

FCC RF Test Report

APPLICANT	:	Ring LLC
EQUIPMENT	:	Always Home Cam
BRAND NAME	:	ring
MODEL NAME	:	5E92E9
FCC ID	:	2AEUPBHAZU001
STANDARD	:	FCC Part 15 Subpart E § 15.407
CLASSIFICATION	:	(NII) Unlicensed National Information Infrastructure
TEST DATE(S)	:	Sep. 10, 2021 ~ Sep. 18, 2021

We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Acepwany

Approved by: Alex Wang / Manager

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Location	7
	1.7	Test Software	
	1.8	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency and Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	11
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	12
3	TEST	RESULT	13
	3.1	26dB & 99% Occupied Bandwidth Measurement	13
	3.2	Maximum Conducted Output Power Measurement	14
	3.3	Power Spectral Density Measurement	18
	3.4	Unwanted Emissions Measurement	
	3.5	AC Conducted Emission Measurement	25
	3.6	Antenna Requirements	27
4	LIST	OF MEASURING EQUIPMENT	29
5	UNCE	RTAINTY OF EVALUATION	30
AP	PENDI	X A. CONDUCTED TEST RESULTS	
AP	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	

APPENDIX C. RADIATED SPURIOUS EMISSION

APPENDIX D. DUTY CYCLE PLOTS

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR170120D	Rev. 01	Initial issue of report	Sep. 18, 2021

Report					
Section	FCC Rule	Description	Limit	Result	Remark
3.1	2.1049 & 15.403(i)	26dB & 99% Bandwidth	-	Report only	-
3.2	15.407(a)	Maximum Conducted Output Power	\leqslant 24 dBm	Pass	-
3.3	15.407(a)	Power Spectral Density	\leqslant 11 dBm	Pass	-
3.4	15.407(b)	Unwanted Emissions	15.407(b) & 15.209(a)	Pass	Under limit 3.02 dB at 5149.98 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 9.86 dB at 0.158 MHz
3.6	15.203 & 15.407(a)	Antenna Requirement	15.203 & 15.407(a)	Pass	-

SUMMARY OF TEST RESULT

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Ring LLC

1523 26th St, Santa Monica, CA 90404, USA

1.2 Manufacturer

Goertek Inc.

No.8877 Yingqian Street, High-Tech Industrial Development District, Weifang, Shandong, 261031, P.R.China

1.3 Product Feature of Equipment Under Test

Product Feature		
Equipment	Always Home Cam	
Brand Name	ring	
Model Name	5E92E9	
FCC ID	2AEUPBHAZU001	
HW Version	DVT1.1C	
SW Version	DVT1.1C	
EUT Stage	Identical Prototype	

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
	5180 MHz ~ 5240 MHz		
Tx/Rx Frequency Range	5260 MHz ~ 5320 MHz		
	5500 MHz ~ 5720 MHz		
	<mimo ant.1+2=""></mimo>		
	<5180 MHz ~ 5240 MHz>		
	802.11a : 20.08 dBm / 0.1019 W		
	802.11n HT20 : 20.05 dBm / 0.1012 W		
	802.11n HT40 : 20.98 dBm / 0.1253 W		
	802.11ac VHT20 : 20.20 dBm / 0.1047 W		
	802.11ac VHT40 : 21.32 dBm / 0.1355 W		
	802.11ac VHT80 : 14.25 dBm / 0.0266 WZ		
Maximum Output Power to Antenna	<5260 MHz ~ 5320 MHz>		
	802.11a : 18.66 dBm / 0.0735 W		
	802.11n HT20 : 19.88 dBm / 0.0973 W		
	802.11n HT40 : 20.15 dBm / 0.1035 W		
	802.11ac VHT20 : 20.06 dBm / 0.1014 W		
	802.11ac VHT40 : 20.20 dBm / 0.1047 W		
	802.11ac VHT80 : 12.88 dBm / 0.0194 W		
	<5500 MHz ~ 5720 MHz >		
	802.11a : 18.32 dBm / 0.0679 W		

).01 dBm / 0.0796 \).26 dBm / 0.0843 \		
		19.25 dBm / 0.0843 (
		19.25 dBm / 0.084		
		19.47 dBm / 0.080	• • • •	
	802.11a: 18.342 M		7 VV	
	802.11a VHT20 :			
99% Occupied Bandwidth				
	802.11ac VHT40 :	0001		
	802.11ac VHT80 :			
	<5150 MHz ~ 5250			
	<ant. 1=""> : FPC Antenna with gain 3.46 dBi</ant.>			
	<ant. 2=""> : FPC Antenna with gain 3.75 dBi</ant.>			
	<5250 MHz ~ 5350 MHz>			
Antenna Type / Gain	<ant. 1=""> : FPC Antenna with gain 5.59 dBi</ant.>			
	<ant. 2=""> : FPC Antenna with gain 4.34 dBi</ant.>			
	<5470 MHz ~ 5725 MHz>			
	<ant. 1=""> : FPC Antenna with gain 6.69 dBi</ant.>			
	<ant. 2=""> : FPC Antenna with gain 3.72 dBi</ant.>			
		(BPSK / QPSK / 1		
Type of Modulation		•	16QAM / 64QAM /	
Type of Modulation	256QAM)	(DFOR / QFOR /		
		Ant. 1	Ant. 2	
	802.11 a/n/ac	V	V	
Antenna Function Description	SISO	v	v	
-	802.11 a/n/ac	V	V	
	MIMO	V	V	
		1	·J	

Note:

1. For 802.11n HT20 / ac VHT20 and 802.11n HT40 / ac VHT40 mode, the whole testing have assessed only 802.11 ac VHT20/VHT40 by referring to their maximum conducted power.

2. For WLAN SISO & MIMO mode, the whole testing has assessed only MIMO mode by referring to their higher conducted power.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (H	Sporton International (Kunshan) Inc.			
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone				
Test Site Location	Jiangsu Province 215300 People's Republic of China				
Test Sile Location	TEL: +86-512-579001				
	FAX : +86-512-57900958				
	Sporton Site No.	FCC Designation No.	FCC Test Firm		
Test Site No.	Sporton Sile No.	FCC Designation No.	Registration No.		
Test one NU.	CO01-KS 03CH05-KS TH01-KS		314309		

1.7 Test Software

I	ltem	Site	Manufacturer	Name	Version
I	1.	03CH05-KS	AUDIX	E3	6.2009-8-24al
	2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).
- b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	36	5180	44	5220
5150-5250 MHz	38*	5190	46*	5230
U-NII-1	40	5200	48	5240
	42 [#]	5210		
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	52	5260	60	5300
5250-5350 MHz	54*	5270	62*	5310
U-NII-2A	56	5280	64	5320
	58#	5290		
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	100	5500	112	5560
	102*	5510	116	5580
5470-5725 MHz	104	5520	132	5660
U-NII-2C	106#	5530	134*	5670
	108	5540	136	5680
	110*	5550	140	5700

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	118*	5590	124	5620
TDWR Channel	120	5600	126*	5630
_	122 [#]	5610	128	5640
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
Straddle Channel	138 [#]	5690	144	5720
	142*	5710		

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "#" were 802.11ac VHT80.

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

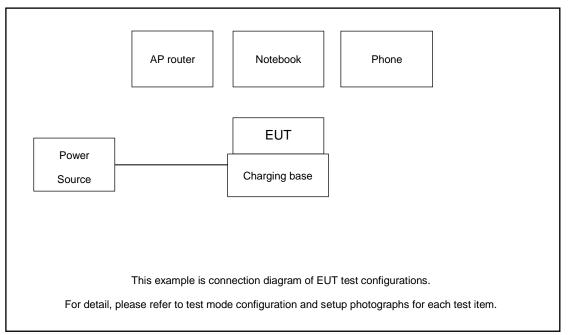
MIMO Mode

Modulation	Data Rate
802.11a	6 Mbps
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

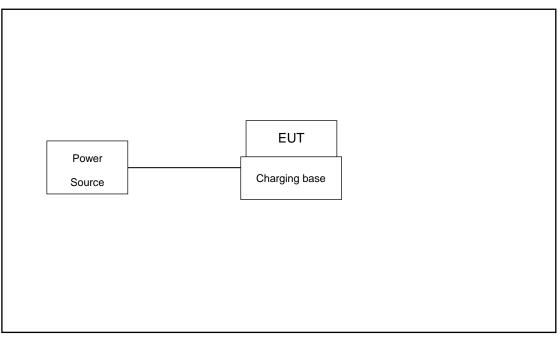
	Test Cases						
AC							
Conducted	Mode 1 : Bluetooth Link + WLAN Link(5G) + Adaptor + Charging base						
Emission							
Remark: For	Remark: For Radiated Test Cases, The tests were performance with Charging base and Adapter.						

	Ch #	U-NII-1:5150-5250 MHz	U-NII-2A : 5250-5350 MHz	U-NII-2C : 5470-5725MHz	
	Ch. #	802.11a	802.11a	802.11a	
L	Low	36	52	100	
М	Middle	44	60	116	
н	High	48	64	140	
Ś	Straddle	-	-	144	

	Ch #	U-NII-1:5150-5250 MHz	U-NII-2A : 5250-5350 MHz	U-NII-2C : 5470-5725MHz
	Ch. #	802.11ac VHT20	802.11ac VHT20	802.11ac VHT20
L	Low	36	52	100
М	Middle	44	60	116
н	High	48	64	140
5	Straddle	-	-	144


	Ch. #	U-NII-1:5150-5250 MHz	U-NII-2A : 5250-5350 MHz	U-NII-2C : 5470-5725MHz
	Cn. #	802.11ac VHT40	802.11ac VHT40	802.11ac VHT40
L	Low	38	54	102
М	Middle	-	-	110
н	High 46		62	134
5	Straddle	-	-	142

	Ch. #	U-NII-1:5150-5250 MHz	U-NII-2A : 5250-5350 MHz	U-NII-2C : 5470-5725MHz
	CII. #	802.11ac VHT80	802.11ac VHT80	802.11ac VHT80
L	Low	-	-	106
М	Middle	42	58	-
н	High	-	-	122
e,	Straddle	-	-	138



2.3 Connection Diagram of Test System

For Conducted Emission:

For Radiation:

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded, 1.8m
2.	Notebook	Lenovo	G480	QDS-BRCM1050I		AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
3.	Mobile Phone	мото	N/A	N/A	N/A	N/A

2.4 Support Unit used in test configuration and system

2.5 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuously transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 7.2 dB.

 $Offset(dB) = RF \ cable \ loss(dB).$ = 7.2 (dB)

3 Test Result

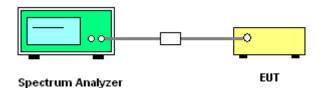
3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Description of 26dB & 99% Occupied Bandwidth

This section is for reporting purpose only.

There is no restriction limits for bandwidth.

For Straddle Channel, According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, If the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1MHz and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 8. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

<FCC 14-30 CFR 15.407>

For mobile and portable client devices in the 5.15 – 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW.

For the 5.25–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the 5.47–5.6 GHz and 5.65–5.725 GHz band, the maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz.

For Straddle Channel, According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, If the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.

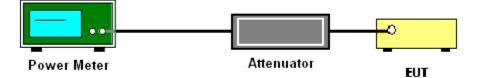
If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures


The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

For Straddle Channel, According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, If the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

	FCC U-NII-1 MIMO											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power with duty factor (dBm)					Pass/Fail		
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	2	36	5180	14.26	15.06	17.69	23	.98	3.	75	Pass
11a	6Mbps	2	40	5200	16.79	17.33	20.08	23	.98	3.	75	Pass
11a	6Mbps	2	48	5240	16.59	17.45	20.05	23	23.98 3.75		75	Pass
HT20	MCS0	2	36	5180	14.50	15.58	18.08	23	.98	3.	75	Pass
HT20	MCS0	2	40	5200	16.62	17.42	20.05	23	.98	3.	75	Pass
HT20	MCS0	2	48	5240	16.21	17.27	19.78	23	.98	3.	75	Pass
HT40	MCS0	2	38	5190	12.74	13.88	16.36	23	.98	3.	75	Pass
HT40	MCS0	2	46	5230	17.44	18.45	20.98	23.98 3		3.	75	Pass
VHT20	MCS0	2	36	5180	14.73	15.71	18.26	23	.98	3.	75	Pass
VHT20	MCS0	2	40	5200	16.76	17.59	20.20	23.98		3.	75	Pass
VHT20	MCS0	2	48	5240	16.49	17.43	19.99	23	.98	3.	75	Pass
VHT40	MCS0	2	38	5190	13.02	14.16	16.64	23	.98	3.	75	Pass
VHT40	MCS0	2	46	5230	17.77	18.79	21.32	2 23.98 3.75		75	Pass	
VHT80	MCS0	2	42	5210	10.68	11.74	14.25	23	.98	3.	75	Pass

	FCC U-NII-2A MIMO														
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		Average Conducted Power with duty factor (dBm)				Conducted Power Limit		Conducted DG Power Limit (dBi)		EIRP Power Limit (dBm)	Pass/Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2				
11a	6Mbps	2	52	5260	14.65	15.57	18.15	23.	.98	5	.59	26.99	Pass		
11a	6Mbps	2	56	5280	15.11	16.12	18.66	23.	.98	5	.59	26.99	Pass		
11a	6Mbps	2	64	5320	15.23	15.73	18.50	23.	.98	5	.59	26.99	Pass		
HT20	MCS0	2	52	5260	16.40	17.29	19.88	23.	.98	5	.59	26.99	Pass		
HT20	MCS0	2	56	5280	16.44	15.49	19.00	23.	.98	5	.59	26.99	Pass		
HT20	MCS0	2	64	5320	14.62	15.88	18.30	23	.98	5	.59	26.99	Pass		
HT40	MCS0	2	54	5270	16.79	17.47	20.15	23.	.98	5	.59	26.99	Pass		
HT40	MCS0	2	62	5310	12.80	13.70	16.28	23.	.98	5	.59	26.99	Pass		
VHT20	MCS0	2	52	5260	16.55	17.50	20.06	23.	.98	5	.59	26.99	Pass		
VHT20	MCS0	2	56	5280	16.61	15.63	19.16	23.	.98	5	.59	26.99	Pass		
VHT20	MCS0	2	64	5320	14.76	16.01	18.44	23.	.98	5	.59	26.99	Pass		
VHT40	MCS0	2	54	5270	16.63	17.67	20.20	23.	.98	5	.59	26.99	Pass		
VHT40	MCS0	2	62	5310	13.13	13.98	16.59	23.	.98	5	.59	26.99	Pass		
VHT80	MCS0	2	58	5290	9.02	10.27	12.88	23	.98	5	.59	26.99	Pass		

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AEUPBHAZU001 Page Number : 16 of 30 Report Issued Date : Sep. 18, 2021 Report Version : Rev. 01 Report Template No.: BU5-FR15EWL AC MA Version 2.0

	FCC U-NII-2C MIMO												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power with duty factor (dBm)		Conducted PowerConductedDGwith duty factorPower Limit(dBi)		ver Conducted or Power Limit		EIRP Power Limit (dBm)	Pass/Fail	
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps	2	100	5500	15.64	14.93	18.31	23	3.29	6.	69	26.99	Pass
11a	6Mbps	2	116	5580	15.55	15.06	18.32	23	3.29	6.	69	26.99	Pass
11a	6Mbps	2	140	5700	13.19	13.18	16.20	23	3.29	6.	69	26.99	Pass
11a	6Mbps	2	144	5720	15.01	14.97	18.00	23	3.29	6.	69	26.99	Pass
HT20	MCS0	2	100	5500	15.64	15.11	18.39	23	3.29	6.	69	26.99	Pass
HT20	MCS0	2	116	5580	16.20	15.58	18.91	23	3.29	6.	69	26.99	Pass
HT20	MCS0	2	140	5700	14.80	15.16	17.99	23	3.29	6.	69	26.99	Pass
HT20	MCS0	2	144	5720	15.95	16.05	19.01	23	3.29	6.	69	26.99	Pass
HT40	MCS0	2	102	5510	15.05	14.25	17.68	23	3.29	6.	69	26.99	Pass
HT40	MCS0	2	110	5550	16.00	15.72	18.87	23	3.29	6.	69	26.99	Pass
HT40	MCS0	2	134	5670	16.40	16.10	19.26	23	3.29	6.	69	26.99	Pass
HT40	MCS0	2	142	5710	15.80	16.06	18.94	23	3.29	6.	69	26.99	Pass
VHT20	MCS0	2	100	5500	15.81	15.25	18.55	23	3.29	6.	69	26.99	Pass
VHT20	MCS0	2	116	5580	16.33	15.81	19.09	23	3.29	6.	69	26.99	Pass
VHT20	MCS0	2	140	5700	14.90	15.30	18.11	23	3.29	6.	69	26.99	Pass
VHT20	MCS0	2	144	5720	16.21	16.28	19.25	23	3.29	6.	69	26.99	Pass
VHT40	MCS0	2	102	5510	15.48	14.55	18.05	23	3.29	6.	69	26.99	Pass
VHT40	MCS0	2	110	5550	16.34	16.03	19.20	23	23.29		69	26.99	Pass
VHT40	MCS0	2	134	5670	16.66	16.25	19.47	23	3.29	6.	69	26.99	Pass
VHT40	MCS0	2	142	5710	16.13	16.41	19.29	23	3.29	6.	69	26.99	Pass
VHT80	MCS0	2	106	5530	10.15	9.40	12.80	23	3.29	6.	69	26.99	Pass
VHT80	MCS0	2	122	5610	16.07	15.74	18.92	23	3.29	6.	69	26.99	Pass
VHT80	MCS0	2	138	5690	16.31	15.90	19.12	23	3.29	6.	69	26.99	Pass

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

<FCC 14-30 CFR 15.407>

For mobile and portable client devices in the 5.15 – 5.25 GHz band, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

For the 5.25–5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

For Straddle Channel, According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, If the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

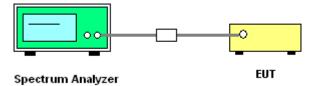
3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz.
- Number of points in sweep \geq 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.



- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.
- 3. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (a): Measure and sum the spectra across the outputs.

The total final Power Spectral Density is from a device with 2 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points, the spectrum value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 to obtain the value for the first frequency bin of the summed spectrum.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.4.1 Limit of Unwanted Emissions

 For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.3

Note: The following formula is used to convert the EIRP to field strength.

EIRP = E_{Meas} + 20log (d_{Meas}) -104.7

where

EIRP is the equivalent isotropically radiated power, in dBm

 $E_{\mbox{\tiny Meas}}$ is the field strength of the emission at the measurement distance, in $dB\mu V/m$

 $d_{\mbox{\tiny Meas}}$ is the measurement distance, in m

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

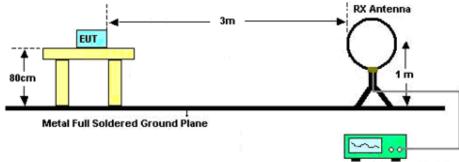
3.4.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold

(2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz

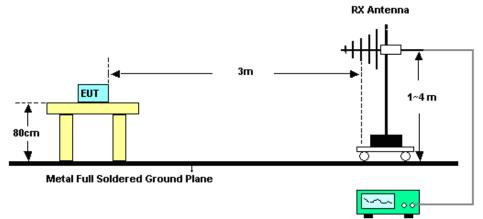
- RBW = 1 MHz
- VBW ≥ 3 MHz
- Detector = Peak
- Sweep time = auto
- Trace mode = max hold

(3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz

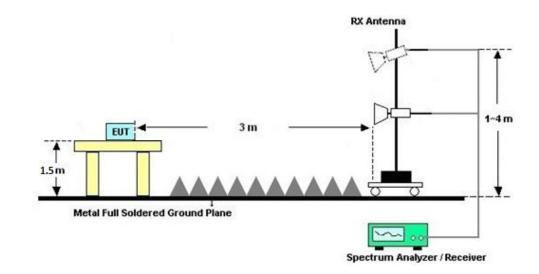

- RBW = 1 MHz
- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.

- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.4.4 Test Setup


For radiated emissions below 30MHz

Spectrum Analyzer / Receiver



For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.5 AC Conducted Emission Measurement

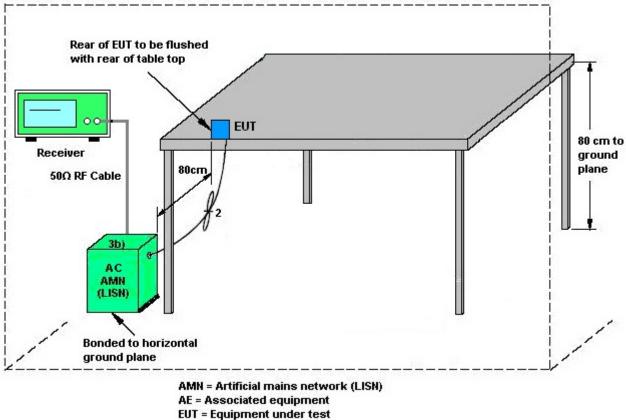
3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHZ)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.5.4 Test Setup

ISN = Impedance stabilization network

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.6 Antenna Requirements

3.6.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.6.3 Antenna Gain

<MIMO Modes > for 802.11a

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

		¥				
			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant. 1	Ant. 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band I	3.46	3.75	3.75	3.75	0.00	0.00
Band II	5.59	4.34	5.59	5.59	0.00	0.00
Band III	6.69	3.72	6.69	6.69	0.69	0.69

Power limit reduction = Composite gain - 6dBi, (min = 0) PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

<CDD Modes > for 802.11n/ac

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = GANT + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log(NANT/NSS=1) dB.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for NANT \leq 4.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with

GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain GANT is set equal to the antenna having the highest gain, i.e.,

F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01. The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi, The directional gain "DG" is calculated as following table.

<cdd modes=""></cdd>		•				
			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant. 1		Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band I	3.46	3.75	3.75	6.62	0.00	0.62
Band II	5.59	4.34	5.59	8.00	0.00	2.00
Band III	6.69	3.72	6.69	8.34	0.69	2.34

Power limit reduction = Composite gain - 6dBi, (min = 0) PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Nov. 01, 2020	Sep. 15, 2021 [~] Sep. 18, 2021	Oct. 31, 2021	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GHz	Jan. 07, 2021	Sep. 15, 2021 [~] Sep. 18, 2021	Jan. 06, 2022	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 07, 2021	Sep. 15, 2021 [~] Sep. 18, 2021	Jan. 06, 2022	Conducted (TH01-KS)
Temperature &hu midity chamber	Hongzhan	LP-150U	H2014011 440	-40~+150°C 20%~95%RH	Jul. 12, 2021	Sep. 15, 2021 [~] Sep. 18, 2021	Jul. 11, 2022	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY564000 04	3Hz~8.5GHz;Ma x 30dBm	Oct. 17, 2020	Sep. 10, 2021	Oct. 16, 2021	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44G,MAX 30dB	Apr. 13, 2021	Sep. 10, 2021	Apr. 12, 2022	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 01, 2020	Sep. 10, 2021	Oct. 31, 2021	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	Jun. 04, 2021	Sep. 10, 2021	Jun. 03, 2022	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218652	1GHz~18GHz	Apr. 24, 2021	Sep. 10, 2021	Apr. 23, 2022	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101115	18GHz~40GHz	Nov. 10, 2020	Sep. 10, 2021	Nov. 09, 2021	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Apr. 12, 2021	Sep. 10, 2021	Apr. 11, 2022	Radiation (03CH05-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 07, 2021	Sep. 10, 2021	Jan. 06, 2022	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2012228	1Ghz-18Ghz	Oct. 17, 2020	Sep. 10, 2021	Oct. 16, 2021	Radiation (03CH05-KS)
Amplifier	Keysight	83017A	MY532703 16	500MHz~26.5GH z	Oct. 17, 2020	Sep. 10, 2021	Oct. 16, 2021	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Sep. 10, 2021	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Sep. 10, 2021	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Sep. 10, 2021	NCR	Radiation (03CH05-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 21, 2021	Sep. 15, 2021	Apr. 20, 2022	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 17, 2020	Sep. 15, 2021	Oct. 16, 2021	Conduction (CO01-KS)
AC LISN	R&S	ENV216	100334	9kHz~30MHz	Oct. 17, 2020	Sep. 15, 2021	Oct. 16, 2021	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 17, 2020	Sep. 15, 2021	Oct. 16, 2021	Conduction (CO01-KS)

NCR: No Calibration Required.

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.94dB
of 95% (U = 2Uc(y))	2:9400

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB	
of 95% (U = 2Uc(y))	3.00B	

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB	
of 95% (U = 2Uc(y))	3.00B	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.00B

----- THE END ------

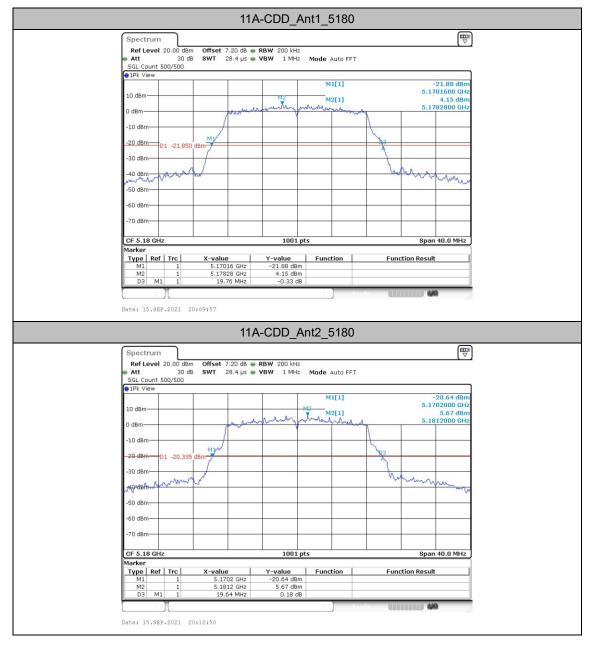
Appendix A. Conducted Test Results

26dB Emission Bandwidth Test Result

TestMode	Antenna	FC[MHz]	26dB EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	5180	19.760	5170.160	5189.920		PASS
	Ant2	5180	19.640	5170.200	5189.840		PASS
	Ant1	5200	20.120	5189.920	5210.040		PASS
	Ant2	5200	19.840	5190.160	5210.000		PASS
	Ant1	5240	20.200	5229.760	5249.960		PASS
	Ant2	5240	19.960	5230.040	5250.000		PASS
	Ant1	5260	19.800	5250.080	5269.880		PASS
	Ant2	5260	20.000	5250.080	5270.080		PASS
	Ant1	5280	19.840	5270.000	5289.840		PASS
11A-CDD	Ant2	5280	20.080	5269.920	5290.000		PASS
TIA-CDD	Ant1	5320	34.600	5302.720	5337.320		PASS
	Ant2	5320	19.840	5310.040	5329.880		PASS
	Ant1	5500	20.040	5489.960	5510.000		PASS
	Ant2	5500	19.920	5490.040	5509.960		PASS
	Ant1	5580	20.160	5570.000	5590.160		PASS
	Ant2	5580	20.000	5569.960	5589.960		PASS
	Ant1	5700	19.800	5690.200	5710.000		PASS
	Ant2	5700	19.720	5690.080	5709.800		PASS
	Ant1	5720	19.840	5710.080	5729.920		PASS
	Ant2	5720	19.600	5710.160	5729.760		PASS
	Ant1	5180	21.480	5168.960	5190.440		PASS
	Ant2	5180	20.240	5169.840	5190.080		PASS
	Ant1	5200	20.360	5189.840	5210.200		PASS
	Ant2	5200	20.320	5189.800	5210.120		PASS
	Ant1	5240	20.040	5229.960	5250.000		PASS
	Ant2	5240	20.320	5229.800	5250.120		PASS
11AC20MIMO	Ant1	5260	20.120	5249.880	5270.000		PASS
	Ant2	5260	20.200	5249.840	5270.040		PASS
	Ant1	5280	19.920	5270.040	5289.960		PASS
	Ant2	5280	20.120	5269.960	5290.080		PASS
	Ant1	5320	37.280	5301.360	5338.640		PASS
	Ant2	5320	20.080	5309.920	5330.000		PASS
	Ant1	5500	20.080	5489.960	5510.040		PASS

Sporton International (Kunshan) Inc. TEL: 86-512-57900158 FAX: 86-512-57900958 FCC ID : 2AEUPBHAZU001

Page Number Report Issued Date Sep. 18, 2021 Report Version : Rev. 01


: A1 of A105

	Ant2	5500	20.280	5489.760	5510.040	 PASS
	Ant1	5580	19.920	5570.000	5589.920	 PASS
	Ant2	5580	20.280	5569.800	5590.080	 PASS
	Ant1	5700	20.080	5689.920	5710.000	 PASS
	Ant2	5700	20.000	5690.000	5710.000	 PASS
	Ant1	5720	20.360	5709.840	5730.200	 PASS
	Ant2	5720	20.360	5709.800	5730.160	 PASS
	Ant1	5190	45.680	5169.360	5215.040	 PASS
	Ant2	5190	39.920	5169.920	5209.840	 PASS
	Ant1	5230	53.840	5196.960	5250.800	 PASS
	Ant2	5230	40.640	5209.600	5250.240	 PASS
	Ant1	5270	53.600	5237.120	5290.720	 PASS
	Ant2	5270	40.240	5249.840	5290.080	 PASS
	Ant1	5310	72.240	5274.640	5346.880	 PASS
44.4.0.400.400.400	Ant2	5310	39.920	5290.160	5330.080	 PASS
11AC40MIMO	Ant1	5510	40.800	5489.440	5530.240	 PASS
	Ant2	5510	39.680	5490.000	5529.680	 PASS
	Ant1	5550	54.640	5528.240	5582.880	 PASS
	Ant2	5550	40.000	5529.840	5569.840	 PASS
	Ant1	5670	41.200	5649.360	5690.560	 PASS
	Ant2	5670	40.160	5649.920	5690.080	 PASS
	Ant1	5710	41.120	5689.360	5730.480	 PASS
	Ant2	5710	40.160	5689.920	5730.080	 PASS
	Ant1	5210	80.480	5169.360	5249.840	 PASS
	Ant2	5210	80.320	5169.360	5249.680	 PASS
	Ant1	5290	102.080	5233.360	5335.440	 PASS
	Ant2	5290	79.680	5250.160	5329.840	 PASS
11AC80MIMO	Ant1	5530	79.520	5490.320	5569.840	 PASS
	Ant2	5530	79.840	5490.000	5569.840	 PASS
	Ant1	5610	111.680	5552.880	5664.560	 PASS
	Ant2	5610	116.160	5551.760	5667.920	 PASS
	Ant1	5690	79.840	5650.160	5730.000	 PASS

Test Graphs

