

Jackychen Lung Ch: Lung Ch:

FCC PART 15 SUBPART C TEST REPORT

FCC Part 15.225

Report Reference No...... CTL1505131231-WF

Compiled by

(position+printed name+signature)..: File administrators Jacky Chen

Name of the organization performing

the tests

Test Engineer Tracy Qi

(position+printed name+signature)..:

Approved by

(position+printed name+signature)..: Manager Tracy Qi

Test Firm...... Shenzhen CTL Testing Technology Co., Ltd.

Address...... Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Applicant's name...... Guangzhou Haoyun Security Technology Co., Ltd

Address...... Room 2201, Headquarter Center Tower 2, 555 Panyu Avenue

North, Panyu District, Guangzhou, China

Test specification:

Standard FCC Part 15.225: Operation within the band 13.110–14.010 MHz.

Master TRF...... Dated 2011-01

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Card Reader

FCC ID...... 2AEXDTSS-CTB391

Trade Mark: N/A

TSS-CTB398, TSS-ACVC01, TSS-ACVC02

Transmit Frequency.....: 13.56MHz

Number of channels 1

Modulation Type ASK

Antenna type Loop antenna

Result..... Positive

TEST REPORT

Test Report No. :	CTL1505131231-WF	June 06, 2015
	C1L1505131231-VVF	Date of issue

Equipment under Test : Card Reader

Model /Type : TSS-CTB391

Listed Models : TSS-CTB394, TSS-CTB396-X, TSS-CTB396,

TSS-CTB398, TSS-ACVC01, TSS-ACVC02

Report No.: CTL1505131231-WF

Difference Description : Only the color and model's name is different

Applicant : Guangzhou Haoyun Security Technology Co., Ltd

Address : Room 2201, Headquarter Center Tower 2, 555 Panyu

Avenue North, Panyu District, Guangzhou, China

Manufacturer : Guangzhou Haoyun Security Technology Co., Ltd

Address : Room 2201, Headquarter Center Tower 2, 555 Panyu

Avenue North, Panyu District, Guangzhou, China

standards on page 4:

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: CTL1505131231-WF

Contents

neral Remarks uipment Under Test		
ort description of the Equipmen	nt under Test (EUT)	
T operation mode	,	
T configuration		
lated Submittal(s) / Grant (s)		
OTE		
ST ENVIRONMENT		<u></u>
大	可加	
dress of the test laboratory	12	
st Facility vironmental conditions	No. Oliver	
vironmental conditions atement of the measurement un	certainty	
st Description	bertainty	
uipments Used during the Test	ATTEN SIN I	
S		
ST CONDITIONS AND I	RESULTS	
9 10	CTL	
Power Conducted Emission		
diated Emission equency Tolerance		
dB Bandwidth		
ITENNA REQUIREMENT		

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.225: Operation within the band of 13.110–14.010 MHz.

ANSI C63.4-2009

V1.0 Page 5 of 24 Report No.: CTL1505131231-WF

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	May 13, 2015
Testing commenced on	:	May 13, 2015
Testing concluded on	:	June 06, 2015

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz			
	Sealer of the last	•	12 V DC O 24 V DC			
		0	Other (specified in blank below)			

2.3. Short description of the Equipment under Test (EUT)

A Card Reader work frequency at 13.56MHz.

For more details, refer to the user's manual of the EUT.

Serial number: Prototype

2.4. EUT operation mode

The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting mode for testing.

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- O supplied by the manufacturer
- supplied by the lab

•	AC adapter (FCC VOC approved)	Manufacturer :	SHENZHEN PENGSHENGYE ELECTRONIC CO.,LTD
		Model No. :	SAPA12010EUU

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AEXDTSS-CTB391** filing to comply with Section 15.225 of the FCC Part 15, Subpart C Rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 6 of 24 Report No.: CTL1505131231-WF

2.8. NOTE

1. The EUT is a/an RFID Reader, The functions of the EUT listed as below:

	Test Standards	Reference Report
Radio	FCC Part 15 Subpart C (Section15.225)	CTL1505131231-WF

2. The frequency bands used in this EUT are listed as follows:

Frequency Band(MHz)	13.110–14.010 MHz			
	√			

3. The EUT provides one completed transmitter.

Modulation Mode	TX Function
ASK	1TX

V1.0 Page 7 of 24 Report No.: CTL1505131231-WF

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd. Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

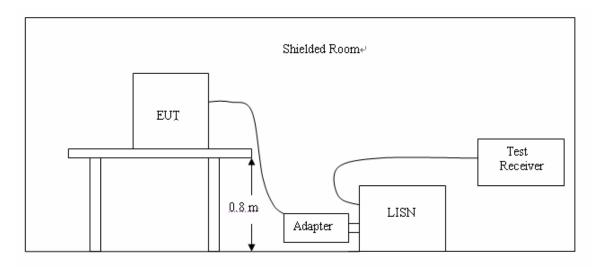
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5. Test Description

FCC PART 15 Subpart C		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.225(a)(b)(c)(d)	Radiated Emission (9kHz ~ 30MHz)	PASS
FCC Part 15.225(d),15.209	Radiated Emission (30MHz ~ 1GHz)	PASS
FCC §15.225(e)	Frequency stability	PASS
FCC Part 2.1049	20dB Bandwidth	PASS

Remark: The measurement uncertainty is not included in the test result.


3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2014/07/12	2015/07/11
EMI Test Receiver	R&S	ESCI	103710	2014/07/10	2015/07/09
Spectrum Analyzer	Agilent	E4407B	MY45108355	2014/07/06	2015/07/05
Controller	EM Electronics	Controller EM 1000	N/A_	2014/07/06	2015/07/05
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2014/07/12	2015/07/11
Horn Antenna	SCHWARZBECK	BBHA9170	1562	2014/07/12	2015/07/11
Active Loop Antenna	SCHWARZBECK	FMZB1519	1519-037	2014/07/12	2015/07/11
LISN	R&S	ENV216	101316	2014/07/10	2015/07/09
LISN	SCHWARZBECK	NSLK8127	8127687	2014/07/10	2015/07/09
Microwave Preamplifier	HP	8349B	3155A00882	2014/07/10	2015/07/09
Amplifier	HP	8447D	3113A07663	2014/07/10	2015/07/09
Transient Limiter	Com-Power	LIT-153	532226	2014/07/10	2015/07/09
Radio Communication Tester	R&S	CMU200	3655A03522	2014/07/06	2015/07/05
Temperature/Humidity Meter	zhicheng	ZC1-2	22522	2014/07/10	2015/07/09
SIGNAL GENERATOR	HP	8647A	3200A00852	2014/07/10	2015/07/09
Wideband Peak Power Meter	Anritsu	ML2495A	220.23.35	2014/07/06	2015/07/05
Climate Chamber	ESPEC	EL-10KA	A20120523	2014/07/06	2015/07/05
High-Pass Filter	K&L	9SH10- 2700/X12750 -O/O	/	2014/07/06	2015/07/05
High-Pass Filter	K&L	41H10- 1375/U12750 -O/O	/	2014/07/06	2015/07/05

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

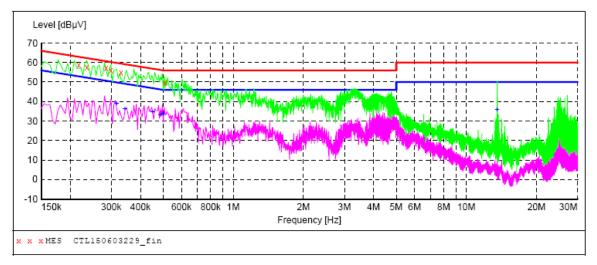
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2009
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2009
- 4 The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

 Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

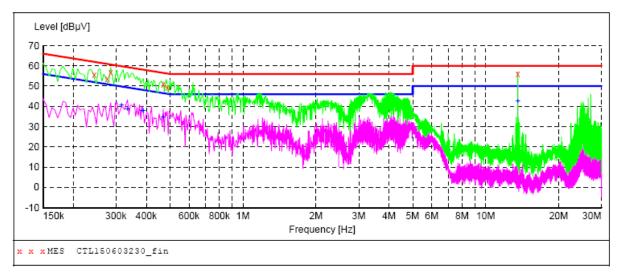

Frequency (MHz)	Maximum RF Line Voltage (dBμV)				
	CLAS	SS A	CLASS B		
(11112)	Q.P. Ave.		Q.P.	Ave.	
0.15 - 0.50	79	66	66-56*	56-46*	
0.50 - 5.00	73	60	56	46	
5.00 - 30.0	73	60	60	50	

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

SCAN TABLE: "Voltage (9K-30M)FIN"

Short Description: 150K-30M Voltage


MEASUREMENT RESULT: "CTL150603229 fin"

6/6/2015	4:05P	M						
Frequ	ency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.21	7500	58.60	10.2	63	4.3	QP	N	GND
0.23	5500	57.70	10.2	62	4.6	QP	N	GND
0.28	5000	57.10	10.2	61	3.6	QP	N	GND
0.29	8500	56.10	10.2	60	4.2	QP	N	GND
0.33	0000	54.80	10.2	60	4.7	QP	N	GND
0.51	0000	49.50	10.2	56	6.5	QP	N	GND

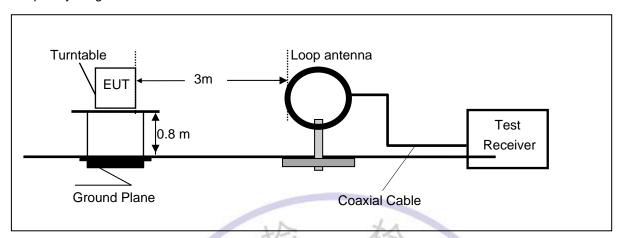
MEASUREMENT RESULT: "CTL150603229_fin2"

6/6/2015 4:05	PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.316500	38.80	10.2	50	11.0	AV	N	GND
0.343500	36.10	10.2	49	13.0	AV	N	GND
0.451500	34.60	10.2	47	12.2	AV	N	GND
0.487500	33.20	10.2	46	13.0	AV	N	GND
0.501000	33.90	10.2	46	12.1	AV	N	GND
13.555500	35.60	10.6	50	14.4	AV	N	GND

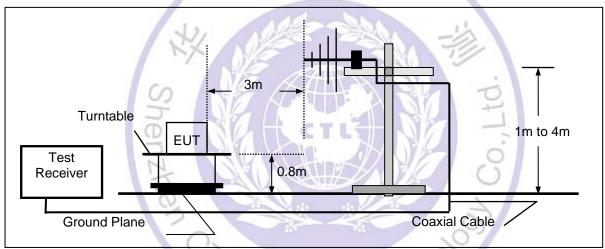
SCAN TABLE: "Voltage (9K-30M) FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL150603230_fin"

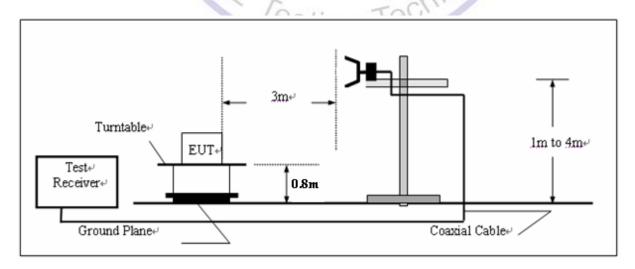
6/	6/2015 4:08	PM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.244500	55.40	10.2	62	6.5	QP	L1	GND
	0.276000	53.60	10.2	61	7.3	QP	L1	GND
	0.285000	56.60	10.2	61	4.1	QP	L1	GND
	0.469500	50.70	10.2	57	5.8	QP	L1	GND
	0.487500	49.40	10.2	56	6.8	QP	L1	GND
	13.560000	56.00	10.6	60	4.0	QP	L1	GND


MEASUREMENT RESULT: "CTL150603230 fin2"

6/6/2015 4:0 Frequency MHz	8PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.316500	40.70	10.2	50	9.1	AV	L1	GND
0.334500	38.60	10.2	49	10.7	AV	L1	GND
0.384000	37.80	10.2	48	10.4	AV	L1	GND
0.388500	37.80	10.2	48	10.3	AV	L1	GND
0.469500	34.60	10.2	47	11.9	AV	L1	GND
13.564500	42.60	10.6	50	7.4	AV	L1	GND


4.2. Radiated Emission

TEST CONFIGURATION


Radiated Emission Test Set-Up Frequency range 9KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

V1.0 Page 13 of 24 Report No.: CTL1505131231-WF

TEST PROCEDURE

- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2 Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3 And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4 Repeat above procedures until all frequency measurements have been completed.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	4

For example

	Frequency	FS	RA	AF	CL	AG	Transd
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
j	300.00	40	58.1	12.2	1.6	31.90	-18.1

Transd=AF +CL-AG

RADIATION LIMIT

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength @30m (uV/m)	Field strength @30m (dBuV/m)	Field strength @3m (dBuV/m)
Below 13.110	30	29.5	69.5
13.110 ~13.410	106	40.5	80.5
13.410~13.553	334	50.5	90.5
13.553~13.567	15,848	84	124
13.567~13.710	334	50.5	90.5
13.710~14.010	106	40.5	80.5
Above 14.010	30	29.5	69.5

Note:

- (1) The tighter limit shall apply at the edge between two frequency bands.
- (2) dBuV/m = 20*log(uV/m)
- (3) Distance factor = 40dB / decade(15.31(f))

FCC Part15, Subpart C Section 15.209 limit of radiated emission for frequency below1000MHz. The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Distance (Meters)	Field Strengths Limits (dBμV/m)
0.009 -0.490	300	2400/F(KHz)
0.490 -1.705	30	24000/F(KHz)
1.705 -30	30	30
30 -88	3	40.0
88 -216	3	43.5
216 -960	3	46.0
Above 960	3	54.0

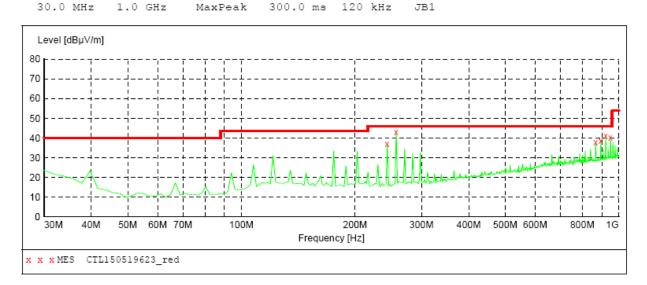
Note:

- (1) The tighter limit shall apply at the edge between two frequency bands.
- (2) Distance refers to the distance in meters between the test instrument antenna and the closest point of any part of the E.U.T.

TEST RESULTS

WORST-CASE RADIATED EMISSION BELOW 30 MHz

Frequency	Meter Reading	Polar	Antenna Factor	Cable Loss	Emission Levels	Limits at 3m	Margin	DetectorM ode
(MHz)	(dBµV)	H/V	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	QP /AV
13.41	40.89	V	25.36	0.34	66.59	80.5	13.91	QP
13.56	69.73	SV /	25.36	0.34	95.43	124	28.57	QP
13.55	51.06	2 V	25.36	0.35	76.77	90.5	13.73	QP
13.569	49.63	Y V	25.36	0.34	75.33	90.5	15.17	QP
13.71	41.38	V	25.41	0.34	67.13	80.5	13.37	QP
24.653	21.52	5 V	22.71	0.59	44.82	69.5	24.68	QP


Remark: 1. Data of measurement within this frequency range shown " -" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 2. The test limit distance is 3m limit.
- 3. PK means Peak Value, QP means Quasi Peak Value, AV means Average Value.

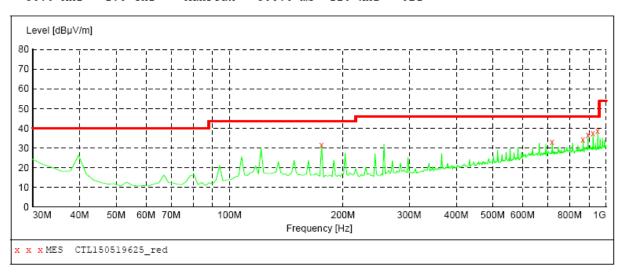
Radiated Emission Test Data 30-1000MHz:

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.

MEASUREMENT RESULT: "CTL150519623_red"

5/19/2015 6:5								
Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
243.400000	36.90	14.1	46.0	9.1		0.0	0.00	HORIZONTAL
256.980000	43.00	14.7	46.0	3.0		0.0	0.00	HORIZONTAL
868.080000	37.90	25.5	46.0	8.1		0.0	0.00	HORIZONTAL
895.240000	38.70	26.0	46.0	7.3		0.0	0.00	HORIZONTAL
922.400000	41.20	26.3	46.0	4.8		0.0	0.00	HORIZONTAL
949.560000	40.20	26.6	46.0	5.8		0.0	0.00	HORIZONTAL


Bandw.

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength

Start Stop Detector Meas. Transducer

Frequency Frequency Time 30.0 MHz 1.0 GHz MaxPeak 300.0 ms 120 kHz JB1

MEASUREMENT RESULT: "CTL150519625 red"

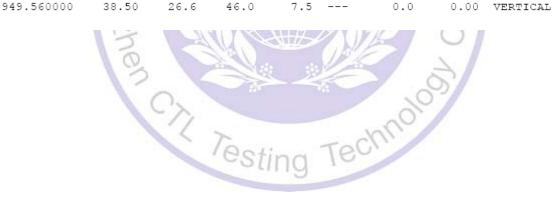
37.50

922.400000

26.3

5/19/2015 6:56PM Level Transd Limit Margin Det. Height Azimuth Polarization Frequency dBµV/m MHz dB dBµV/m dB cm deg 175.500000 13.2 31.50 12.0 0.00 VERTICAL 43.5 0.0 718.700000 33.00 23.7 46.0 13.0 ---0.0 0.00 VERTICAL 25.5 868.080000 46.0 34.10 11.9 ---0.00 VERTICAL 0.0 895.240000 36.60 26.0 46.0 9.4 ---0.0 0.00 VERTICAL

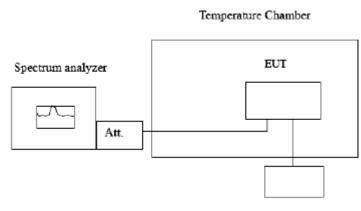
8.5



0.0

0.00

VERTICAL


46.0

ge 17 of 24 Report No.: CTL1505131231-WF

4.3. Frequency Tolerance

TEST CONFIGURATION

Variable Power Supply

TEST PROCEDURE

The frequency stability of the transmitter is measured by: (a) Temperature: The temperature is varied from - 20 to $^{\circ}$ C +50 $^{\circ}$ C using an environmental chamber. (b) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the voltage normally input to the device or at the power supply terminals if cables are not normally supplied.

LIMIT

The frequency tolerance of the carrier shall be maintained within ±0.01% of the operating frequency.

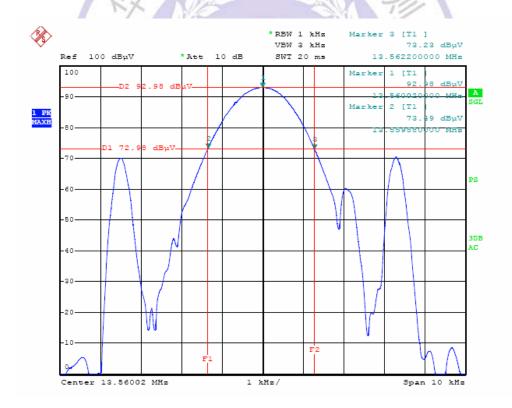
TEST RESULTS

Voltage (%)	Power (VDC)	Temperature (°C)	Frequency (MHz)	Deviation (%)
100	12.0	+20℃(Ref)	13.560077	0.000568
100	12.0	-20	13.560251	0.001851
100	12.0	-10	13.560188	0.001386
100	12.0	7 0	13.560229	0.001689
100	12.0	30/10	13.560237	0.001748
100	12.0	25	13.560083	0.000612
100	12.0	30	13.560095	0.000701
100	12.0	40	13.560183	0.001350
100	12.0	50	13.560281	0.002072
85	10.2	20	13.560463	0.003414
115	13.8	20	13.560528	0.003894

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE


The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1KHz RBW and 3KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

The 20dB bandwidth shall be specified in operating frequency band.

TEST RESULTS

· N da				
20dBc point (low)	20dBc point (High)	20dB Bandwidth	Operating frequency band	PASS/FAIL
		(KHz)	(MHz)	
13.55958MHz	13.56220MHz	2.62	13.553~13.567	PASS

Report No.: CTL1505131231-WF

4.5. ANTENNA REQUIREMENT

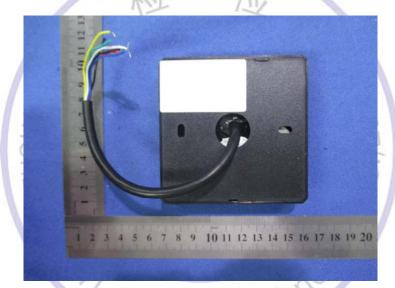
STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


ANTENNA CONNECTED CONSTRUCTION

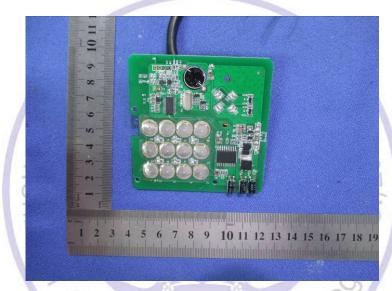
The antenna is a loop antenna and connector is designed with permanent attachment no consideration of replacement. The antenna used in this product is complied with Standard. The maximum Gain of the antenna lower than 6.0dBi and has the definite antenna Specification.

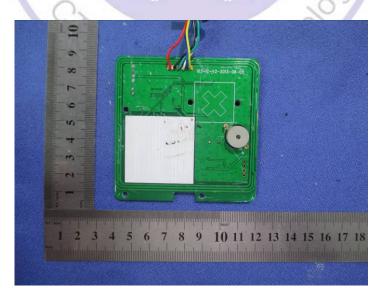
5. Test Setup Photos of the EUT

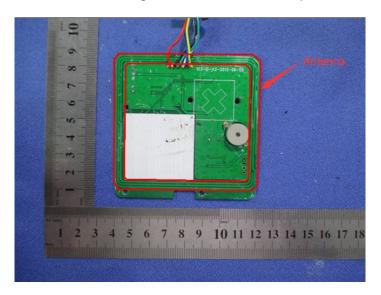


6. External and Internal Photos of the EUT

External Photos of EUT







Internal Photos of EUT

