



# FCC RF Test Report

**APPLICANT** : Super Micro Computer, Inc.  
**EQUIPMENT** : IoT Gateway System  
**BRAND NAME** : Super Micro Computer, Inc  
**MODEL NAME** : SYS-E100-8Q-TDAW/SYS-E100-8QE-TDAW  
**FCC ID** : 2AEVX-E100TDAW  
**STANDARD** : FCC 47 CFR Part 2, 22(H), 24(E)  
**CLASSIFICATION** : PCS Licensed Transmitter (PCB)

The product was received on Jun. 08, 2015 and testing was completed on Aug. 05, 2015. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA / EIA-603-C-2004 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager



**SPORTON INTERNATIONAL INC.**  
No. 52, Hwa Ya 1<sup>st</sup> Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

**SPORTON INTERNATIONAL INC.**

TEL : 886-3-327-3456

FAX : 886-3-328-4978

FCC ID : 2AEVX-E100TDAW

Page Number : 1 of 21

Report Issued Date : Aug. 28, 2015

Report Version : Rev. 01

Report Template No.: BU5-FG22/24 Version 1.0



## TABLE OF CONTENTS

|                                                                                   |           |
|-----------------------------------------------------------------------------------|-----------|
| <b>REVISION HISTORY.....</b>                                                      | <b>3</b>  |
| <b>SUMMARY OF TEST RESULT .....</b>                                               | <b>4</b>  |
| <b>1 GENERAL DESCRIPTION.....</b>                                                 | <b>5</b>  |
| 1.1    Applicant.....                                                             | 5         |
| 1.2    Manufacturer .....                                                         | 5         |
| 1.3    Product Feature of Equipment Under Test .....                              | 5         |
| 1.4    Product Specification subjective to this standard.....                     | 6         |
| 1.5    Modification of EUT .....                                                  | 6         |
| 1.6    Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator ..... | 7         |
| 1.7    Testing Location .....                                                     | 8         |
| 1.8    Applicable Standards .....                                                 | 8         |
| <b>2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....</b>                          | <b>9</b>  |
| 2.1    Test Mode.....                                                             | 9         |
| 2.2    Connection Diagram of Test System .....                                    | 10        |
| 2.3    Support Unit used in test configuration .....                              | 10        |
| 2.4    Measurement Results Explanation Example .....                              | 10        |
| <b>3 CONDUCTED TEST RESULT.....</b>                                               | <b>11</b> |
| 3.1    Measuring Instruments.....                                                 | 11        |
| 3.2    Test Setup .....                                                           | 11        |
| 3.3    Test Result of Conducted Test.....                                         | 11        |
| 3.4    Conducted Output Power and ERP/EIRP .....                                  | 12        |
| 3.5    Peak-to-Average Ratio .....                                                | 13        |
| 3.6    99% Occupied Bandwidth and 26dB Bandwidth Measurement.....                 | 14        |
| 3.7    Conducted Band Edge .....                                                  | 15        |
| 3.8    Conducted Spurious Emission .....                                          | 16        |
| 3.9    Frequency Stability .....                                                  | 17        |
| <b>4 RADIATED TEST ITEMS .....</b>                                                | <b>18</b> |
| 4.1    Measuring Instruments.....                                                 | 18        |
| 4.2    Test Setup .....                                                           | 18        |
| 4.3    Test Result of Radiated Test.....                                          | 18        |
| 4.4    Field Strength of Spurious Radiation Measurement .....                     | 19        |
| <b>5 LIST OF MEASURING EQUIPMENT .....</b>                                        | <b>20</b> |
| <b>6 UNCERTAINTY OF EVALUATION.....</b>                                           | <b>21</b> |

### APPENDIX A. TEST RESULTS OF CONDUCTED TEST

### APPENDIX B. TEST RESULTS OF RADIATED TEST

### APPENDIX C. TEST SETUP PHOTOGRAPHS



# REVISION HISTORY



## SUMMARY OF TEST RESULT

| Report Section | FCC Rule                            | IC Rule                                        | Description                                   | Limit                  | Result | Remark                                     |
|----------------|-------------------------------------|------------------------------------------------|-----------------------------------------------|------------------------|--------|--------------------------------------------|
| 3.4            | §2.1046                             | RSS-132 (5.4)<br>RSS-133 (6.4)                 | Conducted Output Power                        | Reporting Only         | PASS   | -                                          |
|                | §22.913(a)(2)                       | RSS-132(5.4)<br>SRSP-503(5.1.3)                | Effective Radiated Power                      | < 7 Watts              | PASS   | -                                          |
|                | §24.232(c)                          | RSS-133 (6.4)<br>SRSP-510(5.1.2)               | Equivalent Isotropic Radiated Power           | < 2 Watts              | PASS   | -                                          |
| 3.5            | §24.232(d)                          | RSS-132 (5.4)<br>RSS-133 (6.4)                 | Peak-to-Average Ratio                         | < 13 dB                | PASS   | -                                          |
| 3.6            | §2.1049                             | RSS-GEN(6.6)<br>RSS-132 (3.1)<br>RSS-133 (3.1) | Occupied Bandwidth                            | Reporting Only         | PASS   | -                                          |
| 3.7            | §2.1051<br>§22.917(a)<br>§24.238(a) | RSS-132 (5.5)<br>RSS-133 (6.5)                 | Band Edge Measurement                         | < 43+10log10(P[Watts]) | PASS   | -                                          |
| 3.8            | §2.1051<br>§22.917(a)<br>§24.238(a) | RSS-132 (5.5)<br>RSS-133 (6.5)                 | Conducted Emission                            | < 43+10log10(P[Watts]) | PASS   | -                                          |
| 3.9            | §2.1055<br>§22.355                  | RSS-GEN(6.11)<br>RSS-132 (5.3)                 | Frequency Stability for Temperature & Voltage | < 2.5 ppm for Part 22  | PASS   | -                                          |
|                | §2.1055<br>§24.235                  | RSS-GEN(6.11)<br>RSS-133 (6.3)                 |                                               | Within Authorized Band |        |                                            |
| 4.4            | §2.1053<br>§22.917(a)<br>§24.238(a) | RSS-132 (5.5)<br>RSS-133 (6.5)                 | Field Strength of Spurious Radiation          | < 43+10log10(P[Watts]) | PASS   | Under limit<br>24.92 dB at<br>5088.000 MHz |



## 1 General Description

### 1.1 Applicant

**Super Micro Computer, Inc.**

980 Rock Ave., San Jose, CA, 95131, USA

### 1.2 Manufacturer

**Super Micro Computer, Inc.**

980 Rock Ave., San Jose, CA, 95131, USA

### 1.3 Product Feature of Equipment Under Test

| Product Feature                        |                                                             |
|----------------------------------------|-------------------------------------------------------------|
| <b>Equipment</b>                       | IoT Gateway System                                          |
| <b>Brand Name</b>                      | Super Micro Computer, Inc                                   |
| <b>Model Name</b>                      | SYS-E100-8Q-TDAW/SYS-E100-8QE-TDAW                          |
| <b>FCC ID</b>                          | 2AEVX-E100TDAW                                              |
| <b>EUT supports Radios application</b> | CDMA/EV-DO<br>WLAN 11b/g/n HT20/HT40                        |
| <b>HW Version</b>                      | Module: HE910-DUAL: 1.01, A1SQN-E/A1SQN MB V1.02            |
| <b>SW Version</b>                      | Module: firmware 15.00.024 (Verizon CDMA),<br>system:RCPL23 |
| <b>EUT Stage</b>                       | Pre-Production                                              |

**Remark:** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.



## 1.4 Product Specification subjective to this standard

| Product Specification subjective to this standard |                                                                                  |
|---------------------------------------------------|----------------------------------------------------------------------------------|
| <b>Tx Frequency</b>                               | CDMA2000 BC0: 824.70 MHz ~ 848.31 MHz<br>CDMA2000 BC1: 1851.25 MHz ~ 1908.75 MHz |
| <b>Rx Frequency</b>                               | CDMA2000 BC0: 869.70 MHz ~ 893.31 MHz<br>CDMA2000 BC1: 1931.25 MHz ~ 1988.75 MHz |
| <b>Maximum Output Power to Antenna</b>            | CDMA2000 BC0 : 24.18 dBm<br>CDMA2000 BC1 : 24.43 dBm                             |
| <b>99% Occupied Bandwidth</b>                     | CDMA2000 BC0: 1.282MHz<br>CDMA2000 BC1: 1.282MHz                                 |
| <b>Antenna Type</b>                               | Dipole Antenna                                                                   |
| <b>Antenna Gain</b>                               | CDMA2000 BC0 : 2.10 dBi<br>CDMA2000 BC1 : 2.80 dBi                               |
| <b>Type of Modulation</b>                         | CDMA2000 : QPSK<br>CDMA2000 1xEV-DO : QPSK/8PSK                                  |

## 1.5 Modification of EUT

No modifications are made to the EUT during all test items.



## 1.6 Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator

| FCC Rule | System             | Type of Modulation | Maximum ERP/EIRP (W) | Frequency Tolerance (ppm) | Emission Designator |
|----------|--------------------|--------------------|----------------------|---------------------------|---------------------|
| Part 22  | CDMA2000 BC0 1xRTT | QPSK               | 0.259                | 0.0335 ppm                | 1M28F9W             |
| Part 24  | CDMA2000 BC1 1xRTT | QPSK               | 0.528                | 0.0255 ppm                | 1M28F9W             |



## 1.7 Testing Location

Sportun Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

|                           |                                                                                                                                                                  |           |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>Test Site</b>          | SPORTON INTERNATIONAL INC.                                                                                                                                       |           |
| <b>Test Site Location</b> | No. 52, Hwa Ya 1 <sup>st</sup> Rd., Hwa Ya Technology Park,<br>Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.<br>TEL: +886-3-327-3456<br>FAX: +886-3-328-4978 |           |
| <b>Test Site No.</b>      | <b>Sportun Site No.</b>                                                                                                                                          |           |
|                           | TH03-HY                                                                                                                                                          | 03CH07-HY |

## 1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 2, 22(H), 24(E)
- ANSI / TIA / EIA-603-C-2004
- FCC KDB 971168 D01 Power Meas. License Digital Systems v02r02
- FCC KDB 412172 D01 Determining ERP and ERIP v01r01

### Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

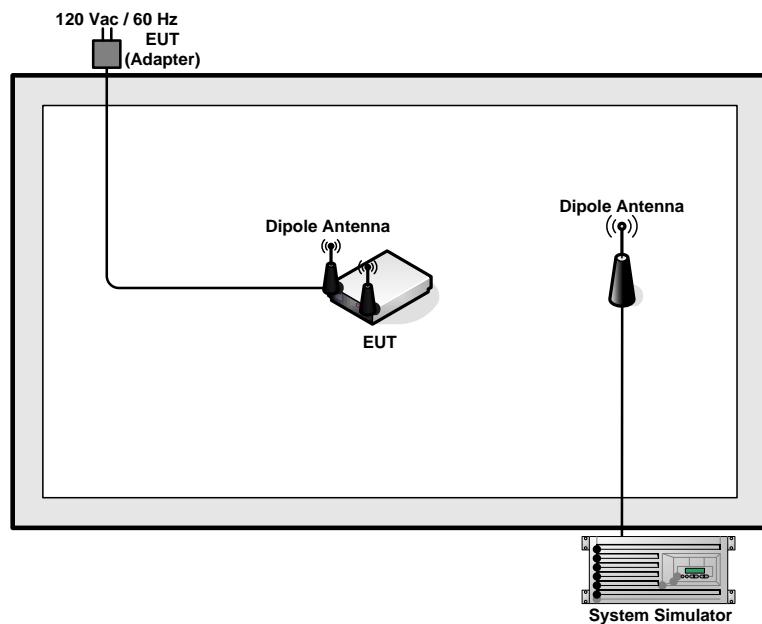


## 2 Test Configuration of Equipment Under Test

### 2.1 Test Mode

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v02r02 with maximum output power.

Radiated emissions were investigated as following frequency range:


1. 30 MHz to 9000 MHz for CDMA2000 BC0.
2. 30 MHz to 19000 MHz for CDMA2000 BC1.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

| Test Modes   |                   |                   |
|--------------|-------------------|-------------------|
| Band         | Radiated TCs      | Conducted TCs     |
| CDMA2000 BC0 | ■ 1xRTT Link Mode | ■ 1xRTT Link Mode |
| CDMA2000 BC1 | ■ 1xRTT Link Mode | ■ 1xRTT Link Mode |

## 2.2 Connection Diagram of Test System



## 2.3 Support Unit used in test configuration

| Item | Equipment        | Trade Name | Model No. | FCC ID | Data Cable | Power Cord        |
|------|------------------|------------|-----------|--------|------------|-------------------|
| 1.   | System Simulator | R&S        | CMU 200   | N/A    | N/A        | Unshielded, 1.8 m |

## 2.4 Measurement Results Explanation Example

### For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

$Offset = RF\ cable\ loss + attenuator\ factor.$

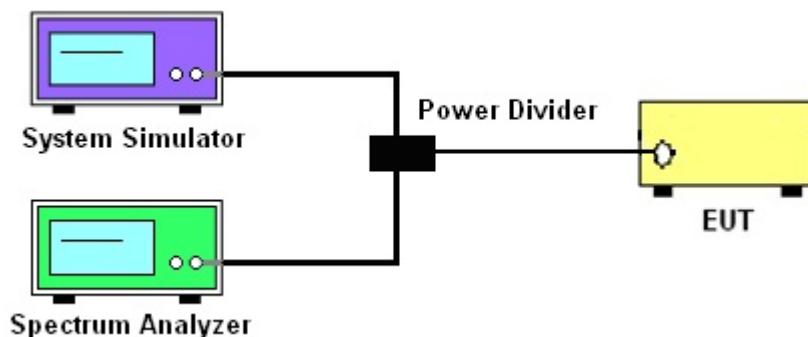
The following shows an offset computation example with RF cable loss 4.2 dB and a 10dB attenuator.

Example :

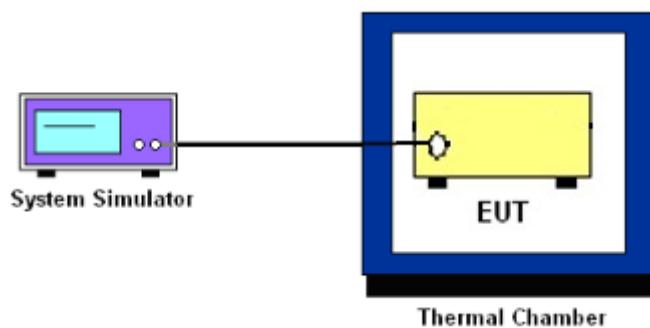
$$\begin{aligned}Offset(dB) &= RF\ cable\ loss(dB) + attenuator\ factor(dB). \\&= 4.2 + 10 = 14.2\ (dB)\end{aligned}$$

### 3 Conducted Test Result

#### 3.1 Measuring Instruments


See list of measuring instruments of this test report.

#### 3.2 Test Setup


##### 3.2.1 Conducted Output Power



##### 3.2.2 Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band-Edge and Conducted Spurious Emission



##### 3.2.3 Frequency Stability



#### 3.3 Test Result of Conducted Test

Please refer to Appendix A.



## 3.4 Conducted Output Power and ERP/EIRP

### 3.4.1 Description of the Conducted Output Power and ERP/EIRP

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The ERP of mobile transmitters must not exceed 7 Watts for Band 850.

The EIRP of mobile transmitters must not exceed 2 Watts for Band 1900.

According to KDB 412172 D01 Power Approach,

$EIRP = P_T + G_T - L_C$ ,  $ERP = EIRP \cdot 2.15$ , where

$P_T$  = transmitter output power in dBm

$G_T$  = gain of the transmitting antenna in dBi

$L_C$  = signal attenuation in the connecting cable between the transmitter and antenna in dB

### 3.4.2 Test Procedures

1. The transmitter output port was connected to the system simulator.
2. Set EUT at maximum power through system simulator.
3. Select lowest, middle, and highest channels for each band and different modulation.
4. Measure the maximum average power for CDMA



## 3.5 Peak-to-Average Ratio

### 3.5.1 Description of the PAR Measurement

The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

### 3.5.2 Test Procedures

1. The testing follows FCC KDB 971168 v02r02 Section 5.7.1.
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. Set the CCDF (Complementary Cumulative Distribution Function) option on the spectrum analyzer.
4. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
5. Record the deviation as Peak to Average Ratio.



## 3.6 99% Occupied Bandwidth and 26dB Bandwidth Measurement

### 3.6.1 Description of 99% Occupied Bandwidth and 26dB Bandwidth Measurement

The 99% occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The emission bandwidth is defined as the width of the signal between two points, located at the 2 sides of the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

### 3.6.2 Test Procedures

1. The testing follows FCC KDB 971168 v02r02 Section 4.2.
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. The RF output of the EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
4. The 99% occupied bandwidth were measured, set RBW= 1% of span, VBW= 3\*RBW, sample detector, trace maximum hold.
5. The 26dB bandwidth were measured, set RBW= 1% of EBW, VBW= 3\*RBW, peak detector, trace maximum hold.



## 3.7 Conducted Band Edge

### 3.7.1 Description of Conducted Band Edge Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least  $43 + 10 \log (P)$  dB.

### 3.7.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 6.0.
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
4. The band edges of low and high channels for the highest RF powers were measured.
5. The RBW was replaced by 10 kHz, slightly smaller than the value in (2), due to the spectrum analyzer limitation to set the exact value. A worst case correction factor of  $10^* \log (1\% \text{ emission-BW}/\text{measurement RBW})$  was compensated.
6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
7. The limit line is derived from  $43 + 10\log(P)$  dB below the transmitter power P(Watts)  
$$= P(W) - [43 + 10\log(P)] \text{ (dB)}$$
$$= [30 + 10\log(P)] \text{ (dBm)} - [43 + 10\log(P)] \text{ (dB)}$$
$$= -13 \text{ dBm.}$$



## 3.8 Conducted Spurious Emission

### 3.8.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least  $43 + 10 \log(P)$  dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10<sup>th</sup> harmonic.

### 3.8.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 6.0.
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
4. The middle channel for the highest RF power within the transmitting frequency was measured.
5. The conducted spurious emission for the whole frequency range was taken.
6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
7. The limit line is derived from  $43 + 10\log(P)$  dB below the transmitter power P(Watts)  
 $= P(W) - [43 + 10\log(P)]$  (dB)  
 $= [30 + 10\log(P)]$  (dBm) -  $[43 + 10\log(P)]$  (dB)  
 $= -13$  dBm.



## 3.9 Frequency Stability

### 3.9.1 Description of Frequency Stability Measurement

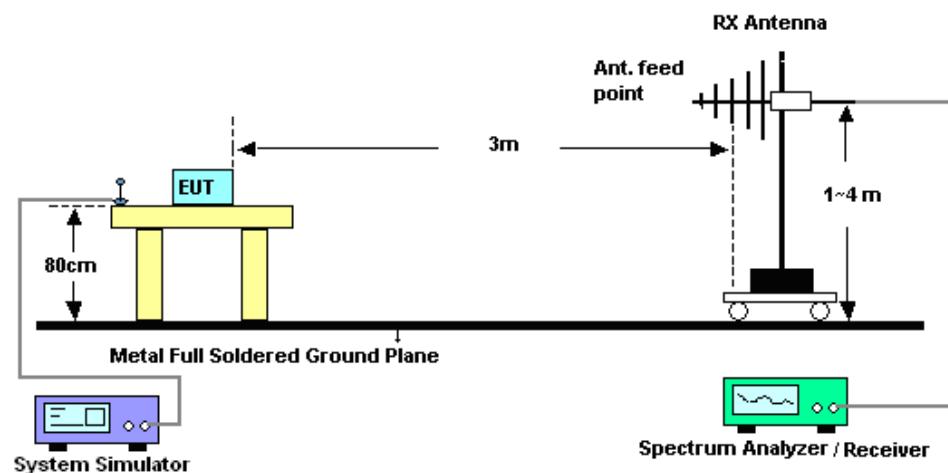
The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within  $\pm 0.00025\%$  ( $\pm 2.5\text{ppm}$ ) of the center frequency.

### 3.9.2 Test Procedures for Temperature Variation

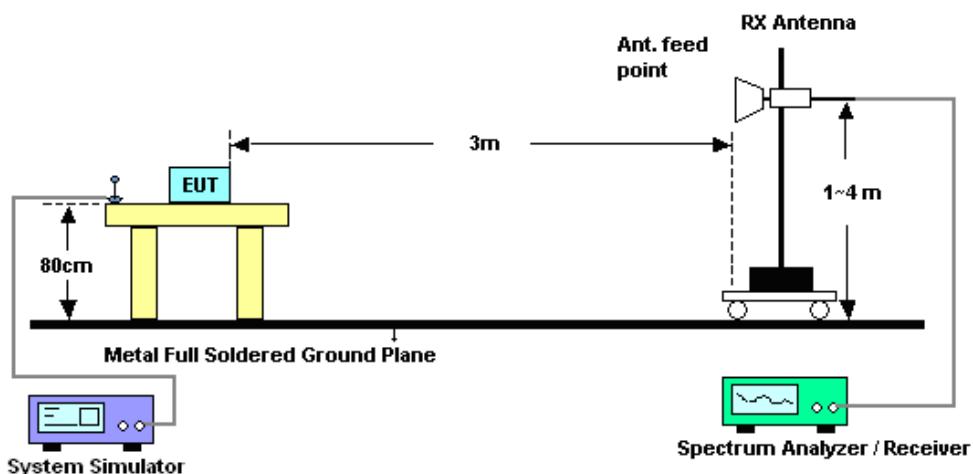
1. The testing follows FCC KDB 971168 D01 v02r02 Section 9.0.
2. The EUT was set up in the thermal chamber and connected with the system simulator.
3. With power OFF, the temperature was decreased to  $-30^\circ\text{C}$  and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
4. With power OFF, the temperature was raised in  $10^\circ\text{C}$  steps up to  $50^\circ\text{C}$ . The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

### 3.9.3 Test Procedures for Voltage Variation

1. The testing follows FCC KDB 971168 D01 v02r02 Section 9.0.
2. The EUT was placed in a temperature chamber at  $25\pm 5^\circ\text{C}$  and connected with the system simulator.
3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
4. The variation in frequency was measured for the worst case.


## 4 Radiated Test Items

### 4.1 Measuring Instruments


See list of measuring instruments of this test report.

### 4.2 Test Setup

#### 4.2.1 For radiated test from 30MHz to 1GHz



#### 4.2.2 For radiated test above 1GHz



### 4.3 Test Result of Radiated Test

Please refer to Appendix B.



## 4.4 Field Strength of Spurious Radiation Measurement

### 4.4.1 Description of Field Strength of Spurious Radiated Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least  $43 + 10 \log (P)$  dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

### 4.4.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 5.8 and ANSI / TIA-603-C-2004 Section 2.2.12.
2. The EUT was placed on a rotatable wooden table 0.8 meters above the ground.
3. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
4. The table was rotated 360 degrees to determine the position of the highest spurious emission.
5. The height of the receiving antenna is varied between one meter and four meters to search for the maximum spurious emission for both horizontal and vertical polarizations.
6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking record of maximum spurious emission.
7. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
9. Taking the record of output power at antenna port.
10. Repeat step 7 to step 8 for another polarization.
11. EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain
12. ERP (dBm) = EIRP - 2.15
13. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
14. The limit line is derived from  $43 + 10\log(P)$  dB below the transmitter power P(Watts)  
$$= P(W) - [43 + 10\log(P)] \text{ (dB)}$$
$$= [30 + 10\log(P)] \text{ (dBm)} - [43 + 10\log(P)] \text{ (dB)}$$
$$= -13 \text{ dBm.}$$



## 5 List of Measuring Equipment

| Instrument                | Manufacturer    | Model No.     | Serial No.   | Characteristics            | Calibration Date | Test Date     | Due Date      | Remark                |
|---------------------------|-----------------|---------------|--------------|----------------------------|------------------|---------------|---------------|-----------------------|
| Spectrum Analyzer         | Rohde & Schwarz | FSP30         | 101329       | 9kHz~30GHz                 | Jun. 24, 2015    | Aug. 05, 2015 | Jun. 23, 2016 | Conducted (TH03-HY)   |
| Base Station(Measu        | Rohde & Schwarz | CMU200        | 117995       | GSM / GPRS / WCDMA / CDMA  | Jul. 26, 2015    | Aug. 05, 2015 | Jul. 25, 2016 | Conducted (TH03-HY)   |
| Programmable Power Supply | GW Instek       | PSS-2005      | EL883644     | Voltage:0~20V;Current:0~5A | Dec. 01, 2014    | Aug. 05, 2015 | Nov. 30, 2015 | Conducted (TH03-HY)   |
| Hygrometer                | Testo           | 608-H1        | 34893241     | N/A                        | May. 04, 2015    | Aug. 05, 2015 | May. 03, 2016 | Conduction (TH03-HY)  |
| Temperature Chamber       | ESPEC           | SU-641        | 92013721     | -30°C~70°C                 | Dec. 01, 2014    | Aug. 05, 2015 | Nov. 30, 2015 | Conducted (TH03-HY)   |
| Bilog Antenna             | Schaffner       | CBL6111C      | 2726         | 30MHz ~ 1GHz               | Sep. 27, 2014    | Jul. 29, 2015 | Sep. 26, 2015 | Radiation (03CH07-HY) |
| Double Ridge Horn Antenna | ESCO            | 3117          | 00075962     | 1GHz ~ 18GHz               | Aug. 19, 2014    | Jul. 29, 2015 | Aug. 18, 2015 | Radiation (03CH07-HY) |
| EMI Test Receiver         | Rohde & Schwarz | ESCI 7        | 100724       | 9kHz~7GHz                  | Aug. 30, 2014    | Jul. 29, 2015 | Aug. 29, 2015 | Radiation (03CH07-HY) |
| Horn Antenna              | SCHWARZBECK     | BBHA 9120D    | 9120D-1328   | 1GHz ~ 18GHz               | Nov. 05, 2014    | Jul. 29, 2015 | Nov. 04, 2015 | Radiation (03CH07-HY) |
| Horn Antenna              | SCHWARZBECK     | BBHA 9170     | BBHA917058 4 | 18GHz- 40GHz               | Nov. 03, 2014    | Jul. 29, 2015 | Nov. 02, 2015 | Radiation (03CH07-HY) |
| Hygrometer                | Testo           | 608-H1        | 34897197     | N/A                        | May. 04, 2015    | Jul. 29, 2015 | May. 03, 2016 | Radiation (03CH07-HY) |
| Preamplifier              | COM-POWER       | PA-103A       | 161241       | 10MHz-1000MHz              | Mar. 12, 2015    | Jul. 29, 2015 | Mar. 11, 2016 | Radiation (03CH07-HY) |
| Preamplifier              | Agilent         | 8449B         | 3008A02362   | 1GHz~ 26.5GHz              | Oct. 21, 2014    | Jul. 29, 2015 | Oct. 20, 2015 | Radiation (03CH07-HY) |
| Signal Analyzer           | Rohde & Schwarz | FSV 30        | 101749       | 10Hz~30GHz                 | Mar. 10, 2015    | Jul. 29, 2015 | Mar. 09, 2016 | Radiation (03CH07-HY) |
| Controller                | ChainTek        | Chaintek 3000 | N/A          | Control Turn table         | N/A              | Jul. 29, 2015 | N/A           | Radiation (03CH07-HY) |
| Controller                | Max-Full        | MF7802        | MF78020836 8 | Control Ant Mast           | N/A              | Jul. 29, 2015 | N/A           | Radiation (03CH07-HY) |
| Antenna Mast              | Max-Full        | MFA520BS      | N/A          | 1m~4m                      | N/A              | Jul. 29, 2015 | N/A           | Radiation (03CH07-HY) |
| Turn Table                | ChainTek        | Chaintek 3000 | N/A          | 0~360 degree               | N/A              | Jul. 29, 2015 | N/A           | Radiation (03CH07-HY) |
| Signal Generator          | Rohde & Schwarz | SMF100A       | 101107       | 100kHz~40GHz               | May. 22, 2015    | Jul. 29, 2015 | May. 21, 2016 | Radiation (03CH07-HY) |



## 6 Uncertainty of Evaluation

### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

|                                                                     |      |
|---------------------------------------------------------------------|------|
| Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y)) | 4.50 |
|---------------------------------------------------------------------|------|



## Appendix A. Test Results of Conducted Test

### Conducted Output Power(Average power)

| Conducted Power (*Unit: dBm) |              |        |        |              |       |         |
|------------------------------|--------------|--------|--------|--------------|-------|---------|
| Band                         | CDMA2000 BC0 |        |        | CDMA2000 BC1 |       |         |
| Channel                      | 1013         | 384    | 777    | 25           | 600   | 1175    |
| Frequency                    | 824.7        | 836.52 | 848.31 | 1851.25      | 1880  | 1908.75 |
| 1xRTT RC1 SO55               | 24.04        | 24.18  | 23.84  | 24.43        | 23.11 | 22.97   |
| 1xRTT RC3 SO55               | 24.06        | 24.16  | 23.89  | 24.40        | 23.11 | 23.07   |
| 1xRTT RC3 SO32(+ F-SCH)      | 24.01        | 24.10  | 23.85  | 24.38        | 23.08 | 23.05   |
| 1xRTT RC3 SO32(+SCH)         | 24.03        | 24.12  | 23.81  | 24.37        | 23.05 | 23.01   |
| 1xEV-DO RTAP 153.6kbps       | 24.00        | 24.13  | 23.87  | 24.34        | 23.06 | 23.00   |
| 1xEV-DO RETAP 4096Bits       | 24.02        | 24.11  | 23.82  | 24.39        | 23.04 | 23.01   |



| Cellular Band ( $G_T - L_C = 2.10\text{dB}$ ) |                 |           |            |
|-----------------------------------------------|-----------------|-----------|------------|
| Modes                                         | CDMA 2000 1xRTT |           |            |
| Test Status                                   | RC1+SO55        |           |            |
| Channel                                       | 1013 (Low)      | 384 (Mid) | 777 (High) |
| Frequency (MHz)                               | 824.70          | 836.52    | 848.31     |
| Conducted Power $P_T$ (dBm)                   | 24.04           | 24.18     | 23.84      |
| Conducted Power $P_T$ (Watts)                 | 0.25            | 0.26      | 0.24       |
| ERP(dBm)                                      | 23.99           | 24.13     | 23.79      |
| ERP(Watts)                                    | 0.251           | 0.259     | 0.239      |

| PCS Band ( $G_T - L_C = 2.80\text{dB}$ ) |                 |           |             |
|------------------------------------------|-----------------|-----------|-------------|
| Modes                                    | CDMA 2000 1xRTT |           |             |
| Test Status                              | RC1+SO55        |           |             |
| Channel                                  | 25 (Low)        | 600 (Mid) | 1175 (High) |
| Frequency (MHz)                          | 1851.25         | 1880.00   | 1908.75     |
| Conducted Power $P_T$ (dBm)              | 24.43           | 23.11     | 22.97       |
| Conducted Power $P_T$ (Watts)            | 0.28            | 0.20      | 0.20        |
| EIRP(dBm)                                | 27.23           | 25.91     | 25.77       |
| EIRP(Watts)                              | 0.528           | 0.390     | 0.378       |

**Note:** $EIRP = P_T + G_T - L_C$ ,  $ERP = EIRP - 2.15$ , where $P_T$  = transmitter output power in dBm $G_T$  = gain of the transmitting antenna in dBi $L_C$  = signal attenuation in the connecting cable between the transmitter and antenna in dB



## Appendix B. Test Results of Radiated Test

### Radiated Spurious Emission

| CDMA2000 BC0 1xRTT_RC1+SO55 (QPSK) |                 |           |             |                 |                   |                  |                    |                       |                    |
|------------------------------------|-----------------|-----------|-------------|-----------------|-------------------|------------------|--------------------|-----------------------|--------------------|
| Channel                            | Frequency (MHz) | ERP (dBm) | Limit (dBm) | Over Limit (dB) | SPA Reading (dBm) | S.G. Power (dBm) | TX Cable loss (dB) | TX Antenna Gain (dBi) | Polarization (H/V) |
| Lowest                             | 1648            | -63.26    | -13         | -50.26          | -74.26            | -65.02           | 0.98               | 4.89                  | H                  |
|                                    | 2472            | -60.21    | -13         | -47.21          | -76.63            | -62.09           | 1.28               | 5.32                  | H                  |
|                                    | 3298            | -60.17    | -13         | -47.17          | -77.45            | -63.59           | 1.54               | 7.11                  | H                  |
|                                    | 4120            | -54.95    | -13         | -41.95          | -76.48            | -59.59           | 1.83               | 8.62                  | H                  |
|                                    | 4944            | -54.26    | -13         | -41.26          | -77.7             | -59.39           | 2.30               | 9.59                  | H                  |
|                                    | 5776            | -54.11    | -13         | -41.11          | -78.85            | -58.99           | 2.78               | 9.81                  | H                  |
|                                    | 1648            | -61.26    | -13         | -48.26          | -73.1             | -63.02           | 0.98               | 4.89                  | V                  |
|                                    | 2472            | -58.81    | -13         | -45.81          | -76.47            | -60.69           | 1.28               | 5.32                  | V                  |
|                                    | 3298            | -55.34    | -13         | -42.34          | -74.2             | -58.76           | 1.54               | 7.11                  | V                  |
|                                    | 4120            | -47.41    | -13         | -34.41          | -69.74            | -52.05           | 1.83               | 8.62                  | V                  |
|                                    | 4944            | -43.89    | -13         | -30.89          | -68.25            | -49.02           | 2.30               | 9.59                  | V                  |
|                                    | 5776            | -51.18    | -13         | -38.18          | -76.76            | -56.06           | 2.78               | 9.81                  | V                  |
| Middle                             | 1672            | -63.68    | -13         | -50.68          | -74.89            | -65.36           | 0.99               | 4.82                  | H                  |
|                                    | 2512            | -59.75    | -13         | -46.75          | -76.35            | -61.72           | 1.29               | 5.41                  | H                  |
|                                    | 3344            | -59.68    | -13         | -46.68          | -77.2             | -63.29           | 1.56               | 7.31                  | H                  |
|                                    | 4184            | -52.87    | -13         | -39.87          | -74.51            | -57.49           | 1.87               | 8.64                  | H                  |
|                                    | 5016            | -50.99    | -13         | -37.99          | -74.44            | -56.19           | 2.35               | 9.70                  | H                  |
|                                    | 5856            | -53.06    | -13         | -40.06          | -77.87            | -57.92           | 2.83               | 9.84                  | H                  |
|                                    | 1672            | -61.34    | -13         | -48.34          | -73.26            | -63.02           | 0.99               | 4.82                  | V                  |
|                                    | 2512            | -53.75    | -13         | -40.75          | -71.78            | -55.72           | 1.29               | 5.41                  | V                  |
|                                    | 3344            | -52.41    | -13         | -39.41          | -71.24            | -56.02           | 1.56               | 7.31                  | V                  |
|                                    | 4184            | -44.59    | -13         | -31.59          | -66.84            | -49.21           | 1.87               | 8.64                  | V                  |
|                                    | 5016            | -38.61    | -13         | -25.61          | -63               | -43.81           | 2.35               | 9.70                  | V                  |
|                                    | 5856            | -48.06    | -13         | -35.06          | -73.55            | -52.92           | 2.83               | 9.84                  | V                  |
| Highest                            | 1696            | -59.99    | -13         | -46.99          | -71.69            | -61.59           | 1.00               | 4.75                  | H                  |
|                                    | 2544            | -59.83    | -13         | -46.83          | -76.48            | -61.81           | 1.30               | 5.44                  | H                  |
|                                    | 3392            | -59.41    | -13         | -46.41          | -77.05            | -63.21           | 1.57               | 7.52                  | H                  |
|                                    | 4240            | -51.03    | -13         | -38.03          | -72.73            | -55.63           | 1.90               | 8.65                  | H                  |
|                                    | 5088            | -50.86    | -13         | -37.86          | -74.15            | -56.02           | 2.39               | 9.70                  | H                  |
|                                    | 5936            | -53.84    | -13         | -40.84          | -78.66            | -58.69           | 2.88               | 9.87                  | H                  |
|                                    | 1696            | -57.89    | -13         | -44.89          | -70.31            | -59.49           | 1.00               | 4.75                  | V                  |
|                                    | 2544            | -55.31    | -13         | -42.31          | -73.58            | -57.29           | 1.30               | 5.44                  | V                  |
|                                    | 3392            | -51.22    | -13         | -38.22          | -70.17            | -55.02           | 1.57               | 7.52                  | V                  |
|                                    | 4240            | -42.42    | -13         | -29.42          | -64.71            | -47.02           | 1.90               | 8.65                  | V                  |
|                                    | 5088            | -37.92    | -13         | -24.92          | -62.31            | -43.08           | 2.39               | 9.70                  | V                  |
|                                    | 5936            | -50.37    | -13         | -37.37          | -76.27            | -55.22           | 2.88               | 9.87                  | V                  |

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.



| CDMA2000 BC1 1xRTT_RC1+SO55 (QPSK) |                 |            |             |                 |                   |                  |                    |                       |                    |
|------------------------------------|-----------------|------------|-------------|-----------------|-------------------|------------------|--------------------|-----------------------|--------------------|
| Channel                            | Frequency (MHz) | EIRP (dBm) | Limit (dBm) | Over Limit (dB) | SPA Reading (dBm) | S.G. Power (dBm) | TX Cable loss (dB) | TX Antenna Gain (dBi) | Polarization (H/V) |
| Lowest                             | 3700            | -50.73     | -13         | -37.73          | -69.86            | -57.3            | 1.67               | 8.24                  | H                  |
|                                    | 5554            | -53.83     | -13         | -40.83          | -78.68            | -60.9            | 2.66               | 9.72                  | H                  |
|                                    | 7405            | -52.35     | -13         | -39.35          | -78.63            | -61.5            | 2.46               | 11.61                 | H                  |
|                                    | 9258            | -49.04     | -13         | -36.04          | -76.57            | -59.1            | 2.54               | 12.60                 | H                  |
|                                    | 3700            | -40.53     | -13         | -27.53          | -60.74            | -47.1            | 1.67               | 8.24                  | V                  |
|                                    | 5555            | -50.53     | -13         | -37.53          | -76.6             | -57.6            | 2.66               | 9.72                  | V                  |
|                                    | 7405            | -50.45     | -13         | -37.45          | -78.76            | -59.6            | 2.46               | 11.61                 | V                  |
|                                    | 9258            | -48.24     | -13         | -35.24          | -78.05            | -58.3            | 2.54               | 12.60                 | V                  |
|                                    | 3763            | -52.17     | -13         | -39.17          | -72.2             | -58.8            | 1.69               | 8.32                  | H                  |
| Middle                             | 5640            | -54.15     | -13         | -41.15          | -78.77            | -61.2            | 2.71               | 9.76                  | H                  |
|                                    | 7520            | -52.01     | -13         | -39.01          | -78.74            | -61.4            | 2.42               | 11.81                 | H                  |
|                                    | 9398            | -50.03     | -13         | -37.03          | -77.53            | -60              | 2.57               | 12.54                 | H                  |
|                                    | 3763            | -43.57     | -13         | -30.57          | -64.2             | -50.2            | 1.69               | 8.32                  | V                  |
|                                    | 5639            | -51.15     | -13         | -38.15          | -76.85            | -58.2            | 2.71               | 9.76                  | V                  |
|                                    | 7520            | -49.21     | -13         | -36.21          | -77.94            | -58.6            | 2.42               | 11.81                 | V                  |
|                                    | 9398            | -48.33     | -13         | -35.33          | -78.39            | -58.3            | 2.57               | 12.54                 | V                  |
|                                    | 3819            | -57.22     | -13         | -44.22          | -78.13            | -63.9            | 1.70               | 8.38                  | H                  |
| Highest                            | 5723            | -51.56     | -13         | -38.56          | -76.59            | -58.6            | 2.75               | 9.79                  | H                  |
|                                    | 7634            | -50.01     | -13         | -37.01          | -77.59            | -59.5            | 2.39               | 11.88                 | H                  |
|                                    | 9545            | -50.93     | -13         | -37.93          | -78.52            | -60.8            | 2.60               | 12.47                 | H                  |
|                                    | 3819            | -51.22     | -13         | -38.22          | -72.68            | -57.9            | 1.70               | 8.38                  | V                  |
|                                    | 5723            | -44.16     | -13         | -31.16          | -69.91            | -51.2            | 2.75               | 9.79                  | V                  |
|                                    | 7634            | -46.41     | -13         | -33.41          | -75.51            | -55.9            | 2.39               | 11.88                 | V                  |
|                                    | 9545            | -48.73     | -13         | -35.73          | -78.87            | -58.6            | 2.60               | 12.47                 | V                  |

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.



## Appendix C. Test Setup Photographs