

MerchSource, LLC.

TEST REPORT

SCOPE OF WORK

FCC TESTING–1015791, 101XXXX(where XXXX can be digits 0000-9999 which represent different customers)

REPORT NUMBER

220530008SZN-003

ISSUE DATE

[REVISED DATE]

[-----]

July 16, 2022

PAGES

34

DOCUMENT CONTROL NUMBER FCC Part 18_b © 2017 INTERTEK

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen, P.R. China Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751 www.intertek.com

Intertek Report No.: 220530008SZN-003

MerchSource, LLC.

Application For Certification

FCC ID: 2AEVM1015791

TRUE WIRELESS EARBUDS + QI CHARGING CASE

Model: 1015791, 101XXXX(where XXXX can be digits 0000-9999 which represent different customers)

Report No.: 220530008SZN-003

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 18, mention 47 CFR [10-1-20]

Prepared and Checked by:

Approved by:

Robin Zhou Senior Project Engineer Ryan Chen Project Engineer Date: July 16, 2022

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Service Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen, P.R. China Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

LIST OF EXHIBITS

INTRODUCTION

EXHIBIT 1: Summary of Tests EXHIBIT 2: **General Description** EXHIBIT 3: System Test Configuration EXHIBIT 4: **Measurement Results** EXHIBIT 5: **Equipment Photographs** EXHIBIT 6: **Product Labeling** EXHIBIT 7: **Technical Specifications** EXHIBIT 8: Instruction Manual EXHIBIT 9: Confidentiality Request **Miscellaneous Information** EXHIBIT 10: EXHIBIT 11: Test Equipment List

GENERAL INFORMATION

Applicant / Company:	MerchSource, LLC. 7755 Irvine Center Drive, Suite 100, Irvine, California 92618, United States
Equipment Under Test (EUT):	
Product Description:	TRUE WIRELESS EARBUDS + QI CHARGING CASE
Model:	1015791
Brand Name:	Sharper Image
Wireless Power Transfer receiving frequency:	112-205 kHz
Maximum RF energy generated	3 W
Sample Receipt Date:	May 30, 2022
Test Conducted Date:	May 30, 2022 to June 17, 2022
Issue Date:	16 July 2022
Test Site and Location:	Intertek Testing Services Shenzhen Ltd. Longhua Branch 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen, P.R. China
Environmental Conditions:	Temperature: 15 to 35 °C Humidity: 10 to 90%

Table of Contents

<u>1.0</u>	Summary of Test results	7
<u>2.0</u>	General Description	9
2.1	Product Description	9
2.2	Related Submittal(s) Grants	9
2.3	Test Methodology	9
2.4	Test Facility	9
<u>3.0</u>	System Test Configuration	11
3.1	Justification	11
3.2	EUT Exercising Software	
3.3	Special Accessories	
3.4	Measurement Uncertainty	
3.5	Equipment Modification	
3.6	Support Equipment List and Description	
<u>4.0</u>	Measurement Results	14
4.1	Field Strength Calculation	14
4.2	Radiated Emission Configuration Photograph	15
4.3	Radiated Spurious Emission	
4.4	Conducted Emission Configuration Photograph	17
4.5	Conducted Emission	17
<u>5.0</u>	Equipment Photographs	21
<u>6.0</u>	Product Labelling	23
<u>7.0</u>	Technical Specifications	25
<u>8.0</u>	Instruction Manual	27
<u>9.0</u>	Miscellaneous Information	29
9.1	Emissions Test Procedures	
9.2	Radiated Emissions Test Setup	
9.3	Conducted Emissions Test Configuration	
9.4	Conducted Emissions Test Setup	
10.0 <u>C</u>	onfidentiality Request	32
<u>11.0</u>	Test Equipment List	

List of attached file

Exhibit type	File Description	Filename
Test Report	Test Report	report.pdf
Test Setup Photo	Conducted Emission	conducted photos.pdf
Test Setup Photo	Radiated Emission	radiated photos.pdf
External Photo	External Photo	external photos.pdf
Internal Photo	Internal Photo	internal photos.pdf
Block Diagram	Block Diagram	block.pdf
Schematics	Circuit Diagram	circuit.pdf
Operation Description	Technical Description	descri.pdf
ID Label/Location	Label Artwork and Location	label.pdf
User Manual	User Manual	manual.pdf
Cover Letter	Confidentiality Letter	request.pdf
Cover Letter	Letter of Agency	agency.pdf

EXHIBIT 1

SUMMARY OF TEST RESULTS

1.0 Summary of Test results

TRUE WIRELESS EARBUDS + QI CHARGING CASE

Model: 1015791, 101XXXX(where XXXX can be digits 0000-9999 which represent different customers)

FCC ID: 2AEVM1015791

TEST ITEM	REFERENCE	RESULTS
Field Strength Limit	18.305	Pass
Conduction Limit	18.307	Pass

The Model: 101XXXX(where XXXX can be digits 0000-9999 which represent different customers) is the same as the Model: 1015791 in hardware aspect. The difference in model number serves as marketing strategy.

EXHIBIT 2

GENERAL DESCRIPTION

2.0 General Description

2.1 Product Description

The Equipment Under Test (EUT) is a TRUE WIRELESS EARBUDS + QI CHARGING CASE with Wireless Power Transfer receiving function and receiving frequency at 112-205 kHz. The EUT is powered by DC 5V through Qi charging pad. For more detailed features description, please refer to the user's manual.

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

2.2 Related Submittal(s) Grants

This is an application for certification of a transceiver for the TRUE WIRELESS EARBUDS + QI CHARGING CASE which has Bluetooth function and Wireless Power Transfer receiving function, and related report for FCC SDOC is subjected to report number: 220530008SZN-008. For Bluetooth EDR function is subjected to report number: 220530008SZN-001, and Bluetooth BLE function is subjected to report number: 220530008SZN-002.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the FCC procedures in MP-5, "Methods of Measurements of Radio Noise Emissions from Industrial, Scientific and Medical equipment (February 1986)", Radiated emission measurement was performed in Semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

2.4 Test Facility

The Semi-Anechoic chamber and shield room used to collect the radiated data and conducted data are Intertek **Testing Services Shenzhen Ltd. Longhua Branch** and located at 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen, P.R. China. This test facility and site measurement data have been fully placed on file with File Number: CN1188.

EXHIBIT 3

SYSTEM TEST CONFIGURATION

3.0 System Test Configuration

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in MP5-1986.

The EUT was powered by DC 5V through Qi charging pad during the test. Only the worstcase data was shown in the report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the loop antenna was placed 2 meters above the ground, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data report in Exhibit 4.0.

The rear of unit shall be flushed with the rear of the table.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was mounted to a plastic stand if necessary and placed on the styrene turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

3.2 EUT Exercising Software

N/A.

3.3 Special Accessories

There are no special accessories necessary for compliance of this product.

3.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

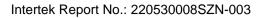
3.5 Equipment Modification

Any modifications installed previous to testing by MerchSource, LLC. will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Longhua Branch.

3.6 Support Equipment List and Description

This product was tested in the following configuration:


Refer List:

Description	Manufacturer	Detail
Type C USB Cable	Gotek	Unshielded, Length 25cm
Qi charging pad	Onn.	Model: ONB18WI701 Input: 5V, 2A(Max) Output: 10W (Max)
Adapter	XIAOMI	Input: 100-240Vac 50/60Hz Output: 5Vdc, 2.5A (Max)

EXHIBIT 4

MEASUREMENT RESULTS

4.0 Measurement Results

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

4.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any), Average Factor (optional) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF + CF - AG - AV

where FS = Field Strength in $dB\mu V/m$ RA = Receiver Amplitude (including preamplifier) in $dB\mu V$ CF = Cable Attenuation Factor in dB AF = Antenna Factor in dB/m AG = Amplifier Gain in dB AV = Average Factor in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

FS = RR + LF

where $FS = Field Strength in dB\mu V/m$ RR = RA - AG - AV in dB μ V LF = CF + AF in dB/m

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB are added. The amplifier gain of 29 dB and average factor of 5 dB are subtracted, giving a field strength of 27 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $\label{eq:result} \begin{array}{ll} RA = 52.0 \ dB \mu V/m & \\ AF = 7.4 \ dB/m & \\ RR = 18.0 \ dB \mu V & \\ CF = 1.6 \ dB & \\ LF = 9.0 \ dB/m & \\ AG = 29.0 \ dB & \\ AV = 5.0 \ dB & \\ FS = RR + LF & \\ FS = 18 + 9 = 27 \ dB \mu V/m & \\ \end{array}$

Level in μ V/m = Common Antilogarithm [(27 dB μ V/m)/20] = 22.4 μ V/m

4.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

4.3 Radiated Spurious Emission

Worst Case Radiated Spurious Emission at 0.137MHz

Judgement: Passed by 4.3dB margin

For the electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

Applicant: MerchSource, LLC.Date of Test: June 17, 2022Model: 1015791Worst Case Operating Mode: Worst configuration wireless power transfer receiving

130 120 110 100 90 80 -evel in dBμV/m 70 FCC Part 18 Class B Electric Field Strength QP wireless charger 60 50 40 30 20 10 0-9k 20 30 50 100k 200 300 500 1M 2M 3M 5M 10M 20 30M Frequency in Hz

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	0.018	32.7	0.0	21.9	54.6	63.5	-8.9
Horizontal	0.036	33.5	0.0	21.8	55.3	63.5	-8.2
Horizontal	0.072	34.3	0.0	18.1	52.4	63.5	-11.1
Horizontal	0.137	40.8	0.0	18.4	59.2	63.5	-4.3
Horizontal	0.274	30.1	0.0	18.8	48.9	63.5	-14.6
Horizontal	0.412	38.1	0.0	16.0	54.1	63.5	-9.4
Horizontal	0.677	32.8	0.0	14.7	47.5	63.5	-16.0

Notes: 1. Peak Detector Data unless otherwise stated.

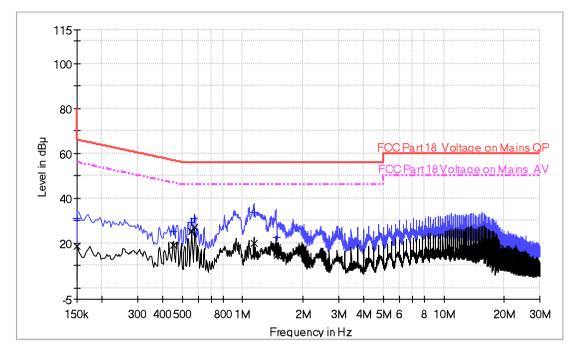
- All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Loop antenna is used for the emission under 30MHz.
- 5. Limits at 3 meters for radiated emissions below 30 MHz is converted from the Limits at 300 meter according to the Formula: Limits at 3 meter (dBμV/m) = Limits at 30 meter (dBμV/m) + 20 log (300/3)
- 6. Other emissions more than 20dB below the limit are not reported.
- 7. The measurement uncertainty is ±4.8dB at a level of confidence of 95%.

4.4 Conducted Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: conducted photos.pdf.

4.5 Conducted Emission

Worst Case Conducted Configuration at 0.578000MHz


Judgement: Passed by 19.0dB margin

Applicant: MerchSource, LLC.Date of Test: June 17, 2022Model: 1015791Worst Case Operating Mode: Worst configuration wireless power transfer receivingPhase: Live

Graphic / Data Table

Conducted Emissions Pursuant to FCC 18.307: Emissions Requirement

Limit and Margin QP

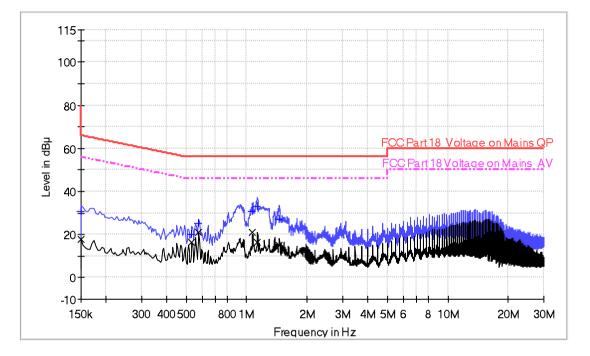
Frequency	Quasi Peak	Bandwidth	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(kHz)	2c	(dB)	(dB)	(dBµV)
0.150000	31.0	9.000	L1	9.6	35.0	66.0
0.454000	25.4	9.000	L1	9.6	31.4	56.8
0.558000	29.2	9.000	L1	9.6	26.8	56.0
0.578000	31.1	9.000	L1	9.6	24.9	56.0
1.138000	33.6	9.000	L1	9.6	22.4	56.0
1.478000	22.4	9.000	L1	9.6	33.6	56.0

Limit and Margin AV

	0					
Frequency	Average	Bandwidth	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(kHz)	Line	(dB)	(dB)	(dBµV)
0.150000	18.5	9.000	L1	9.6	37.5	56.0
0.454000	19.0	9.000	L1	9.6	27.8	46.8
0.558000	25.0	9.000	L1	9.6	21.0	46.0
0.578000	27.0	9.000	L1	9.6	19.0	46.0
1.138000	20.0	9.000	L1	9.6	26.0	46.0
1.478000	14.3	9.000	L1	9.6	31.7	46.0

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Limit (dB μ V) Level (dB μ V)


Note: The measurement uncertainty is ±3.6dB at a level of confidence of 95%.

Applicant: MerchSource, LLC.Date of Test: June 17, 2022Model: 1015791Worst Case Operating Mode: Worst configuration wireless power transfer receivingPhase: Neutral

Graphic / Data Table

Conducted Emissions Pursuant to FCC 18.307: Emissions Requirement

Limit and Margin QP

Frequency (MHz)	Quasi Peak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
(101112)	(αρμν)	(K112)		(ub)	(ub)	(ubµv)
0.150000	30.7	9.000	N	9.5	35.3	66.0
0.534000	20.3	9.000	Ν	9.5	35.7	56.0
0.578000	25.2	9.000	Ν	9.5	30.8	56.0
1.070000	31.0	9.000	Ν	9.5	25.0	56.0
1.130000	33.0	9.000	Ν	9.5	23.0	56.0
1.446000	27.1	9.000	Ν	9.5	28.9	56.0

Limit and Margin AV

Frequency	Average	Bandwidth	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(kHz)	Line	(dB)	(dB)	(dBµV)
0.150000	17.9	9.000	N	9.5	38.1	56.0
0.534000	16.4	9.000	N	9.5	29.6	46.0
0.578000	20.9	9.000	N	9.5	25.1	46.0
1.070000	20.9	9.000	N	9.5	25.1	46.0
1.130000	16.3	9.000	N	9.5	29.7	46.0
1.446000	14.8	9.000	N	9.5	31.2	46.0

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) = Limit (dB μ V) – Level (dB μ V)

Note: The measurement uncertainty is ±3.6dB at a level of confidence of 95%.

EXHIBIT 5

EQUIPMENT PHOTOGRAPHS

5.0 Equipment Photographs

For electronic filing, the photographs are saved with filename: external photos.pdf & internal photos.pdf.

EXHIBIT 6

PRODUCT LABELLING

6.0 Product Labeling

For electronic filing, the FCC ID label artwork and location is saved with filename: label.pdf.

EXHIBIT 7

TECHNICAL SPECIFICATIONS

7.0 Technical Specifications

For electronic filing, the block diagram and circuit diagram are saved with filename: block.pdf and circuit.pdf respectively.

EXHIBIT 8

INSTRUCTION MANUAL

Version: 01-November-2017

8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

EXHIBIT 9

MISCELLANEOUS INFORMATION

9.0 <u>Miscellaneous Information</u>

This miscellaneous information includes emission measuring procedure.

9.1 Emissions Test Procedures

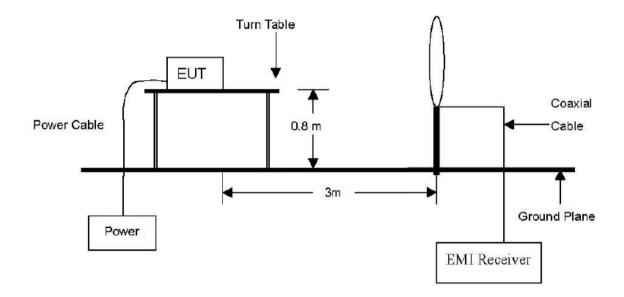
The following is a description of the test procedure used by Intertek Testing Services in the measurements of Industrial, Scientific and Medical equipment operating under FCC methods of measurements of radio noise emissions from Industrial, Scientific and Medical equipment.

The test set-up and procedures described below are designed to meet the requirements of FCC/OST MP-5(1986).

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the loop antenna was placed 2 meter above the ground, and the antenna polarization was changed.

Loop antenna was used as receiving antenna. In order to find the maximum emission, all of the interface cables were manipulated according to FCC OST/MP-5 requirement during radiated test.

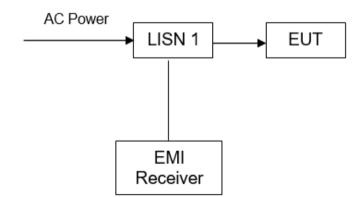
The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz.


The frequency range scanned is from the lowest radio frequency signal generated in the device, but not lower than 9kHz to the highest frequency of 30MHz.

For conducted powerline measurements, the frequency range over which the limits are specified will be scanned.

9.2 Radiated Emission Test Setup

The figure below shows the test setup, which is utilized to make these measurements.



9.3 Conducted Emission Test Configuration

Conducted emissions test

Measurements of powerline conducted radio noise shall be expressed as the voltage developed across the 50-ohm port terminated by a 50-ohm measuring instrument. All voltage measurement shall be made at the plug end of the EUT power cord, e.g., by the use of mating plugs and receptacles on the EUT and LISN.

9.4 Conducted Emission Test Setup

EXHIBIT 10

CONFIDENTIALITY REQUEST

10.0 <u>Confidentiality Request</u>

For electronic filing, the confidentiality request of the tested EUT is saved with filename: request.pdf.

EXHIBIT 11

TEST EQUIPMENT LIST

TEST REPORT

11.0 Test Equipment List

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ185-03	EMI Receiver	R & S	ESR7	101975	Dec 20, 2021	Dec 20, 2022
SZ061-06	Active Loop Antenna	Electro-Metrics	EM-6876	217	May 18, 2021	May 18, 2023
SZ056-03	Spectrum Analyzer	R&S	FSP30	101148	May 16, 2022	May 16, 2023
SZ181-04	Preamplifier	Agilent	8449B	3008A02474	May 16, 2022	May 16, 2023
SZ188-01	Anechoic Chamber	ETS	RFD-F/A- 100	4102	Dec 12, 2021	Dec 12, 2024
SZ062-23	RF Cable	RADIALL	SF104PE		Oct 27, 2021	Oct 27, 2022
SZ062-35	RF Cable	RADIALL	A50- 3.5M3.5M- 8M		Oct 27, 2021	Oct 27, 2022
SZ062-30	RF Cable	RADIALL	A50- 3.5M3.5M- 4.5M		Oct 27, 2021	Oct 27, 2022
SZ062-31	RF Cable	RADIALL	A50- 3.5M3.5M- 1M		Oct 27, 2021	Oct 27, 2022
SZ185-02	EMI Test Receiver	R&S	ESCI	100692	Jul 12, 2021	Jul 12, 2022
SZ187-01	Two-Line V- Network	R&S	ENV216	100072	Nov 02, 2021	Nov 02, 2022
SZ188-03	Shielding Room	ETS	RFD-100	4100	Jan 07, 2020	Jan 07, 2023
SZ062-16	RF Cable	HUBER+SUHNE R	CBL2-BN- 1m	110127- 2231000	Oct 26, 2021	Oct 26, 2022