

## Global United Technology Services Co., Ltd.

Report No.: GTS202107000070F02

# **TEST REPORT**

Applicant: Collective Minds Gaming Co., Ltd.

Address of Applicant: 5000 Jean Talon West, Suite# 250, Montreal, Quebec, H4P

1W9, Canada

Manufacturer/Factory: DongGuan KingSheng Electronics&Technology Co., Ltd

Address of Building 39, Arising Sun Industrial City, LinCun Village,

Manufacturer/Factory: TangXia Town, DongGuan City, China

**Equipment Under Test (EUT)** 

Product Name: PS4 wireless strike pack

Model No.: CM00124

**FCC ID:** 2AEVW-CM00124

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: July 06, 2021

**Date of Test:** July 07-20, 2021

Date of report issued: July 20, 2021

Test Result : PASS \*

Authorized Signature:



#### Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



## 2 Version

| Version No.  | Date              | Description         |  |  |
|--------------|-------------------|---------------------|--|--|
| 00           | July 20, 2021     | Original            |  |  |
|              |                   |                     |  |  |
| 111111111111 | 1111111111        | 1 1 1 1 1 1 1 1 1 1 |  |  |
| 1111111111   | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 |  |  |
|              | 7777777777        |                     |  |  |

| Prepared By: | Project Engineer | Date: | July 20, 2021 |
|--------------|------------------|-------|---------------|
| Check By:    | Reviewer         | Date: | July 20, 2021 |



## 3 Contents

|      |                                                        | Page |
|------|--------------------------------------------------------|------|
| 1 C  | OVER PAGE                                              | 1    |
| 2 VI | ERSION                                                 | 2    |
| 3 C  | ONTENTS                                                | 3    |
|      | EST SUMMARY                                            |      |
| 5 G  | ENERAL INFORMATION                                     | 5    |
| 5.1  | GENERAL DESCRIPTION OF EUT                             | 5    |
| 5.2  | TEST MODE                                              | 7    |
| 5.3  | DESCRIPTION OF SUPPORT UNITS                           | 7    |
| 5.4  | DEVIATION FROM STANDARDS                               | 7    |
| 5.5  | ABNORMALITIES FROM STANDARD CONDITIONS                 | 7    |
| 5.6  | TEST FACILITY                                          | 7    |
| 5.7  | TEST LOCATION                                          | 7    |
| 5.8  | ADDITIONAL INSTRUCTIONS                                | 7    |
| 6 ТЕ | EST INSTRUMENTS LIST                                   | 8    |
| 7 TE | EST RESULTS AND MEASUREMENT DATA                       | 10   |
| 7.1  | ANTENNA REQUIREMENT                                    | 10   |
| 7.2  | CONDUCTED EMISSIONS                                    | 11   |
| 7.3  | CONDUCTED OUTPUT POWER                                 | 14   |
| 7.4  | CHANNEL BANDWIDTH                                      | 15   |
| 7.5  | Power Spectral Density                                 |      |
| 7.6  | Spurious Emission in Non-restricted & restricted Bands |      |
| 7.   | 6.1 Conducted Emission Method                          |      |
| 7.   | 6.2 Radiated Emission Method                           | 18   |
| 8 TI | EST SETUP PHOTO                                        | 33   |
| 9 EI | UT CONSTRUCTIONAL DETAILS                              | 33   |
|      | U                                                      |      |



## 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Output Power           | 15.247 (b)(3)     | Pass   |
| Channel Bandwidth                | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

#### Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10:2013

## **Measurement Uncertainty**

| Test Item                           | Frequency Range | Measurement Uncertainty | Notes |
|-------------------------------------|-----------------|-------------------------|-------|
| Radiated Emission                   | 30MHz-200MHz    | 3.8039dB                | (1)   |
| Radiated Emission                   | 200MHz-1GHz     | 3.9679dB                | (1)   |
| Radiated Emission                   | 1GHz-18GHz      | 4.29dB                  | (1)   |
| Radiated Emission                   | 18GHz-40GHz     | 3.30dB                  | (1)   |
| AC Power Line Conducted<br>Emission | 0.15MHz ~ 30MHz | 3.44dB                  | (1)   |



## 5 General Information

## 5.1 General Description of EUT

| Product Name:        | PS4 wireless strike pack       |
|----------------------|--------------------------------|
| Model No.:           | CM00124                        |
| Test sample(s) ID:   | GTS202107000070-1              |
| Sample(s) Status:    | Engineer sample                |
| Serial No.:          | N/A                            |
| Hardware Version:    | V6                             |
| Software Version:    | 1.00                           |
| Operation Frequency: | 2402MHz~2480MHz                |
| Channel Numbers:     | 40                             |
| Channel Separation:  | 2MHz                           |
| Modulation Type:     | GFSK                           |
| Antenna Type:        | PCB Antenna                    |
| Antenna Gain:        | 0.116dBi(declare by applicant) |
| Power Supply:        | DC 5V                          |



| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                   | 2402 MHz  | 11      | 2422 MHz  | 21      | 2442 MHz  | 31      | 2462 MHz  |
| 2                                   | 2404 MHz  | 12      | 2424 MHz  | 22      | 2444 MHz  | 32      | 2464 MHz  |
| 3                                   | 2406 MHz  | 13      | 2426 MHz  | 23      | 2446 MHz  | 33      | 2466 MHz  |
| 4                                   | 2408 MHz  | 14      | 2428 MHz  | 24      | 2448 MHz  | 34      | 2468 MHz  |
| 5                                   | 2410 MHz  | 15      | 2430 MHz  | 25      | 2450 MHz  | 35      | 2470 MHz  |
| 6                                   | 2412 MHz  | 16      | 2432 MHz  | 26      | 2452 MHz  | 36      | 2472 MHz  |
| 7                                   | 2414 MHz  | 17      | 2434 MHz  | 27      | 2454 MHz  | 37      | 2474 MHz  |
| 8                                   | 2416 MHz  | 18      | 2436 MHz  | 28      | 2456 MHz  | 38      | 2476 MHz  |
| 9                                   | 2418 MHz  | 19      | 2438 MHz  | 29      | 2458 MHz  | 39      | 2478 MHz  |
| 10                                  | 2420 MHz  | 20      | 2440 MHz  | 30      | 2460 MHz  | 40      | 2480 MHz  |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2440MHz   |
| The Highest channel | 2480MHz   |



#### 5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

#### 5.3 Description of Support Units

| Manufacturer | Description | Model  | Serial Number      |  |  |
|--------------|-------------|--------|--------------------|--|--|
| PHILIPS      | Displayer   | 258B6Q | UHBA 1624052095H62 |  |  |
| N/A          | PS4 serials | N/A    | N/A                |  |  |

#### 5.4 Deviation from Standards

None.

#### 5.5 Abnormalities from Standard Conditions

None.

#### 5.6 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-

anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

#### 5.7 **Test Location**

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang

Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

#### 5.8 Additional Instructions

| Test Software     | BlueTest 3 |
|-------------------|------------|
| Power level setup | Default    |

Global United Technology Services Co., Ltd.

No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102



## 6 Test Instruments list

| Radi | iated Emission:                        |                                |                             | 777              |                        |                            |
|------|----------------------------------------|--------------------------------|-----------------------------|------------------|------------------------|----------------------------|
| Item | Test Equipment                         | Manufacturer                   | Model No.                   | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |
| 1    | 3m Semi- Anechoic<br>Chamber           | ZhongYu Electron               | 9.2(L)*6.2(W)* 6.4(H)       | GTS250           | July. 02 2020          | July. 01 2025              |
| 2    | Control Room                           | ZhongYu Electron               | 6.2(L)*2.5(W)* 2.4(H)       | GTS251           | N/A                    | N/A                        |
| 3    | EMI Test Receiver                      | Rohde & Schwarz                | ESU26                       | GTS203           | June. 24 2021          | June. 23 2022              |
| 4    | BiConiLog Antenna                      | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9163                    | GTS214           | June. 24 2021          | June. 23 2022              |
| 5    | Double -ridged<br>waveguide horn       | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120 D                 | GTS208           | June. 24 2021          | June. 23 2022              |
| 6    | Horn Antenna                           | ETS-LINDGREN                   | 3160                        | GTS217           | June. 24 2021          | June. 23 2022              |
| 7    | EMI Test Software                      | AUDIX                          | E3                          | N/A              | N/A                    | N/A                        |
| 8    | Coaxial Cable                          | GTS                            | N/A                         | GTS213           | June. 24 2021          | June. 23 2022              |
| 9    | Coaxial Cable                          | GTS                            | N/A                         | GTS211           | June. 24 2021          | June. 23 2022              |
| 10   | Coaxial cable                          | GTS                            | N/A                         | GTS210           | June. 24 2021          | June. 23 2022              |
| 11   | Coaxial Cable                          | GTS                            | N/A                         | GTS212           | June. 24 2021          | June. 23 2022              |
| 12   | Amplifier(100kHz-3GHz)                 | HP                             | 8347A                       | GTS204           | June. 24 2021          | June. 23 2022              |
| 13   | Amplifier(2GHz-20GHz)                  | HP                             | 84722A                      | GTS206           | June. 24 2021          | June. 23 2022              |
| 14   | Amplifier (18-26GHz)                   | Rohde & Schwarz                | AFS33-18002<br>650-30-8P-44 | GTS218           | June. 24 2021          | June. 23 2022              |
| 15   | Band filter                            | Amindeon                       | 82346                       | GTS219           | June. 24 2021          | June. 23 2022              |
| 16   | Power Meter                            | Anritsu                        | ML2495A                     | GTS540           | June. 24 2021          | June. 23 2022              |
| 17   | Power Sensor                           | Anritsu                        | MA2411B                     | GTS541           | June. 24 2021          | June. 23 2022              |
| 18   | Wideband Radio<br>Communication Tester | Rohde & Schwarz                | CMW500                      | GTS575           | June. 24 2021          | June. 23 2022              |
| 19   | Splitter                               | Agilent                        | 11636B                      | GTS237           | June. 24 2021          | June. 23 2022              |
| 20   | Loop Antenna                           | ZHINAN                         | ZN30900A                    | GTS534           | June. 24 2021          | June. 23 2022              |
| 21   | Breitband<br>hornantenne               | SCHWARZBECK                    | BBHA 9170                   | GTS579           | Oct. 18 2020           | Oct. 17 2021               |
| 22   | Amplifier                              | TDK                            | PA-02-02                    | GTS574           | Oct. 18 2020           | Oct. 17 2021               |
| 23   | Amplifier                              | TDK                            | PA-02-03                    | GTS576           | Oct. 18 2020           | Oct. 17 2021               |
| 24   | PSA Series Spectrum<br>Analyzer        | Rohde & Schwarz                | FSP                         | GTS578           | June. 24 2021          | June. 23 2022              |



| Con  | Conducted Emission            |                             |                      |                  |                        |                            |  |
|------|-------------------------------|-----------------------------|----------------------|------------------|------------------------|----------------------------|--|
| Item | Test Equipment                | Manufacturer                | Model No.            | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 1    | Shielding Room                | ZhongYu Electron            | 7.3(L)x3.1(W)x2.9(H) | GTS252           | May.15 2019            | May.14 2022                |  |
| 2    | EMI Test Receiver             | R&S                         | ESCI 7               | GTS552           | June. 24 2021          | June. 23 2022              |  |
| 3    | Coaxial Switch                | ANRITSU CORP                | MP59B                | GTS225           | June. 24 2021          | June. 23 2022              |  |
| 4    | ENV216 2-L-V-<br>NETZNACHB.DE | ROHDE&SCHWARZ               | ENV216               | GTS226           | June. 24 2021          | June. 23 2022              |  |
| 5    | Coaxial Cable                 | GTS                         | N/A                  | GTS227           | N/A                    | N/A                        |  |
| 6    | EMI Test Software             | AUDIX                       | E3                   | N/A              | N/A                    | N/A                        |  |
| 7    | Thermo meter                  | KTJ                         | TA328                | GTS233           | June. 24 2021          | June. 23 2022              |  |
| 8    | Absorbing clamp               | Elektronik-<br>Feinmechanik | MDS21                | GTS229           | June. 24 2021          | June. 23 2022              |  |
| 9    | ISN                           | SCHWARZBECK                 | NTFM 8158            | GTS565           | June. 24 2021          | June. 23 2022              |  |
| 10   | High voltage probe            | SCHWARZBECK                 | TK9420               | GTS537           | July. 09 2021          | July. 08 2022              |  |

| RF Conducted Test: |                                                      |              |                  |            |                        |                            |
|--------------------|------------------------------------------------------|--------------|------------------|------------|------------------------|----------------------------|
| ltem               | Test Equipment                                       | Manufacturer | Model No.        | Serial No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |
| 1                  | MXA Signal Analyzer                                  | Agilent      | N9020A           | GTS566     | June. 24 2021          | June. 23 2022              |
| 2                  | EMI Test Receiver                                    | R&S          | ESCI 7           | GTS552     | June. 24 2021          | June. 23 2022              |
| 3                  | Spectrum Analyzer                                    | Agilent      | E4440A           | GTS533     | June. 24 2021          | June. 23 2022              |
| 4                  | MXG vector Signal<br>Generator                       | Agilent      | N5182A           | GTS567     | June. 24 2021          | June. 23 2022              |
| 5                  | ESG Analog Signal<br>Generator                       | Agilent      | E4428C           | GTS568     | June. 24 2021          | June. 23 2022              |
| 6                  | USB RF Power Sensor                                  | DARE         | RPR3006W         | GTS569     | June. 24 2021          | June. 23 2022              |
| 7                  | RF Switch Box                                        | Shongyi      | RFSW3003328      | GTS571     | June. 24 2021          | June. 23 2022              |
| 8                  | Programmable Constant<br>Temp & Humi Test<br>Chamber | WEWON        | WHTH-150L-40-880 | GTS572     | June. 24 2021          | June. 23 2022              |

| Gene | ral used equipment:             | 2 2 2 2      |           |                  |                        |                            |
|------|---------------------------------|--------------|-----------|------------------|------------------------|----------------------------|
| Item | Test Equipment                  | Manufacturer | Model No. | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |
| 1    | Humidity/ Temperature Indicator | KTJ          | TA328     | GTS243           | June. 24 2021          | June. 23 2022              |
| 2    | Barometer                       | ChangChun    | DYM3      | GTS255           | June. 24 2021          | June. 23 2022              |



#### 7 Test results and Measurement Data

#### 7.1 Antenna requirement

**Standard requirement:** FCC Part15 C Section 15.203 /247(c)

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(c) (1)(i) requirement:

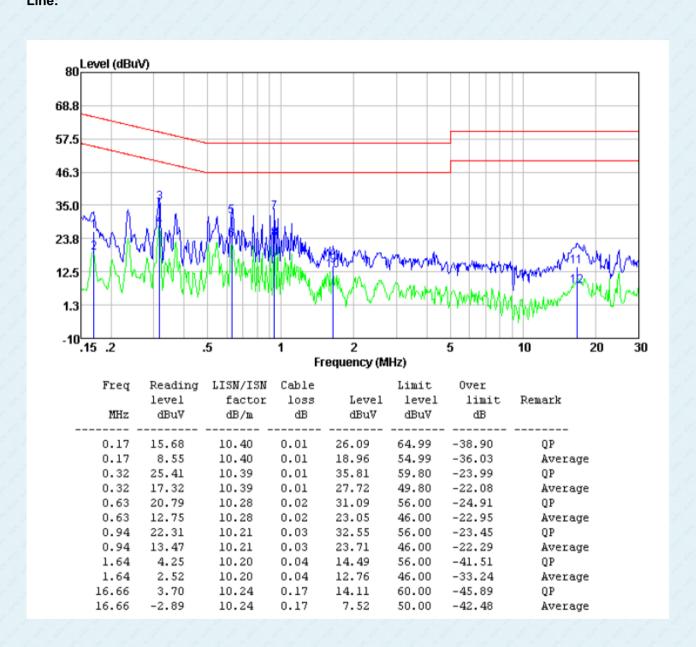
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### **E.U.T Antenna:**

The antenna is PCB antenna, the best case gain of the is 0.116dBi, reference to the appendix II for details

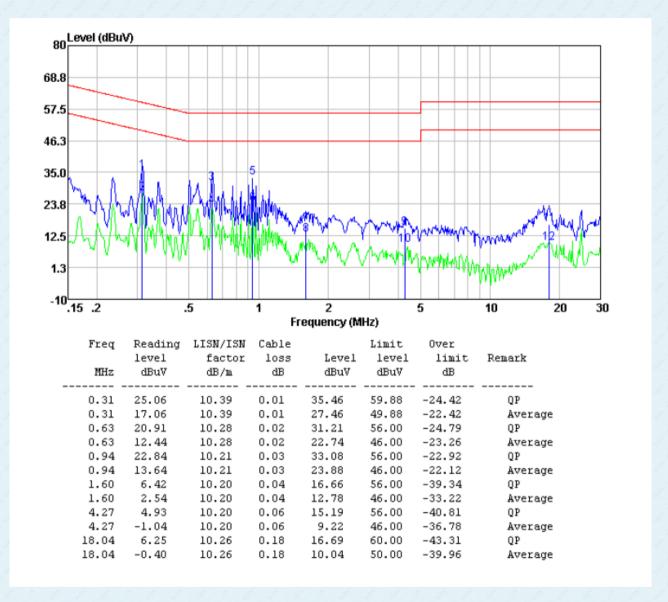
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102




### 7.2 Conducted Emissions

| 7.2 Oondacted Emission |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                          |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|
| Test Requirement:      | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111                                                                                            |                                                          |  |  |
| Test Method:           | ANSI C63.10:2013                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                          |  |  |
| Test Frequency Range:  | 150KHz to 30MHz                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                          |  |  |
| Class / Severity:      | Class B                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                          |  |  |
| Receiver setup:        | RBW=9KHz, VBW=30KHz, S                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                          |  |  |
| Limit:                 | - (1411)                                                                                                                                                                                                                                                                          | Limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit (dBuV)                                                                                    |                                                          |  |  |
|                        | Frequency range (MHz)                                                                                                                                                                                                                                                             | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ave                                                                                             | erage                                                    |  |  |
|                        | 0.15-0.5                                                                                                                                                                                                                                                                          | 66 to 56*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                              | to 46*                                                   |  |  |
|                        | 0.5-5                                                                                                                                                                                                                                                                             | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                 | 46                                                       |  |  |
|                        | 5-30                                                                                                                                                                                                                                                                              | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S                                                                                               | 50                                                       |  |  |
| Test setup:            | * Decreases with the logarithm                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                          |  |  |
| Test procedure:        | AUX Equipment  Test table/Insulation plane  Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m  1. The E.U.T and simulators                                                                                                      | Filter — AC power on plane  EMI Receiver  est pilization Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                          |  |  |
|                        | line impedance stabilizatio 50ohm/50uH coupling impositions. The peripheral devices are LISN that provides a 50ohi termination. (Please refer to photographs).  3. Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10: | edance for the mease also connected to to m/50uH coupling important to the block diagrams checked for maximud the maximum emits all of the interface of the same of the content of the maximum emits all of the interface of the content of the conten | suring equipres the main power pedance with of the test some conducter ssion, the recables must | nent. ver through a n 50ohm etup and d lative be changed |  |  |
| Test Instruments:      | Refer to section 6.0 for details                                                                                                                                                                                                                                                  | 5 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1                                                                                           | 1111                                                     |  |  |
| Test mode:             | Refer to section 5.2 for details                                                                                                                                                                                                                                                  | S &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 1                                                                                           | 111                                                      |  |  |
| Test environment:      |                                                                                                                                                                                                                                                                                   | nid.: 52%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Press.:                                                                                         | 1012mbar                                                 |  |  |
| Test voltage:          | AC 120V, 60Hz                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                          |  |  |
| Test results:          | Pass                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                          |  |  |
| Tool Toodito.          | 1 833                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                          |  |  |

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.




# Measurement data: Line:





#### Neutral:



#### Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss



## 7.3 Conducted Output Power

| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                             |  |  |  |  |
|-------------------|----------------------------------------------------------------|--|--|--|--|
| ·                 |                                                                |  |  |  |  |
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 |  |  |  |  |
| Limit:            | 30dBm                                                          |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table                  |  |  |  |  |
|                   | Non-Conducted Table                                            |  |  |  |  |
|                   | Ground Reference Plane                                         |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                               |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                               |  |  |  |  |
| Test results:     | Pass                                                           |  |  |  |  |

Measurement Data: The detailed test data see Appendix for BLE.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



### 7.4 Channel Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                             |
|-------------------|----------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 |
| Limit:            | >500KHz                                                        |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table                  |
|                   | Ground Reference Plane                                         |
| Test Instruments: | Refer to section 6.0 for details                               |
| Test mode:        | Refer to section 5.2 for details                               |
| Test results:     | Pass                                                           |

Measurement Data: The detailed test data see Appendix for BLE.



## 7.5 Power Spectral Density

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                       |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02        |  |  |  |
| Limit:            | 8dBm/3kHz                                                             |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                      |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                      |  |  |  |
| Test results:     | Pass                                                                  |  |  |  |

Measurement Data: The detailed test data see Appendix for BLE.

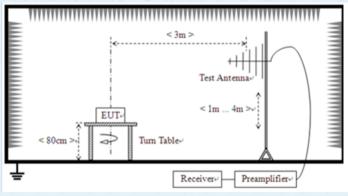


## 7.6 Spurious Emission in Non-restricted & restricted Bands

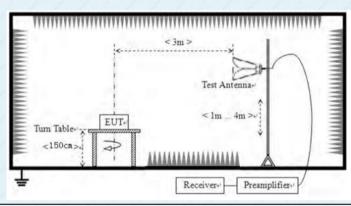
#### 7.6.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

Measurement Data: The detailed test data see Appendix for BLE.




### 7.6.2 Radiated Emission Method


| ANSI C63.10:2013 9kHz to 25GHz Measurement Distar Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH | Qu<br>Qu<br>Qu<br>IHz                 | Detector lasi-peak lasi-peak lasi-peak Peak Peak Limit (uV       | y.                                | Hz<br>Hz<br>Hz<br>Hz<br>Hz                                                                                                                                                                                                                                     | VBW 600Hz 30KHz 300KH: 3MHz ≥ 1 / 1          | Quasi-peak Quasi-peak Peak Average Measurement            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|--|
| Measurement Distar Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz                    | Qu<br>Qu<br>Qu<br>IHz                 | Detector lasi-peak lasi-peak lasi-peak Peak Peak Limit (uV       | 200H<br>9KH<br>120K<br>1MH<br>1MH | Hz<br>Hz<br>Hz<br>Hz<br>Hz                                                                                                                                                                                                                                     | 600Hz<br>30KHz<br>300KH:<br>3MHz<br>≥ 1 / 1  | Quasi-peak Quasi-peak Quasi-peak Peak Average Measurement |  |
| Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH                                                   | Qu<br>Qu<br>Qu<br>IHz                 | Detector lasi-peak lasi-peak lasi-peak Peak Peak Limit (uV       | 200H<br>9KH<br>120K<br>1MH<br>1MH | Hz<br>Hz<br>Hz<br>Hz<br>Hz                                                                                                                                                                                                                                     | 600Hz<br>30KHz<br>300KH:<br>3MHz<br>≥ 1 / 1  | Quasi-peak Quasi-peak Quasi-peak Peak Average Measurement |  |
| 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz                                                 | Qu<br>Qu<br>Qu<br>IHz                 | lasi-peak<br>lasi-peak<br>lasi-peak<br>Peak<br>Peak<br>Limit (uV | 200H<br>9KH<br>120K<br>1MH<br>1MH | Hz<br>Hz<br>Hz<br>Hz<br>Hz                                                                                                                                                                                                                                     | 600Hz<br>30KHz<br>300KH:<br>3MHz<br>≥ 1 / 1  | Quasi-peak Quasi-peak Quasi-peak Peak Average Measurement |  |
| 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH                                                                         | Qu<br>Qu<br>IHz<br>IHz                | iasi-peak<br>iasi-peak<br>Peak<br>Peak<br>Limit (u\<br>2400/F(k  | 9KH<br>120K<br>1MH<br>1MH         | Hz<br>Hz<br>Hz<br>Hz                                                                                                                                                                                                                                           | 30KHz<br>300KH:<br>3MHz<br>≥ 1 / 1           | Quasi-peak Quasi-peak Peak Γ Average Measurement          |  |
| 30MHz-1GHz  Above 1GHz  Frequency  0.009MHz-0.490M  0.490MHz-1.705M  1.705MHz-30MH  30MHz-88MHz                                                                    | Qu<br>IHz<br>IHz                      | Peak Peak Limit (uV                                              | 120K<br>1MF<br>1MF<br>'/m)        | Hz<br>Hz<br>Hz<br>V                                                                                                                                                                                                                                            | 300KH:<br>3MHz<br>≥ 1 / 1                    | Z Quasi-peak Peak Average Measurement                     |  |
| Above 1GHz  Frequency  0.009MHz-0.490M  0.490MHz-1.705M  1.705MHz-30MH  30MHz-88MHz                                                                                | 1Hz<br>1Hz                            | Peak Peak Limit (uV 2400/F(k                                     | 1MH<br>1MH<br>//m)                | lz<br>Iz<br>V                                                                                                                                                                                                                                                  | 3MHz<br>≥ 1 / <sup>7</sup>                   | Peak  Average  Measurement                                |  |
| Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH                                                                                                            | lHz                                   | Peak Limit (uV 2400/F(k                                          | 1MH<br>//m)                       | Hz<br>V                                                                                                                                                                                                                                                        | ≥1/7                                         | Average  Measurement                                      |  |
| Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH                                                                                                            | lHz                                   | Limit (u\<br>2400/F(k                                            | //m)                              | V                                                                                                                                                                                                                                                              | 0 5 1                                        | Measurement                                               |  |
| 0.009MHz-0.490M<br>0.490MHz-1.705M<br>1.705MHz-30MH<br>30MHz-88MHz                                                                                                 | lHz                                   | 2400/F(K                                                         | y.                                | 5                                                                                                                                                                                                                                                              | alue                                         |                                                           |  |
| 0.490MHz-1.705M<br>1.705MHz-30MH<br>30MHz-88MHz                                                                                                                    | lHz                                   |                                                                  | (Hz)                              | DIZ                                                                                                                                                                                                                                                            |                                              | Distance                                                  |  |
| 1.705MHz-30MH<br>30MHz-88MHz                                                                                                                                       |                                       | 0.4000/E/I                                                       | ,                                 | PK,                                                                                                                                                                                                                                                            | AV,QP                                        | 300m                                                      |  |
| 30MHz-88MHz                                                                                                                                                        | 17                                    | 24000/F(I                                                        | KHz)                              | (                                                                                                                                                                                                                                                              | QP                                           | 30m                                                       |  |
|                                                                                                                                                                    | 12                                    | 30                                                               |                                   | QP                                                                                                                                                                                                                                                             |                                              | 30m                                                       |  |
| 000411 0400411                                                                                                                                                     | 2                                     | 100                                                              |                                   | QP                                                                                                                                                                                                                                                             |                                              |                                                           |  |
| 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz                                                                                                                  |                                       | 150<br>200<br>500                                                |                                   | (                                                                                                                                                                                                                                                              | QP                                           |                                                           |  |
|                                                                                                                                                                    |                                       |                                                                  |                                   | QP<br>QP                                                                                                                                                                                                                                                       |                                              | 3m                                                        |  |
|                                                                                                                                                                    |                                       |                                                                  |                                   |                                                                                                                                                                                                                                                                |                                              | OH                                                        |  |
|                                                                                                                                                                    |                                       | 500                                                              | 1 1                               | Average                                                                                                                                                                                                                                                        |                                              |                                                           |  |
| 7,0000 10112                                                                                                                                                       | d.                                    | 5000                                                             | 1 5                               | Р                                                                                                                                                                                                                                                              | eak                                          | 11111                                                     |  |
|                                                                                                                                                                    |                                       | <3m>                                                             | Antenna                           | Ò                                                                                                                                                                                                                                                              | <u>                                     </u> |                                                           |  |
|                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · · | EUT-                                                             | <3m >  Control  Test              | < 3m >  Test Antenna  EUT-  Tum Table-  Tum Table- | Test Antenna EUT- Tum Table-                 | Test Antenna Im                                           |  |



#### For radiated emissions from 30MHz to1GHz



#### For radiated emissions above 1GHz



#### Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.



|                   |                                  | 1 1 1 1       |            | Report No | o.: GTS202107 | 000070F02 |
|-------------------|----------------------------------|---------------|------------|-----------|---------------|-----------|
| Test Instruments: | Refer to s                       | ection 6.0 fo | or details |           |               |           |
| Test mode:        | Refer to section 5.2 for details |               |            |           |               |           |
| Test environment: | Temp.:                           | 25 °C         | Humid.:    | 52%       | Press.:       | 1012mbar  |
| Test results:     | results: Pass                    |               |            |           |               |           |

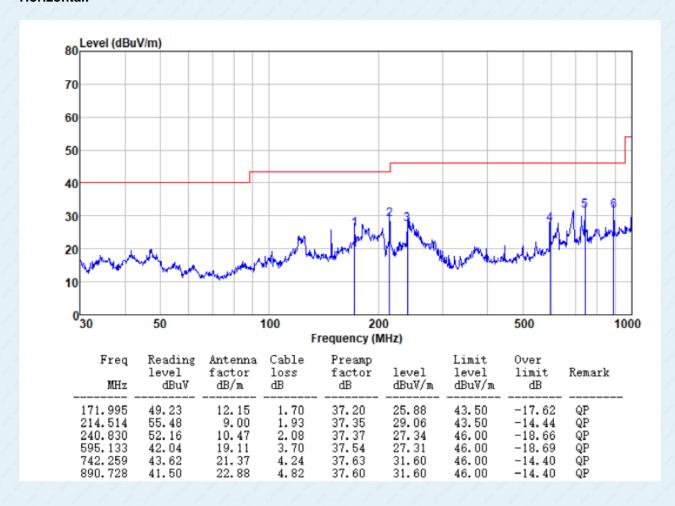
#### Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

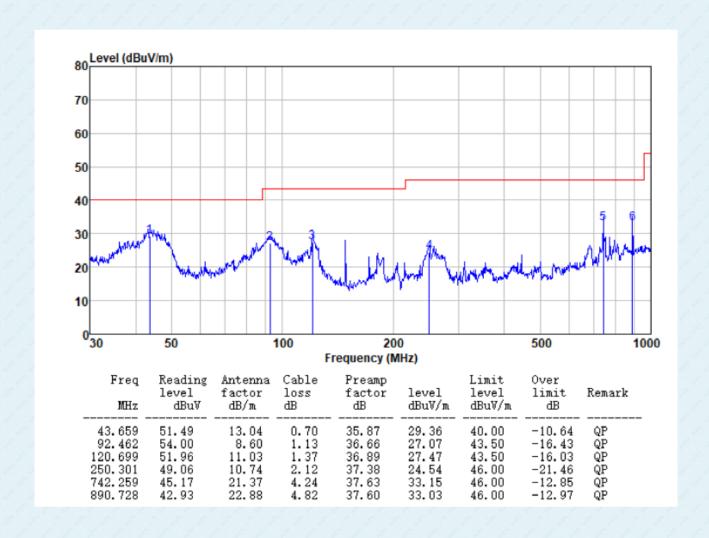
#### ■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



#### ■ Below 1GHz


Pre-scan all test modes, found worst case at 2480MHz, and so only show the test result of 2480MHz

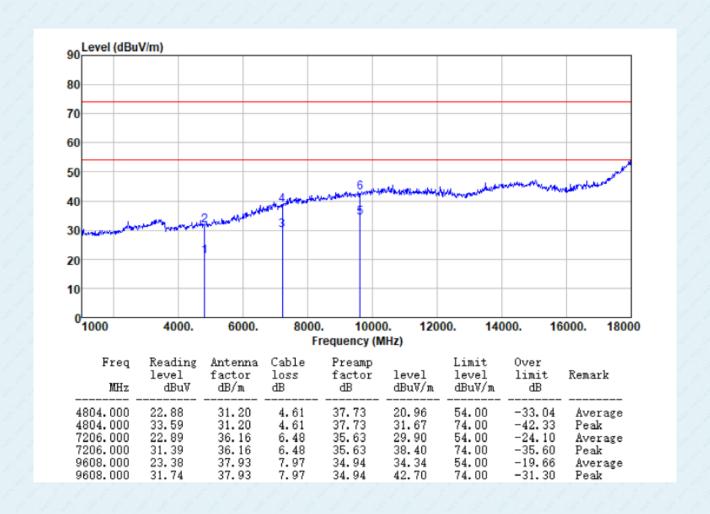
#### Horizontal:



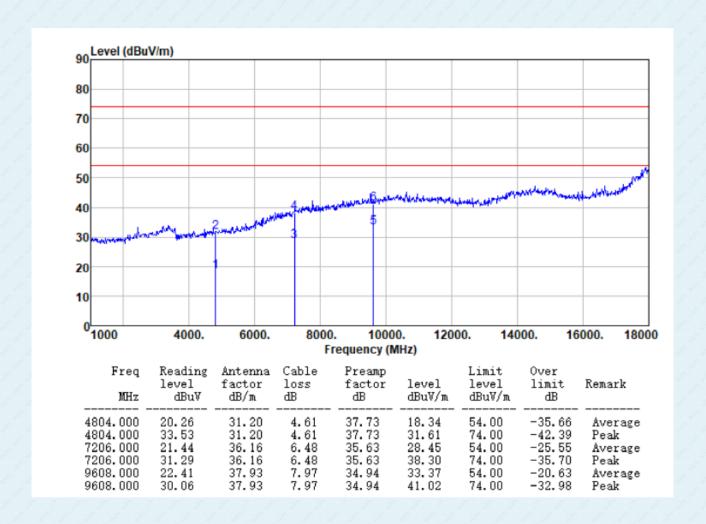


#### Vertical:



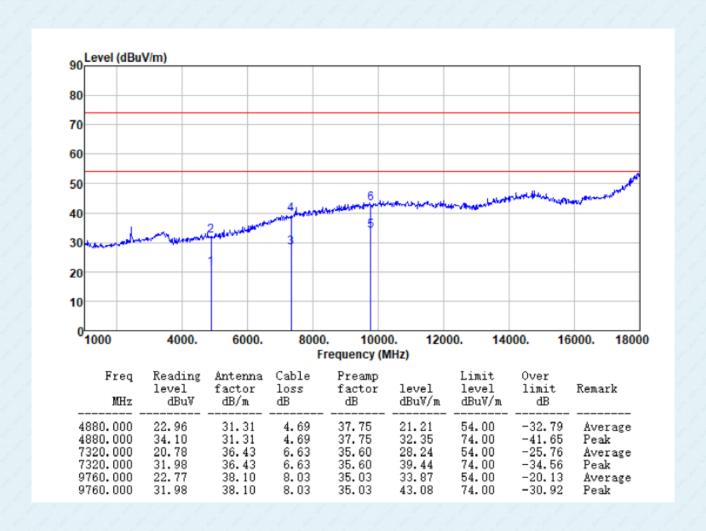

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960




#### Above 1GHz

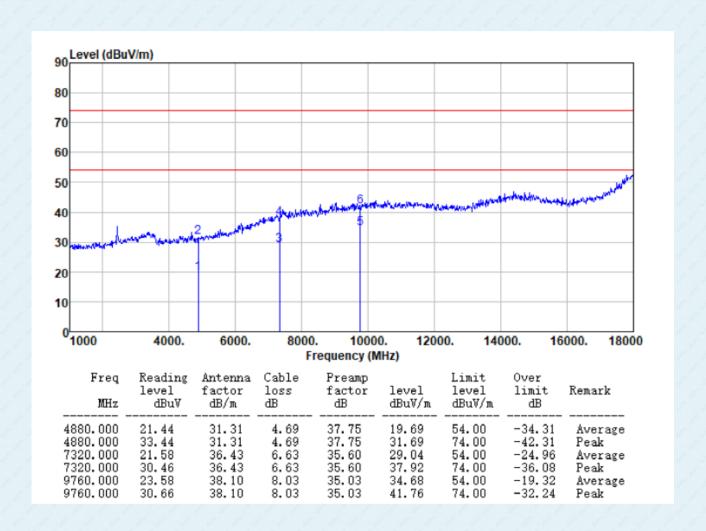
#### Unwanted Emissions in Restricted Frequency Bands

| Test channel: | Lowest | Polarization: | Horizontal |
|---------------|--------|---------------|------------|
|               |        |               |            |



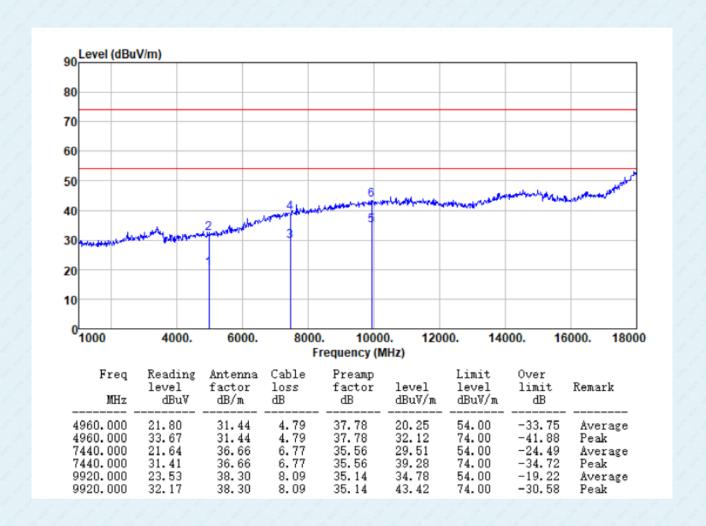




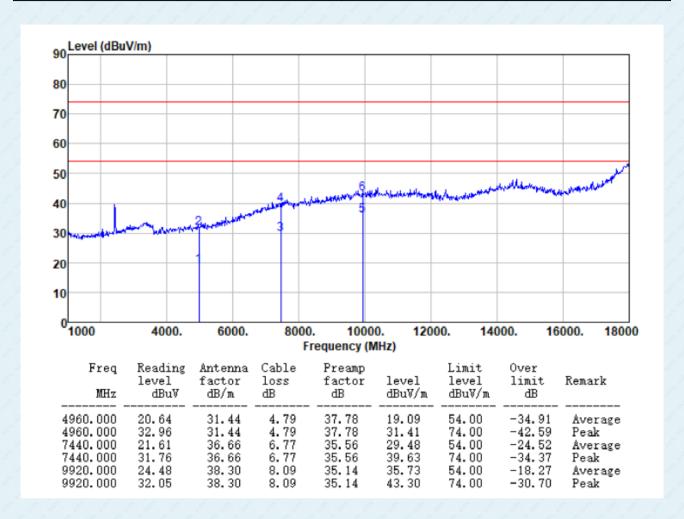

| Test channel:   Middle   Polarization:   Horizontal |  |
|-----------------------------------------------------|--|
|-----------------------------------------------------|--|






| rest channel.   Wildle   Folanzation.   Vertical | Test channel: | Middle | Polarization: | Vertical |
|--------------------------------------------------|---------------|--------|---------------|----------|
|--------------------------------------------------|---------------|--------|---------------|----------|



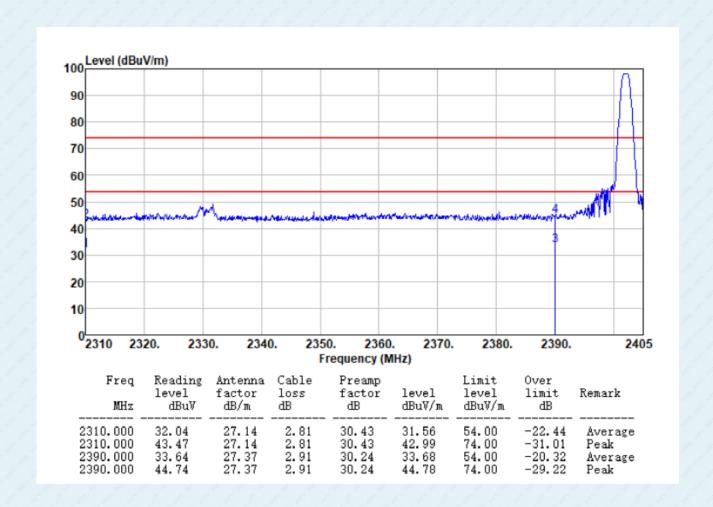



| ø | Test channel:    | Highest   | Polarization:  | Horizontal   |  |
|---|------------------|-----------|----------------|--------------|--|
|   | 1 001 0110111011 | riigiioot | 1 Glarization: | 110112011101 |  |



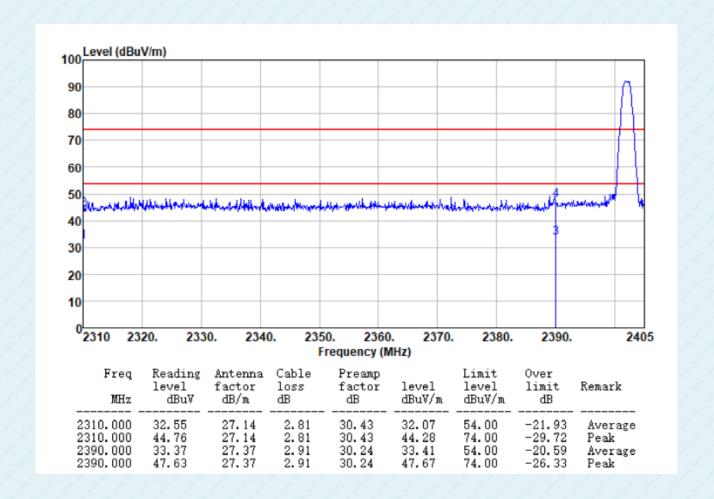


| Test channel: Highest Polarization: Vertical |  |
|----------------------------------------------|--|
|----------------------------------------------|--|



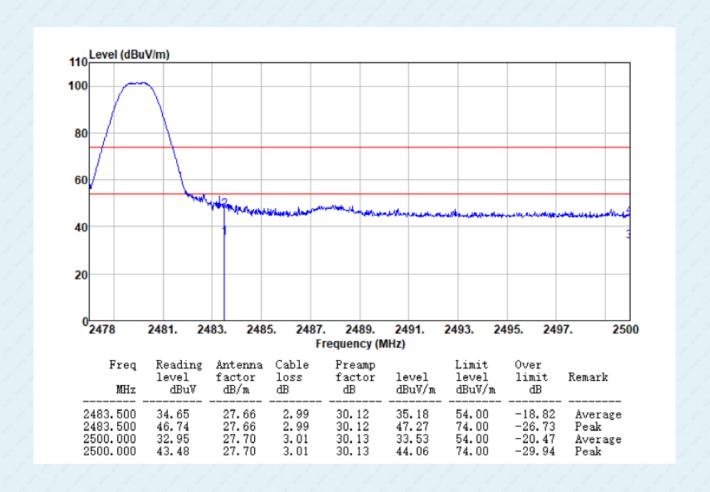

#### Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of frequencies range from 18GHz-25GHz are very lower than the limit and not show in test report.




#### ■ Unwanted Emissions in Non-restricted Frequency Bands






| rest chariles. Lowest rolanzation. vertical | ç | Test channel: | Lowest | Polarization: | Vertical |
|---------------------------------------------|---|---------------|--------|---------------|----------|
|---------------------------------------------|---|---------------|--------|---------------|----------|





| Test channel:  | Highest    | Polarization:  | Horizontal |
|----------------|------------|----------------|------------|
| 1 dot onarrion | 1 ligi100t | · olarization: |            |





Highest

Test channel:

Report No.: GTS202107000070F02

Vertical

| 90 | BuV/m)            |           |               |                 |                       |                  |                |                      |                                  |   |
|----|-------------------|-----------|---------------|-----------------|-----------------------|------------------|----------------|----------------------|----------------------------------|---|
| 80 | $\longrightarrow$ |           |               |                 |                       |                  |                |                      |                                  |   |
| 70 | _                 |           |               |                 |                       |                  |                |                      |                                  |   |
| 60 | -+                |           |               |                 |                       |                  |                |                      |                                  |   |
| 50 |                   | . 2       |               |                 |                       |                  |                |                      |                                  |   |
| 40 |                   | What have | Aurigraniumig | nder by Arthury | harapita kipgita pika | الهيمار المهاداة | and the second | diganity/vijander.24 | والماسية الماسية الماسية الماسية | - |
| 30 |                   |           |               |                 |                       |                  |                |                      |                                  | - |
| 20 |                   |           |               |                 |                       |                  |                |                      |                                  |   |
| 10 |                   |           |               |                 |                       |                  |                |                      |                                  |   |

Preamp

factor

dΒ

30.12

30.12

30.13

30.13

level

33.62

44.20 33.41

43.21

dBuV/m

Limit

level

54.00

74.00

54.00

74.00

dBuV/m

Over

limit

dB

-20.38

-29.80

-20.59

-30.79

Remark

Peak

Peak

Average

Average

Polarization:

#### Remarks:

Freq

MHz

2483.500

2483.500

2500.000

2500.000

Reading

dBu∀

level

33.09

43.67

32.83

42.63

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Cable

2.99

2.99 3.01

3.01

loss

dΒ

- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "\*", means this data is the too weak instrument of signal is unable to test.

Antenna

factor

dB/π

27.66

27.66

27.70

27.70



## 8 Test Setup Photo

Reference to the appendix I for details.

## 9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----