

1 of 48

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 15 SUBPART C REQUIREMENT

OF

Nanoleaf BLE&Thread-Matter module

Model No.: NL04A

Trademark: Nanoleaf

FCC ID: 2AEWY-NL04A

Report No.: E01A22070224F00101

Issue Date: August 08, 2022

Prepared for

NANOGRID LIMITED

ROOM 1405, 135 BONHAM STRAND TRADE CENTRE, 135 BONHAM STRAND, SHEUNG WAN, Hong Kong

Prepared by

Dong Guan Anci Electronic Technology Co., Ltd.

1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Electronic Technology Co., Ltd.

DongGuan Anci Electronic Technology Co., Ltd 1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China. Phone: 86-769- 8507 5888; Fax: 86-769- 8507 5898 E-mail: anci@anci.com

2 of 48

VERIFICATION OF COMPLIANCE

Applicant:	NANOGRID LIMITED				
	ROOM 1405, 135 BONHAM STRAND TRADE CENTRE, 135				
	BONHAM STRAND, SHEUNG WAN, Hong Kong				
Manufacturer:	NANOGRID LIMITED				
	ROOM 1405, 135 BONHAM STRAND TRADE CENTRE, 135				
	BONHAM STRAND, SHEUNG WAN, Hong Kong				
Product Description:	Nanoleaf BLE&Thread-Matter module				
Trade Mark:	Nanoleaf				
Model Number:	NL04A				

We hereby certify that:

The above equipment was tested by Dong Guan Anci Electronic Technology Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247(2022).

Date of Test :

July 13, 2022 to July 28, 2022

Prepared by :

ismans lang

Tomas Yang/Editor

Approved & Authorized Signer :

Tiger Xu/ Supervisor

Modified Information

Version	Summary	Revision Date	Report No.
Ver.1.0	Original Report	/	E01A22070224F00101

^{4 of 48} Table of Contents

1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION	6
1.2 Test Methodology	6
2. TEST FACILITY	7
3. DESCRIPTION OF TEST MODES	8
4. SUMMARY OF TEST RESULTS	10
6DB BANDWIDTH MEASUREMENT	10
5. TEST SYSTEM UNCERTAINTY	
6. CONDUCTED EMISSIONS TEST	
6.1Measurement Procedure:	
6.2TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	12
6.3MEASUREMENT EQUIPMENT USED:	
6.4 CONDUCTED EMISSION LIMIT	
6.5 MEASUREMENT RESULT:	13
7. RADIATED EMISSION TEST	16
7.1MEASUREMENT PROCEDURE	
7.2TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.3MEASUREMENT EQUIPMENT USED:	
7.4 RADIATED EMISSION LIMIT	
7.5 MEASUREMENT RESULT	
7.6 RADIATED MEASUREMENT PHOTOS:	
8. 6DB BANDWIDTH MEASUREMENT	
8.1Measurement Procedure	
8.2TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
8.3 MEASUREMENT EQUIPMENT USED:	
8.4 LIMIT 8.5MEASUREMENT RESULTS:	
9. MAXIMUM PEAK OUTPUT POWER TEST	
9.1Measurement Procedure	
9.2TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
9.3 MEASUREMENT EQUIPMENT USED:	
9.5 MEASUREMENT RESULTS:	
10. POWER SPECTRAL DENSITY MEASUREMENT	

Report No.: E01A22070224F00101 5 of 48	
10.1Measurement Procedure	
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
10.3 MEASUREMENT EQUIPMENT USED:	
10.4 Measurement Procedure	
10.5 MEASUREMENT RESULTS:	
11. BAND EDGE TEST	
11.1 Measurement Procedure	
11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
11.3 MEASUREMENT EQUIPMENT USED:	
11.4 MEASUREMENT RESULTS:	
12 ANTENNA APPLICATION	
12.1 ANTENNA REQUIREMENT	
12.2 Result	
APPENDIX (PHOTOS OF EUT) (4 PAGES)	

1.1 Product Description

Characteristics	Description		
Product Name	Nanoleaf BLE&Thread-Matter module		
Model number	NL04A		
Input Rating	DC 2.7V~3.8V		
Power Supply	DC 3.3V		
Kind of Device	Bluetooth Ver.5.3 BLE		
Modulation	GFSK		
Operating Frequency Range	2402-2480MHz		
Number of Channels	40		
Transmit Power Max(PK)	8.71dBm(0.0074W)		
Antenna Type	PCB antenna		
Antenna Gain	2.15dBi		
Date of sample received	July 13, 2022		

1.2 Test Methodology

All the test program has follow FCC new test procedure KDB 558074 D01 DTS Meas Guidance v05 and in accordance with the procedures given in ANSI C63.10-2013.

7 of 48

2. Test Facility

Site Description

- Name of Firm : Dong Guan Anci Electronic Technology Co., Ltd.
- Site Location
- : 1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan,
- Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

8 of 48

3. Description of test modes

The EUT has been tested under its typical operating condition and fully-charged battery for EUT tested alone. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

For Radiated: The EUT's antenna was pre-tested under the following modes:

Test Mode	Description
Mode A	X-Y axis
Mode B	Y-Z axis
Mode C	X-Z axis

From the above modes, the worst case was found in Mode A. Therefore only the test data of the mode was recorded in this report.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting mode is programmed. EUT is connected by com port, and transimit the control instruction via test software(secure CRT 3.7.2.exe).

Configuration of Tested System

Equipment Used in Tested System

Item	Equipment	Trademark	Model No.	FCC ID	Note
1.	Nanoleaf BLE&Thread-Matter module	Nanoleaf	NL04A 2AEWY-NL04A		EUT
2.	PC	ASUS	Y4200FB	N/A	Support Equipment
3.	USB-UART BOARD	Silicon	FTDI232	N/A	Support Equipment

The EUT has been tested under TX operating condition.	
Channel List:	

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

Note:

1. Test of channel was included the lowest 2402MHz, middle 2440MHz and highest frequency 2480MHz in highest data rate and to perform the test, then record on this report.

Report No.: E01A22070224F00101 4. Summary of Test Results

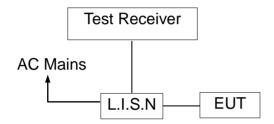
FCC Rules	Description Of Test	Result			
§15.207	AC Power Conducted Emission	Compliant			
§15.247(d),§15.209	Radiated Emission	Compliant			
§15.247(a)(2)	6dB Bandwidth Measurement	Compliant			
§15.247(b)	MAXIMUM PEAK OUTPUT POWER TEST	Compliant			
§15.247(e)	Power Spectral Density Measurement	Compliant			
§15.247(d)	Band EDGE test	Compliant			
§15.203	§15.203 Antenna Requirement Compliant				
Remark: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.					

Report No.: E01A22070224F00101 11 of 48 **5. TEST SYSTEM UNCERTAINTY**

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%


12 of 48

6. Conducted Emissions Test

6.1 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

6.2 Test SET-UP (Block Diagram of Configuration)

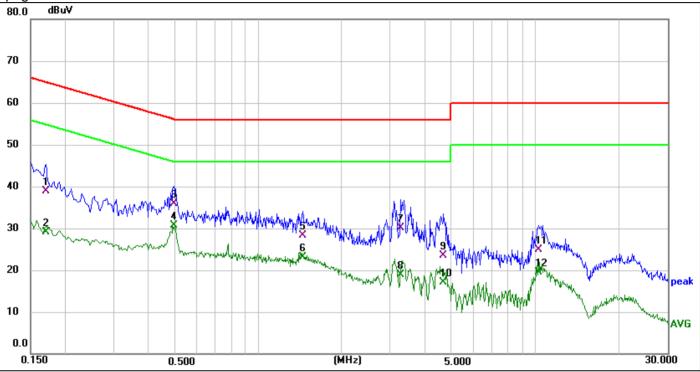
6.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	Calibrated until
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-669	2023-05-12
10 db attenuator	JFW	50FP-010-H4	4360846-427-1	2023-05-12
RF Cable	N/A	N/A	2#	2023-05-12
EMI Test Receiver	ROHDE&SCHWAR Z	ESCI	101358	2023-05-12

6.4 Conducted Emission Limit

(7) Conducted Emission		
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

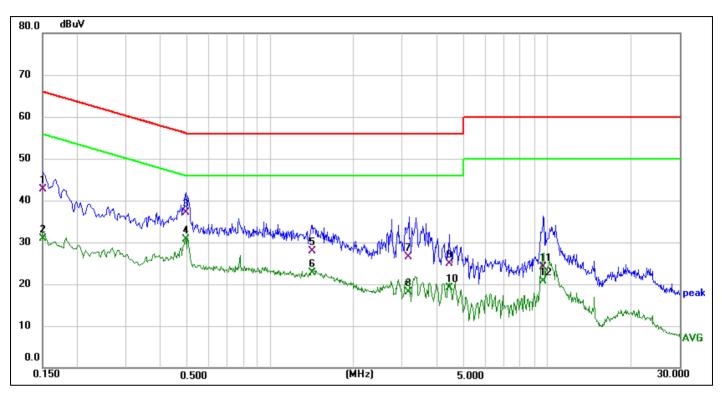
Note:


1. The lower limit shall apply at the transition frequencies

2.The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

6.5 Measurement Result:

All the modulation modes were tested the data of the worst mode (GFSK TX2402) are recorded in the following pages and the others modulation methods do not exceed the limits. Please refer to following pages.


Site:	843	Phase:N	Temperature(C):26(C)
Limit:	FCC Part 15 C Conduction(QP)		Humidity(%):60%
EUT:	Nanoleaf BLE&Thread-Matter module	Test Time:	2021/07/15
M/N.:	NL04A	Power Rating:	AC 120V/60Hz
Mode:	TX2402	Test Engineer:	Karry
Note:		•	-

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1	0.1700	29.35	9.46	38.81	64.96	-26.15	QP	
2	0.1700	19.56	9.46	29.02	54.96	-25.94	AVG	
3	0.4940	26.26	9.73	35.99	56.10	-20.11	QP	
4 *	0.4940	21.02	9.73	30.75	46.10	-15.35	AVG	
5	1.4460	18.44	9.95	28.39	56.00	-27.61	QP	
6	1.4460	13.20	9.95	23.15	46.00	-22.85	AVG	
7	3.2740	20.26	9.93	30.19	56.00	-25.81	QP	
8	3.2740	9.04	9.93	18.97	46.00	-27.03	AVG	
9	4.6700	13.62	9.85	23.47	56.00	-32.53	QP	
10	4.6700	7.19	9.85	17.04	46.00	-28.96	AVG	
11	10.2780	15.16	9.84	25.00	60.00	-35.00	QP	
12	10.2780	9.70	9.84	19.54	50.00	-30.46	AVG	

^{*:}Maximum data x:Over limit !:over margin

Site:	843	Phase:L1	Temperature(C):26(C)
Limit:	FCC Part 15 C Conduction(QP)		Humidity(%):60%
EUT:	Nanoleaf BLE&Thread-Matter module	Test Time:	2021/07/15
M/N.:	NL04A	Power Rating:	AC 120V/60Hz
Mode:	TX2402	Test Engineer:	Karry
Note:		U	-

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1	0.1500	33.14	9.51	42.65	66.00	-23.35	QP	
2	0.1500	21.48	9.51	30.99	56.00	-25.01	AVG	
3	0.4940	27.35	9.73	37.08	56.10	-19.02	QP	
4 *	0.4940	20.98	9.73	30.71	46.10	-15.39	AVG	
5	1.4180	18.00	9.94	27.94	56.00	-28.06	QP	
6	1.4180	12.80	9.94	22.74	46.00	-23.26	AVG	
7	3.1619	16.52	9.96	26.48	56.00	-29.52	QP	
8	3.1619	8.06	9.96	18.02	46.00	-27.98	AVG	
9	4.4260	15.06	9.78	24.84	56.00	-31.16	QP	
10	4.4260	9.24	9.78	19.02	46.00	-26.98	AVG	
11	9.6620	23.85	0.21	24.06	60.00	-35.94	QP	
12	9.6620	20.49	0.21	20.70	50.00	-29.30	AVG	

*:Maximum data x:Over limit !:over margin

15 of 48

6.5 Conducted Measurement Photos:

16 of 48

Report No.: E01A22070224F00101

7. Radiated Emission Test

7.1 Measurement Procedure

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. The EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 5. For measurement below 1GHz, if the emission level of the EUT measured by the peak detector is 3dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
 - 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
 - 2) Change the antenna polarization and repeat 1) with vertical polarization.
 - 3) Make a hardcopy of the spectrum.
 - 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
 - 5) Change the analyser mode to Clear/Write and found the cone of emission.
 - 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
 - 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
 - 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

Use the following spectrum analyzer settings:

When spectrum scanned from 30MHz to 1GHz setting resolution bandwidth 120KHz and video bandwidth 300KHz:

17 of 48

EMI Test Receiver	Setting
Attenuation	Auto
RB	120KHz
VB	300KHz
Detector	QP
Trace	Max hold

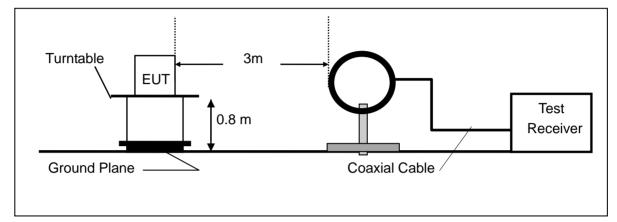
When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	3MHz
Detector	Peak
Trace	Max hold

When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 10Hz:

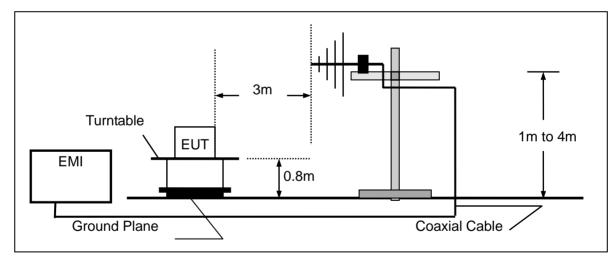
EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	10Hz
Detector	Average
Trace	Max hold

For Average Measurement:

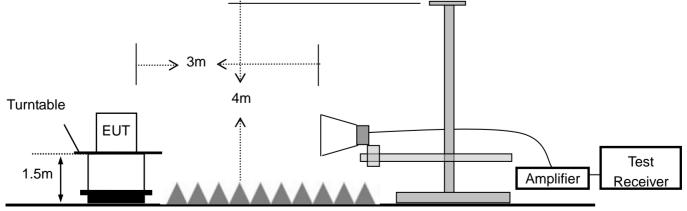

VBW=10Hz, when duty cycle is no less than 98 percent.

VBW ≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	Τ(μ s)	1/T(KHz)	Average Correction Factor	VBW Setting
2402-2480	100	-	-	0	10Hz



7.2 Test SET-UP (Block Diagram of Configuration)



(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

	ſ	ſ		ſ	
Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1.	EMI Test Receiver	Rohde & Schwarz	ESPI	100502	2022-11-12
2.	Pre-Amplifier	HP	8447D	2727A06172	2023-05-12
3.	Bilog Antenna	Schwarzbeck	VULB9163	VULB9163-588	2023-05-12
4.	Loop Antenna	Schwarzbeck	FMZB 1516	1516-141	2022-11-12
5.	Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12
6.	Low noise Amplifiers	A-INFO	LA1018N4009	J1013130524001	2023-05-12
7.	Horn antenna	A-INFO	LB-10180-SF	J2031090612123	2023-05-12
8.	Broadband RF Power Amplifier	AEROFLEX	AEROFLEX10 0KHz-40GHz	J1013130524001	2022-11-12
9.	DRG Horm Antenna	A.H.SYSTEMS	SAS-574	J2031090612123	2022-11-12
10.	RF Cable	Gigalink Microwave	ZT40-2.92J-2. 92J-2m	N/A	2022-11-12
11.	RF Cable	Gigalink Microwave	ZT40-2.92J-2. 92J-0.3m	N/A	2022-11-12
12.	RF Cable	N/A	N/A	6#	2023-05-12
13.	RF Cable	N/A	N/A	1-1#	2023-05-12
14.	RF Cable	N/A	N/A	1-2#	2023-05-12
15.	RF Cable	N/A	N/A	7#	2023-05-12
16.	3m Semi-anechoic Chamber	chengyu	9m*6m*6m	N/A	2023-05-12
17.	Test Software	Farad	EZ-EMC Ver:ANCI-3A1	N/A	N/A

7.3 Measurement Equipment Used:

7.4 Radiated emission limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

Remark 1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of ξ 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

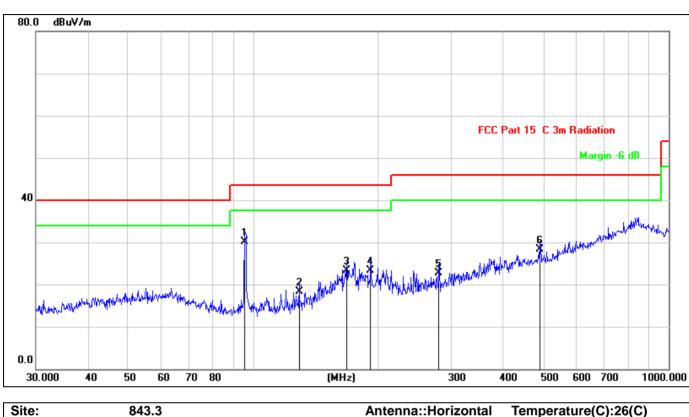
:

7.5 Measurement Result

Below 30MHz:

Operation Mode:	ТХ	Test Date :	July 25, 2022
Frequency Range:	9KHz~30MHz	Temperature :	25 ℃
Test Result:	PASS	Humidity :	58 %
Measured Distance:	3m	Test By:	Bast

Freq.	Ant.Pol.	Emission	Limit 3m	Over
		Level		
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)

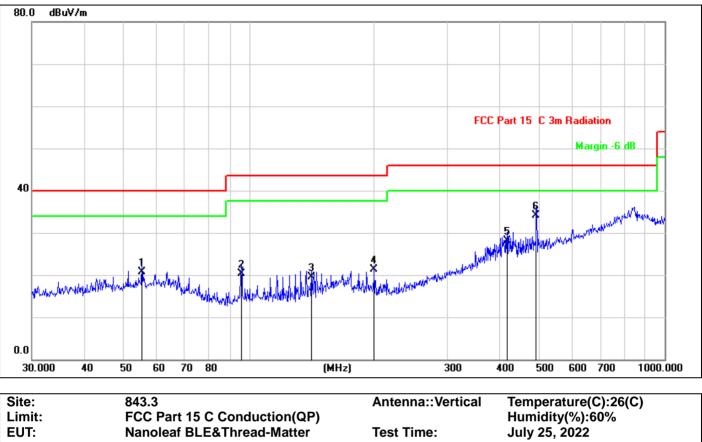

Note: The low frequency, which started from 9KHz-30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Below 1000MHz:

Pass.

The data of the mode (GFSK 2402MHz) are recorded in the following pages.

22 of 48


Site:	843.3	Antenna::Horizontal	Temperature(C):26(C)
Limit:	FCC Part 15 C Conduction(QP)		Humidity(%):60%
EUT:	Nanoleaf BLE&Thread-Matter module	Test Time:	July 25, 2022
M/N.:	NL04A	Power Rating:	DC 3.3V
Mode:	TX2402	Test Engineer:	Bast
Note:		-	

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1 *	95.4270	42.35	-12.15	30.20	43.50	-13.30	QP	
2	129.0146	30.12	-11.82	18.30	43.50	-25.20	QP	
3	167.8243	34.96	-11.56	23.40	43.50	-20.10	QP	
4	191.7450	34.49	-11.09	23.40	43.50	-20.10	QP	
5	280.0237	30.81	-8.01	22.80	46.00	-23.20	QP	
6	490.7447	29.82	-1.42	28.40	46.00	-17.60	QP	

*:Maximum data x:Over limit !:over margin

EUT:	Nanoleaf BLE&Thread-Matter module	Test Time:	July 25, 2022
M/N.:	NL04A	Power Rating:	DC 3.3V
Mode:	TX2402	Test Engineer:	Bast
Note:			

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1	55.2207	29.78	-9.08	20.70	40.00	-19.30	QP	
2	95.7622	32.34	-12.04	20.30	43.50	-23.20	QP	
3	141.3298	31.36	-11.76	19.60	43.50	-23.90	QP	
4	199.9856	32.59	-11.29	21.30	43.50	-22.20	QP	
5	417.6411	30.82	-2.62	28.20	46.00	-17.80	QP	
6 *	490.7447	35.52	-1.42	34.10	46.00	-11.90	QP	

*:Maximum data x:Over limit !:over margin

24 of 48

Above 1000MHz~10th Harmonics:

Operation Mode:	TX Mode (CH00: 2402MHz)	Test Date :	July 25, 2022
Frequency Range:	1-25GHz	Temperature :	25 ℃
Test Result:	PASS	Humidity :	58 %
Measured Distance:	3m	Test By:	Best

Freq.	Ant. Pol.	Reading Level(dBuV/m)		Correct Factor	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4804	V	94.02	76.32	-32.3	63.25	44.02	74	54	-10.8	-9.98
7206	V	97.32	78.43	-37.2	60.12	41.23	74	54	-13.9	-12.77
9608	V	98.13	78.97	-39.8	58.33	39.17	74	54	-15.7	-14.83
12010	V	96.52	77.67	-40.5	56.02	37.17	74	54	-18	-16.83
14412	V	98.02	79.12	-41.7	56.32	37.42	74	54	-17.7	-16.58
16814	V	95.69	76.52	-40	55.69	36.52	74	54	-18.3	-17.48
4804	Н	94.77	75.63	-31.6	63.17	44.03	74	54	-10.8	-9.97
7206	Н	95.46	76.02	-35.5	59.96	40.52	74	54	-14	-13.48
9608	Н	96.93	77.44	-38.3	58.63	39.14	74	54	-15.4	-14.86
12010	Н	95.24	76.14	-39	56.24	37.14	74	54	-17.8	-16.86
14412	Н	97.25	78.28	-42	55.25	36.28	74	54	-18.8	-17.72
16814	Н	95.62	76.04	-39.3	56.32	36.74	74	54	-17.7	-17.26

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
- (4) Measuring frequencies from 1GHz to 25GHz.

25 of 48

Operation Mode:	TX Mode (CH19: 2440MHz)	Test Date :	July 25, 2022
Frequency Range:	1-25GHz	Temperature :	25 ℃
Test Result:	PASS	Humidity :	58 %
Measured Distance:	3m	Test By:	Best

Freq.	Ant.	Rea	ding	Correct	Emis	sion	Li	mit	Margin(dB)	
	Pol.	Level(d	BuV/m)	Factor	Level(d	BuV/m)	3m(dBuV/m)			
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4880	V	94.77	75.32	-32.3	62.47	43.02	74	54	-11.53	-10.98
7320	V	96.52	77.56	-37.2	59.32	40.36	74	54	-14.68	-13.64
9760	V	97.43	78.21	-39.8	57.63	38.41	74	54	-16.37	-15.59
12200	V	96.82	78.35	-40.5	56.32	37.85	74	54	-17.68	-16.15
14640	V	97.74	78.19	-41	56.74	37.19	74	54	-17.26	-16.81
17080	V	97.42	77.97	-41.1	56.32	36.87	74	54	-17.68	-17.13
4880	Н	93.99	74.81	-31.6	62.39	43.21	74	54	-11.61	-10.79
7320	Н	94.95	76.17	-35.5	59.45	40.67	74	54	-14.55	-13.33
9760	Н	95.91	77.32	-38.3	57.61	39.02	74	54	-16.39	-14.98
12200	Н	95.32	76.52	-39	56.32	37.52	74	54	-17.68	-16.48
14640	Н	97.41	78.58	-42	55.41	36.58	74	54	-18.59	-17.42
17080	Н	97.46	77.64	-41.5	55.96	36.14	74	54	-18.04	-17.86

Other harmonics emissions are lower than 20dB below the allowable limit.

- **Note:** (1) All Readings are Peak Value and AV.
 - (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
 - (3) The average measurement was not performed when the peak measured data under the limit of average detection.
 - (4) Measuring frequencies from 1GHz to 25GHz.

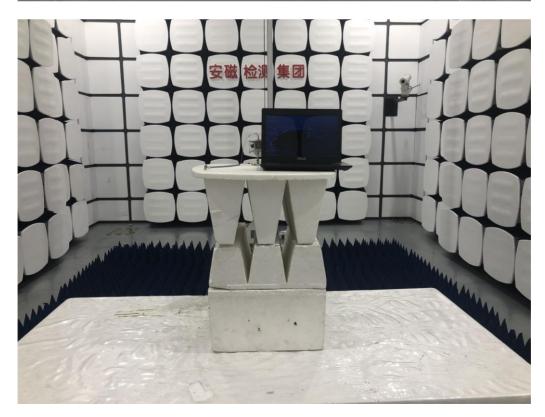
26 of 48

Operation Mode:	TX Mode (CH39: 2480MHz)	Test Date :	July 25, 2022
Frequency Range:	1-25GHz	Temperature :	25 ℃
Test Result:	PASS	Humidity :	58 %
Measured Distance:	3m	Test By:	Best

Freq.	Ant.	Reading		Correct	Emission		Limit		Margin(dB)	
	Pol.	Level(d	BuV/m)	Factor	Level(d	BuV/m)	3m(dBuV/m)			
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4960	V	94.95	75.44	-32.3	62.65	43.14	74	54	-11.35	-10.86
7440	V	96.52	77.42	-37.2	59.32	40.22	74	54	-14.68	-13.78
9920	V	97.76	78.12	-39.8	57.96	38.32	74	54	-16.04	-15.68
12400	V	96.82	77.64	-40.5	56.32	37.14	74	54	-17.68	-16.86
14880	V	97.32	78.41	-41	56.32	37.41	74	54	-17.68	-16.59
17360	V	96.42	77.95	-41.1	55.32	36.85	74	54	-18.68	-17.15
4960	Н	94.07	74.74	-31.6	62.47	43.14	74	54	-11.53	-10.86
7440	Н	94.64	75.82	-35.5	59.14	40.32	74	54	-14.86	-13.68
9920	Н	95.93	76.93	-38.3	57.63	38.63	74	54	-16.37	-15.37
12400	Н	95.33	76.15	-39	56.33	37.15	74	54	-17.67	-16.85
14880	Н	98.32	79.44	-42	56.32	37.44	74	54	-17.68	-16.56
17360	Н	97.46	78.08	-41.5	55.96	36.58	74	54	-18.04	-17.42

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.


- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
- (4) Measuring frequencies from 1GHz to 25GHz.

27 of 48

7.6 Radiated Measurement Photos:

28 of 48

8. 6dB Bandwidth Measurement

8.1 Measurement Procedure

The EUT was operating in Bluetooth mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

8.2 Test SET-UP (Block Diagram of Configuration)

EUT Spectrum

8.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

8.4 Limit

The minimum 6dB bandwidth shall be at least 500kHz.

8.5 Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	July 19, 2022
Test By:	Best	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

Channel number	Channel	Measurement level	Required Limit
	frequency (MHz)	(KHz)	(KHz)
00	2402	719	>500
19	2440	711	>500
39	2480	700	>500

-11.84 dBm 2.401563200 GHz 1.034496550 MHz

-11.84 dBm 2.402282600 GHz

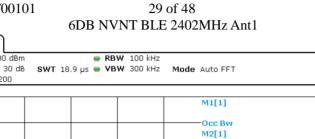
Span 2.0 MHz

т2

Report No.: E01A22070224F00101

Spectrum

Att


10 dBm·

0 dBm—

-20 dBm

Ref Level 20.00 dBm

SGL Count 200/200

-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.402 GHz 10001 pts

Date: 19.JUL.2022 10:17:40

Date: 19.JUL.2022 10:20:43

30 of 48

Date: 19.JUL.2022 10:28:07

Report No.: E01A22070224F00101 31 of 48 **9. MAXIMUM PEAK OUTPUT POWER TEST**

9.1 Measurement Procedure

- a. The Transmitter output (antenna port) was connected to the spectrum Analyzer.
- b. Turn on the EUT and then record the peak power value.
- c. Repeat above procedures on all channels needed to be tested.

9.2 Test SET-UP (Block Diagram of Configuration)

EUT	10dB ATTENDATION	Power meter
-----	------------------	-------------

9.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
USB RF Power sensor	RadiPower	RPR3006W	17100015SNO88	2022-11-12
RF Test Software	MAIWEI	MTS 8310	N/A	N/A

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

9.4 Peak Power output limit

The maximum peak power shall be less 1Watt.

9.5 Measurement Results:

Refer to attached data chart.

32 of 48

T	pectrum Detec est By: est Result:	tor: PK Best PASS	Ter	st Date : nperature : midity :	August 08, 24 °C 53 %	2022
	Channel number	Channel Frequency (MHz)	Peak Power output(dBm)		Peak Power Limit(W)	Pass/Fail
	0	2402	8.090	6.442	1W(30dBm)	PASS
	19	2440	8.450	6.998	1W(30dBm)	PASS
	39	2480	8.710	7.430	1W(30dBm)	PASS

Report No.: E01A22070224F00101 33 of 48 **10. Power Spectral Density Measurement**

10.1Measurement Procedure

The EUT was operating in Bluetooth mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

10.2 Test SET-UP (Block Diagram of Configuration)

с цт	
EUI	Spectrum Analyzer

10.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

10.4 Measurement Procedure

10.4.1 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

10.4.2. Set to the maximum power setting and enable the EUT transmit continuously.

10.4.3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)

10.4.4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.

10.4.5. Measure and record the results in the test report.

10.4.6. The Measured power density (dBm)/ 100KHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

10.5 Measurement Results:

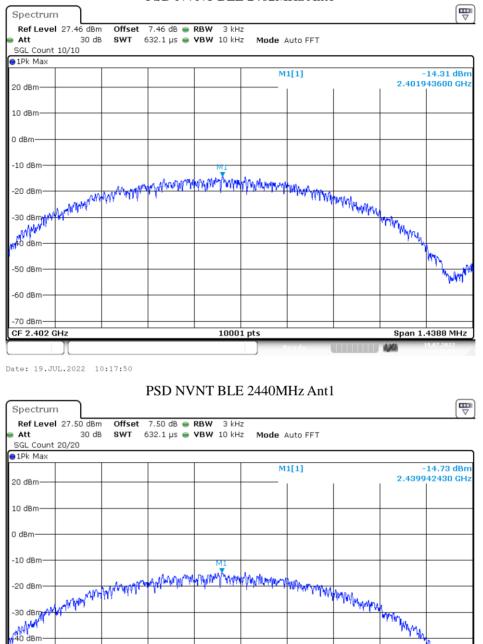
The following table is the setting of spectrum analyzer.

Spectrum analyzer	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS bandwidth.
RB	3KHz
VB	10KHz
Detector	Peak
Trace	Max hold
Sweep Time	Automatic

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	July 25, 2022
Test By:	Best	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

Channel number	Channel frequency	Measurement level (dBm)	Required Limit	Pass/Fail
number	(MHz)	PSD/3kHz	(dBm/3kHz)	
00	2402	-14.31	8	PASS
19	2440	-14.73	8	PASS
39	2480	-14.86	8	PASS


Note:

1. Measured power density(dBm) has offset with cable loss.

2. The measured power density(dBm)/100KHz is reference level and used as 20dBc down for Conducted Band Edges and Conducted Spurious Emission limit line.

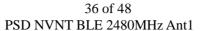
35 of 48 PSD NVNT BLE 2402MHz Ant1

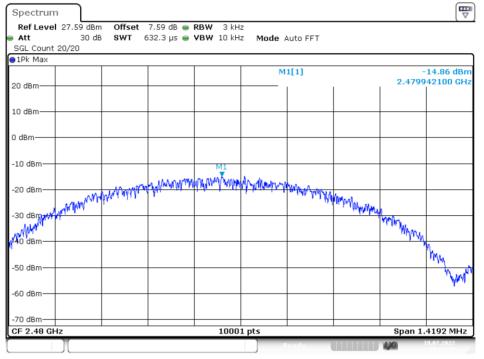
10001 pts

Date: 19.JUL.2022 10:21:48

-50 dBm

-60 dBm· -70 dBm·


CF 2.44 GHz


Mry

Span 1.4216 MHz

MAN

Date: 19.JUL.2022 10:28:22

37 of 48

11. Band EDGE test

11.1 Measurement Procedure

For Conducted Test

- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.
- 2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

For Radiated emission Test

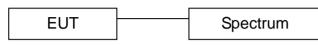
The EUT was placed on a styrofoam table which is 1.5m above ground plane.

The measurement procedure at the ban edges was simplified by performing the measurement in just one plot. Both, the in-band-emission and the unwanted emission were be encompassed by the span. After trace stabilization, the maximum peak was be determined by a peak detector and the value was marked by an appropriate limit line. The second limit line, which is 20dB below the first, marks the limit for the emissions in the unrestricted band. A maximum-peak-detector marks the highest emission in the unrestricted band next to the band edge.

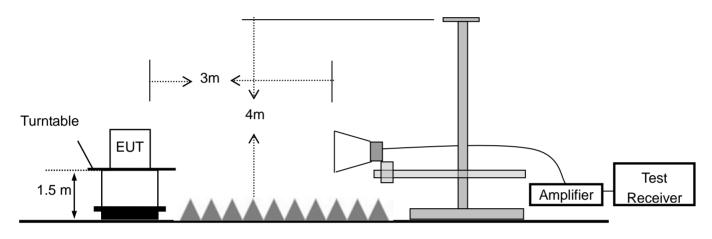
The measurements were performed at the lower end of the 2.4GHz band. Use the following spectrum analyzer settings:

For Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	1MHz
VBW	3MHz
Detector	Peak
Trace	Max hold


For Non-Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 100KHz, video bandwidth 300KHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold



Report No.: E01A22070224F00101 38 of 48 **11.2 Test SET-UP (Block Diagram of Configuration)**

For Conducted Test

For Radiated emission Test

11.3 Measurement Equipment Used:

For Conducted Test

EQUIPMENT	MFR	MODEL	SERIAL	CALIBRATED
TYPE		NUMBER	NUMBER	UNTIL
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

For Radiated emission Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Signal Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12
2	Broadband RF Power Amplifier	AEROFLEX	AEROFLEX100KHz-40G Hz	J1013130524 001	2022-11-12
3	DRG Horm Antenna	A.H.SYSTEMS	SAS-574	J2031090612 123	2022-11-12
4	RF Cable	Gigalink Microwave	ZT40-2.92J-2.92J-2m	N/A	2022-11-12
5	RF Cable	Gigalink Microwave	ZT40-2.92J-2.92J-0.3m	N/A	2022-11-12

Report No.: E01A22070224F00101

39 of 48

11.4 Measurement Results:

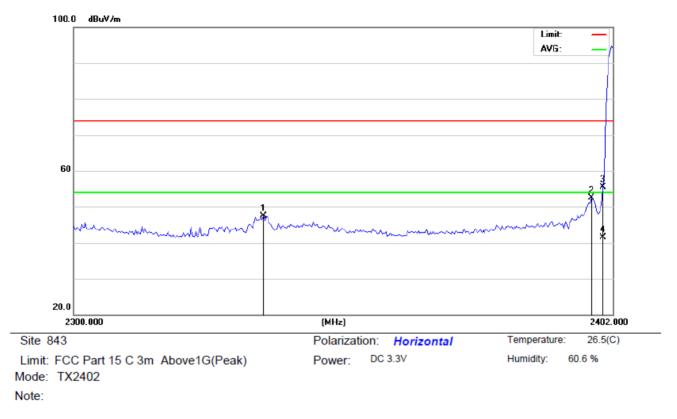
Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	July 25, 2022
Test By:	Best	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

1. Conducted Test

Frequency (MHz)	Peak Power Output(dBm)	Emission(dBm)	Result of Band edge(dBc)	Band edge Limit(dBc)
238.7	1.11	-42.98	44.09	>20dBc
2488.1	1.23	-43.46	44.69	>20dBc

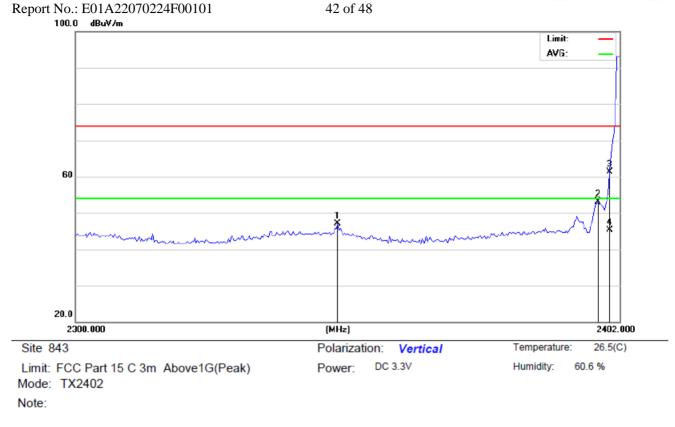
Report No.: E01A22070224F00101


40 of 48

20 dBm 2.401850	41 dBn 00 GH: M1
SGL Count 100/100 1Pk Max 20 dBm M1[1] 1.1 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -30 dBm -40 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm 1001 pts Stop 2.400	00 GH: 41 dBn 00 GH: M1
IPk Max M1[1] 1 20 dBm M2[1] 2.401850 10 dBm M2[1] -45. 10 dBm 2.400000 0 0 dBm 0 0 -10 dBm 0 0 -30 dBm 0 0 -50 dBm 0 0 -60 dBm 0 0 -70 dBm 0 0 0 -70	00 GH: 41 dBn 00 GH: M1
20 dBm M1[1] 1 20 dBm M2[1] 2.401850 10 dBm M2[1] -45. 10 dBm 2.400000 0 0 dBm 0 0 -10 dBm 0 0 -20 dBm 0 0 -30 dBm 0 0 -40 dBm 0 0 -50 dBm 0 0 -60 dBm 0 0 -70 dBm 0 0 -70 dBm 0 0 -70 dBm 0 0	00 GH: 41 dBn 00 GH: M1
20 dBm 2.401850 10 dBm 2.400000 0 dBm 2.400000 0 dBm 2.400000 10 dBm 2.4000000 10 dBm 2.4000000 10 dBm 2.4000000 10 dBm 2.4000000 10 dBm 2.4000000 10 dBm 2.40000000 10 dBm 2.4000000000 10 dBm 2.4000000000000000000000000000000000000	00 GH: 41 dBn 00 GH: M1
10 dBm M2[1] -45. 0 dBm 2.400000 0 dBm 0 -10 dBm 0 -10 dBm 0 -30 dBm 0 -40 dBm 0 -40 dBm 0 -50 dBm 0 -60 dBm 0 -70 dBm 0	41 dBn 00 GH: M1
10 dBm 2.400000 0 dBm 2.400000 0 dBm 10 dBm -10 dBm 10 dBm -20 dBm 10 dBm -30 dBm 10 dBm -40 dBm 10 dBm -30 dBm 1001 pts	
בער שאר איז	
-10 dBm	nd tr
-2U לאריין 18,928 לאריין 18,928 לאריין 10,1 - 18,9	nt r
-2U לאריין 18,928 לאריין 18,928 לאריין 10,1 - 18,9	n i tr
	i In
30 dBm	n h
-40 dBm	y h
40 08m Max 10 10m	y h
40 08m Max 10 10m	# Ir
-50 dBm -60 dBm -70 dBm Start 2.306 GHz 1001 pts Stop 2.40	v vi
-60 dBm -70 dBm -70 dBm -51 dBm -70 dBm -51 dB	
-70 dBm	
-70 dBm	
Start 2.306 GHz 1001 pts Stop 2.40	
Start 2.306 GHz 1001 pts Stop 2.40	
larkor	6 GHz
IUINGI	
Type Ref Trc X-value Y-value Function Function Result	
M1 1 2.40185 GHz 1.11 dBm	
M2 1 2.4 GHz -45.41 dBm	
M3 1 2.39 GHz -46.19 dBm	
M4 1 2.3787 GHz -42.98 dBm	
RefLevel 27.59 dBm Offset 7.59 dB	
SGL Count 100/100	
1Pk Max	
	23 dBn
20 dBm 2.480150	
	24 dBn
10 dBm 2.493500	UU GH
D dem	
D dem	
0 d8m	
0 dēm	
0 d8m	
בער 20 לאריין בער 20 לאריין בער 20 לאריין	พาะปรีจุปาพ
ס אראיז איז איז איז איז איז איז איז איז איז	hourseling
0 dBm -10 dBm -20 cBm -30 c	^{โอ} าม ^{เป} ญปังเ
D dem	^{โอ} เวป ⁰ ฟูปาส
D dBm	
D dBm -10 dBm -20 cBm -01 -18.856 dBm -20 cBm -01 -18.856 dBm -30 dBm 	
0 dBm	
0 dBm	
0 dBm -10 dBm -20 cBm -10 dBm -20 cBm -20 cBm -20 cBm -20 cBm -20 cBm -20 cBm -20 cBm -30 dBm -30 dBm -40 dBm; -40 dBm; -40 dBm; -40 dBm; -50 dBm -50 dBm -50 dBm -70 dBm -	
0 dBm	
0 dBm	

Date: 19.JUL.2022 10:28:33

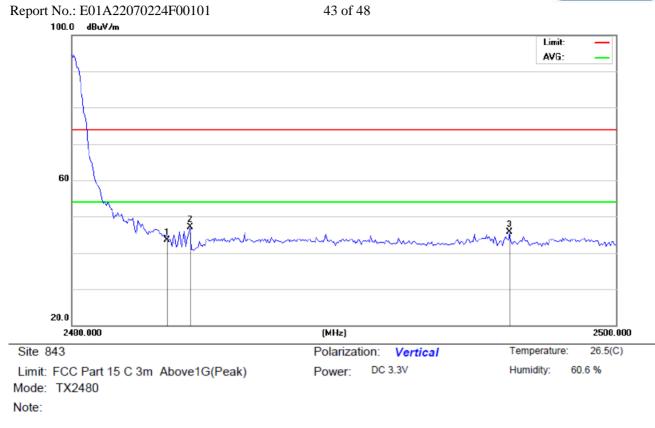
Report No.: E01A22070224F00101 2. Radiated emission Test



41 of 48

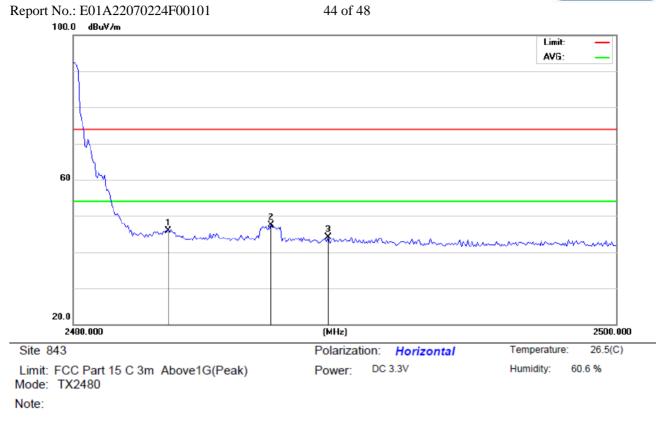
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		2335.451	52.66	-5.19	47.47	74.00	-26.53	peak			
2		2397.834	57.23	-4.77	52.46	74.00	-21.54	peak			
3		2400.000	60.20	-4.75	55.45	74.00	-18.55	peak			
4	*	2400.000	46.25	-4.75	41.50	54.00	-12.50	AVG			

est



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	2	2348.663	52.12	-5.11	47.01	74.00	-26.99	peak			
2	2	2397.834	57.86	-4.77	53.09	74.00	-20.91	peak			
3	2	2400.000	66.00	-4.75	61.25	74.00	-12.75	peak			
4	* 2	2400.000	50.00	-4.75	45.25	54.00	-8.75	AVG			

(Reference Only



No.	Mk	. Freq.			Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		2483.500	47.72	-4.19	43.53	74.00	-30.47	peak			
2	*	2484.336	51.29	-4.19	47.10	74.00	-26.90	peak			
3		2496.087	49.84	-4.11	45.73	74.00	-28.27	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only

No.	Mk	. Freq.			Measure- ment		Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		2483.500	50.12	-4.19	45.93	74.00	-28.07	peak			
2	*	2487.281	51.58	-4.17	47.41	74.00	-26.59	peak			
3		2489.380	48.18	-4.16	44.02	74.00	-29.98	peak			

(Reference Only

45 of 48

Report No.: E01A22070224F00101

12 Antenna Application

12.1 Antenna requirement

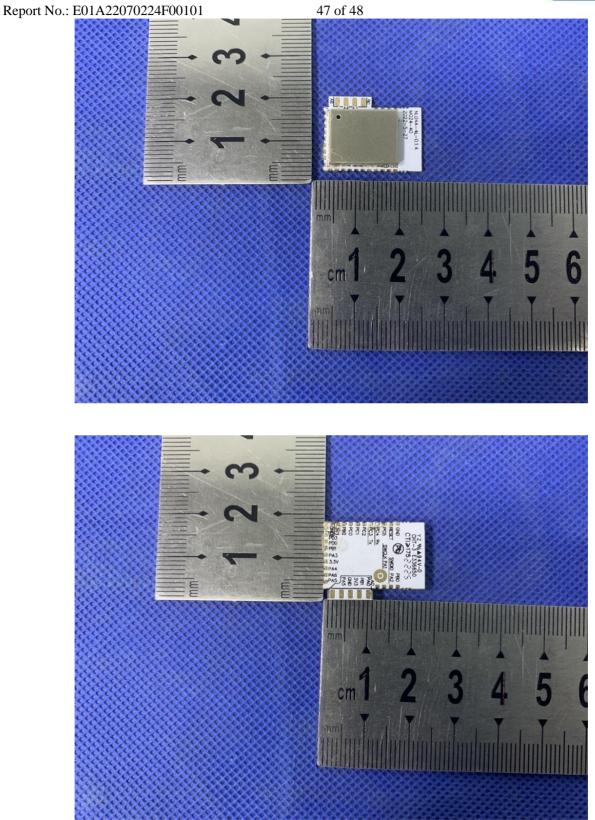
The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247.

FCC part 15C section 15.247 requirements:

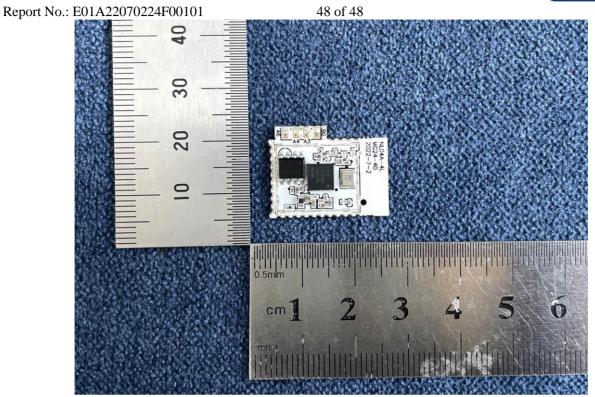
Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

12.2 Result

The EUT's antenna, permanent attached antenna, used a PCB antenna and integrated on PCB, The antenna's gain is 2.15dBi and meets the requirement.



Report No.: E01A22070224F00101


46 of 48

APPENDIX I (Photos of EUT)

-----The end of report-----