5	V

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

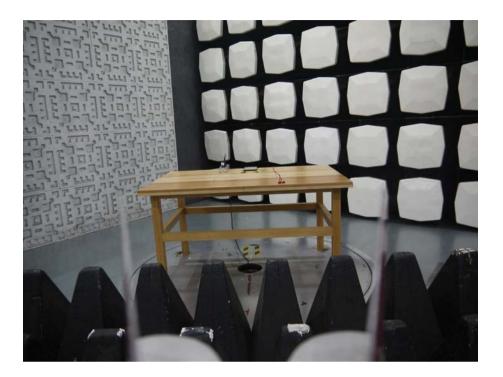
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM141100650203 Page: 107 of 109

7 Photographs - EUT Test Setup

Test model No.: BAK BOARD WIFI

7.1 Conducted Emission



7.2 Radiated Spurious Emission

Report No.: SZEM141100650203 Page: 108 of 109

Report No.: SZEM141100650203 Page: 109 of 109

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1411006502CR.