

Product : Nanoleaf Remote

Trade mark : Nanoleaf

Model/Type reference : NL26-0001, NL26-XXXX

Serial Number : N/A

Report Number : EED32J00292101

FCC ID : 2AEWY-NL26

Date of Issue : Jan. 30, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

NANOGRID LIMITED ROOM 1405, 135 BONHAM STRAND TRADE CENTRE, 135 BONHAM STRAND, SHEUNG WAN, HONG KONG

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Sea

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Date:

Rein Tong

Kevin yang (Reviewer)

Jan. 30, 2018

Revin San

Kevin lan (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:2457547922

(i)

Page 2 of 40

2 Version

Version No.	Date	(6)	Description)
00	Jan. 30, 2018		Original	
	100	12	713	705
		(4.5°)	(642)	(6,7)

3 Test Summary

o rest outilitially			1
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

N/A: The device is only battery operated, the test related AC mains is not applicable.

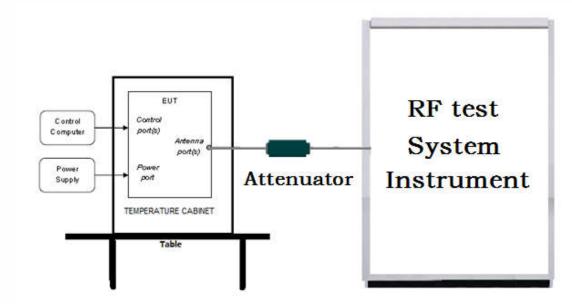
Model No.:NL26-0001, NL26-XXXX

Only the model L26-0001 was tested, 1st, 2nd, 3rd, and 4th "X" denote country or/and region codes where each "X" to be replaced by the alphanumeric codes from 0 - 9 or A - Z, which are only for marketing purposes.

Page 4 of 40

4 Content

1 CC	OVER PAGE			•••••	•••••	1
2 VE	RSION			•••••	•••••	2
	ST SUMMARY					
	ONTENT					
5 TE	ST REQUIREMENT				•••••	5
5.	1 TEST SETUP 5.1.1 For Conducted test se 5.1.2 For Radiated Emissio	etup				5
	5.1.3 For Conducted Emiss 2 Test Environment					6
6 GE	ENERAL INFORMATION	•••••		•••••	•••••	7
6. 6. 6. 6. 6.	1 CLIENT INFORMATION	EUT JBJECTIVE TO THIS S UNITS DS JDARD CONDITIONS ESTED BY THE CUST	TANDARD			
	QUIPMENT LIST					
	ADIO TECHNICAL REQUIR					
	Appendix A): 6dB Occupied Appendix B): Conducted Pe Appendix C): Band-edge fo Appendix D): RF Conducte Appendix E): Power Spectr Appendix F): Antenna Requ Appendix G): Restricted ba Appendix H) Radiated Spur	eak Output Power r RF Conducted En d Spurious Emissio al Density uirement nds around fundam	nissionsnsns	adiated)		141618212324
PHO	TOGRAPHS OF TEST SET					
	TOGRAPHS OF EUT CON					



Report No. :EED32J00292101 Page 5 of 40

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

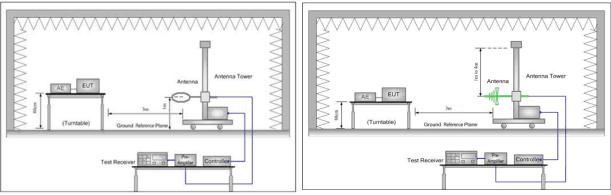
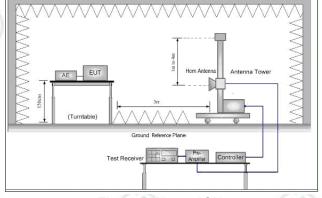
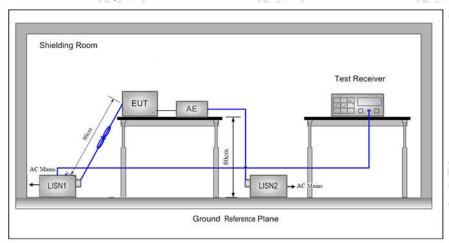


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup **Conducted Emissions setup**

5.2 Test Environment

Operating Environment:		
Temperature:	23.4 °C	
Humidity:	40 % RH	in.
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx		RF Channel	705
1 est Mode	TA/NX	Low(L)	Middle(M)	High(H)
05014	0.400.411 0.400.441	Channel 1	Channel 20	Channel 40
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
TX mode:	The EUT transmitted the continuous	us signal at the sp	ecific channel(s	s).

Report No. :EED32J00292101 Page 7 of 40

6 General Information

6.1 Client Information

Applicant:	NANOGRID LIMITED
Address of Applicant:	ROOM 1405, 135 BONHAM STRAND TRADE CENTRE, 135 BONHAM
Address of Applicant.	STRAND, SHEUNG WAN, HONG KONG
Manufacturer:	NANOGRID LIMITED
Address of Manufacturer:	ROOM 1405, 135 BONHAM STRAND TRADE CENTRE, 135 BONHAM
/ taaroos or marraractaron	STRAND, SHEUNG WAN, HONG KONG
Factory:	Seveco Global Limited
Address of Factory:	No. 1, Jianxiang Street, Hanxishui Village, Chashan Town, Dongguan City,
riddioso oi riddiory.	Guangdong Province, P.R. China,

6.2 General Description of EUT

Product Name:	Nanoleaf Remote	(31)	
Model No.(EUT):	NL26-0001, NL26-XXXX		(0)
Test Model No.:	NL26-0001		
Trade mark:	Nanoleaf		
EUT Supports Radios application:	BT: 4.2 Signal mode, 2402-2480MHz		
Power Supply:	Battery:2*1.5(AA)=3.0V		
Sample Received Date:	Dec. 20, 2017	(3)	130
Sample tested Date:	Dec. 20, 2017 to Jan. 29, 2018	(67)	(6,)

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.2
Modulation Technique:	DSSS
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	Portable production
Test Power Grade:	TX 0
Test Software of EUT:	Secure CRT
Antenna Type and Gain:	Type: PCB Antenna; Gain: 2.15dBi
Test Voltage:	Battery:2*1.5(AA)=3.0V
Hardware Version:	PCB-FZ021-V2.2
Firmware Version:	0.8.4

Report No. :EED32J00292101 Page 8 of 40

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dedicted Courses and seion toot	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%
	215	28%

Page 9 of 40

7 Equipment List

-42.6					
		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-14-2017	03-13-2018
Signal Generator	Keysight	N5182B	MY53051549	03-14-2017	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2017	01-11-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(3)	01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54436035	03-14-2017	03-13-2018
power meter & power sensor	R&S	OSP120	101374	03-14-2017	03-13-2018
RF control unit	JS Tonscend	JS0806-2	158060006	03-14-2017	03-13-2018
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-14-2017	03-13-2018

Page 10 of 40

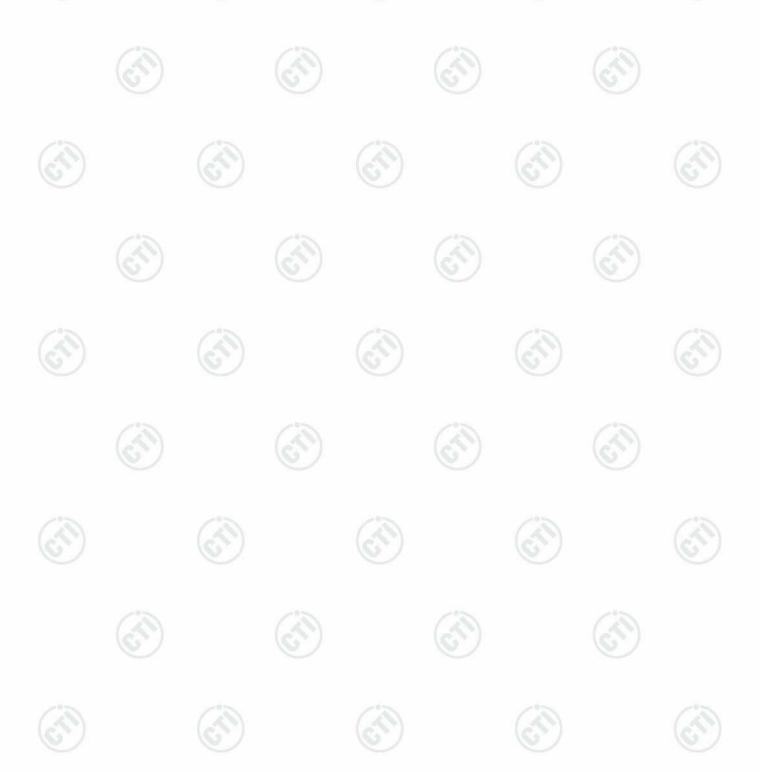
	235	200		200	200	
		3M :	Semi/full-anech	oic Chamber		
	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
1	3M Chamber & cessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
) TF	RILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-401	05-02-2017	05-01-2018
Micr	owave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018
	Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
	Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Sı	pectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018
	Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018
	LISN	schwarzbeck	NNBM8125	81251547	06-13-2017	06-12-2018
	LISN	schwarzbeck	NNBM8125	81251548	06-13-2017	06-12-2018
5	Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018
/ 5	Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Ten	nperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018
Con	nmunication test set	Agilent	E5515C	GB47050534	04-01-2017	03-31-2018
	Cable line	Fulai(7M)	SF106	5219/6A	01-12-2017	01-11-2018
	Cable line	Fulai(7M)	SF106	5219/6A	01-09-2018	01-08-2019
	Cable line	Fulai(6M)	SF106	5220/6A	01-12-2017	01-11-2018
	Cable line	Fulai(6M)	SF106	5220/6A	01-09-2018	01-08-2019
	Cable line	Fulai(3M)	SF106	5216/6A	01-12-2017	01-11-2018
)	Cable line	Fulai(3M)	SF106	5216/6A	01-09-2018	01-08-2019
	Cable line	Fulai(3M)	SF106	5217/6A	01-12-2017	01-11-2018
	Cable line	Fulai(3M)	SF106	5217/6A	01-09-2018	01-08-2019
	High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(2)	01-12-2017	01-11-2018
	High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(0,)	01-10-2018	01-09-2019
ba	and rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		11-06-2017	11-05-2018
ba	and rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		11-06-2017	11-05-2018
ba	and rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		11-06-2017	11-05-2018
ba	and rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		11-06-2017	11-05-2018

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Cot Negatio Elot.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	N/A	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)



Appendix A): 6dB Occupied Bandwidth

Test Result

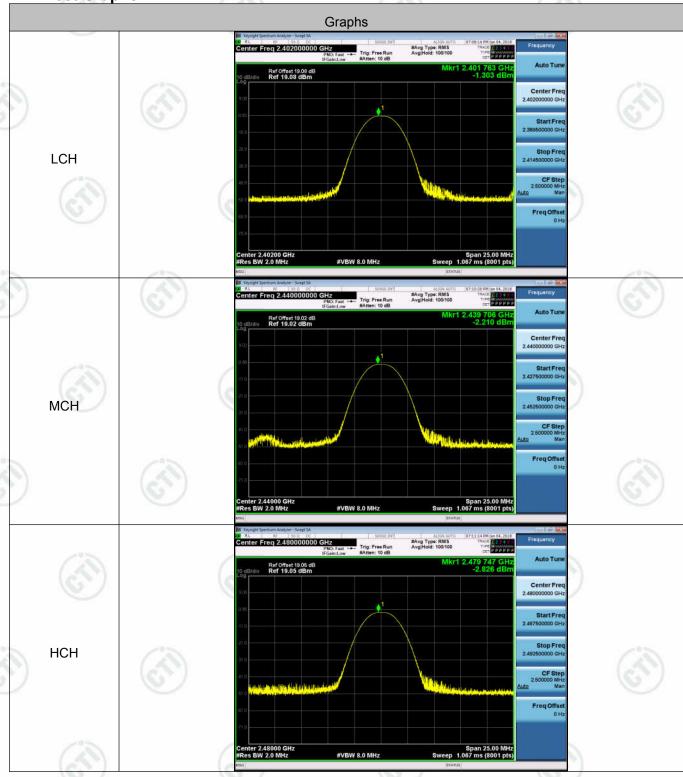
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.5866	1.1156	PASS	
BLE	MCH	0.5871	1.1149	PASS	Peak
BLE	нсн	0.5814	1.1140	PASS	detector

Page 13 of 40

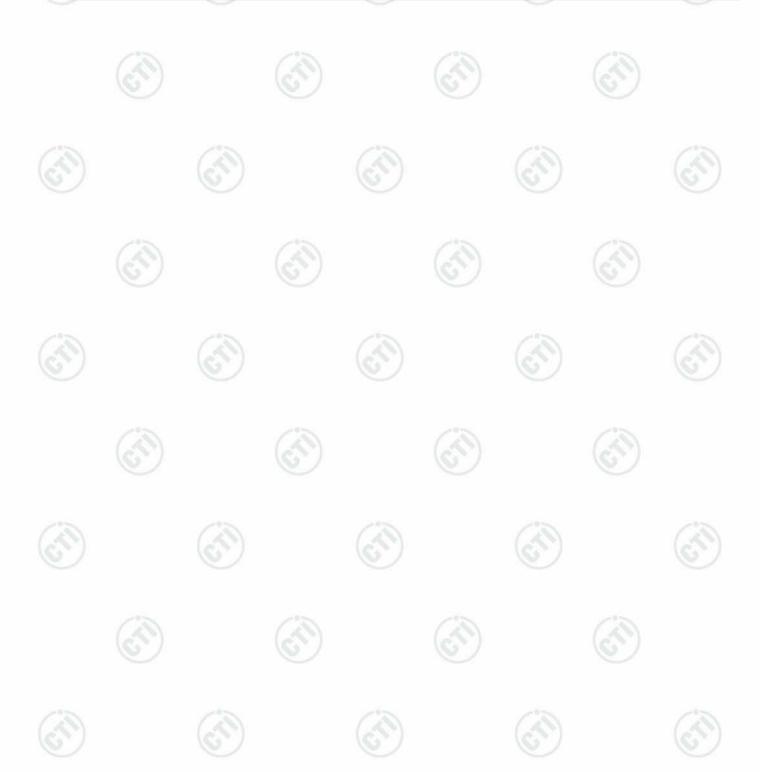
Appendix B): Conducted Peak Output Power

Test Result

5.500	3,302		
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-1.303	PASS
BLE	MCH	-2.210	PASS
BLE	HCH	-2.826	PASS



Page 15 of 40

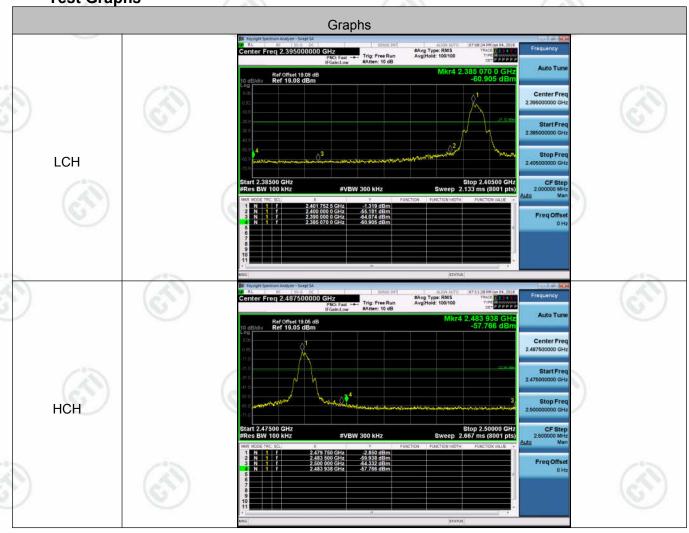


Report No. :EED32J00292101 Page 16 of 40

Appendix C): Band-edge for RF Conducted Emissions

Result Table

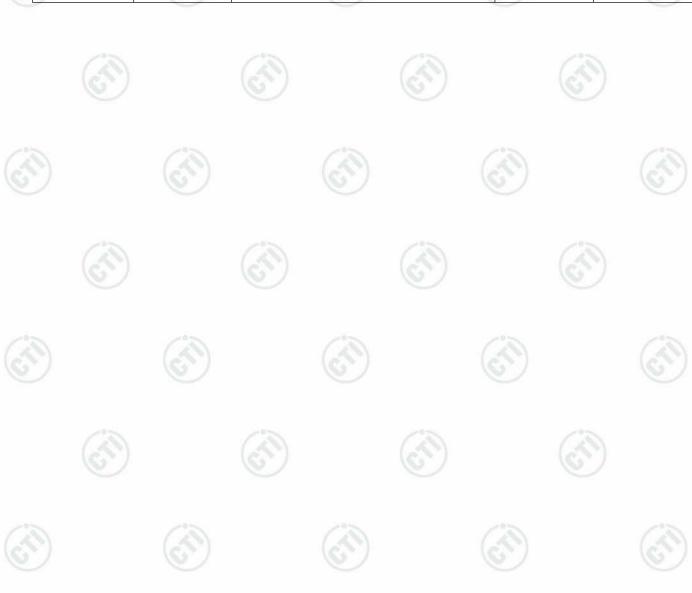
Mode	Channel	Channel Carrier Power[dBm] Max.Spur		Limit [dBm]	Verdict
BLE	LCH	-1.319	-60.905	-21.32	PASS
BLE	HCH	-2.850	-57.766	-22.85	PASS



Page 17 of 40

Test Graphs

(ii)

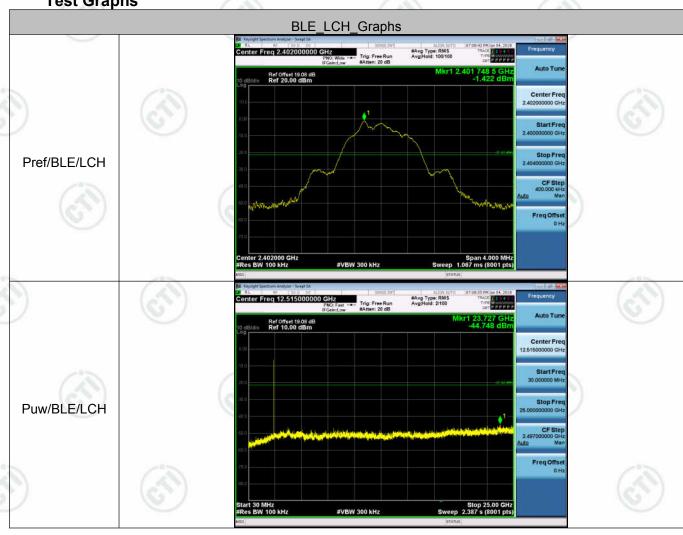


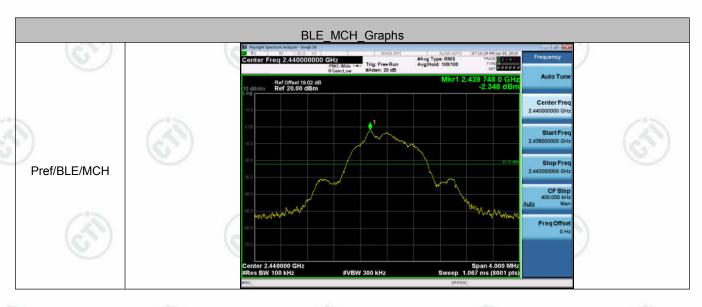
Report No. :EED32J00292101

Appendix D): RF Conducted Spurious Emissions

Result Table

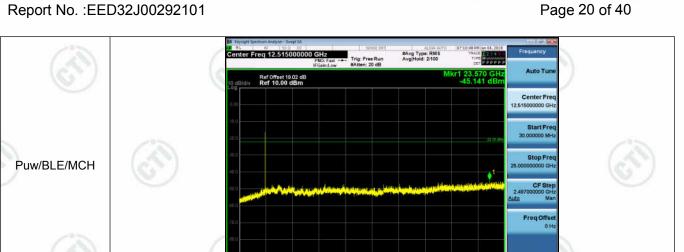
5,500	10.750			
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-1.422	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-2.348	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-2.955	<limit< td=""><td>PASS</td></limit<>	PASS



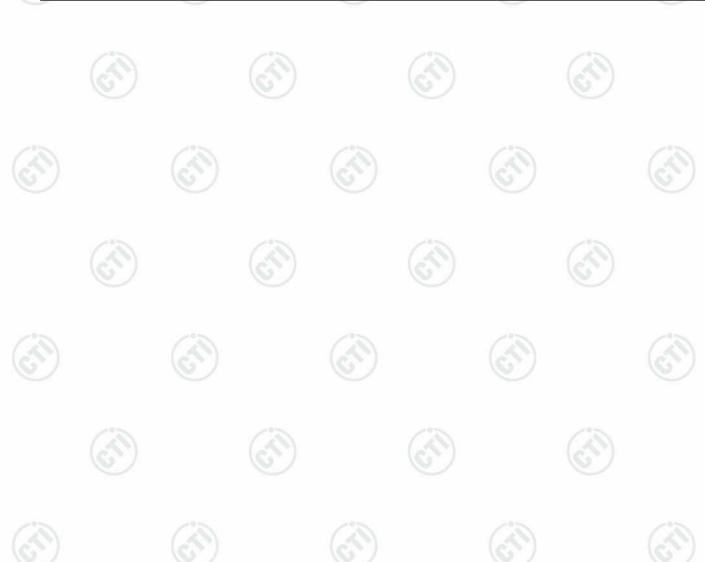


Report No.: EED32J00292101 Page 19 of 40

Test Graphs



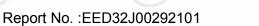


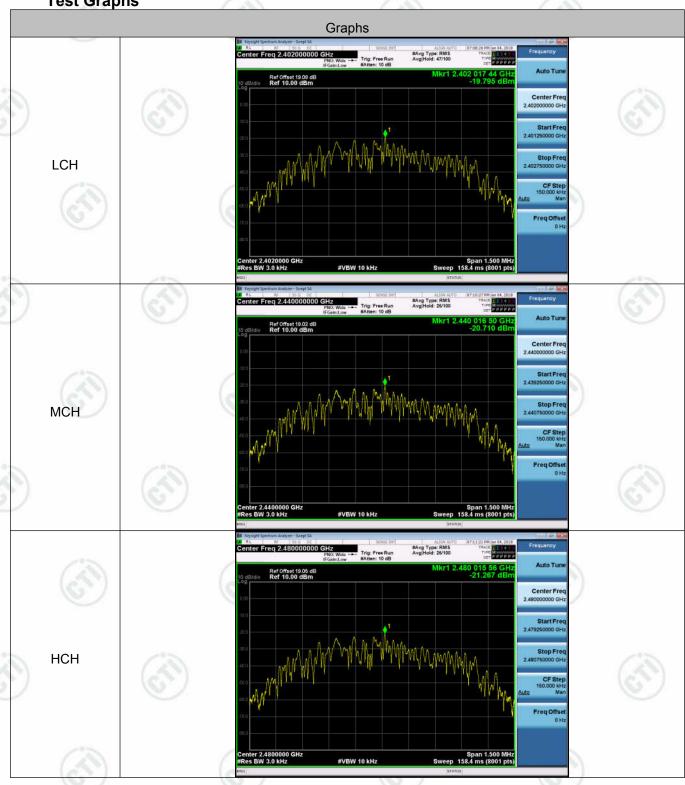



Appendix E): Power Spectral Density

Result Table

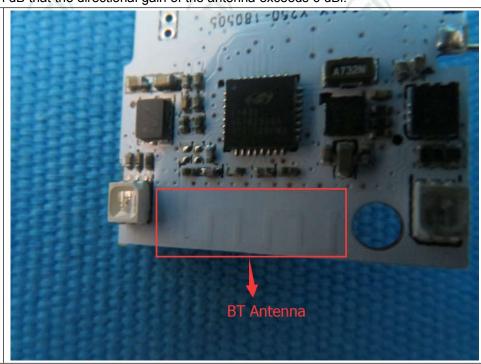
Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-19.795	8	PASS
BLE	MCH	-20.710	8	PASS
BLE	НСН	-21.267	8	PASS





Test Graphs

Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

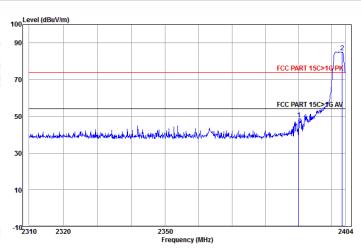
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

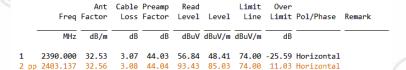
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.15dBi.

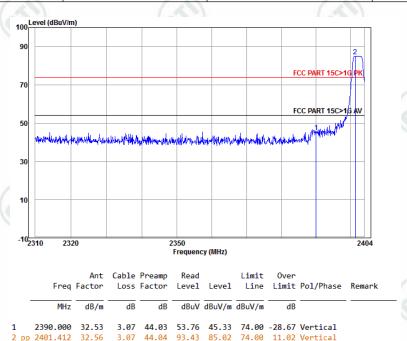
Appendix G): Restricted bands around fundamental frequency (Radiated)

(Madiated)	(63)	(0.3)		100	
Receiver Setup:	Frequency	Detector	RBW VB	W Remark	
	30MHz-1GHz	Quasi-peak 1	20kHz 300k	Hz Quasi-pea	ak
		Peak	1MHz 3M	Hz Peak	-05
	Above 1GHz	Peak	1MHz 10l	Hz Average	(65)
Test Procedure:	a. The EUT was placed or at a 3 meter semi-anec determine the position of b. The EUT was set 3 memors was mounted on the top c. The antenna height is well determine the maximum polarizations of the antend d. For each suspected emmors turned was turned from 0 degree. The test-receiver system Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectro for lowest and highest of	In the top of a rotation to camber. The standard reading ters away from the coordinates away from the coordinates away from one means are set to manalission, the EUT was to heights from 1 rees to 360 degreem was set to Peak am Hold Mode. In the restricted pliance. Also measum analyzer plot. If	table was rotal ation. Interference- Interfe	receiving antenniwer. ters above the goal horizontal and rement. ters and the rotal ters and the rotal aximum reading on and Specified to the transmit sions in the rest	s to na, whice ground from the table table d ricted
	g. Different between above to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedure.	e is the test site, c ber change form to 1 meter and table is west channel, the ments are performed I found the X axis	able 0.8 meters s 1.5 meter). Highest chan ed in X, Y, Z a positioning wh	to 1.5 meter(Al nel xis positioning for ich it is worse ca	or ase.
Limit:	Frequency	Limit (dBµV/m		Remark	
	30MHz-88MHz	40.0		si-peak Value	
	88MHz-216MHz	43.5		isi-peak Value	
	216MHz-960MHz	46.0		isi-peak Value	
	960MHz-1GHz	54.0		isi-peak Value	
		54.0	1537	rerage Value	
	Above 1GHz	74.0		Peak Value	
	L	1			

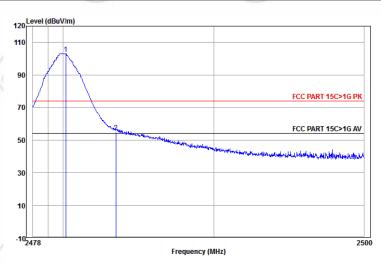


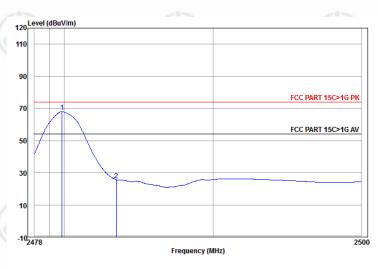


Page 25 of 40


Test plot as follows:

Worse case mode:	GFSK				
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak		



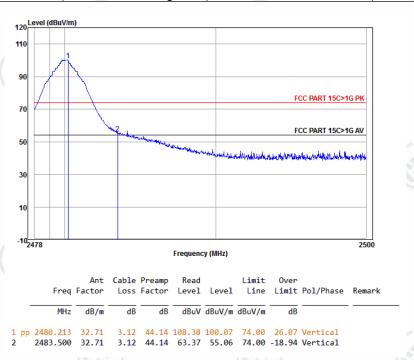

Page 26 of 40

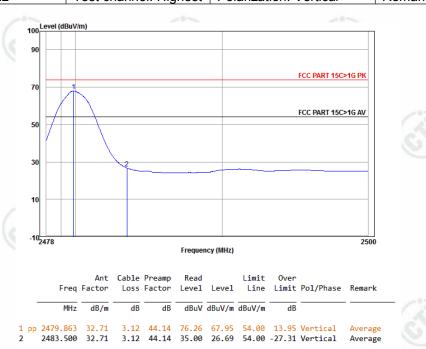
Worse case mode:	GFSK					
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak			

Freq						Limit Line		Pol/Phase	Remark
MHz	dB/m	dB	dB	dBuV	dBuV/m	dBuV/m	dB		
								Horizontal Horizontal	

Worse case mode:	GFSK			
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average	

	Freq			Preamp Factor					Pol/Phase	Remark	
	MHz	dB/m	dB	dB	dBuV	dBuV/m	dBuV/m	dB			1
1 pp									Horizontal Horizontal		





Page 27 of 40

Worse case mode:	GFSK	(20)		
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. :EED32J00292101 Page 28 of 40

Appendix H) Radiated Spurious Emissions

Frequency 0.009MHz-0.090MHz	Detector Peak	RBW	VBW	Remark	
0.009MHz-0.090MHz	Dook				
	reak	10kHz	30kHz	Peak	
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
A b a 4 O L l -	Peak	1MHz	3MHz	Peak	
Above 1GHZ	Peak	1MHz	10Hz	Average	
	0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz	0.090MHz-0.110MHz Quasi-peak 0.110MHz-0.490MHz Peak 0.110MHz-0.490MHz Average 0.490MHz -30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz	0.090MHz-0.110MHz Quasi-peak 10kHz 0.110MHz-0.490MHz Peak 10kHz 0.110MHz-0.490MHz Average 10kHz 0.490MHz -30MHz Quasi-peak 10kHz 30MHz-1GHz Quasi-peak 120kHz Above 1GHz Peak 1MHz	0.090MHz-0.110MHz Quasi-peak 10kHz 30kHz 0.110MHz-0.490MHz Peak 10kHz 30kHz 0.110MHz-0.490MHz Average 10kHz 30kHz 0.490MHz -30MHz Quasi-peak 10kHz 30kHz 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz	0.090MHz-0.110MHzQuasi-peak10kHz30kHzQuasi-peak0.110MHz-0.490MHzPeak10kHz30kHzPeak0.110MHz-0.490MHzAverage10kHz30kHzAverage0.490MHz -30MHzQuasi-peak10kHz30kHzQuasi-peak30MHz-1GHzQuasi-peak120kHz300kHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeak

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

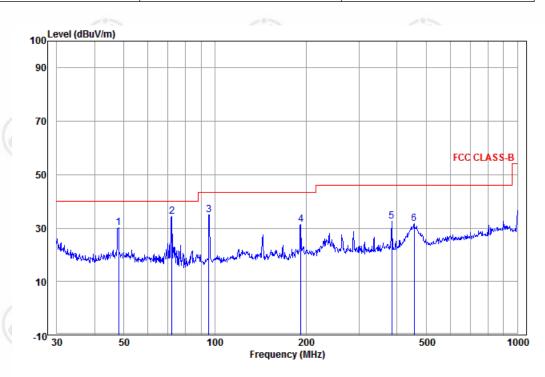
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

L	İI	Υ	١	i	t:	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

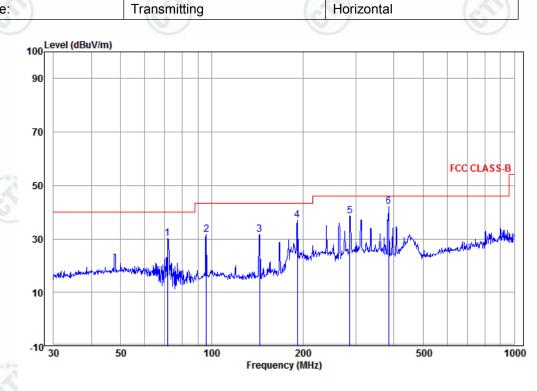


Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical

		Freq					Limit Line		Pol/Phase	Remark
	-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB		
1		47.994	14.45	0.10	15.71	30.26	40.00	-9.74	Vertical	QP
2	pp	72.084	10.00	0.29	24.18	34.47	40.00	-5.53	Vertical	QP
3		95.427	11.79	0.51	22.78	35.08	43.50	-8.42	Vertical	QP
4		192.419	11.14	1.03	19.32	31.49	43.50	-12.01	Vertical	QP
5		383.932	14.95	1.32	16.25	32.52	46.00	-13.48	Vertical	QP
6		455.906	16.29	1.48	13.98	31.75	46.00	-14.25	Vertical	QP

Test mode:



Report No.: EED32J00292101

Horizontal

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	71.330	10.15	0.27	19.63	30.05	40.00	-9.95	Horizontal	QP
2	96.099	11.90	0.52	19.30	31.72	43.50	-11.78	Horizontal	QP
3	143.830	9.18	0.61	21.92	31.71	43.50	-11.79	Horizontal	QP
4	191.745	11.10	1.03	25.04	37.17	43.50	-6.33	Horizontal	QP
5	285.978	13.19	1.14	24.31	38.64	46.00	-7.36	Horizontal	QP
6 рр	383.932	14.95	1.32	25.79	42.06	46.00	-3.94	Horizontal	QP

Page 31 of 40

Transmitter Emission above 1GHz

Worse case	Worse case mode:			Test char	Test channel:		Remark: P	Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1195.049	30.21	1.85	44.39	57.54	45.21	74.00	-28.79	Pass	Н
1597.401	31.05	2.41	43.89	57.56	47.13	74.00	-26.87	Pass	ЭН
4804.000	34.69	5.98	44.60	47.71	43.78	74.00	-30.22	Pass	Н
5762.235	35.72	7.20	44.52	49.10	47.50	74.00	-26.50	Pass	Н
7206.000	36.42	6.97	44.77	47.65	46.27	74.00	-27.73	Pass	Н
9608.000	37.88	6.98	45.58	45.25	44.53	74.00	-29.47	Pass	Н
1195.049	30.21	1.85	44.39	57.29	44.96	74.00	-29.04	Pass	V
1593.340	31.04	2.40	43.89	56.03	45.58	74.00	-28.42	Pass	V
4804.000	34.69	5.98	44.60	47.55	43.62	74.00	-30.38	Pass	V
6109.670	35.96	7.41	44.51	49.97	48.83	74.00	-25.17	Pass	V
7206.000	36.42	6.97	44.77	46.94	45.56	74.00	-28.44	Pass	V
9608.000	37.88	6.98	45.58	45.54	44.82	74.00	-29.18	Pass	V

Worse case	Worse case mode: GI			Test char	nnel:	Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1195.049	30.21	1.85	44.39	57.52	45.19	74.00	-28.81	Pass	/° #
4256.330	33.44	4.80	44.60	49.52	43.16	74.00	-30.84	Pass	(AH)
4880.000	34.85	6.13	44.60	47.60	43.98	74.00	-30.02	Pass	H
5762.235	35.72	7.20	44.52	49.02	47.42	74.00	-26.58	Pass	Н
7320.000	36.43	6.85	44.87	46.93	45.34	74.00	-28.66	Pass	Н
9760.000	38.05	7.12	45.55	46.50	46.12	74.00	-27.88	Pass	Н
1195.049	30.21	1.85	44.39	56.88	44.55	74.00	-29.45	Pass	V
1593.340	31.04	2.40	43.89	51.21	40.76	74.00	-33.24	Pass	V
4880.000	34.85	6.13	44.60	47.25	43.63	74.00	-30.37	Pass	V
5762.235	35.72	7.20	44.52	48.82	47.22	74.00	-26.78	Pass	V
7320.000	36.43	6.85	44.87	47.03	45.44	74.00	-28.56	Pass	V
9760.000	38.05	7.12	45.55	45.83	45.45	74.00	-28.55	Pass	V

- D-10-							20%			
Worse case	Worse case mode: G			Test chan	nel:	Highest	Remark: P	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1195.049	30.21	1.85	44.39	57.43	45.10	74.00	-28.90	Pass	/• ₩	
1510.402	30.89	2.30	43.99	52.29	41.49	74.00	-32.51	Pass	H)	
4960.000	35.02	6.29	44.60	47.43	44.14	74.00	-29.86	Pass	H	
6017.064	35.91	7.44	44.50	47.96	46.81	74.00	-27.19	Pass	Н	
7440.000	36.45	6.73	44.97	45.83	44.04	74.00	-29.96	Pass	Н	
9920.000	38.22	7.26	45.52	46.17	46.13	74.00	-27.87	Pass	Н	
1195.049	30.21	1.85	44.39	56.35	44.02	74.00	-29.98	Pass	V	
1659.574	31.16	2.48	43.82	56.08	45.90	74.00	-28.10	Pass	V	
4960.000	35.02	6.29	44.60	47.65	44.36	74.00	-29.64	Pass	V	
5762.235	35.72	7.20	44.52	48.86	47.26	74.00	-26.74	Pass	V	
7440.000	36.45	6.73	44.97	46.44	44.65	74.00	-29.35	Pass	V	
9920.000	38.22	7.26	45.52	44.98	44.94	74.00	-29.06	Pass	V	

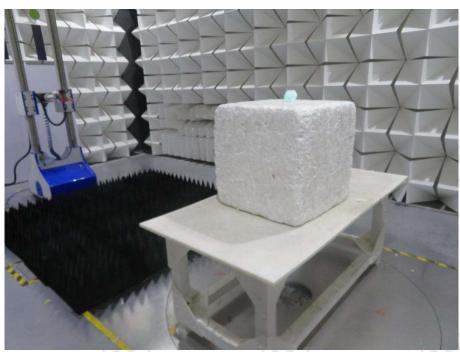
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

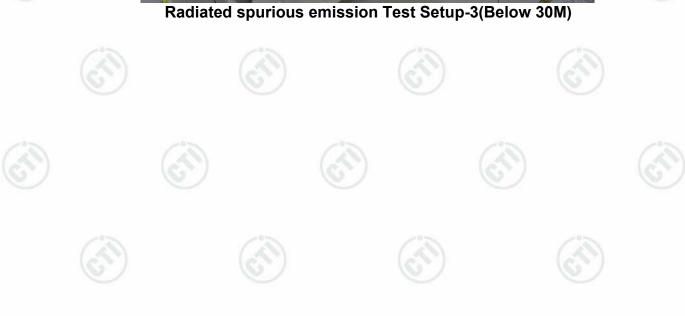


PHOTOGRAPHS OF TEST SETUP

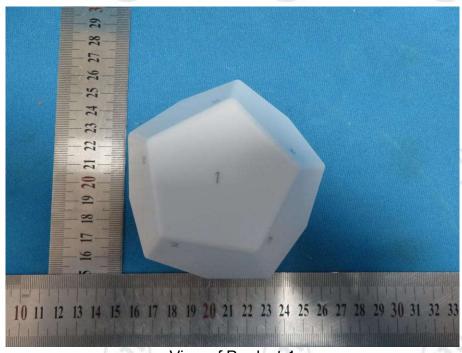
Test Model No.: NL26-0001

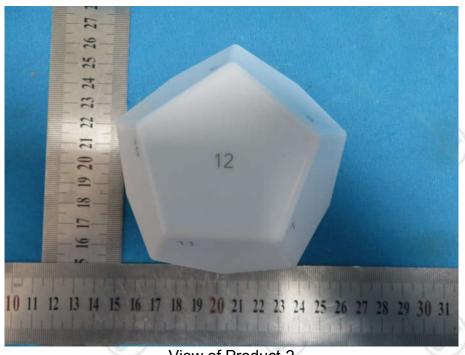
Radiated spurious emission Test Setup-1(Above 1GHz)

Radiated spurious emission Test Setup-2(Below 1GHz)



Page 34 of 40





PHOTOGRAPHS OF EUT Constructional Details

Test model No.: NL26-0001

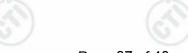
View of Product-1

View of Product-2

Page 36 of 40

View of Product-3

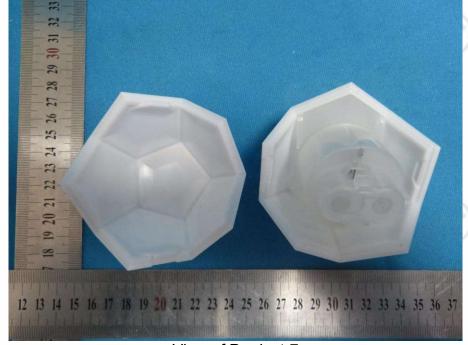
View of Product-4

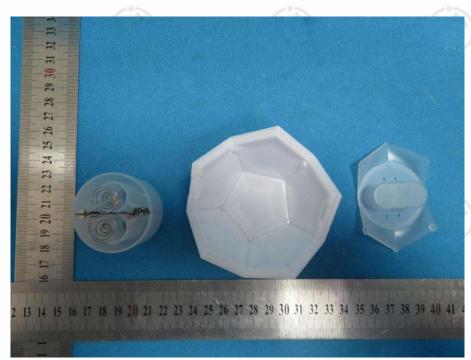


Page 37 of 40

View of Product-5

View of Product-6

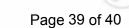


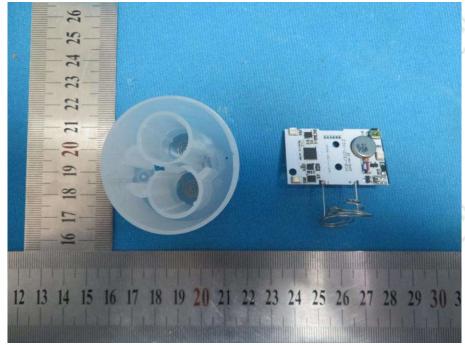


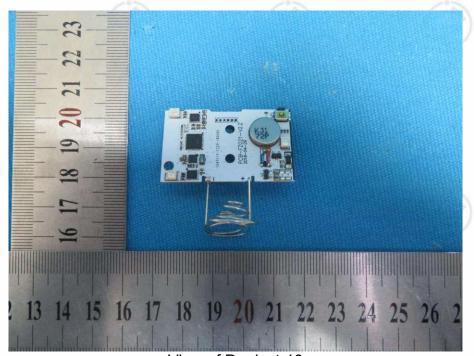
Page 38 of 40

View of Product-7

View of Product-8



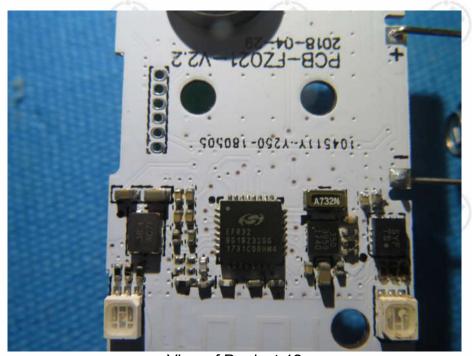




View of Product-9

View of Product-10





Page 40 of 40

View of Product-11

View of Product-12

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.