

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM161100976301 Page: 1 of 34

FCC REPORT

Test Result:	PASS *
Date of Issue:	2016-11-29
Date of Test:	2016-11-22 to 2016-11-25
Date of Receipt:	2016-11-18
Standards:	47 CFR Part 15, Subpart C (2015)
FCC ID:	2AEVN075485509034
Add Model No.:	Please refer to section 3.
Model No.(EUT):	2410
Product Name:	RC TOYS
Factory:	GUANGDONG ATTOP TECHNOLOGY CO., LTD
Manufacturer:	GUANGDONG ATTOP TECHNOLOGY CO., LTD
Applicant:	GUANGDONG ATTOP TECHNOLOGY CO., LTD
Application No. :	SZEM1611009763CR

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161100976301 Page : 2 of 34

2 Version

Revision Record					
Version	Chapter	Date	Modifier	Remark	
00		2016-11-29		Original	

Authorized for issue by:		
Tested By	feter Geng) /Project Engineer	2016-11-25
Checked By	Eric Fu (Eric Fu) /Reviewer	2016-11-29 Date

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161100976301 Page : 3 of 34

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203	ANSI C63.10 (2009)	PASS
Field Strength of the Fundamental Signal	47 CFR Part 15, Subpart C Section 15.249 (a)	ANSI C63.10 (2013)	PASS
Spurious Emissions	47 CFR Part 15, Subpart C Section 15.249 (a)/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	ed bands undamental cy (Radiated n) 47 CFR Part 15, Subpart C Section 15.249(a)/15.205 ANSI C63.10 (2013)		PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.215 (c)	ANSI C63.10 (2013)	PASS

Remark:

Model No.: 2410, 2411, 2412, 2413, 2415, 2416, 2417, 2418, 2419, 2420, 2421, 2422, 2423, 2425, 2426, 2427, 2428, 2429, 2430, 1810, 1812, 1813, 1815, 1816, 1817, 1818, 1819, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827, 1828, 1829, 1830, YD-001, YD-002, YD-003, YD-005, YD-006, YD-007, YD-008, YD-009, YD-010, YD-011, YD-012, YD-013, YD-015, YD-016, YD-017, YD-018, YD-019, YD-020, YD-021, YD-022, YD-023, YD-025, YD-026, YD-027, YD-028, YD-029, YD-030, YD-216, YD-211, 669058.

Only the Model 2410 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for all above models. Only different on model names and colours.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161100976301 Page : 4 of 34

4 Contents

Page

			•
1	C	OVER PAGE	1
2	V	ERSION	2
2	т		3
3			
4	C	ONTENTS	4
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST LOCATION	7
	5.6	Test Facility	8
	5.7	DEVIATION FROM STANDARDS	8
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	8
	5.9	UTHER INFORMATION REQUESTED BY THE CUSTOMER	8
	5.10	EQUIPMENT LIST	9
6	TI	EST RESULTS AND MEASUREMENT DATA	11
	6.1	ANTENNA REQUIREMENT	11
	6.2	RADIATED SPURIOUS EMISSIONS	12
	6.3	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	22
	6.4	20dB Bandwidth	28
7	P	HOTOGRAPHS - EUT TEST SETUP	31
	7.1	RADIATED EMISSION	31
	7.2	RADIATED SPURIOUS EMISSIONS	31
8	P	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	32-34

Report No.: SZEM161100976301 Page : 5 of 34

5 General Information

5.1 Client Information

Applicant:	GUANGDONG ATTOP TECHNOLOGY CO., LTD
Address of Applicant:	LINGHAI INDUSTRY ZONE, LAIMEI ROAD, CHENGHAI DISTRICT, SHANTOU CITY, GUANGDONG.
Manufacturer:	GUANGDONG ATTOP TECHNOLOGY CO., LTD
Address of Manufacturer:	LINGHAI INDUSTRY ZONE, LAIMEI ROAD, CHENGHAI DISTRICT, SHANTOU CITY, GUANGDONG.
Factory:	GUANGDONG ATTOP TECHNOLOGY CO., LTD
Address of Factory:	LINGHAI INDUSTRY ZONE, LAIMEI ROAD, CHENGHAI DISTRICT, SHANTOU CITY, GUANGDONG.

5.2 General Description of EUT

Name:	RC TOYS
Model No.:	2410
Frequency Range:	2405-2475MHz
Modulation Type:	GFSK
Number of Channels:	71
Channel separation	1MHz
Antenna Type:	Integral
Antenna Gain:	0dBi
Power Supply:	Remote : 3V DC (1.5V x 2 "AA" Size Batteries)

Report No.: SZEM161100976301

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2405MHz	19	2423MHz	37	2441MHz	55	2459MHz
2	2406MHz	20	2424MHz	38	2442MHz	56	2460MHz
3	2407MHz	21	2425MHz	39	2443MHz	57	2461MHz
4	2408MHz	22	2426MHz	40	2444MHz	58	2462MHz
5	2409MHz	23	2427MHz	41	2445MHz	59	2463MHz
6	2410MHz	24	2428MHz	42	2446MHz	60	2464MHz
7	2411MHz	25	2429MHz	43	2447MHz	61	2465MHz
8	2412MHz	26	2430MHz	44	2448MHz	62	2466MHz
9	2413MHz	27	2431MHz	45	2449MHz	63	2467MHz
10	2414MHz	28	2432MHz	46	2450MHz	64	2468MHz
11	2415MHz	29	2433MHz	47	2451MHz	65	2469MHz
12	2416MHz	30	2434MHz	48	2452MHz	66	2470MHz
13	2417MHz	31	2435MHz	49	2453MHz	67	2471MHz
14	2418MHz	32	2436MHz	50	2454MHz	68	2472MHz
15	2419MHz	33	2437MHz	51	2455MHz	69	2473MHz
16	2420MHz	34	2438MHz	52	2456MHz	70	2474MHz
17	2421MHz	35	2439MHz	53	2457MHz	71	2475MHz
18	2422MHz	36	2440MHz	54	2458MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The Lowest channel(CH1)	2405MHz		
The Middle channel(CH36)	2440MHz		
The Highest channel(CH71)	2475MHz		

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to ts Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document to moth be reproduced except in full, without prior written approval of the Company unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161100976301 Page : 7 of 34

5.3 Test Environment and Mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	55 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-Terms-and-Conditions/Terms-and-Conditions/

Report No.: SZEM161100976301 Page : 8 of 34

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM161100976301 Page : 9 of 34

5.10Equipment List

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy- mm-dd)
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2016-05-13	2017-05-13
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2016-04-25	2017-04-25
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-06-29	2019-06-29
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2016-07-06	2017-07-06
5	Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy- mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2016-07-19	2017-07-19
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
7	Horn Antenna(26GHz- 40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2016-10-09	2017-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM161100976301

Page : 10 of 34

	RF connected test					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

Report No.: SZEM161100976301 Page : 11 of 34

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. EUT Antenna: Image: the use of use of the use of the

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161100976301 Page : 12 of 34

6.2 Radiated Spurious Emissions

Test Desuirement											
Test Requirement:	47 CFR Part 15C Section 15.249 and 15.209										
Test Method:	ANSI C63.10: 2013										
Test Site:	Below 1GHz:										
	Measurement Distance:	10m (Semi-Aneo	choic Chamb	per)							
	Above 1GHz:	- (
	Measurement Distance:	3m (Full-Anecho	bic Chamber)							
Receiver Setup:	Frequency	Detector	RBW	VBW	Rema	ark					
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Pea	k					
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Avera	age					
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-p	oeak					
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Pea	k					
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Avera	age					
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-p	oeak					
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-p	oeak					
		Peak	1MHz	3MHz	Pea	k					
	Above TGH2	Peak	1MHz	10Hz	Avera	age					
Limit:	Frequency	Field strength	Limit	Pomork	Measure	ement					
(Spurious Emissions)	rrequency	(microvolt/meter) (dBuV/m)	nemark	distance	e (m)					
· · · · /		1	, , ,								
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300)					
	0.009MHz-0.490MHz 0.490MHz-1.705MHz	2400/F(kHz) 24000/F(kHz)	-	-	300 30)					
	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz	2400/F(kHz) 24000/F(kHz) 30			300 30 30)					
	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz	2400/F(kHz) 24000/F(kHz) 30 100	- - - 40.0	- - - Quasi-peak	300 30 30 30)					
	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz	2400/F(kHz) 24000/F(kHz) 30 100 150	- - 40.0 43.5	- - Quasi-peak Quasi-peak	300 30 30 3 3 3)					
	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	2400/F(kHz) 24000/F(kHz) 30 100 150 200	- - 40.0 43.5 46.0	- - Quasi-peak Quasi-peak Quasi-peak	300 30 30 3 3 3 3)					
	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	2400/F(kHz) 24000/F(kHz) 30 100 150 200 500	- - 40.0 43.5 46.0 54.0	- - Quasi-peak Quasi-peak Quasi-peak Quasi-peak	300 30 30 3 3 3 3 3 3)					
	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz	2400/F(kHz) 24000/F(kHz) 30 100 150 200 500 500	- - 40.0 43.5 46.0 54.0 54.0	- - Quasi-peak Quasi-peak Quasi-peak Quasi-peak Average	300 30 30 3 3 3 3 3 3 3 3)					
	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Note: 15.35(b), Unless	2400/F(kHz) 24000/F(kHz) 30 100 150 200 500 500 otherwise speci	- - 40.0 43.5 46.0 54.0 54.0 fied, the lim	- Quasi-peak Quasi-peak Quasi-peak Quasi-peak Average it on peak ra	300 30 30 3 3 3 3 3 3 3 3 adio frequ) 					
	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Note: 15.35(b), Unless emissions is 20d	2400/F(kHz) 24000/F(kHz) 30 100 150 200 500 500 otherwise speci B above the max	- 40.0 43.5 46.0 54.0 54.0 fied, the lim	- Quasi-peak Quasi-peak Quasi-peak Quasi-peak Average itt on peak ra itted average	300 30 30 3 3 3 3 3 3 3 4 3 3 3 3 3 3) Jency 1 limit					
	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Note: 15.35(b), Unless emissions is 20d applicable to the peak emission ley	2400/F(kHz) 24000/F(kHz) 30 100 150 200 500 500 0therwise speci B above the max equipment under (el radiated by the	- - 40.0 43.5 46.0 54.0 54.0 fied, the lim ximum perm r test. This p	- Quasi-peak Quasi-peak Quasi-peak Quasi-peak Average itt on peak ra itted average peak limit app	300 30 30 3 3 3 3 3 3 adio frequ e emission lies to the) Juency 1 limit 2 total					
Limit:	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Note: 15.35(b), Unless emissions is 20d applicable to the peak emission lev	2400/F(kHz) 24000/F(kHz) 30 100 150 200 500 500 0therwise speci B above the max equipment under /el radiated by the	- - 40.0 43.5 46.0 54.0 54.0 fied, the lim ximum perm r test. This p e device.	- Quasi-peak Quasi-peak Quasi-peak Quasi-peak Average it on peak ra itted average peak limit app	300 30 30 3 3 3 3 3 3 adio frequ e emission lies to the) Juency 1 limit 2 total					
Limit: (Field strength of the	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Note: 15.35(b), Unless emissions is 20d applicable to the peak emission lev	2400/F(kHz) 24000/F(kHz) 30 100 150 200 500 500 otherwise speci B above the max equipment under /el radiated by the Limit (dBu	- - 40.0 43.5 46.0 54.0 54.0 fied, the lim ximum perm r test. This p e device.	- Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak Average it on peak rai itted average peak limit app Rema	300 30 30 3 3 3 3 3 3 adio frequ e emission lies to the) Jency 1 limit 2 total					
Limit: (Field strength of the fundamental signal)	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Note: 15.35(b), Unless emissions is 20d applicable to the peak emission lev Frequency 2400MHz-2483.5MH	2400/F(kHz) 24000/F(kHz) 30 100 150 200 500 500 0therwise speci B above the max equipment under /el radiated by the Limit (dBu	- - 40.0 43.5 46.0 54.0 54.0 fied, the lim ximum perm r test. This p e device.	- Quasi-peak Quasi-peak Quasi-peak Quasi-peak Average itt on peak ra itted average peak limit app Rema Average	300 30 30 3 3 3 3 3 3 adio frequ emission lies to the ark Value) Juency n limit e total					

Report No.: SZEM161100976301

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161100976301

Page : 14 of 34

	 limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting mode
Final Test Mode:	Transmitting mode
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document to anot be reproduced eccept in full, without prior written approval of the Company unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161100976301 Page : 15 of 34

Measurement Data

6.3.1 Field Strength Of The Fundamental Signal

Peak value:

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2405.510	5.35	29.12	38.15	89.49	85.81	114.00	-28.19	Horizontal
2405.001	5.35	29.12	38.15	95.78	92.10	114.00	-21.90	Vertical
2439.958	5.38	29.23	38.15	91.42	87.88	114.00	-26.12	Horizontal
2439.918	5.38	29.23	38.15	94.14	90.60	114.00	-23.40	Vertical
2475.493	5.40	29.33	38.15	89.83	86.41	114.00	-27.59	Horizontal
2475.463	5.40	29.33	38.15	94.04	90.62	114.00	-23.38	Vertical

Report No.: SZEM161100976301 Page : 16 of 34

6.3.2 Spurious Emissions

Condition: 10m VERTICAL Job No. : 9763CR

Job No. : 9763 Test Mode: a

> Cable Ant Preamp Read Limit 0ver Loss Factor Factor Level Level Line Limit Freq MHz dB dB/m dB dBuV dBuV/m dBuV/m dB 40.99 6.80 13.23 32.99 27.85 14.89 29.50 -14.61 1 2 47.49 6.85 12.84 33.00 27.64 14.33 29.50 -15.17 3 65.34 6.99 10.93 32.92 27.61 12.61 29.50 -16.89 4 153.74 7.47 13.40 32.74 26.32 14.45 33.10 -18.65 5 475.50 16.46 32.60 27.33 19.68 35.60 -15.92 8.49 6 pp 796.18 21.20 32.60 26.42 24.31 35.60 -11.29 9.29

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Condition: 10m HORIZONTAL Job No. : 9763CR Test Mode: a

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	36.13	6.72	12.80	32.98	27.12	13.66	29.50	-15.84
2	48.50	6.87	12.81	33.00	26.33	13.01	29.50	-16.49
3	59.65	7.00	12.03	32.95	25.98	12.06	29.50	-17.44
4	159.78	7.50	13.39	32.73	26.79	14.95	33.10	-18.15
5	452.72	8.43	16.21	32.60	27.98	20.02	35.60	-15.58
6 pp	701.76	9.16	20.14	32.60	28.25	24.95	35.60	-10.65

Report No.: SZEM161100976301 Page : 18 of 34

Below 1GHz

The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

 $L_3 / L_{10} = D_{10} / D_3$

Note:

L₃: Level @ 3m distance. Unit: uV/m;

L₁₀: Level @ 10m distance. Unit: uV/m;

D₃: 3m distance. Unit: m

D₁₀: 10m distance. Unit: m

The level at 3m test distance is below:

Frequency (MHz)	Level @ 10m (dBuV/m)	Level @ 10m (uV/m)	Level @ 3m (uV/m)	Level @ 3m (dBuV/m)	Limit @ 3m (dBuV/m)	Margin (dB)	Ant. Polarization
40.99	14.89	5.55	18.51	25.35	40.00	-14.65	V
47.49	14.33	5.21	17.35	24.79	40.00	-15.21	V
65.34	12.61	4.27	14.24	23.07	40.00	-16.93	V
153.74	14.45	5.28	17.59	24.91	43.50	-18.59	V
475.50	19.68	9.64	32.13	30.14	46.00	-15.86	V
796.18	24.31	16.42	54.75	34.77	46.00	-11.23	V
36.13	13.66	4.82	16.06	24.12	40.00	-15.88	Н
48.50	13.01	4.47	14.91	23.47	40.00	-16.53	Н
59.65	12.06	4.01	13.36	22.52	40.00	-17.48	Н
159.78	14.95	5.59	18.64	25.41	43.50	-18.09	Н
452.72	20.02	10.02	33.41	30.48	46.00	-15.52	Н
701.76	24.95	17.68	58.94	35.41	46.00	-10.59	Н

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM161100976301

Page : 19 of 34

Above 1GH	Above 1GHZ											
Test mode:	Tran	smitting	Test cha	nnel:	Lo	west	Remark:		Pea	ak		
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV	 ')	Level (dBuV/m)	Limit Line (dBuV/m)	Ove Lim (dB	er it 5)	Polarization		
3579.190	7.66	32.43	38.51	45.16	5	46.74	74.00	-27.2	26	Vertical		
4810.000	8.88	34.17	39.03	51.86	5	55.88	74.00	-18.1	12	Vertical		
5786.418	9.96	34.58	39.02	44.84	ŀ	50.36	74.00	-23.6	64	Vertical		
7215.000	10.68	36.41	38.17	49.39)	58.31	74.00	-15.6	69	Vertical		
9620.000	12.51	37.52	36.98	39.79)	52.84	74.00	-21.1	16	Vertical		
11946.280	14.50	38.55	38.25	38.54	ŀ	53.34	74.00	-20.6	66	Vertical		
3842.163	7.76	33.18	38.63	45.75	5	48.06	74.00	-25.9	94	Horizontal		
4810.000	8.88	34.17	39.03	56.41		60.43	74.00	-13.	57	Horizontal		
5811.590	10.03	34.59	39.02	45.04	ŀ	50.64	74.00	-23.3	36	Horizontal		
7215.000	10.68	36.41	38.17	51.06	6	59.98	74.00	-14.0)2	Horizontal		
9620.000	12.51	37.52	36.98	39.65	5	52.70	74.00	-21.3	30	Horizontal		
12155.510	14.43	38.69	38.46	38.63	3	53.29	74.00	-20.7	71	Horizontal		

Test mode:	Transmitting		Test channel:		Lc	owest	Remark:		Average	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV	́)	Level (dBuV/m)	Limit Line (dBuV/m)	Ove Lim (dB	er lit 8)	Polarization
4810.000	8.88	34.17	39.03	34.42	2	38.44	54.00	-15.	56	Vertical
7215.000	10.68	36.41	38.17	32.42	2	41.34	54.00	-12.	66	Vertical
4810.000	8.88	34.17	39.03	35.09)	39.11	54.00	-14.8	89	Horizontal
7215.000	10.68	36.41	38.17	32.99)	41.91	54.00	-12.	09	Horizontal

Report No.: SZEM161100976301

	Page : 20 of 34										
Test mode:	Tran	smitting	Test cha	nnel:	Mi	iddle	Remark:		Pea	ak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Leve (dBuV	 ')	Level (dBuV/m)	Limit Line (dBuV/m)	Ove Lim (dE	ər nit B)	Polarization	
3579.190	7.66	32.43	38.51	45.29)	46.87	74.00	-27.	13	Vertical	
4880.000	8.97	34.29	39.06	52.89)	57.09	74.00	-16.	91	Vertical	
6069.413	10.47	34.76	38.96	44.46	5	50.73	74.00	-23.	27	Vertical	
7320.000	10.72	36.37	38.07	47.63	}	56.65	74.00	-17.	35	Vertical	
9760.000	12.58	37.55	36.92	39.09)	52.30	74.00	-21.	70	Vertical	
12120.390	14.46	38.67	38.42	38.39)	53.10	74.00	-20.	90	Vertical	
4030.070	7.85	33.60	38.71	44.69)	47.43	74.00	-26.	57	Horizontal	
4880.000	8.97	34.29	39.06	54.50)	58.70	74.00	-15.	30	Horizontal	
6016.949	10.54	34.71	38.99	44.08	}	50.34	74.00	-23.	66	Horizontal	
7320.000	10.72	36.37	38.07	51.61		60.63	74.00	-13.	37	Horizontal	
9760.000	12.58	37.55	36.92	39.87	7	53.08	74.00	-20.	92	Horizontal	
11843.020	14.39	38.45	38.15	38.80)	53.49	74.00	-20.	51	Horizontal	

Test mode:	Tran	smitting	Test char	Test channel:		iddle	Remark:		Average	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Leve (dBuV	 ')	Level (dBuV/m)	Limit Line (dBuV/m)	Ove Lim (dE	ər nit B)	Polarization
4880.000	8.97	34.29	39.06	34.13	}	38.33	54.00	-15.	67	Vertical
7320.000	10.72	36.37	38.07	31.99)	41.01	54.00	-12.	99	Vertical
4880.000	8.97	34.29	39.06	34.52	2	38.72	54.00	-15.	28	Horizontal
7320.000	10.72	36.37	38.07	32.46	5	41.48	54.00	-12.	52	Horizontal

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is undividue and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161100976301

	Page : 21 of 34										
Test mode:	Tran	smitting	Test cha	nnel:	Hi	ghest	Remark:		Pea	ak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV	 ')	Level (dBuV/m)	Limit Line (dBuV/m)	Ove Lim (dE	ər nit B)	Polarization	
3836.607	7.75	33.16	38.63	44.83	}	47.11	74.00	-26.	89	Vertical	
4950.000	9.07	34.41	39.08	54.83	}	59.23	74.00	-14.	77	Vertical	
6078.201	10.46	34.76	38.95	44.92	2	51.19	74.00	-22.	81	Vertical	
7425.000	10.76	36.33	37.96	47.98	}	57.11	74.00	-16.	89	Vertical	
9900.000	12.66	37.58	36.85	39.41		52.80	74.00	-21.	20	Vertical	
12102.870	14.47	38.66	38.41	39.11		53.83	74.00	-20.	17	Vertical	
3765.116	7.73	32.97	38.59	44.32	2	46.43	74.00	-27.	57	Horizontal	
4950.000	9.07	34.41	39.08	55.56	6	59.96	74.00	-14.	04	Horizontal	
6087.002	10.45	34.77	38.94	44.66	6	50.94	74.00	-23.	06	Horizontal	
7425.000	10.76	36.33	37.96	49.84	ŀ	58.97	74.00	-15.	03	Horizontal	
9900.000	12.66	37.58	36.85	39.52	2	52.91	74.00	-21.	09	Horizontal	
12085.370	14.49	38.65	38.39	38.95	5	53.70	74.00	-20.	30	Horizontal	

Test mode:		Transmitting		Test channel:		Hi	ghest	Remark:		Average	
Frequency (MHz)	Cal Lo (dl	ble ss B)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Leve (dBuV	 ')	Level (dBuV/m)	Limit Line (dBuV/m)	Ove Lim (dE	er nit 3)	Polarization
4950.000	9.0	07	34.41	39.08	34.92	2	39.32	54.00	-14.	68	Vertical
7425.000	10.	.76	36.33	37.96	32.29)	41.42	54.00	-12.	58	Vertical
4950.000	9.0	07	34.41	39.08	34.99)	39.39	54.00	-14.	61	Horizontal
7425.000	10.	.76	36.33	37.96	32.58	}	41.71	54.00	-12.	29	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the above measurement data were shown in the report.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-Terms-and-Conditions/Terms-and-Conditions/

Report No.: SZEM161100976301

Page : 22 of 34

6.3 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	ction 15.209 and 15.205				
Test Method:	ANSI C63.10: 2013					
Test Site:	Measurement Distance: 3m	ce: 3m				
Limit(band edge):	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.					
	Frequency	Limit (dBuV/m @3m)	Remark			
	30MHz-88MHz	40.0	Quasi-peak Value			
	88MHz-216MHz	43.5	Quasi-peak Value			
	216MHz-960MHz	46.0	Quasi-peak Value			
	960MHz-1GHz	54.0	Quasi-peak Value			
	Above 1GHz	54.0	Average Value			
	Above TGHZ	74.0	Peak Value			
Test Setup:						
AE EUT (Turntable) Test Receiver	Antenna Tower	AE EUT (Turntable) Ground Reference Plane Test Receiver	Antenna Tower			
Figure 1. 30MHz to 1GHz	e 2. Above 1 GHz					

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document to moto be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161100976301

Page : 23 of 34

Test Procedure:	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.				
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.				
	c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.				
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.				
	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.				
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.				
	 g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel 				
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.				
	 Repeat above procedures until all frequencies measured was complete. 				
Exploratory Test Mode:	Transmitting mode				
Final Test Mode:	Transmitting mode				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				

Toot plot on followou

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161100976301 Page : 24 of 34

	110WS.			_	_	
Test mode:	Transmitting	Test channel:	Lowest	Remark:	Peak	Vertical
Le	vel (dBuV/m)					
120						
110						_
					3	
90						
70						_
					1 1/1	
					2,	
50			. A management	1. M. March March	a dalimatika di u	m .
-	approximation discrimination and	here was an and the start	where we want the state of the	Modeling Marca Hills . 1 11 .	MANUTATION .	
30						_
10						_
0						
23	10 2320	235	v Frequency (MHz)			2410
e 11						
Londitio	 9763CR 	91				
Mode:	: 2405 Band	edge				
	: 2.4G	0				
	Cable	Ant Preamp	Read L	imit Over		
	Freq Loss	Factor Factor L	evel Level	Line Limit		
	MHz dB	dB/m dB	dBuV dBuV/m dB	BuV/m dB		
1 23	58.071 5.31	28.98 38.14 5	3.04 49.19 7	4.00 -24.81		
2 pp 24	00.000 5.35	29.11 38.14 5	6.02 52.34 7	4.00 -21.66		
3 24	05.001 5.35	29.12 38.15 9	5.78 92.10 11	4.00 -21.90		

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

									a
st mode:	Transmit	tina	Test ch	annel:	Highe	est	Remark [.]	. 20 01 34	Vertical
120 Lev	el (dBuV/m)								
120									
110 —									
90 —	M								
70									
	. Low Million				2				
50		,	W. A. WALLAND	ab and the A Barret	Hit Mun K.	k	. .		
50	Mdh.		""YYMyphilwy	aluandu/Banch	HH-H WA	umhaa	antoning manalian	NA MAN	~~~~
50 30 -	, MMA		**************	ahunturlu/Brunh	Hita-ha	umuhaa	daphoniaanaMa	MUMANNA IN A	~~~~
50 30 10			MANNA MUM	ahunuudu/Bunh		umhna	suptions, and the	MUMbar MUN (and	
50 30 10 0 247	0 2472 24	175		ahunimulu/Bruth		ultruthing	ang tanàna manana ma	104 mar 14 di V v ana	2500
50 30 10 247	0 2472 24	175		freque	http://www.	ultruknaa	oliget tool ling to the south of the south o	11041au1401.000	2500
50 30 10 0 2470 Condition Job No: Mode:	0 2472 24 n: 3m VERT : 9763CR : 2475 Ba	ICAL nd edg	e	Freque	ncy (MHz)	ull Mina	and ministers we	104 mar 14 di V v 14	2500
50 30 10 0 2470 Condition Job No: Mode:	0 2472 24 n: 3m VERT : 9763CR : 2475 Ba : 2.4G Cab Freq Lo	ICAL nd edg le A ss Facto	e nt Pream or Factor	Freque	ncy (MHz)	Limit	Over Limit	1	2500
50 30 10 0 2470 Condition Job No: Mode:	0 2472 24 n: 3m VERT : 9763CR : 2475 Ba : 2.475 Ba : 2.475 Ba Cab Freq Lo	ICAL nd edg le A ss Facto dB dB	e nt Preamp or Factor /m df	Freque	ncy (MHz)	Limit Line dBuV/m	Over Limit dB	MU4144414444	2500
50 30 10 0 2470 Condition Job No: Mode: 1 pp 247	0 2472 24 n: 3m VERT : 9763CR : 2475 Ba : 2.4G Cab Freq Lo MHz 75.463 5.	ICAL nd edg le A ss Facto dB dB 40 29.	e nt Preamp or Factor /m df 33 38.19	Freque	ncy (MHz)	Limit Line dBuV/m 114.00	Over Limit -23.38		2500
50 30 10 0 2470 Condition Job No: Mode: 1 pp 247 2 248 2 248	0 2472 24 n: 3m VERT : 9763CR : 2475 Ba : 2.4G Cab Freq Lo MHz 75.463 5. 33.500 5.	175 1CAL nd edg le A ss Facto dB dB 40 29.	e nt Preamp or Factor /m dt 33 38.19 35 38.19	Freque	Level dBuV/m 90.62	Limit Line dBuV/m 114.00 74.00	Over Limit dB -23.38 -29.98		2500

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is undividue and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161100976301 : 27 of 34 Page Test mode: Transmitting Test channel: Remark: Peak Horizontal Highest 120 Level (dBuV/m) 110 90 70 50 MMWWWWWWWWW alutering sheephatet have MARCH 30 10 2470 2472 2475 2500 Frequency (MHz) Condition: 3m Horizontal Job No: : 9763CR : 2475 Band edge Mode: : 2.4G Ant Preamp Cable Read Limit **Over** Loss Factor Factor Level Level Freq Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dB 1 pp 2475.493 5.40 29.33 38.15 89.83 86.41 114.00 -27.59 5.41 29.35 38.15 45.20 41.81 74.00 -32.19 2 2483.500 3 2484.715 5.41 29.36 38.15 49.01 45.63 74.00 -28.37

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation

with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-Terms-and-Conditions/Terms-and-Conditions/

Report No.: SZEM161100976301 Page : 28 of 34

6.4 20dB Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.215				
Test Method:	ANSI C63.10:2013				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Limit:	N/A				
Exploratory Test Mode:	Transmitter mode				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				

Measurement Data

Test Channel	20dB bandwidth (MHz)	Results
Lowest	1.23	Pass
Middle	1.23	Pass
Highest	1.27	Pass

Report No.: SZEM161100976301 Page : 29 of 34

Report No.: SZEM161100976301 Page : 30 of 34

Report No.: SZEM161100976301 Page : 31 of 34

7 Photographs - EUT Test Setup

Test model No.: 2410

7.1 Radiated Emission

7.2 Radiated Spurious Emissions

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to ts Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document to moth be reproduced except in full, without prior written approval of the Company unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161100976301 Page : 32 of 34

8 Photographs - EUT Constructional Details

Report No.: SZEM161100976301 Page : 33 of 34

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-eDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document is and/other to the solution of the company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161100976301 Page : 34 of 34

