Test Report of FCC CFR 47 Part 15 Subpart C

On Behalf of

Collective Minds Gaming Co., Ltd.

FCC ID: 2AEVWCM00080
Product Description: PS4 Chat Boost
Model No.: CM00080

Brand Name: Collective Minds

Prepared for: Collective Minds Gaming Co., Ltd.

8515 PLACE DEVONSHIRE, SUITE 205 MOUNT ROYAL QC

H4P 2K1 CA

Prepared by: Shenzhen Bontek Compliance Testing Laboratory Co., Ltd

1st-3rd Floor, Building C, Shuanghuan Xin Yi Dai Hi-Tech Industrial

Park, No. 8 Baoging Road, Baolong Industrial Zone, Longgang

District, Shenzhen, Guangdong, China

Tel: 86-755-86337020 Fax: 86-755-86337028

May 21-28, 2015

Report No.: BCT15ER023E Issue Date: May 28, 2015

Tested by: Tested by:

Jiankuai.Li Owen Yang

Durnyong

Approved by: $/\mathcal{U}'$

Test Date:

Tony Wu

TABLE OF CONTENTS

1.	GENERAL INFORMATION	4
	1.1 Product Description for Equipment Under Test (EUT)	
	1.2 Test Standards	
_	•	
2.	SYSTEM TEST CONFIGURATION	
	2.1 EUT Configuration	
	2.3 General Test Procedures	
	2.4 Measurement Uncertainty	
_	2.5 List of Measuring Equipments Used	
3.	SUMMARY OF TEST RESULTS	9
4.	TEST OF AC POWER LINE CONDUCTED EMISSION	
	4.1 Applicable Standard	
	4.2 Test Setup Diagram	
5	TEST OF HOPPING CHANNEL BANDWIDTH	
٥.	5.1 Applicable Standard	
	5.2 EÜT Setup	. 13
	5.3 Test Equipment List and Details	
	5.4 Test Procedure	
6	TEST OF HOPPING CHANNEL SEPARATION	
٥.	6.1 Applicable Standard	
	6.2 EUT Setup	. 16
	6.3 Test Equipment List and Details	
	6.5 Test Result	
7	TEST OF NUMBER OF HOPPING FREQUENCY	
•	7.1 Applicable Standard	
	7.2 EUT Setup	. 19
	7.3 Test Equipment List and Details	
	7.4 Test Procedure	
8.	TEST OF DWELL TIME OF EACH FREQUENCY	
٠.	8.1 Applicable Standard	
	8.2 EUT Setup	. 21
	8.3 Test Equipment List and Details	. 21 21
	8.5 Test Result	
9.	TEST OF MAXIMUM PEAK OUTPUT POWER	. 28
	9.1 Applicable Standard	
	9.2 EUT Setup	. 28
	9.3 Test Equipment List and Details	
	9.5 Test Result	
10). TEST OF BAND EDGES EMISSION	. 32
	10.1 Applicable Standard	. 32
	10.2 EUT Setup	. 32
	10.3 Test Equipment List and Details	
	10.5 Test Result	
11	. TEST OF SPURIOUS RADIATED EMISSION	. 36
Re	port No.: BCT15ER023E Page 2 of 50 FCC ID: 2AEVWCM000	80

11.1 Applicable Standard	36
11.1 Applicable Standard	36
11.3 Test Equipment List and Details	
11.4 Test Procedure	37
11.5 Test Result	38
12. ANTENNA REQUIREMENT	47
12.1 Standard Applicable	47 47
13 .RADIO FREQUENCY EXPOSURE	
13.1 Objective	48
13.2 General Description of Test	48
13.3 Human Exposure Assessment Results	49

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant:	Collective Minds Gaming Co., Ltd.
Address of Applicant:	8515 PLACE DEVONSHIRE,SUITE 205 MOUNT ROYAL QC
	H4P 2K1 CA
Manufacturer:	Collective Minds Gaming Co., Ltd.
Address of Manufacturer:	8515 PLACE DEVONSHIRE,SUITE 205 MOUNT ROYAL QC

General Description of E.U.T

Items	Description
EUT Description:	PS4 Chat Boost
Model No.:	CM00080
Supplementary Model:	N/A
Trade Name:	Collective Minds
Frequency Band:	2402 MHz ~ 2480 MHz
Channel Spacing:	1 MHz
Number of Channels:	79
Modulation Technique:	FHSS
Type of Modulation:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi
Power Supply:	Input: DC 5V; DC3.7V form Battery.

Remark: * The test data gathered are from the production sample provided by the manufacturer.

 Report No.: BCT15ER023E
 Page 4 of 50
 FCC ID: 2AEVWCM00080

1.2 Test Standards

The tests were performed based on the Electromagnetic Interference (EMI) tests performed on the EUT. Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 - 2003 Radiated testing was performed at an antenna to EUT distance 3 meters.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.207, 15.209 and 15.247 rules. Test was carried out according to the above mentioned FCC rules and the FCC publication notice DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

1.3 Test Facility

All measurement required was performed at laboratory of Shenzhen CTL Testing Technology Co., Ltd. at Floor1-A,Baisha Technology Park, No.3011 Shahexi Road, Nanshan District, Shenzhen, China The test facility is recognized, certified, or accredited by the following organizations:

CNAS - Registration No.: L3923

SHENZHEN BONTEK COMPLIANCE TESTING LABORATORY LTD. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. The acceptance letter from the CNAS is maintained in our files: Registration: L3923,March 21,2015.

FCC - Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December, 2013.

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9618B on Novmber 13, 2013.

The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

Report No.: BCT15ER023E Page 5 of 50 FCC ID: 2AEVWCM00080

2. SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 Support Equipment

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

Support equipments or special accessories in test configuration:

AUX Description:	Manufacturer	Model No.	Certificate	CABLE
Adapter	MI	MI-05001BD	CE, FCC	N/A

2.3 General Test Procedures

Conducted Emissions:The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 7.1 of ANSI C63.4-2003 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode.

Radiated Emissions: The EUT is a placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4-2009.

2.4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Power Line Conducted Emission	+/- 2.3 dB
Radiated Emission	+/- 3.4 dB

Uncertainty figures are valid to a confidence level of 95%.

Report No.: BCT15ER023E Page 6 of 50 FCC ID: 2AEVWCM00080

2.5 List of Measuring Equipments Used

Test equipments list of Shenzhen Bontek Compliance Testing Laboratory Co., Ltd.

No.	Instrument no.	Equipment	Manufacturer	Model No.	S/N	Last Calculator	Due Calculator
1	BCT-EMC001	EMI Test Receiver	R&S	ESCI	100687	2015-4-16	2016-4-17
2	BCT-EMC002	EMI Test Receiver	R&S	ESPI	100097	2014-11-1	2015-10-31
3	BCT-EMC003	Amplifier	HP	8447D	1937A02492	2015-4-19	2016-4-18
4	BCT-EMC004	Single Power Conductor Module	R&S	NNBM 8124	242	2015-4-19	2016-4-18
5	BCT-EMC005	Single Power Conductor Module	R&S	NNBM 8124	243	2015-4-19	2016-4-18
6	BCT-EMC006	Power Clamp	SCHWARZBECK	MDS-21	3812	2014-11-5	2015-11-4
7	BCT-EMC007	Positioning Controller	C&C	CC-C-1F	MF7802113	N/A	N/A
8	BCT-EMC008	`Electrostatic Discharge Simulator	TESEQ	NSG437	125	2015-11-2	2016-11-1
9	BCT-EMC009	Fast Transient Burst Generator	SCHAFFNER	MODULA615 0	34572	2015-4-16	2016-4-17
10	BCT-EMC010	Fast Transient Noise Simulator	Noiseken	FNS-105AX	10501	2014-6-26	2015-6-25
11	BCT-EMC011	Color TV Pattern Genenator	PHILIPS	PM5418	TM209947	N/A	N/A
12	BCT-EMC012	Power Frequency Magnetic Field Generator	EVERFINE	EMS61000- 8K	608002	2015-4-16	2016-4-17
14	BCT-EMC014	Capacitive Coupling Clamp	TESEQ	CDN8014	25096	2015-4-16	2016-4-17
15	BCT-EMC015	High Field Biconical Antenna	ELECTRO- METRICS	EM-6913	166	2014-11-28	2015-11-27
16	BCT-EMC016	Log Periodic Antenna	ELECTRO- METRICS	EM-6950	811	2014-11-28	2015-11-27
17	BCT-EMC017	Remote Active Vertical Antenna	ELECTRO- METRICS	EM-6892	304	2014-11-28	2015-11-27
18	BCT-EMC018	TRILOG Broadband Test-Antenna	SCHWARZBECK	VULB9163	9163-324	2014-5-19	2015-5-18
19	BCT-EMC019	Horn Antenna	SCHWARZBECK	BBHA9120A	0499	2014-11-28	2015-11-27
20	BCT-EMC020	Teo Line Single Phase Module	SCHWARZBECK	NSLK8128	8128247	2014-11-1	2015-10-31
21	BCT-EMC021	Triple-Loop Antenna	EVERFINE	LLA-2	711002	2014-11-15	2015-11-14
22	BCT-EMC022	Electric bridge	Jhai	JK2812C	803024	N/A	N/A
23	BCT-EMC026	RF POWER AMPLIFIER	FRANKONIA	FLL-75	1020A1109	2015-4-17	2016-4-16

24	BCT-EMC027	CDN	FRANKONIA	CDN M2+M3	A3027019	2015-4-17	2016-4-16
25	BCT-EMC029	6DB Attenuator	FRANKONIA	N/A	1001698	2015-4-17	2016-4-16
26	BCT-EMC030	EM Injection clamp	FCC	F-203I-23mm	091536	2015-4-16	2016-4-17
27	BCT-EMC031	9kHz-2.4GHz signal generator 2024	MARCONI	10S/6625-99- 457-8730	112260/042	2015-4-16	2016-4-17
28	BCT-EMC032	10dB attenuator	ELECTRO- METRICS	EM-7600	836	2015-4-16	2016-4-17
29	BCT-EMC033	ISN	TESEQ	ISN-T800	30301	2014-11-15	2015-11-14
30	BCT-EMC034	10KV surge generator	SANKI	SKS-0510M	048110003E 321	2014-11-01	2015-10-31
31	BCT-EMC035	HRMONICS&FLICK RE ANALYSER	VOLTECH	PM6000	200006700433	2014-11-20	2015-11-19
32	BCT-EMC036	Spectrum Analyzer	R&S	FSP	100397	2014-11-1	2015-10-31
33	BCT-EMC037	Broadband preamplifier	SCH WARZBECK	BBV9718	9718-182	2015-4-19	2016-4-18

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.207	AC Power Line Conducted Emission	Pass
FCC §15.247(a)(1)	Hopping Channel Bandwidth	Pass
FCC §15.247(a)(1)	Hopping Channel Separation	Pass
FCC §15.247(a)(1)	Number of Hopping Frequency Used	Pass
FCC §15.247(a)(1)(iii)	Dwell Time of Each Frequency	Pass
FCC §15.247(b)(1)	Maximum Peak Output Power	Pass
FCC §15.247(d)	Band Edges Emission	Pass
FCC §15.247(d)	Spurious Radiated Emission	Pass
FCC §15.203/15.247(b)/(c)	Antenna Requirement	Pass


4. TEST OF AC POWER LINE CONDUCTED EMISSION

4.1 Applicable Standard

Refer to FCC §15.207. For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency Range (MHz)	Limits (dBuV)			
rrequeitcy Kange (Miriz)	Quasi-Peak	Average		
0.150~0.500	66~56	56∼46		
0.500~5.000	56	46		
5.000~30.00	60	50		

4.2 Test Setup Diagram

Remark: The EUT was connected to a 120 VAC/ 60Hz power source.

4.3 Test Result

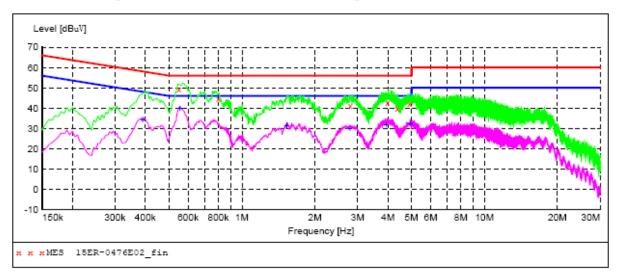
Temperature (°C) : 23~25	EUT: PS4 Chat Boost		
Humidity (%RH): 45~58	M/N: CM00080		
Barometric Pressure (mbar): 950~1000	Operation Condition: Charging		

Report No.: BCT15ER023E Page 10 of 50 FCC ID: 2AEVWCM00080

Conducted Emission:

EUT: **PS4 Chat Boost** Charging Shielded Room Operating Condition:

Test Site:


Operator: Andy

Test Specification: AC/DC adapter (AC 120V/60Hz)

Comment: Live Line

SCAN TABLE: "Voltage (150K-30M) FIN"

Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "15ER-0476E02 fin"

2015-5-26 11:22							
Frequer N	ncy Level Mz dBuV	. Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.5500	000 49.50	10.3	56	6.5	QP	L1	GND
0.8000	000 44.50	10.3	56	11.5	QP	L1	GND
2.7950	000 41.10	10.3	56	14.9	QP	L1	GND
3.9800	000 42.60	10.4	56	13.4	QP	L1	GND
4.3750	000 39.70	10.4	56	16.3	QP	L1	GND
4.9150	000 42.00	10.4	56	14.0	QP	L1	GND

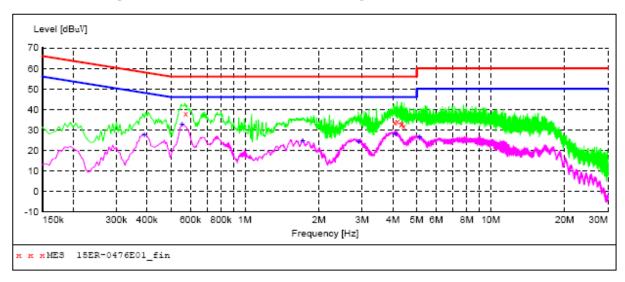
MEASUREMENT RESULT: "15ER-0476E02 fin2"

2015-5-26	11:22						
Frequen M	cy Level Hz dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.3900 0.5550 1.5300 2.7900 3.9450	39.90 30 31.10 30 29.90	10.3 10.3 10.3	48 46 46 46 46	13.9 6.1 14.9 16.1 14.2	AV AV AV AV	L1 L1 L1 L1 L1	GND GND GND GND GND
4.9550	32.30	10.4	46	13.7	AV	L1	GND

Conducted Emission:

EUT: **PS4 Chat Boost** Charging

Operating Condition: Test Site: Shielded Room


Operator: Andy

Test Specification: AC/DC adapter (AC 120V/60Hz)

Comment: Neutral Line

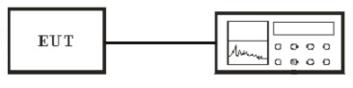
SCAN TABLE: "Voltage (150K-30M) FIN"

Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "15ER-0476E01 fin"

20	15-5-26 11:	17						
	Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
	0.575000	37.90	10.3	56	18.1	QP	N	GND
	4.070000	33.90	10.4	56	22.1	QP	N	GND
	4.175000	34.30	10.4	56	21.7	QP	N	GND
	4.330000	32.60	10.4	56	23.4	QP	N	GND
	4.355000	33.40	10.4	56	22.6	QP	N	GND
	4.435000	31.80	10.4	56	24.2	QP	N	GND

MEASUREMENT RESULT: "15ER-0476E01_fin2"


2015-5-26 11:17							
Frequen M	cy Level Hz dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.3900	00 27.70	10.6	48	20.4	AV	N	GND
0.5550	00 32.80	10.3	46	13.2	AV	N	GND
1.7200	00 24.60	10.3	46	21.4	AV	N	GND
2.9150	00 24.20	10.3	46	21.8	AV	N	GND
4.1050	00 28.00	10.4	46	18.0	AV	N	GND
5.1450	00 26.40	10.4	50	23.6	AV	N	GND

5. Test of Hopping Channel Bandwidth

5.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.2 EUT Setup

Spectrum Analyzer

5.3 Test Equipment List and Details

See section 2.5.

5.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Use the following spectrum analyzer settings:

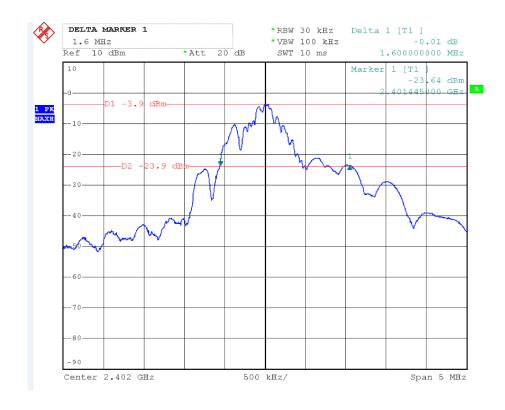
Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW

Sweep = auto

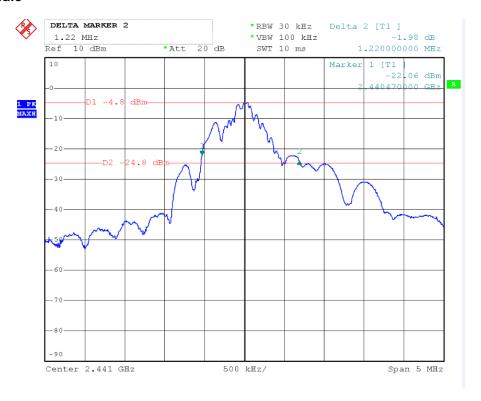
Detector function = peak

Trace = max hold

- 3. The spectrum width with level higher than 20dB below the peak level.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.


5.5 Test Result

Temperature (°C) : 22~23	EUT: PS4 Chat Boost
Humidity (%RH): 50~54	M/N: CM00080
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

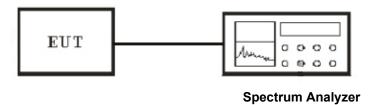

Report No.: BCT15ER023E Page 13 of 50 FCC ID: 2AEVWCM00080

Modulation Type	Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	Min. Limit (kHz)
GFSK	Low	2402.00	1600	>25
GFSK	Middle	2441.00	1220	>25
GFSK	High	2480.00	1120	>25

GFSKChannel Low

Channel Middle

Channel High



6. Test of Hopping Channel Separation

6.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

6.2 EUT Setup

6.3 Test Equipment List and Details

See section 2.5.

6.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels RBW \geq 1% of the span, VBW \geq RBW

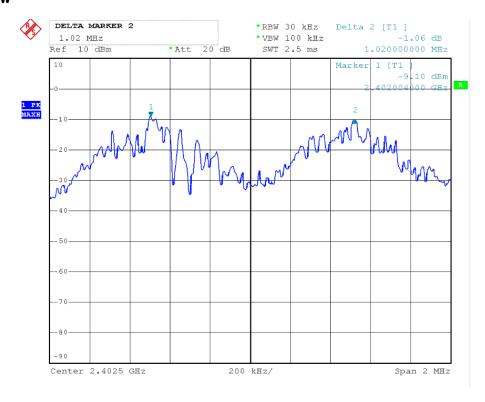
Sweep = auto

Detector function = peak

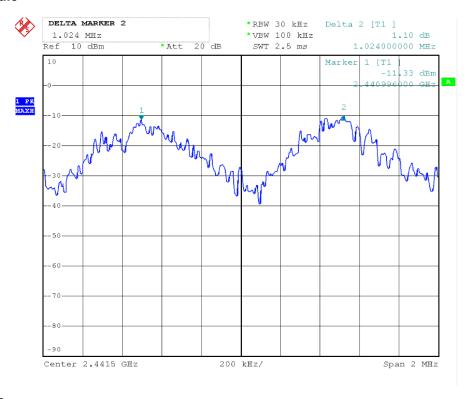
Trace = max hold

- 3. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

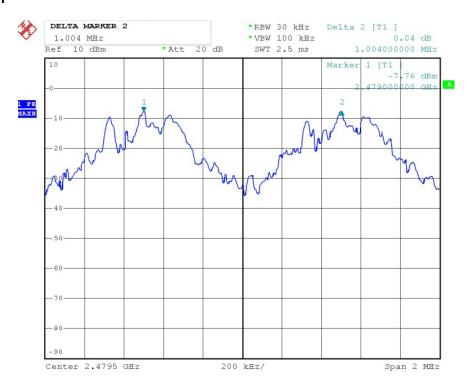
6.5 Test Result


Temperature ($^{\circ}$ C) : 22~23	EUT: PS4 Chat Boost
Humidity (%RH): 50~54	M/N: CM00080
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Report No.: BCT15ER023E Page 16 of 50 FCC ID: 2AEVWCM00080


GFSK

Modulation Type	Frequency (MHz)	Channel Separation (MHz)	Min. Limit (kHz)
GFSK	2402~2403	1.020	>25
GFSK	2441~2442	1.024	>25
GFSK	2479~2480	1.004	>25


Channel Low

Channel Middle

Channel High



7. Test of Number of Hopping Frequency

7.1 Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 15 non-overlapping hopping channels. Frequency hopping system which use fewer than 75 hopping frequencies may employ intelligent hopping techniques to avoid interference to other transmissions. Frequency hopping system may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels are used.

7.2 EUT Setup

Spectrum Analyzer

7.3 Test Equipment List and Details

See section 2.5.

7.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Use the following spectrum analyzer settings:

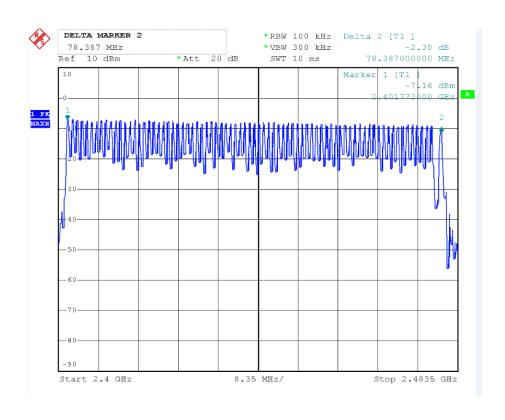
Span = the frequency band of operation

RBW ≥ 1% of the span, VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

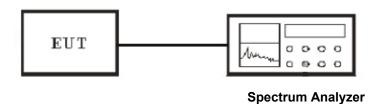

- 3. Observe frequency hopping in 2400MHz~2483.5MHz, there are at least 32 non-overlapping channels.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

7.5 Test Result

Temperature (°C) : 22~23	EUT: PS4 Chat Boost
Humidity (%RH): 50~54	M/N: CM00080
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Report No.: BCT15ER023E Page 19 of 50 FCC ID: 2AEVWCM00080

Modulation Type Frequency (MHz)		Number of Hopping Channels	Min. Limit
GFSK	2402.0~2480.0	79	>15



8. Test of Dwell Time of Each Frequency

8.1 Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

8.2 EUT Setup

8.3 Test Equipment List and Details

See section 2.5.

8.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW = 1 MHz, VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

- 3. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 4. Measure the maximum time duration of one single pulse.

8.5 Test Result

Temperature ($^{\circ}$) : 22~23	EUT: PS4 Chat Boost
Humidity (%RH): 50~54	M/N: CM00080
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Report No.: BCT15ER023E Page 21 of 50 FCC ID: 2AEVWCM00080

DH1

Dwell time= t*(1.6/2/79)*31.6

DH3

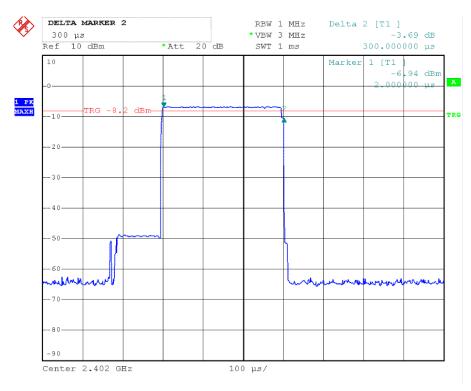
Dwell time= t*(1.6/4/79)*31.6

DH5

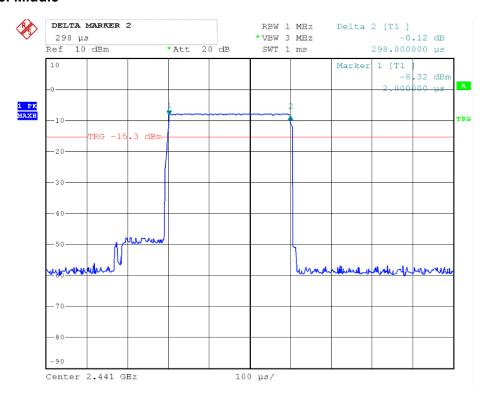
Dwell time= t*(1.6/6/79)*31.6

DH1

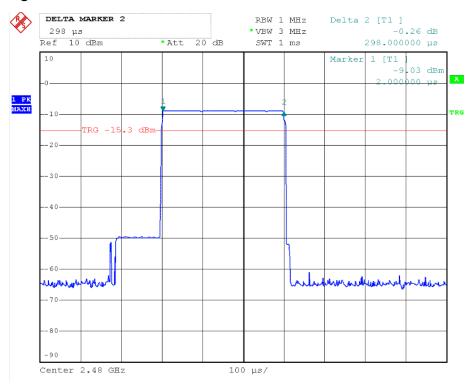
Modulation Type	Channel(MHz)	Reading (ms)	Dwell Time (ms)	Limit (ms)
GFSK	2402	0.300	96.00	400
GFSK	2441	0.298	92.80	400
GFSK	2480	0.298	92.80	400

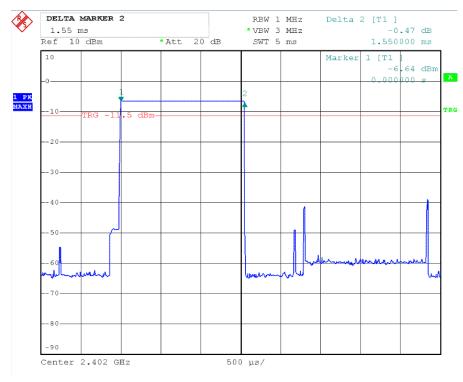

DH3

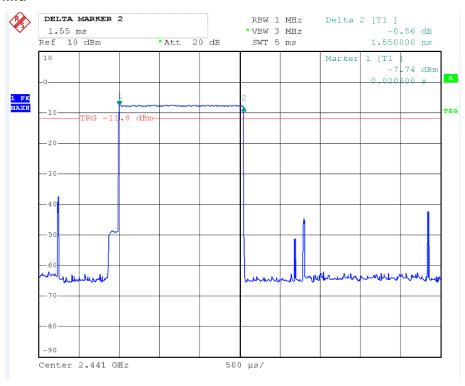
Modulation Type	Channel(MHz)	Reading (ms)	Dwell Time (ms)	Limit (ms)
GFSK	2402	1.55	247.22	400
GFSK	2441	1.55	247.22	400
GFSK	2480	1.55	247.22	400

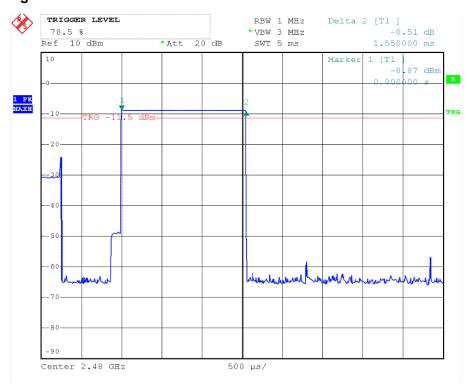

DH5

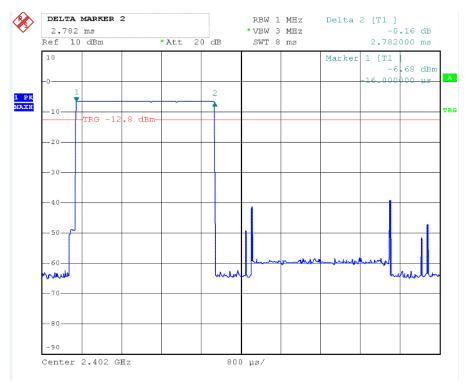
Modulation Type	Channel(MHz)	Reading (ms)	Dwell Time (ms)	Limit (ms)
GFSK	2402	2.782	296.75	400
GFSK	2441	2.782	296.75	400
GFSK	2480	2.782	296.75	400

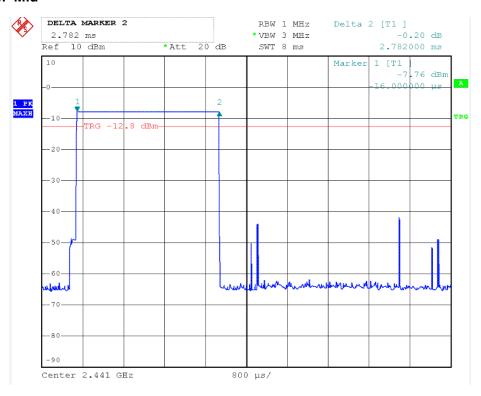

DH1 Channel Low

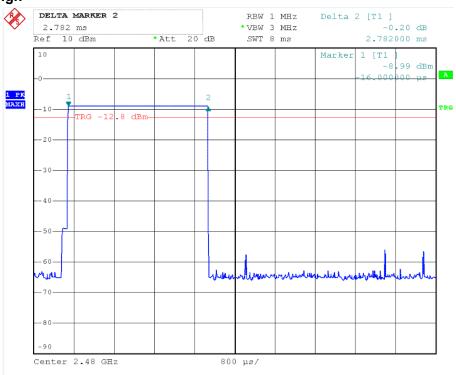

DH1 Channel Middle


DH1 Channel High


DH3 Channel Low

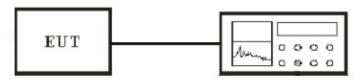

DH3 Channel Mid


DH3 Channel High


DH5 Channel Low

DH5 Channel Mid

DH5 Channel High



9. Test of Maximum Peak Output Power

9.1 Applicable Standard

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels and The maximum peak output power shall not exceed 1 watt. For all other frequency hopping systems in this frequency band, The maximum peak output power shall not exceed 0.125 watt.

9.2 EUT Setup

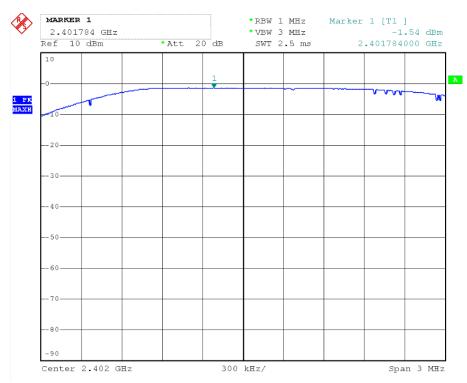
Spectrum Analyzer

9.3 Test Equipment List and Details

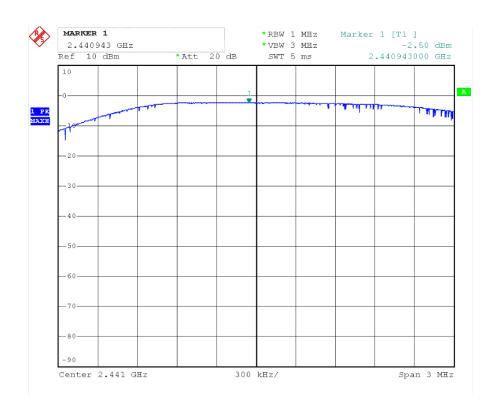
See section 2.5.

9.4 Test Procedure

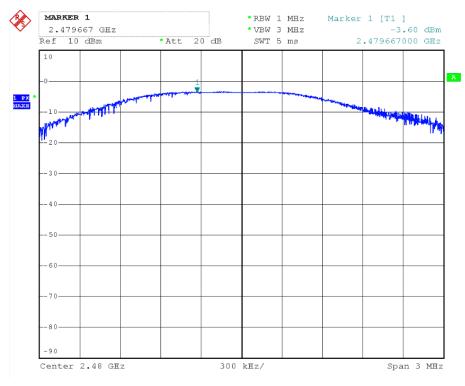
- 1. The transmitter output was connected to the peak power meter and recorded the peak value.
- 2. Peak power meter parameter set to auto attenuator and filter is the same as.
- 3. Repeated the 1 for the middle and highest channel of the EUT.


9.5 Test Result

Temperature (°C) : 22~23	EUT: PS4 Chat Boost	
Humidity (%RH): 50~54	M/N: CM00080	
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode	


Modulation Type	Channel No.	Frequency (MHz)	Output Power (dBm)	Limits (dBm)	Margin (dB)
GFSK	Low	2402.00	-1.54	21	-21.54
GFSK	Middle	2441.00	-2.50	21	-23.50
GFSK	High	2480.00	-3.60	21	-24.60

Report No.: BCT15ER023E Page 29 of 50 FCC ID: 2AEVWCM00080


Channel Low

Channel Middle

Channel High

10. Test of Band Edges Emission

10.1 Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

10.2 EUT Setup

Radiated Measurement Setup

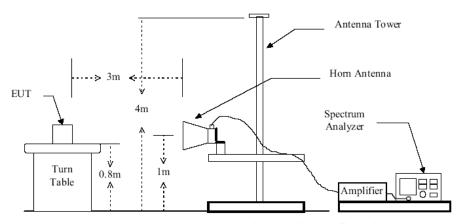
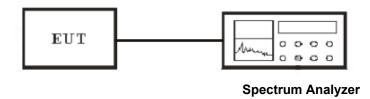



Figure 2: Frequencies measured above 1 GHz configuration

Conducted Measurement Setup

10.3 Test Equipment List and Details

See section 2.5.

10.4 Test Procedure

Conducted Measurement

- 1. The transmitter is set to the lowest channel.
- 2. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.

Report No.: BCT15ER023E Page 32 of 50 FCC ID: 2AEVWCM00080

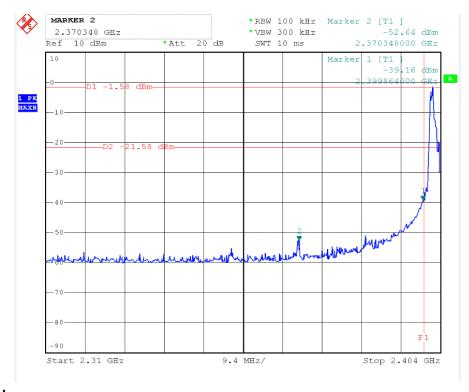
- 3. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100MHz bandwidth from lower band edge. Then detector set to peak and max hold this trace.
- 4. The lowest band edges emission was measured and recorded.
- 5. The transmitter set to the highest channel and repeated 2~4.

Radiated Measurement

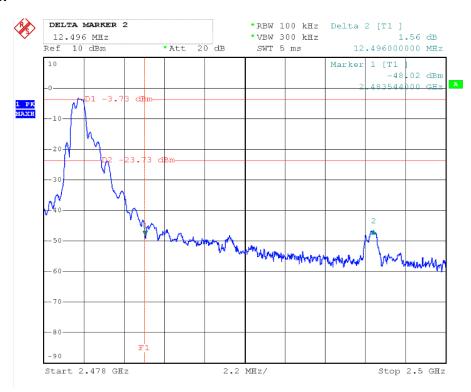
- 1. Configure the EUT according to ANSI C63.4-2003
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For band edge emission, use 1MHz VBW and 1MHz RBW for reading under AV and use 1MHz VBW and 1MHz RBW for reading under PK.

10.5 Test Result

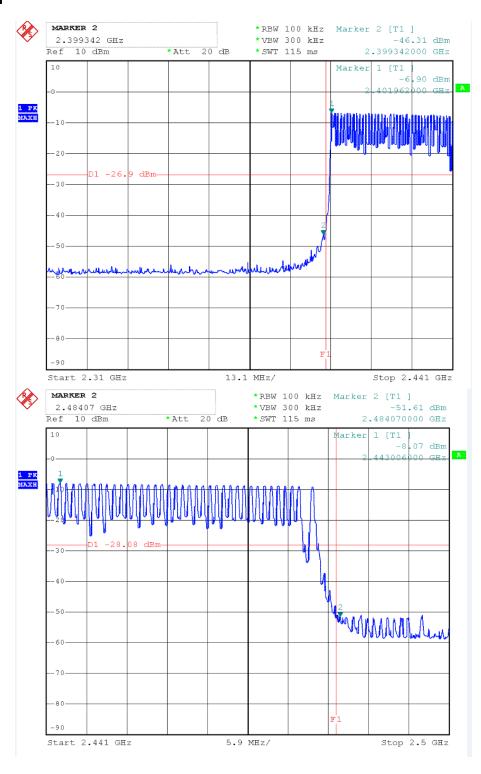
Temperature (°C) : 22~23	EUT: PS4 Chat Boost	
Humidity (%RH): 50~54	M/N: CM00080	
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode	


Radiated Test Result

Frequency (MHz)	Antenna Polarization	Emission Read Value (dBµV/m)	Limits (dBµV/m)
2389.5	Н	36.24	54
2389.5	V	37.84	54
2483.6	Н	35.88	54
2483.6	V	36.24	54


Report No.: BCT15ER023E Page 33 of 50 FCC ID: 2AEVWCM00080

Hopping OFF


Low Channel

High Channel

Hopping ON

11. Test of Spurious Radiated Emission

11.1 Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

11.2 EUT Setup

Radiated Measurement Setup

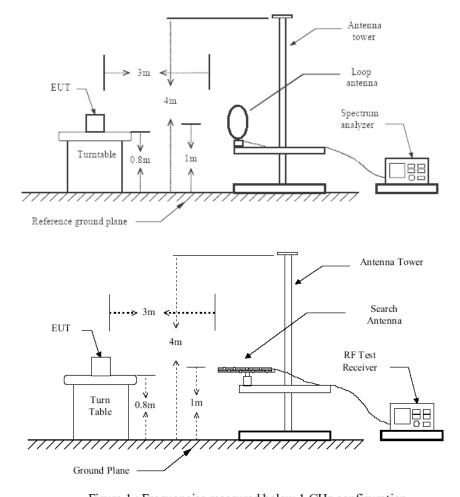


Figure 1: Frequencies measured below 1 GHz configuration

Report No.: BCT15ER023E Page 36 of 50 FCC ID: 2AEVWCM00080

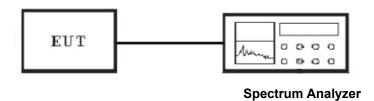



Figure 2: Frequencies measured above 1 GHz configuration

Conducted Measurement Setup

11.3 Test Equipment List and Details

See section 2.5.

11.4 Test Procedure

Radiated Measurement

- 1. Configure the EUT according to ANSI C63.4-2009
- 2. The EUT was placed on the top of the turntable 0.8 meter above ground.
- 3. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 4. Power on the EUT and all the supporting units.
- 5. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 6. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 7. For each suspected emission, the antenna tower was scanned (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 8. According to the characteristic of the EUT crystals, the range of frequencies was investigated from 9KHz to 30MHz, 30MHz to 1GHz and 1GHz to 26GHz.

Report No.: BCT15ER023E Page 37 of 50 FCC ID: 2AEVWCM00080

- 9. For emission below 1GHz, Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 10. For emission above 1GHz, Set the RBW=1MHz,VBW=3MHz for Peak Detector while the RBW=1MHz, VBW=10Hz for Average Detector, Readings are both peak and average values.
- 11. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. The worst case data is recorded in the report. All emission not reported are much lower than the prescribed limits.

Conducted Measurement

- 1. For emission above 1GHz to 26G, conducted measurement method is used.
- 2. The transmitter is set to the lowest channel.
- 3. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 4. Set RBW to 1 MHz and VBW to 3 MHz, Then detector set to peak and max hold this trace.
- 5. The lowest band edges emission was measured and recorded.
- 6. The transmitter set to the highest channel and repeated 2~4.

11.5 Test Result

Temperature (°C) : 22~23	EUT: PS4 Chat Boost
Humidity (%RH): 50~54	M/N: CM00080
Barometric Pressure (mbar): 950~1000	Operation Condition: Charging, playing

Note: In this testing, the EUT was respectively tested in three different orientations. That is:

- 1. EUT was lie vertically, and then its Antenna oriented upward
- 2. EUT was lie vertically, and then its Antenna oriented downward
- 3. EUT was lie flatwise, and then its Antenna oriented to the receiving antenna

The worst test data see following pages

When the EUT was lie flatwise, and its Antenna oriented to the receiving antenna, the worst test data was got as following table.

Report No.: BCT15ER023E Page 38 of 50 FCC ID: 2AEVWCM00080

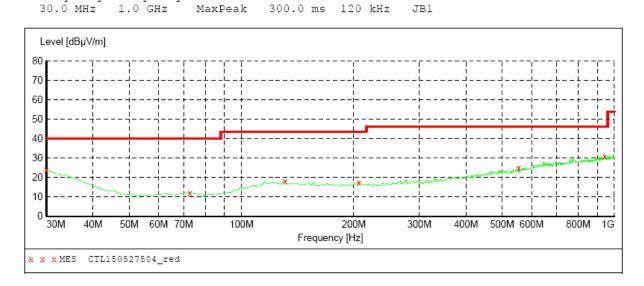
Worst case Spurious Emission (9k~30MHz)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Emission Levels	Limits	Margin	Detector Mode
(MHz)	(dBµV)	(dB/M)	(dB)	(dBµV/M)	(dB μ V/M)	(dB)	PK/QP
0.55	24.56	7.81	1.03	31.34	67	-35.66	QP
14.88	25.58	8.21	1.19	32.6	49.5	-16.9	QP
16.25	26.77	8.63	1.08	34.32	49.5	-15.18	QP
22.55	27.69	7.71	1.66	33.74	49.5	-15.76	QP

Spurious Emission (30~1000MHz)

EUT: **PS4 Chat Boost** M/N: CM00080

Operating Condition: Tx On


Test Site: 3m CHAMBER

Operator: Chen

Test Specification: AC 120V60Hz for PC Comment: Polarization: Horizontal Tem:25°C Hum:50%

SWEEP TABLE: "test (30M-1G)"

Short Description: Fi
Start Stop Detector Field Strength Detector Meas. IF Transducer Frequency Frequency 30.0 MHz 1.0 GHz Time Bandw.

MEASUREMENT RESULT: "CTL150527504 red"

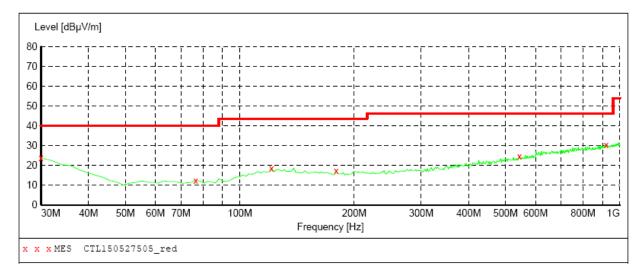
5/27/2015 10:	:31AM							
Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	24.00	21.1	40.0	16.0	QP	0.0	0.00	HORIZONTAL
72.680000	12.00	8.5	40.0	28.0	QP	0.0	0.00	HORIZONTAL
130.880000	18.00	14.9	43.5	25.5	QP	0.0	0.00	HORIZONTAL
206.540000	17.20	14.3	43.5	26.3	QP	0.0	0.00	HORIZONTAL
553.800000	24.80	21.1	46.0	21.2	QP	0.0	0.00	HORIZONTAL
941.800000	30.90	26.5	46.0	15.1	QP	0.0	0.00	HORIZONTAL

Spurious Emission (30~1000MHz)

EUT: **PS4 Chat Boost** M/N: CM00080

Operating Condition: Tx On

Test Site: 3m CHAMBER Operator: Chen


Test Specification: AC 120V60Hz for PC Comment: Polarization: Vertical

Tem:25°C Hum:50%

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi
Start Stop Detector Field Strength Detector Meas. IF

Time Frequency Frequency Bandw.

30.0 MHz 1.0 GHz MaxPeak 300.0 ms 120 kHz

Transducer

MEASUREMENT RESULT: "CTL150527505 red"

5/27/2015 10:	:33AM							
Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	23.70	21.1	40.0	16.3	QP	0.0	0.00	VERTICAL
76.560000	12.50	8.6	40.0	27.5	QP	0.0	0.00	VERTICAL
121.180000	18.60	15.1	43.5	24.9	QP	0.0	0.00	VERTICAL
179.380000	17.30	13.3	43.5	26.2	QP	0.0	0.00	VERTICAL
544.100000	24.50	20.9	46.0	21.5	QP	0.0	0.00	VERTICAL
920.460000	30.40	26.3	46.0	15.6	OP	0.0	0.00	VERTICAL

Spurious Emission test data above 1G

	Channel Low							
Maximum		P	olarity and L	Limit	Margin	Mark		
Frequency (MHz)	Polarity	Height (m)	Reading dBµV	Transd	Result dBμV/m	(dBµV/m)	(dBµV/m)	(P/Q/A)
			43.68	-2.92	40.76	74	-33.24	Р
2346	Н	1	39.72	-2.92	36.8	54	-17.2	А
			43.17	-2.92	40.25	74	-33.75	Р
2346	V	1	39.93	-2.92	37.01	54	-16.99	Α
			81.36	-6.61	74.75			Р
2402	Н	1	77.1	-6.61	70.49			Α
			77.64	-6.61	71.03			Р
2402	V	1	77.91	-6.61	71.3			Α
			42.21	-0.67	41.54	74	-32.46	Р
4804	Н	1	38.09	-0.67	37.42	54	-16.58	Α
			41.89	-0.67	41.22	74	-32.78	Р
4804	V	1	38.77	-0.67	38.1	54	-15.9	Α
		ı	42.86	1.35	44.21	74	-29.79	Р
7206	Н	1	38.74	1.35	40.09	54	-13.91	Α
			42.37	1.35	43.72	74	-30.28	Р
7206	V	1	38.08	1.35	39.43	54	-14.57	Α
			42.15	2.73	44.88	74	-29.12	Р
9608	Н	1	38.17	2.73	40.9	54	-13.1	Α
			41.97	2.73	44.7	74	-29.3	Р
9608	V	1	37.87	2.73	40.6	54	-13.4	Α
12010.07								
14412.08								
16814.09								
19216.11								
21618.12								
24020.13								

Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier Margin = Level-Limit

- Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

 3. Spectrum analyzer stolle (Peak): RBW=1MHz, VBW=1MHz, A(Average):
- RBW=1MHz, VBW=10Hz.
- 4. The test limit distance is 3m limit

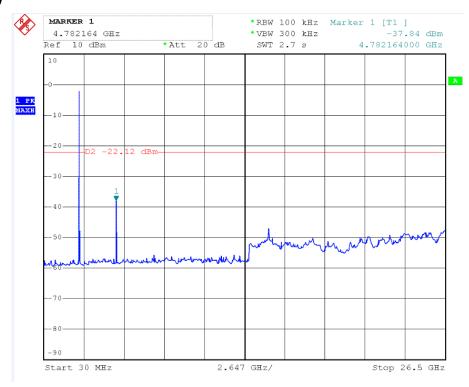
	Channel Mid							
Maximum		F	Polarity and L	Limit	Margin	Mark		
Frequency (MHz)	Polarity	Height (m)	Reading dB _µ V	Transd	Result dBµV/m	(dBµV/m)	(dBµV/m)	(P/Q/A)
			78.3	-6.37	71.93			Р
2441	Н	1	78.88	-6.37	72.51			Α
			76.27	-6.37	69.9			Р
2441	V	1	72.91	-6.37	66.54			Α
			44.5	-2.92	41.58	74	-32.42	Р
4882	Н	1	39.12	-2.92	36.2	54	-17.8	Α
			44.87	-2.92	41.95	74	-32.05	Р
4882	V	1	39.94	-2.92	37.02	54	-16.98	Α
			43.62	0.52	44.14	74	-29.86	Р
7323	Н	1	39.14	0.52	39.66	54	-14.34	Α
			43.66	0.52	44.18	74	-29.82	Р
7323	V	1	40.33	0.52	40.85	54	-13.15	Α
			42.19	1.48	43.67	74	-30.33	Р
9764	Н	1	38.32	1.48	39.8	54	-14.2	Α
			44.36	1.48	45.84	74	-28.16	Р
9764	V	1	39.87	1.48	41.35	54	-12.65	Α
12205								
14646								
17087.14								
19528.16								
21969.25								
24410.21								

Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier

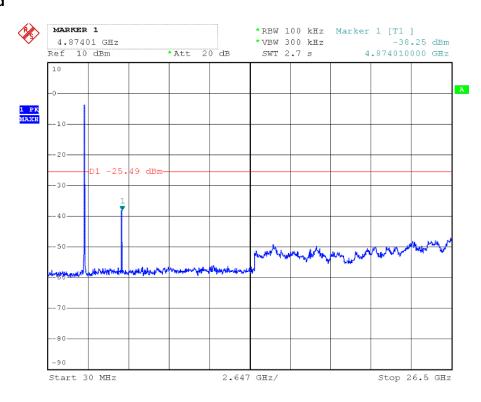
- Margin = Level-Limit
 Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value
 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
 Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average):
- RBW=1MHz, VBW=10Hz.
- 4. The test limit distance is 3m limit

	Channel High							
Maximum		F	Polarity and L	evel		Limit	Margin	NAI-
Frequency (MHz)	Polarity	Height (m)	Reading dBµV	Transd	Result dBµV/m	(dBµV/m)	(dBµV/m)	Mark (P/Q/A)
			77.82	-6.28	71.54			Р
2480	Н	1	72.74	-6.28	66.46			Α
			80.65	-6.28	74.37			Р
2480	V	1	75.88	-6.28	69.6			Α
			45.57	-2.5	43.07	74	-30.93	Р
2500	Н	1	41.15	-2.5	38.65	54	-15.35	Α
			47.26	-2.5	44.76	74	-29.24	Р
2500	V	1	42.88	-2.5	40.38	54	-13.62	Α
			45.35	1.17	46.52	74	-27.48	Р
4960.02	Н	1	40.67	1.17	41.84	54	-12.16	Α
			44.72	1.17	45.89	74	-28.11	Р
4960.02	V	1	40.33	1.17	41.5	54	-12.5	Α
			46.02	2.25	48.27	74	-25.73	Р
7440.03	Н	1	40.87	2.25	43.12	54	-10.88	Α
			45.28	2.25	47.53	74	-26.47	Р
7440.03	V	1	40.77	2.25	43.02	54	-10.98	Α
			48.05	4.53	52.58	74	-21.42	Р
9920.04	Н	1	42.52	4.53	47.05	54	-6.95	Α
			47.91	4.53	52.44	74	-21.56	Р
9920.04	V	1	43.54	4.53	48.07	54	-5.93	Α
12400.05								
14880.06								
17360.07								
19840.08								
22320.09								
24800.15								
				<u> </u>				

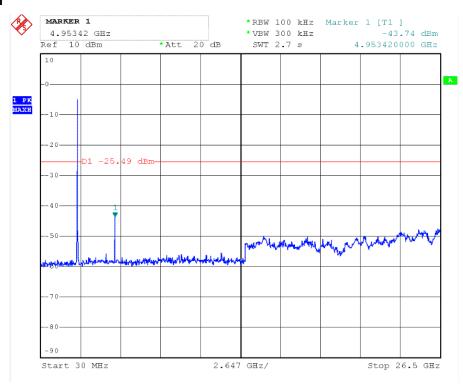
Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier


Margin = Level-Limit
Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value
2. Data of measurement within this frequency range shown "-" in the table above

- 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- permissible limits or the field strength is too small to be measured.


 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz.
- 4. The test limit distance is 3m limit

Conducted Spurious Emission


Channel Low

Channel Mid

Channel High

12. ANTENNA REQUIREMENT

12.1 Standard Applicable

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

12.2 Antenna Connected Construction

The antenna is designed with permanent attachment and no consideration of replacement. The antenna used in this product is complied with Standard. The maximum Gain of the antenna lower than 6.0dBi and have the definite antenna Specification.

Report No.: BCT15ER023E Page 47 of 50 FCC ID: 2AEVWCM00080

13 .Radio Frequency Exposure

13.1 Objective

The objective of the following report is used to demonstrate that EUT operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the relative provisions of FCC 47CFR Part 1.1307

13.2 General Description of Test

Items	Description
EUT Frequency band	 ☐ FHSS: 2.400GHz ~ 2.483GHz ☐ WLAN: 2.400GHz ~ 2.483GHz ☐ WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz ☐ WLAN: 5.745GHz ~ 5825GHz ☐ Others:
Device category	☑Portable (<20cm separation) ☐Mobile (>20cm separation)
	Others
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm2) ☐ General Population/Uncontrolled exposure (S=1mW/cm²) ☐ Others:
Antenna diversity	Single antenna ☐Multiple antennas: ☐Tx diversity ☐Rx diversity ☐Tx/Rx diversity
Max. output power	-1.54dBm (0.000702W)
Antenna gain (Max)	0dBi (Numeric gain:1)
Evaluation applied	
Note:	

- 1. The maximum output power is 20.20dBm (0.105W) at 2402MHz.(with 1 numeric antenna gain.)
- 2. For mobile or fixed location transmitters, no SAR consideration applied. The minimum separation generally be used is at least 20 cm, even if the calculations indicate that the MPE distance would be lesser.

Report No.: BCT15ER023E Page 48 of 50 FCC ID: 2AEVWCM00080

13.3 Human Exposure Assessment Results

Calculation

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where E = Field Strength in Volts / meter

P = Power in Watts

G=Numeric antenna gain

d=Distance in meters

S=Power Density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = 100 * d(m)$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Equation 1

Where d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

EUT parameter (data from the separate report)	
Given $E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$	Where G: numerical gain of transmitting antenna; TP: Transmitted power in watt; d: distance from the transmitting antenna in meter
Max average output power in Watt (TP)	-1.54dBm (0.000702W)
Antenna gain (G)	0 dBi (Numeric gain:1)
Exposure classification	S=1mW/cm ²
Minimum distance in meter (d) (from transmitting structure to the human body)	20cm (0.2m)

Yields

$$S = \frac{30xPxG}{3770d^2}$$
, P=0.000702W, G=1, d=0.2 S=0.00014mW/cm²

Or

$$d {=} \sqrt{\frac{30 x PxG}{3770S}} \;, \quad \text{S=1, P=0.000702W, G=1} \\ d {=} 0.0024 m \label{eq:def}$$

Conclusion:

S=0.00014mW/cm² is significant lower than the General Population Exposure Power Density Limit 1mW/cm² or except the distance when human body proximity to the antenna is less than 0.24cm then will reach the General Population Exposure Power Density Limit

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW / cm² even if the calculation indicates that the power density would be larger.)