

Page 1 of 24

Report No.: UNIA20061111ER-01

FCC RADIO TEST REPORT

FCC ID:2AEWY-NL45

Product:Nanoleaf Essentials Smart A19 BulbTrade Name:NanoleafModel Name:NL45-0800WT120E26Serial Model:NL45-0800WT240B22Report No.:UNIA20061111ER-01

Prepared for

NANOGRID LIMITED

ROOM 1405, 135 BONHAM STRAND TRADE CENTRE, 135 BONHAM STRAND, SHEUNG WAN, Hong Kong

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

TEST RESULTCERTIFICATION

Applicant's name:	NANOGRID LIMITED
Address:	ROOM 1405, 135 BONHAM STRAND TRADE CENTRE, 135 BONHAM STRAND, SHEUNG WAN, Hong Kong
Manufacture's Name:	NANOGRID LIMITED
Address:	ROOM 1405, 135 BONHAM STRAND TRADE CENTRE, 135 BONHAM STRAND, SHEUNG WAN, Hong Kong
Product description	
Product name:	Nanoleaf Essentials Smart A19 Bulb
Trade Mark:	Nanoleaf
Model and/or type reference .:	NL45-0800WT120E26, NL45-0800WT240B22
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.10: 2013

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Pass

Date of Test	:
Date (s) of performance of tests	:
Date of Issue	:
Test Result	:

Jun. 11, 2020 ~ Aug. 06, 2020 Aug. 06, 2020

Prepared by:

Bob (iao

Bob liao/Editor ahn Yang

Kahn yang/Supervisor

Vonte

Liuze/Manager

Reviewer:

Approved & Authorized Signer:

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

ئى _		N	i.			
		Page 3 of 24	Re	eport No.: UNIA2	0061111ER-	01
	Table	of Contents			Page	
1. TEST SUMM	ARY				4	
2. GENERAL IN	FORMATION				5	
2.1 GENERAL		OF EUT			5	
2.2 Carrier Fr	equency of Chan	nels			6	
2.3 Operation	of EUT during te	sting			6	
2.4DESCRIPT	ION OF TEST SE	TUP			6	
2.5MEASURE	MENT INSTRUME	ENTS LIST			7	
3. CONDUCTE	D EMISSIONS T	EST			8	
3.1 Conducte	d Power Line Emi	ission Limit			8	
3.2 Test Setu	p				8	
3.3 Test Proce	edure				8	
3.4 Test Resu	ilt 🛁				8	
4 RADIATED EN	MISSION TEST				11	
4.1 Radiation	Limit				11	
4.2 Test Setu	р				11	
					S	

- 4.3 Test Procedure
- 4.4 Test Result
- **5 BAND EDGE**
 - 5.1 Limits
 - 5.2 Test Procedure
 - 5.3 Test Result
- 6 20dB Bandwidth
 - 6.1 Test Setup
 - 6.2 Test Procedure
 - 6.3 Measurement Equipment Used
 - 6.4 Test Result

7 ANTENNA REQUIREMENT

- **8 PHOTOGRAPH OF TEST**
 - 8.1 Radiated Emission
 - 8.2Conducted Emission

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China 深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼 邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

12 13

18 18

18

18

20

20

20 20

20

22

23

23

24

Report No.: UNIA20061111ER-01

1. TEST SUMMARY

TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST CONDUCTED EMISSIONS TEST RADIATED EMISSION TEST BAND EDGE 20dB Bandwidth ANTENNA REQUIREMENT

RESULT COMPLIANT COMPLIANT COMPLIANT COMPLIANT STANGARD FCC Part 15.207 FCC Part 15.209/15.249 FCC Part 15.249(d) FCC Part 15.215 FCC Part 15.203

TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 21947

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, I
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, I
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, I
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, I

k=2 k=2 k=2 k=2

2. GENERAL INFORMATION

2.1GENERAL DESCRIPTION OF EUT

Nanoleaf Essentials Smart A19 Bulb Nanoleaf NL45-0800WT120E26
NL45-0800WT120E26
NL45-0800WT240B22
All model's the function, software and electric circuit are
he same, only with a product color and model named
different. Test sample model: NL45-0800WT120E26.
2AEWY-NL45
PCB Antenna
2.1dBi
2402~2480MHz
40CH
GFSK
N/A
AC 100-240V~50/60Hz

2.2 Carrier Frequency of Channels

		Chanr	nel List			V
Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
2402	11	2422	21	2442	31	2462
2404	12	2424	22	2444	32	2464
2406	13	2426	23	2446	33	2466
2408	14	2428	24	2448	34	2468
2410	15	2430	25	2450	35	2470
2412	16	2432	26	2452	36	2472
2414	17	2434	27	2454	37	2474
2416	18	2436	28	2456	38	2476
2418	19	2438	29	2458	39	2478
2420	20	2440	30	2460	40	2480
	(MHz) 2402 2404 2406 2408 2410 2412 2414 2416 2418	(MHz)Channel240211240412240613240814241015241216241417241618241819	Frequency (MHz) Channel Frequency (MHz) 2402 11 2422 2404 12 2424 2406 13 2426 2408 14 2428 2410 15 2430 2412 16 2432 2414 17 2434 2416 18 2436 2418 19 2438	(MHz)Channel (MHz)(MHz)Channel240211242221240412242422240613242623240814242824241015243025241216243226241417243427241618243628241819243829	Frequency (MHz) Channel Frequency (MHz) Frequency (MHz) Frequency (MHz) 2402 11 2422 21 2442 2404 12 2424 22 2444 2406 13 2426 23 2446 2408 14 2428 24 2448 2410 15 2430 25 2450 2412 16 2432 26 2452 2416 18 2436 28 2456 2418 19 2438 29 2458	Frequency (MHz)ChannelFrequency (MHz)Frequency (MHz)Frequency (MHz)Channel240211242221244231240412242422244432240613242623244633240814242824244834241015243025245035241216243226245236241417243427245437241618243628245638241819243829245839

2.3 Operation of EUT during testing

Operating Mode The mode is used: Transmitting mode Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

2.4 DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing:

Operation of EUT duringRadiation testing:

EUT

Table forauxiliary equipment:

Equipment Description	Manufacturer	Model	Calibration Due Date
N/A N/A		N/A	N/A

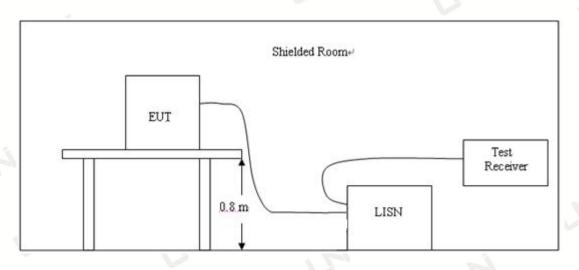
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2.5 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
		Conduction Em	issions Measureme	nt 🖉	
1	Conducted Emission Test Software	EZ-EMC	Ver.CCS-3A1-CE	N/A	N/A
2	AMN	AMN Schwarzbeck		8121370	2020.10.15
3	AMN	ETS	3810/2	00020199	2020.10.15
4	AAN	TESEQ	T8-Cat6	38888	2020.10.15
5 Pulse Limiter CYBRTEK		EM5010	E115010056	2021.05.26	
6	EMI Test Receiver	Rohde&Schwarz	ESCI	101210	2020.10.15
		U.			
1	Radiated Emission Test Software	EZ-EMC	Ver.CCS-03A1	N/A	N/A
2	Horn Antenna	Sunol	DRH-118	A101415	2020.10.18
3	Broadband Hybrid Antenna	Sunol	JB1	A090215	2020.11.15
4	PREAMP	НР	8449B	3008A00160	2020.10.21
5	PREAMP	HP	8447D	2944A07999	2021.05.26
6	EMI Test Receiver	Rohde&Schwarz	ESR3	101891	2020.10.15
7	MXA Signal Analyzer	Keysight	N9020A	MY51110104	2020.10.15
8	Active Loop Antenna	Com-Power	AL-310R	10160009	2021.05.28
9	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2021.05.28
10	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2020.10.23
11	Loop Antenna	Beijing daze Technology	ZN30401	13015	2020.10.15
12	EM Clamp	Schwarzbeck	MDS21	03350	2020.10.20

3. CONDUCTED EMISSIONS TEST

3.1 Conducted Power Line Emission Limit


For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

	Maximum RF Line Voltage(dBμV)							
Frequency	CLA	SS A	CLASS B					
(MHz)	Q.P.	Ave.	Q.P.	Ave.				
0.15~0.50	79	66	66~56*	56~46*				
0.50~5.00	73	60	56	46				
5.00~30.0	73	60	60	50				

* Decreasing linearly with the logarithm of the frequency

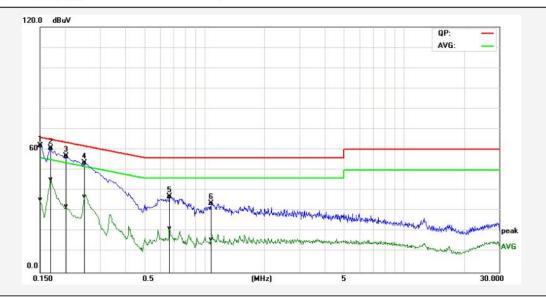
For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4,If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hzpower through a Line Impedance Stabilization Network (LISN) which supplied power source and wasgrounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUTusing a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has twomonitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

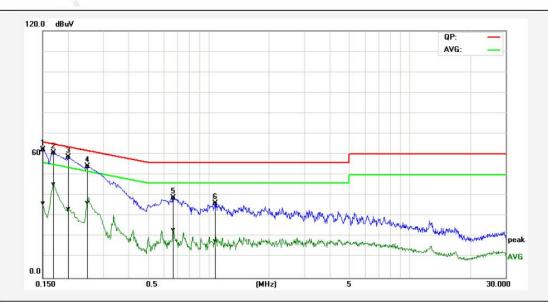
3.4 Test Result


Pass

Remark:

- 1. All modes were tested at AC 120V and 240V, only the worst result of AC 120V was reported.
- 2. All modes of Low, Middle, and High channel were tested, only the worst result of High Channel was
- reported as below:

Temperature:	24°C	Relative Humidity:	45%			
Test Date:	Jul. 14, 2020	Pressure:	1010hPa			
Test Voltage:	AC 120V, 60Hz	Phase:	Line			
Test Mode: Transmitting mode of GFSK 2480MHz						


No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
°	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1*	0.1500	52.29	25.85	9.64	61.93	35.49	65.99	56.00	-4.06	-20.51	Pass
2P	0.1700	50.97	35.71	9.68	60.65	45.39	64.96	54.96	-4.31	-9.57	Pass
3P	0.2020	47.15	22.38	9.73	56.88	32.11	63.52	53.53	-6.64	-21.42	Pass
4P	0.2500	43.69	27.28	9.78	53.47	37.06	61.75	51.76	-8.28	-14.70	Pass
5P	0.6700	27.11	11.54	9.81	36.92	21.35	56.00	46.00	-19.08	-24.65	Pass
6P	1.0820	23.99	6.12	9.85	33.84	15.97	56.00	46.00	-22.16	-30.03	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result=Reading + Factor, Margin=Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Temperature:	24°C	Relative Humidity:	45%			
Test Date:	Jul. 14, 2020	Pressure:	1010hPa			
Test Voltage:	AC 120V, 60Hz Phase: Neutral					
Test Mode: Transmitting mode of GFSK 2480MHz						

(MHz)).1500	(dBuV)	(dBuV)	(10)				limit	margin	margin	
1500		(/	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
	52.55	26.54	9.64	62.19	36.18	65.99	56.00	-3.80	-19.82	Pass
0.1700	51.05	35.73	9.68	60.73	45.41	64.96	54.96	-4.23	-9.55	Pass
0.2007	48.99	23.68	9.73	58.72	33.41	63.58	53.58	-4.86	-20.17	Pass
0.2500	44.52	26.79	9.78	54.30	36.57	61.75	51.76	-7.45	-15.19	Pass
0.6700	28.92	13.58	9.81	38.73	23.39	56.00	46.00	-17.27	-22.61	Pass
1.0820	26.19	8.06	9.85	36.04	17.91	56.00	46.00	-19.96	-28.09	Pass
	.2007 .2500 .6700	.2007 48.99 .2500 44.52 .6700 28.92	.200748.9923.68.250044.5226.79.670028.9213.58	.200748.9923.689.73.250044.5226.799.78.670028.9213.589.81	.200748.9923.689.7358.72.250044.5226.799.7854.30.670028.9213.589.8138.73	.200748.9923.689.7358.7233.41.250044.5226.799.7854.3036.57.670028.9213.589.8138.7323.39	.200748.9923.689.7358.7233.4163.58.250044.5226.799.7854.3036.5761.75.670028.9213.589.8138.7323.3956.00	.200748.9923.689.7358.7233.4163.5853.58.250044.5226.799.7854.3036.5761.7551.76.670028.9213.589.8138.7323.3956.0046.00	.200748.9923.689.7358.7233.4163.5853.58-4.86.250044.5226.799.7854.3036.5761.7551.76-7.45.670028.9213.589.8138.7323.3956.0046.00-17.27	.200748.9923.689.7358.7233.4163.5853.58-4.86-20.17.250044.5226.799.7854.3036.5761.7551.76-7.45-15.19.670028.9213.589.8138.7323.3956.0046.00-17.27-22.61

Remark: Factor = Insertion Loss + Cable Loss, Result=Reading + Factor, Margin=Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

4 RADIATED EMISSION TEST

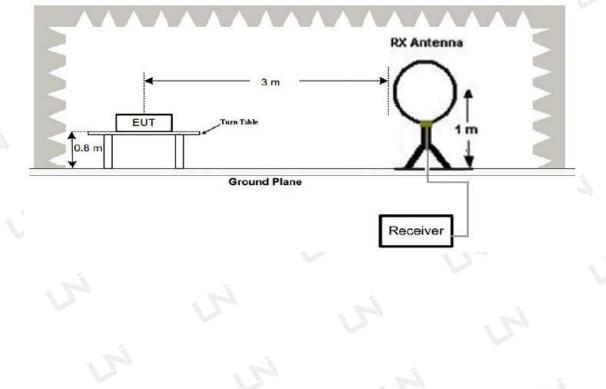
4.1 Radiation Limit

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength ofradiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the followingvalues:

Frequency (MHz)	Limit (dBuV/m)	Distance (m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

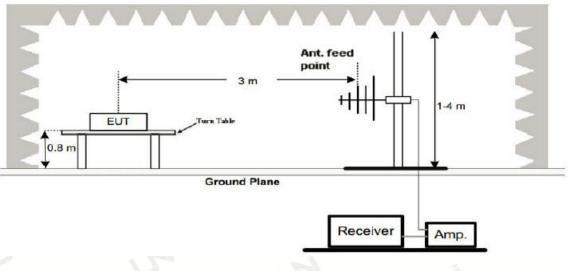
Limit calculation and transfer to 3m distance as showed in the following table:

For intentional device, according to § 15.209(a), the general requirement of field strength of radiatedemissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

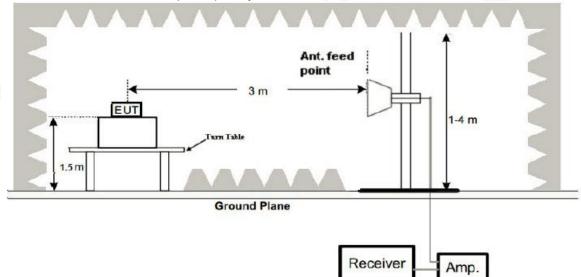

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

For intentionally used equipment, the general requirements for the magnetic field strength limits of the fundamental and harmonic radiation from the intentional radiator at a distance of 3 meters shall not exceed the above table, as specified in § 15.249(a).


4.2 Test Setup

1. Radiated Emission Test-Up Frequency Below 30MHz



2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

4.3 Test Procedure

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highestemissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna bothhorizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to25GHz per FCC PART 15.33(a).

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

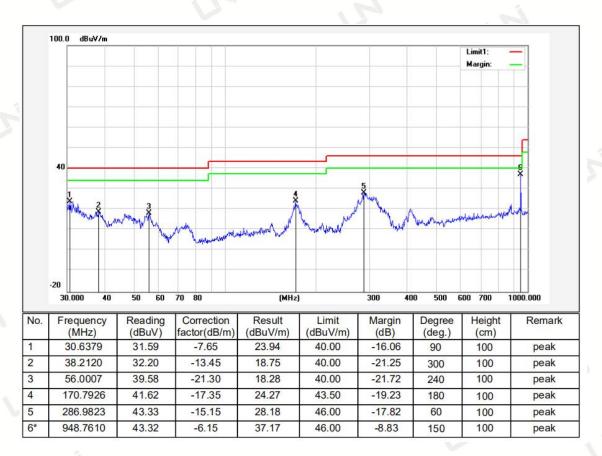
深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 13 of 24

4.4 Test Result

PASS

Remark:

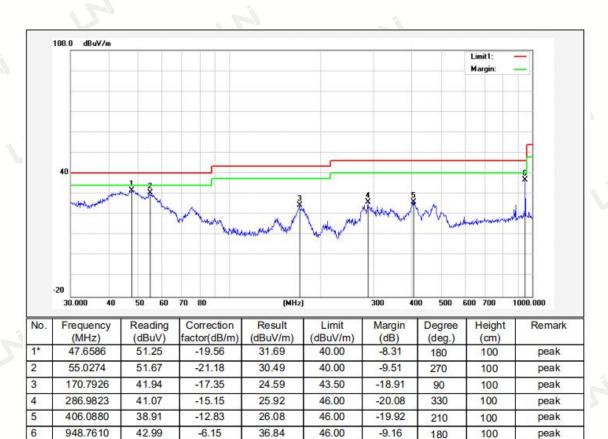

1. All the test modes completed for test. The worst case of Radiated Emissionis High channel, the test data of this mode was reported.

2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

3. Radiated emission test from 9KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9KHz to 30MHz and not recorded in this report.

Below 1GHz Test Results:

Temperature:	24°C	Relative Humidity:	45%		
Test Date:	Jul. 14, 2020	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60Hz	Polarization:	Horizontal		
Test Mode:	Transmitting mode of GFSK 2480MHz				



Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Temperature:	24°C	Relative Humidity:	45%		
Test Date:	Jul. 14, 2020	Pressure:	1010hPa		
Test Voltage:	AC 120V, 60Hz	Polarization:	Vertical		
Test Mode:	Transmitting mode of GFSK 2480MHz				

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHzwas verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Above 1 GHz Test Results: CH Low (2402MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	105.23	-5.84	99.39	114	-14.61	РК
2402	77.68	-5.84	71.84	94	-22.16	AV
4804	62.03	-3.64	58.39	74	-15.61	РК
4804	47.61	-3.64	43.97	54	-10.03	AV
7206	56.31	-0.95	55.36	74	-18.64	РК
7206	46.35	-0.95	45.40	54	-8.60	AV
Remark: Fact	or = Antenna	Factor + Cabl	e Loss – Pre-ampli	ifier. Margin= /	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	105.69	-5.84	99.85	114	-14.15	РК
2402	76.22	-5.84	70.38	94	-23.62	AV
4804	61.52	-3.64	57.88	74	-16.12	РК
4804	47.39	-3.64	43.75	54	-10.25	AV
7206	56.87	-0.95	55.92	74	-18.08	РК
7206	47.32	-0.95	46.37	54	-7.63	AV
Remark: Fact	or = Antenna l	Factor + Cabl	e Loss – Pre-ampli	ifier. Margin=	Absolute Le	vel – Limit

Note:For fundamental frequency, RBW and VBW set to be 1.5MHz , PK detector for PK value , RMS detector for AV value

Page 16 of 24

CH Middle (2440MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	107.34	-5.71	101.63	114	-12.37	РК
2440	78.64	-5.71	72.93	94	-21.07	AV
4880	61.34	-3.51	57.83	74	-16.17	РК
4880	49.26	-3.51	45.75	54	-8.25	AV
7320	56.37	-0.82	55.55	74	-18.45	РК
7320	47.33	-0.82	46.51	54	-7.49	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit						

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	107.65	-5.71	101.94	114	-12.06	PK
2440	78.34	-5.71	72.63	94	-21.37	AV
4880	61.09	-3.51	57.58	74	-16.42	РК
4880	48.52	-3.51	45.01	54	-8.99	AV
7320	57.26	-0.82	56.44	74	-17.56	РК
7320	47.15	-0.82	46.33	54	-7.67	AV
Remark: Fact	tor = Antenna l	Factor + Cabl	e Loss – Pre-ampli	fier. Margin=	Absolute Lev	vel – Limit

Note:For fundamental frequency, RBW and VBW set to be 1.5MHz , PK detector for PK value , RMS detector for AV value

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH High (2480MHz) Ho<u>rizontal:</u>

izontai.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	107.62	-5.65	101.97	114	-12.03	PK
2480	80.34	-5.65	74.69	94	-19.31	AV
4960	62.57	-3.43	59.14	74	-14.86	🔊 РК
4960	49.31	-3.43	45.88	54	-8.12	AV
7440	57.26	-0.75	56.51	74	-17.49	PK
7440	47.64	-0.75	46.89	54	-7.11	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin= Absolute Level – Limit

Vertical:

dour.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	107.58	-5.65	101.93	114	-12.07	PK
2480	78.64	-5.65	72.99	94	-21.01	AV
4960	62.37	-3.43	58.94	74	-15.06	РК
4960	47.61	-3.43	44.18	54	-9.82	AV
7440	57.92	-0.75	57.17	74	-16.83	РК
7440	47.35	-0.75	46.60	54	-7.40	AV
				•	•	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin= Absolute Level – Limit

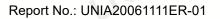
Note:For fundamental frequency, RBW and VBW set to be 1.5MHz , PK detector for PK value , RMS detector for AV value

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.


(4) Data of measurement within this frequency range ,that the value more than 20dB below limit is not record in the form.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 3MHz for peak measurement with peak detectorat frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

(7)All modes of operation were investigated and the worst-case emissionsare reported.

深圳市优耐检测技术有限公司	
Shenzhen United Testing Technology Co., Ltd.	2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China
United Testing Technology(Hong Kong) Limited	深圳市宝安区西乡街道铁岗社区宝田一路365号嘉皇源科技园附楼2楼邮编:518102 Tel:+86-755-86180996 Fax:+86-755-86180156

5 BAND EDGE

5.1 Limits

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emissionlimits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSIC63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT issituated in three orthogonal planes (if appropriate), adjusting the measurement antenna height andpolarization etc. Set RBW to 100KHz and VBM to 300KHz to measure the peak field strength and setRBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

Radiated Band Edge Test:

Operation Mode: TX CH Low (2402MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	53.64	-5.81	47.83	74	-26.17	PK
2310	1 N	-5.81		54	1	AV
2390	55.67	-5.84	49.83	74	-24.17	PK
2390	1	-5.84	1	54	1	AV
2400	57.34	-5.84	51.50	74	-22.50	PK
2400		-5.84	/	54	1	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:	in .		4				
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2310	53.26	-5.81	47.45	74	-26.55	PK	
2310	/	-5.81	1	54	1	AV	
2390	54.98	-5.84	49.14	74	-24.86	РК	
2390	1	-5.84	15	54		AV	
2400	57.32	-5.84	51.48	74	-22.52	PK	
2400	1	-5.84	1	54	/	AV	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2480MHz)

Horizontal:						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	58.32	-5.65	52.67	74	-21.33	PK
2483.5	1	-5.65	1	54	1	AV
2500	56.48	-5.72	50.76	74	-23.24	PK
2500		-5.72		54	/	AV
Remark: Fac	tor = Antenna Facto	or + Cable Lo	oss – Pre-amplifier			17.

ipiller.

Vertical:			5		in in		
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.5	57.85	-5.65	52.20	74	-21.80	PK	
2483.5		-5.65	1	54	1	AV	
2500	56.34	-5.72	50.62	74	-23.38	РК	
2500	1	-5.72	1	54	1	AV	
Remark: Fact	or = Antenna Facto	or + Cable I o	oss – Pre-amplifier				

kemark: Factor Antenna Factor Pre-amplifier. Capie Loss

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Report No.: UNIA20061111ER-01

6 OCCUPIED BANDWIDTH MEASUREMENT

- 6.1 Test Setup
 - Same asRadiated Emission Measurement
- 6.2 Test Procedure
 - 1. The EUT was placed on a turn table which is 0.8m above ground plane.
 - 2. Set EUT as normal operation.
 - 3. Based on ANSI C63.10 section 6.9.2: RBW=30KHz. VBW=100KHz, Span=3MHz.
 - 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.3 Measurement Equipment Used

Same asRadiated Emission Measurement

6.4 Test Result

PASS

Frequency (MHz)	20dB Bandwidth (MHz)	Result
2402	1.181	PASS
2440	1.183	PASS
2480	1,186	PASS

CH:2402MHz

R RE 50 Q AC	N	SENSE:INT	ALIGNAUTO	
3W 100.00 kHz		Center Freq: 2.4020000 Trig: Free Run		Radio Std: None
	#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
dB/div Ref 20.00 dBm				
.0				
		0.00000-00		
.0				
.0				
.0			Mar	
0 And and a second	· · ·			- monora
10 martin Partie				- market and a second s
.0				
enter 2.402 GHz		#VBW 100 ki	1-	Span 3 M
Res BW 30 kHz		#VBW 100 Ki		Sweep 4.133
Occupied Bandwidt	h	Total Power	11.8 dBm	
1.	0415 MHz			
Transmit Freq Error	-15.264 kHz	OBW Power	99.00 %	
x dB Bandwidth	1.181 MHz	x dB	-20.00 dB	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 21 of 24

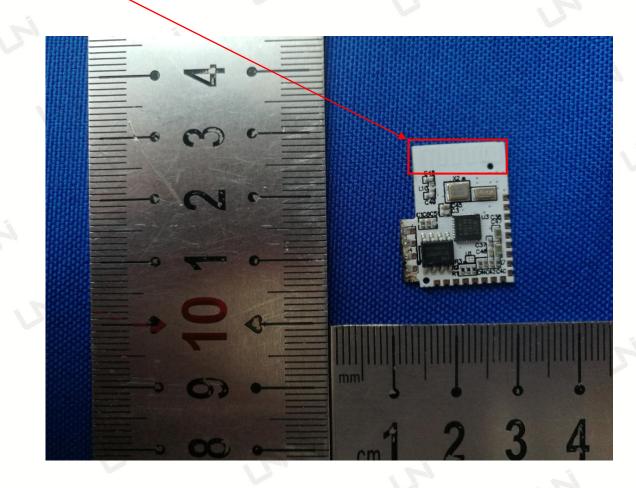
CH:2440MHz

gilent Spectrum Analyzer - Occupied B	W			
R RF 50 Ω AC enter Freq 2.440000000) GHz #IFGain:Low	SENSE:INT Center Freq: 2.440000 Trig: Free Run #Atten: 30 dB	ALIGNAUTO DOO GHz Avg Hold:>10/10	Radio Std: None Radio Device: BTS
) dB/div Ref 20.00 dBn	n			
0.0				
	~~		- m	
0				
enter 2.44 GHz tes BW 30 kHz		#VBW 100 k	Hz	Span 3 M Sweep 4.133 r
Occupied Bandwidt 1.	_h 0414 MHz	Total Power	12.2 d B m	
Transmit Freq Error	-17.029 kHz	OBW Power	99.00 %	
x dB Bandwidth	1.183 MHz	x dB	-20.00 d B	

CH:2480MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

7 ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed toensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, The directional gains of antenna used for transmitting is 2.1dBi.

ANTENNA:

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 23 of 24

8 PHOTOGRAPH OF TEST

8.1Radiated Emission



深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 24 of 24

Report No.: UNIA20061111ER-01

End of Report*

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited