

FCC Test Report

Equipment	:	Wi-Fi enabled Video Doorbell
Brand Name	:	RING
Model No.	:	Video Doorbell Pro
FCC ID	:	2AEUPBHALP011
Standard	:	47 CFR FCC Part 15.247
Frequency	:	2400 MHz – 2483.5 MHz
Equipment Class	:	DTS
Applicant	:	Bot Home Automation, Inc. 1523 26th St, Santa Monica, CA 90404, USA
Manufacturer	:	Chicony Electronics (Dong Guan) Co.,Ltd. San Zhong Guan Li Qu, Qingxi Town, Dongguan City Guangdong 523651 China

The product sample received on Dec. 09, 2015 and completely tested on Jan. 08, 2016. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Kevin Liang / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	The Worst Case Power Setting Parameter	9
2.3	The Worst Case Measurement Configuration	10
2.4	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	12
3.1	AC Power-line Conducted Emissions	12
3.2	6dB Bandwidth	15
3.3	RF Output Power	17
3.4	Power Spectral Density	
3.5	Transmitter Radiated Bandedge Emissions	
3.6	Radiated Unwanted Emissions	
4	TEST EQUIPMENT AND CALIBRATION DATA	55

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications						
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
1.1.3	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 3.870MHz 29.77 (Margin 26.23dB) - QP 22.08 (Margin 23.92dB) - AV	FCC 15.207	Complied		
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 20M:6.25/ 40M:31.36	≥500kHz	Complied		
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm]: 19.18	Power [dBm]:30	Complied		
3.4	15.247(e)	Power Spectral Density	PSD [dBm/100kHz]: - 8.13	PSD [dBm/3kHz]:8	Complied		
3.5	15.247(d)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2399.82 MHz: 32.73 dB Restricted Bands [dBuV/m at 3m]: 2386.16 MHz 60.92 (Margin 13.08 dB) - PK 52.89 (Margin 1.11 dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied		
3.6	15.247(d)	Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 499.48 MHz 44.46 (Margin 1.54 dB) - QP	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied		

Revision History

Report No.	Version	Description	Issued Date
FR5N2432AC	Rev. 01	Initial issue of report	Mar. 10, 2016
FR5N2432AC	Rev. 02	 Original report to become invalid. Change equipment name from (Ring Video Doorbell Wired) to (Wi-Fi enabled Video Doorbell) Change model name from (Video Doorbell Wired) to (Video Doorbell Pro). 	Mar. 17, 2016

1 General Description

1.1 Information

1.1.1 Product Details

The equipment is Ring Video Doorbell Wired. There are two sample of EUT. The only difference is the appearance. For more detailed features description, please refer to the specifications or user's manual.

1.1.2 RF General Information

RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	RF Output Power (dBm)	
2400-2483.5	b	2412-2462	1-11 [11]	1	18.46	
2400-2483.5	g	2412-2462	1-11 [11]	1	19.18	
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	1	18.26	
2400-2483.5	n (HT40)	2422-2452	3-9 [7]	1	17.91	
	Note 1: RF output power specifies that Maximum Peak Conducted Output Power. Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.					

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.3 Antenna Information

	Antenna Category					
\boxtimes	Integral antenna (antenna permanently attached)					
	Temporary RF connector provided					
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.					
	External antenna (dedicated antennas)					
	Single power level with corresponding antenna(s).					
	Multiple power level and corresponding antenna(s).					
P						

	Antenna General Information					
No.	Ant. Cat.	Ant. Type	Gain _(dBi)			
1	1 Integral PIFA 2.29					

1.1.4 Type of EUT

	Identify EUT				
EUT	Serial Number	N/A			
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype			
	Type of EUT				
\square	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
] Other:				

1.1.5 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle				
	Operated normally mode for worst duty cycle				
\boxtimes	Operated test mode for worst duty cycle				
	Test Signal Duty Cycle (x)	Power Duty Factor [dB] – (10 log 1/x)			
\boxtimes	100.00% - IEEE 802.11b	0.00			
\boxtimes	97.31%- IEEE 802.11g	0.12			
\boxtimes	100.00%- IEEE 802.11n (HT20)	0.00			
\square	90.39%- IEEE 802.11n (HT40)	0.44			

1.1.6 EUT Operational Condition

Supply Voltage	AC mains	DC	
Type of DC Source	Transformer	From system	External DC adapter

1.2 Accessories and Support Equipment

Accessories Information				
Li-ion Battery	Brand Name	Fuji	Model Name	334038
LI-IOIT Ballery	Power Rating	3.7Vdc, 240mAh		

Reminder: Regarding to more detail and other information, please refer to user manual.

	Support Equipment - RF Conducted					
No.	No. Equipment Brand Name Model Name FCC ID					
1	Notebook	DELL	E5540	DoC		
2	Adapter for Notebook	DELL	HA65NM130	DoC		

	Support Equipment - AC Conduction and Radiated Emission							
No.	Equipment	Brand Name	Model Name	FCC ID				
1	Transformer	TRIAD	VPL16-1600	DoC				
2	Test Fixture	-	-	-				

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 558074 D01 v03r04
- FCC KDB 662911 D01v02r01

1.4 Testing Location Information

				Testing	Location		
\boxtimes	HWA YA ADD : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.						
		TEL	:	886-3-327-3456 FA	X : 886-3-327-0973		
				Test Site Registrati	on Number: 636805		
	Test Cond	ition		Test Site No.	Test Engineer	Test Environment	
	AC Condu	ction		CO04-HY	Anthony	24°C / 57%	
	RF Conducted TH01-HY Howard 22.5°C / 65%						
F	Radiated Em	nission		03CH09-HY	Terry	24.2°C / 57%	

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Ν	leasurement Uncertainty	
Test Item		Uncertainty
AC power-line conducted emissions		±2.3 dB
Emission bandwidth, 6dB bandwidth	±0.6 %	
RF output power, conducted	±0.1 dB	
Power density, conducted	±0.6 dB	
Unwanted emissions, conducted	9 – 150 kHz	±0.4 dB
	0.15 – 30 MHz	±0.4 dB
	30 – 1000 MHz	±0.6 dB
	1 – 18 GHz	±0.5 dB
	18 – 40 GHz	±0.5 dB
40 – 200 GHz		N/A
All emissions, radiated	9 – 150 kHz	±2.5 dB
	0.15 – 30 MHz	±2.3 dB
	30 – 1000 MHz	±2.6 dB
	1 – 18 GHz	±3.6 dB
	18 – 40 GHz	±3.8 dB
	40 – 200 GHz	N/A
Temperature		±0.8 °C
Humidity		±5 %
DC and low frequency voltages		±0.9%
Time		±1.4 %
Duty Cycle		±0.6 %

2 Test Configuration of EUT

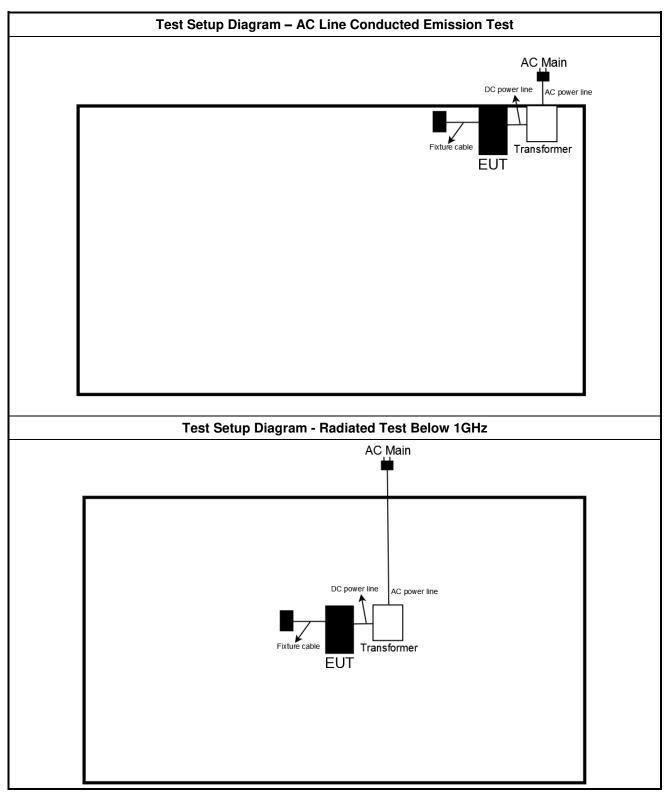
2.1 The Worst Case Modulation Configuration

	Worst Modulation Used f	or Conformance Testing				
Modulation Mode	Transmit Chains (N_{TX})	Data Rate / MCS	Worst Data Rate / MCS			
11b,1-11Mbps	1	1-11 Mbps	1 Mbps			
11g,6-54Mbps	1	6-54 Mbps	6 Mbps			
HT20, M0-7	1	MCS 0-7	MCS 0			
HT40, M0-7	1	MCS 0-7	MCS 0			
Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). The EUT supports HT20 and HT40. Worst modulation mode of Guard Interval (GI) is 800ns. Note 2: Modulation modes consist below configuration: 11b: IEEE 802.11b, 11g: IEEE 802.11g, HT20/HT40: IEEE 802.11n Note 3: RF output power specifies that Maximum Peak Conducted Output Power.						

2.2 The Worst Case Power Setting Parameter

The We	The Worst Case Power Setting Parameter (2400-2483.5MHz band)						
Test Software Version							
Modulation Mode	N _{TX}		NCB: 20MHz	2		2	
		2412	2437	2462	2422	2437	2452
11b	1	14	Default	14	-	-	-
11g	1	13	Default	13	-	-	-
HT20	1	12.5	Default	12.5	-	-	-
HT40	1	-	-	-	39	50.5	45

2.3 The Worst Case Measurement Configuration


Th	e Worst Case Mode for Following Conformance Tests
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz
Operating Mode	Operating Mode Description
1	Transmit Mode

Tł	The Worst Case Mode for Following Conformance Tests				
Tests Item	RF Output Power, Power Spectral Density, 6 dB Bandwidth				
Test Condition	Conducted measurement at transmit chains				
Modulation Mode	11b, 11g, HT20, HT40				

Th	e Worst Case Mode for Fo	bllowing Conformance Te	sts				
Tests Item	Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions						
Test Condition	Radiated measurement						
	EUT will be placed in	fixed position.					
User Position	EUT will be placed in mobile position and operating multiple positions. E shall be performed three orthogonal planes.						
		EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions.					
Operating Mode	Operating Mode Description	n					
Radiated Emissions	1. Transmit Mode						
Modulation Mode	11b, 11g, HT20, HT40						
	X Plane	Y Plane	Z Plane				
Orthogonal Planes of EUT							
Worst Planes of EUT	V						

2.4 Test Setup Diagram

Transmitter Test Result 3

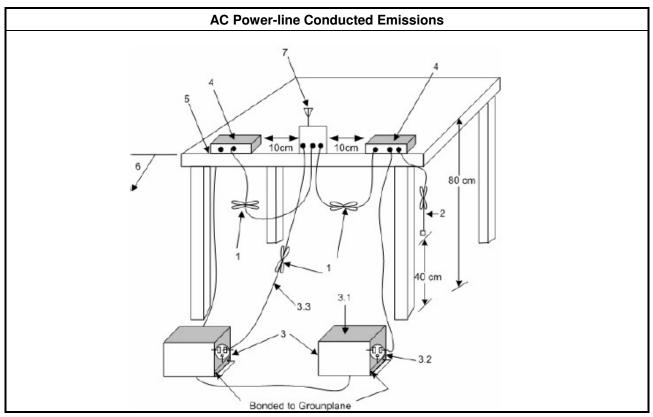
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz)	Quasi-Peak	Average			
0.15-0.5	66 - 56 *	56 - 46 *			
0.5-5	56	46			
5-30	60	50			
Note 1: * Decreases with the logarithm c	of the frequency				

creases with the logarithm of the frequency

3.1.2 Measuring Instruments

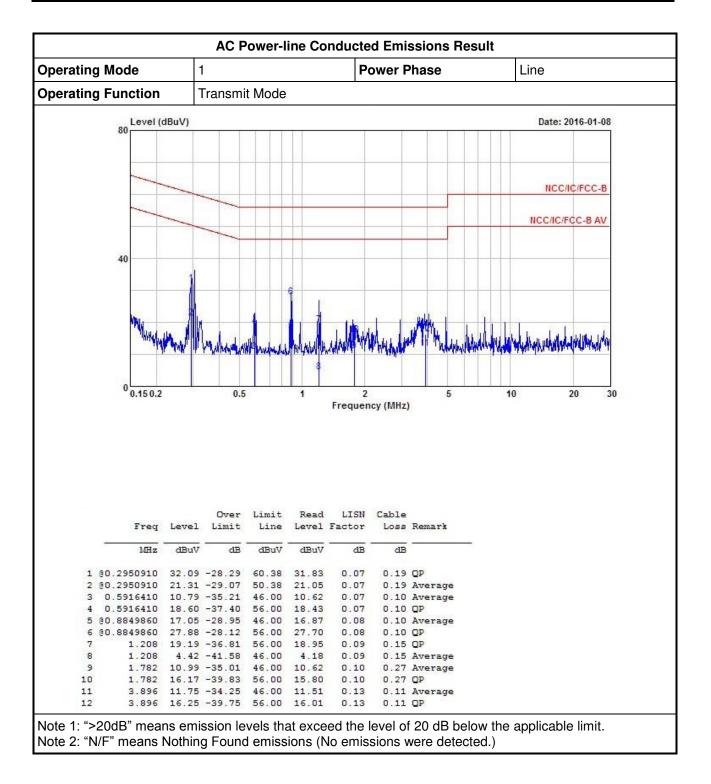

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



Operating Mode		1			P	ower F	Phase		Neutra	al
perating Function	٦	Transmit Mode								
Level (dBuV)) Date: 2016-01-08								
							0 0 0			
									NC	C/IC/FCC-B
-	1									
		-							NCC/I	C/FCC-B AV
40	1						0.0			
	1			a			11			
4			1	1 a		9	1121			
May	1	a jului			MA	the l	MARY 1	Lu M	M. J. J. M.	hilds he was
	w.M.	Variation	AN Allardan	(VILAN W	WAR	"MANNY	(hat start	h irre the halfs	had in the second	and half have a second
				1						
0.150.2										
		0.5		4	2	- h	-	- 1. I.	0	20 20
		0.5		1	2 Frequen	cy (MHz)	5	1	0	20 30
		0.5		1	80000 C 10000 C	cy (MHz)			0	20 30
		0.5		1	80000 C 10000 C	cy (MHz)		1	0	20 30
		0.5		1	80000 C 10000 C	cy (MHz)			0	20 30
		0.5		1	80000 C 10000 C	cy (MHz)			0	20 30
		0.5		1	80000 C 10000 C	cy (MHz)			0	20 30
		Over	Limit	Read	Frequen	Cable			0	20 30
Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss)		0	20 30
Freq MHz	Level dBuV	Over Limit dB	Limit Line dBuV	Read Level dBuV	Frequen	Cable Loss dB	Remark		0	20 30
Freq MHz 1 80.2990790	Level dBuV 32.14	Over Limit dB -28.13	Limit Line dBuV 60.27	Read Level dBuV 31.89	LISN Factor dB 0.07	Cable Loss dB 0.18	Remark 		0	20 30
Freq MHz 1 @0.2990790 2 0.2990790 3 0.5923130	Level dBuV 32.14 18.14 12.80	Over Limit dB -28.13 -32.13 -33.20	Limit Line dBuV 60.27 50.27 46.00	Read Level dBuV 31.89 17.89 12.62	LISN Factor dB 0.07	Cable Loss dB 0.18 0.18	Remark		0	20 30
Freq MHz 1 @0.2990790 2 0.2990790 3 0.5923130 4 0.5923130	Level dBuV 32.14 18.14 12.80 19.36	Over Limit dB -28.13 -32.13 -33.20 -36.64	Limit Line dBuV 60.27 50.27 46.00 56.00	Read Level 31.89 17.89 12.62 19.18	LISN Factor dB 0.07 0.07 0.08 0.08	Cable Loss dB 0.18 0.18 0.10 0.10	Remark OP Average Average QP		0	20 30
Freq MHz 1 @0.2990790 2 0.2990790 3 0.5923130 4 0.5923130 5 @0.8864870	Level dBuV 32.14 18.14 12.80 19.36 17.32	Over Limit dB -28.13 -32.13 -33.20 -36.64 -28.68	Limit Line dBuV 60.27 50.27 46.00 56.00 46.00	Read Level 31.89 17.89 12.62 19.18 17.13	LISN Factor dB 0.07 0.08 0.08 0.08 0.09	Cable Loss dB 0.18 0.18 0.10 0.10 0.10	Remark QP Average Average QP Average		0	20 30
Freq MHz 1 @0.2990790 2 0.2990790 3 0.5923130 4 0.5923130	Level dBuV 32.14 18.14 12.80 19.36 17.32 28.16	Over Limit dB -28.13 -32.13 -33.20 -36.64 -28.68	Limit Line dBuV 60.27 50.27 46.00 56.00 46.00 56.00	Read Level 31.89 17.89 12.62 19.18 17.13	LISN Factor dB 0.07 0.07 0.08 0.08	Cable Loss dB 0.18 0.18 0.10 0.10 0.10 0.10	Remark QP Average Average QP Average		0	20 30
Freq MHz 1 @0.2990790 2 0.2990790 3 0.5923130 4 0.5923130 5 @0.8864870 6 @0.8864870 6 @0.8864870 7 1.210	Level dBuV 32.14 18.14 19.36 17.32 28.16 5.63	Over Limit dB -28.13 -32.13 -32.13 -33.20 -36.64 -28.68 -27.84	Limit Line dBuV 60.27 50.27 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 31.89 17.89 12.62 19.18 17.13 27.97 5.39	LISN Factor dB 0.07 0.07 0.08 0.08 0.09 0.09	Cable Loss dB 0.18 0.18 0.10 0.10 0.10 0.10	Remark OP Average Average OP Average OP Average		0	20 30
Freq MHz 1 80.2990790 2 0.2990790 3 0.5923130 4 0.5923130 5 80.8864870 6 80.8864870 6 80.8864870 7 1.210 8 1.210 9 2.270	Level dBuV 32.14 18.14 12.80 19.36 17.32 28.16 5.63 21.45 21.55	Over Limit dB -28.13 -32.13 -33.20 -36.64 -28.68 -27.84 -40.37 -34.55 -34.45	Limit Line dBuV 60.27 50.27 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 31.89 17.89 12.62 19.18 17.13 27.97 5.39 21.21 21.18	LISN Factor dB 0.07 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09	Cable Loss dB 0.18 0.10 0.10 0.10 0.15 0.15 0.26	Remark OP Average Average OP Average OP QP QP		0	20 30
Freq MHz 1 @0.2990790 2 0.2990790 3 0.5923130 4 0.5923130 5 @0.8864870 6 @0.8864870 7 1.210 8 1.210 9 2.270 10 2.270	Level dBuV 32.14 18.14 12.80 19.36 17.32 28.16 5.63 21.45 21.55 13.88	Over Limit dB -28.13 -32.13 -33.20 -36.64 -28.68 -27.84 -28.68 -27.84 -40.37 -34.55 -34.45 -32.12	Limit Line dBuV 60.27 50.27 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 31.89 17.89 12.62 19.18 17.13 27.97 5.39 21.21 21.18 13.51	LISN Factor dB 0.07 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.11 0.11	Cable Loss dB 0.18 0.10 0.10 0.10 0.15 0.15 0.26 0.26	Remark QP Average QP Average QP Average QP Average QP Average		0	20 30
Freq MHz 1 @0.2990790 2 0.2990790 3 0.5923130 4 0.5923130 5 @0.8864870 6 @0.8864870 7 1.210 8 1.210	Level dBuV 32.14 18.14 12.80 19.36 17.32 28.16 5.63 21.45	Over Limit -28.13 -32.13 -33.20 -36.64 -28.68 -27.84 -40.37 -34.55	Limit Line dBuV 60.27 50.27 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 31.89 17.89 12.62 19.18 17.13 27.97 5.39 21.21	LISN Factor dB 0.07 0.07 0.08 0.09 0.09 0.09 0.09 0.09	Cable Loss dB 0.18 0.10 0.10 0.10 0.10 0.10 0.15 0.15	Remark OP Average OP Average OP Average OP		0	20 31
Freq MHz 1 @0.2990790 2 0.2990790 3 0.5923130 4 0.5923130 5 @0.8864870 6 @0.8864870 6 @0.8864870 7 1.210 8 1.210 9 2.270 10 2.270 11 @ 3.870	Level dBuV 32.14 18.14 12.80 19.36 17.32 28.16 5.63 21.45 21.55 13.88 29.77	Over Limit dB -28.13 -32.13 -33.20 -36.64 -28.68 -27.84 -40.37 -34.55 -34.45	Limit Line dBuV 60.27 50.27 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 31.89 17.89 12.62 19.18 17.13 27.97 5.39 21.21 21.18 13.51	LISN Factor dB 0.07 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09	Cable Loss dB 0.18 0.10 0.10 0.10 0.10 0.15 0.26 0.26 0.21	Remark QP Average QP Average QP Average QP Average QP Average		0	20 30

3.1.5 Test Result of AC Power-line Conducted Emissions

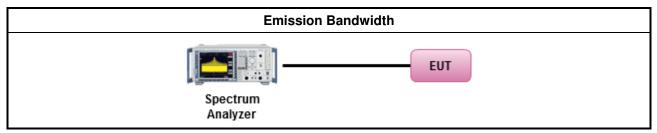
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

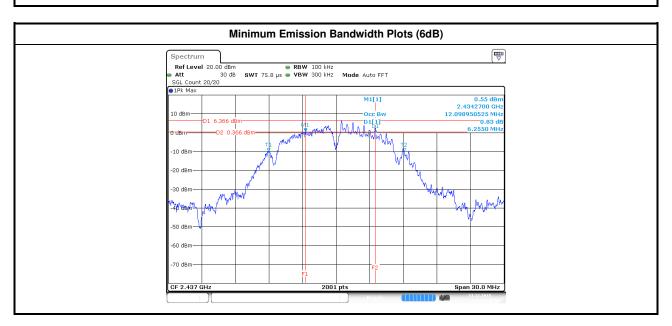
 \boxtimes 6 dB bandwidth ≥ 500 kHz.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

		Test Method
\boxtimes	For	the emission bandwidth shall be measured using one of the options below:
	\boxtimes	Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.
		Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
\boxtimes	For	conducted measurement.
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain 1.
		The EUT supports diversity transmitting and the results on transmit chain port 2 is the worst case.
		The EUT supports multiple transmit chains using options given below:
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

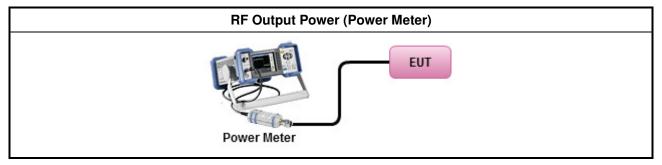
			Emission Bandwidth Result	
Condit	ion		Emission Ba	ndwidth (MHz)
Modulation Mode		Freq.	99% Bandwidth	6dB Bandwidth
Modulation Mode	Ν _{τχ}	(MHz)	Chain Port 1	Chain Port 1
11b	1	2412	12.11	8.08
11b	1	2437	12.09	6.25
11b	1	2462	12.05	6.82
11g	1	2412	16.31	14.85
11g	1	2437	16.32	16.33
11g	1	2462	16.32	16.27
HT20	1	2412	17.52	17.56
HT20	1	2437	17.54	17.59
HT20	1	2462	17.52	17.58
HT40	1	2422	35.86	34.72
HT40	1	2437	35.94	31.36
HT40	1	2452	35.94	35.60
Limi	t		N/A	≥500 kHz
Resu	lt		Com	plied

3.3 RF Output Power

3.3.1 RF Output Power Limit

		RF Output Power Limit
Max	cimu	m Peak Conducted Output Power or Maximum Conducted Output Power Limit
\boxtimes	240	0-2483.5 MHz Band:
	\square	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$
	\square	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
		Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Smart antenna system (SAS):
		Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8 \text{dBm}$
e.i.r	.p. P	ower Limit:
\square	240	0-2483.5 MHz Band
	\square	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)
		Point-to-point systems (P2P): $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX}]) dBm$
		Smart antenna system (SAS)
		Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
		Overlap beam: $P_{eirp} \leq MAX(36, P_{Out} + G_{TX}) dBm$
		Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method
\boxtimes	Maximum Peak Conducted Outpu	It Power
	Refer as FCC KDB 558074,	clause 9.1.1 (RBW ≥ EBW method).
	Refer as FCC KDB 558074,	clause 9.1.2 (peak power meter for VBW \geq DTS BW).
\square	Maximum Conducted Output Pow	er
	[duty cycle ≥ 98% or external vide	o / power trigger]
	Refer as FCC KDB 558074,	clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).
	Refer as FCC KDB 558074,	clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)
	duty cycle < 98% and average ov	er on/off periods with duty factor
	Refer as FCC KDB 558074,	clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).
	Refer as FCC KDB 558074,	clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
	RF power meter and average over	r on/off periods with duty factor or gated trigger
	Refer as FCC KDB 558074,	clause 9.2.3 Method AVGPM (using an RF average power meter).
\square	For conducted measurement.	
	The EUT supports single training	nsmit chain and measurements performed on this transmit chain 1.
	The EUT supports diversity t	ransmitting and the results on transmit chain port 2 is the worst case.
	Refer as FCC KDB 6629	ransmit chains using options given below: 11, In-band power measurements. Using the measure-and-sum smit ports individually. Sum the power (in linear power units e.g., mW) Il sample and save them.
	$\mathbf{P}_{\text{total}} = \mathbf{P}_1 + \mathbf{P}_2 + \dots + \mathbf{P}_n$	IRP calculation could be following as methods: /] and transfer to log unit [dBm])

3.3.4 Test Setup

		М	aximum Peak	Conducted O	utput Power Res	sult		
Condi	tion				RF Output P	ower (dBm)		
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit
11b	1	2412	16.57	16.57	30.00	2.29	18.86	36.00
11b	1	2437	18.46	18.46	30.00	2.29	20.75	36.00
11b	1	2462	17.02	17.02	30.00	2.29	19.31	36.00
11g	1	2412	17.49	17.49	30.00	2.29	19.78	36.00
11g	1	2437	19.18	19.18	30.00	2.29	21.47	36.00
11g	1	2462	17.90	17.90	30.00	2.29	20.19	36.00
HT20	1	2412	16.46	16.46	30.00	2.29	18.75	36.00
HT20	1	2437	18.26	18.26	30.00	2.29	20.55	36.00
HT20	1	2462	17.04	17.04	30.00	2.29	19.33	36.00
HT40	1	2422	14.61	14.61	30.00	2.29	16.90	36.00
HT40	1	2437	17.91	17.91	30.00	2.29	20.20	36.00
HT40	1	2452	16.74	16.74	30.00	2.29	19.03	36.00
Resu	ult			·	Com	plied		

3.3.5 Test Result of Maximum Peak Conducted Output Power

3.3.6 Test Result of Maximum Conducted Output Power

			Maximum Co	nducted Outp	ut Power Resul	t		
Condi	tion				RF Output P	ower (dBm)		
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit
11b	1	2412	13.54	13.54	30.00	2.29	15.83	36.00
11b	1	2437	15.50	15.50	30.00	2.29	17.79	36.00
11b	1	2462	14.04	14.04	30.00	2.29	16.33	36.00
11g	1	2412	12.54	12.54	30.00	2.29	14.83	36.00
11g	1	2437	14.19	14.19	30.00	2.29	16.48	36.00
11g	1	2462	12.93	12.93	30.00	2.29	15.22	36.00
HT20	1	2412	11.42	11.42	30.00	2.29	13.71	36.00
HT20	1	2437	13.19	13.19	30.00	2.29	15.48	36.00
HT20	1	2462	11.87	11.87	30.00	2.29	14.16	36.00
HT40	1	2422	9.61	9.61	30.00	2.29	11.90	36.00
HT40	1	2437	12.96	12.96	30.00	2.29	15.25	36.00
HT40	1	2452	11.72	11.72	30.00	2.29	14.01	36.00
Resu	ılt			·	Com	olied	•	

Power Spectral Density 3.4

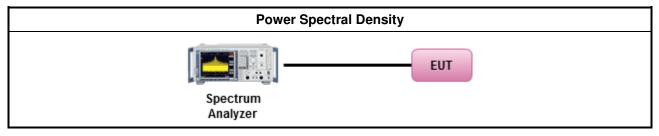
3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

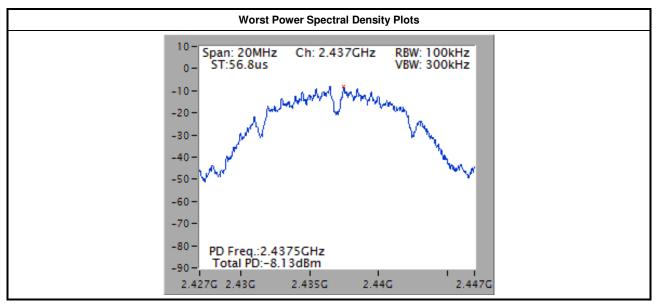
3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.4.3 **Test Procedures**

Г

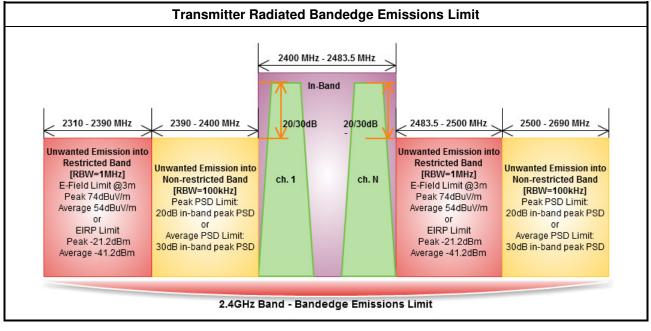
		Test Method
\boxtimes	outp the c conc of th	k power spectral density procedures that the same method as used to determine the conducted out power. If maximum peak conducted output power was measured to demonstrate compliance to output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum ducted output power was measured to demonstrate compliance to the output power limit, then one ne average PSD procedures shall be used, as applicable based on the following criteria (the peak 0 procedure is also an acceptable option).
	\square	Refer as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz;detector=peak).
	[duty	y cycle ≥ 98% or external video / power trigger]
	\square	Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 10.4 Method AVGPSD-1 Alt. (slow sweep speed)
	duty	r cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)
\square	For	conducted measurement.
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain 1.
		The EUT supports diversity transmitting and the results on transmit chain port 2 is the worst case.
	\square	The EUT supports multiple transmit chains using options given below:
		☑ Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.



3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

			Power Spectral Density Result	
Condi	tion		Power Spec	tral Density
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain (dBm/100kHz)	PSD Limit (dBm/3kHz)
11b	1	2412	-11.67	8.00
11b	1	2437	-8.13	8.00
11b	1	2462	-11.56	8.00
11g	1	2412	-15.36	8.00
11g	1	2437	-14.24	8.00
11g	1	2462	-15.43	8.00
HT20	1	2412	-17.43	8.00
HT20	1	2437	-15.76	8.00
HT20	1	2462	-17.22	8.00
HT40	1	2422	-19.56	8.00
HT40	1	2437	-18.05	8.00
HT40	1	2452	-19.37	8.00
Resu	ult		Com	plied



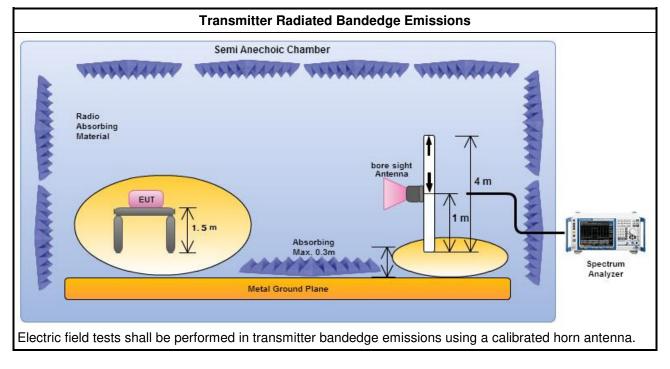
Note: 15.2dBm has been offset for 3kHz data.

3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.5.3 Test Procedures

		Test Method
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square		er as ANSI C63.10, clause 6.10 bandedge testing shall be performed at the lowest frequency anel and highest frequency channel within the allowed operating band.
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
		Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
		□ Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
\square	For	the transmitter bandedge emissions shall be measured using following options below:
		Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
		Refer as ANSI C63.10, clause 6.10 for band-edge testing.
	\square	Refer as ANSI C63.10, clause 6.10.6.2 for marker-delta method for band-edge measurements.
\boxtimes		radiated measurement, refer as FCC KDB 558074, clause 12.2.7 and ANSI C63.10, clause 6.6. distance is 3m.

3.5.4 Test Setup

3.5.5 Test Result of Transmitter Radiated Bandedge Emissions

Modulation	N _{TX}	Test Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Pol.
11b	1	2412	102.33	2397.58	64.58	37.75	20	Н
11b	1	2462	104.27	2507.00	47.05	57.22	20	Н
11g	1	2412	97.15	2397.36	63.51	33.64	20	Н
11g	1	2462	99.81	2501.20	50.28	49.53	20	Н
HT20	1	2412	96.91	2399.82	64.18	32.73	20	Н
HT20	1	2462	97.93	2503.60	49.93	48.00	20	Н
HT40	1	2422	92.19	2390.78	54.98	37.21	20	Н
HT40	1	2452	96.65	2500.64	49.40	47.25	20	Н

2400-2483.5MHz Transmitter Radiated Bandedge Emissions (Restricted Band) Freq. Measure Level Limit Freq. Level Limit Modulation Freq. (MHz) (dBuV/m) (dBuV/m) (MHz) (dBuV/m) Distance (dBuV/m) Pol. N_{TX} Mode (MHz) PΚ AV (m) PΚ PΚ AV AV 11b 1 2412 3 2386.83 60.92 74 2386.16 52.89 54 Н 11b 1 2462 3 61.35 74 Н 2484.20 2487.60 52.71 54 11g 1 2412 3 2389.52 72.51 74 2389.97 52.85 54 Н 2462 2483.40 71.97 74 2483.40 52.86 Н 11g 1 3 54 HT20 2412 3 2389.97 71.61 74 2389.97 52.72 54 Н 1 HT20 Н 1 2462 3 2485.40 71.86 74 2483.80 52.02 54 HT40 1 2422 3 2388.14 67.34 74 2389.99 52.49 54 Н HT40 2452 74 52.84 54 Н 1 3 2484.56 71.53 2483.60 Note 1: Measurement worst emissions of receive antenna polarization.

3.6 Radiated Unwanted Emissions

3.6.1 Radiated Unwanted Emissions Limit

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

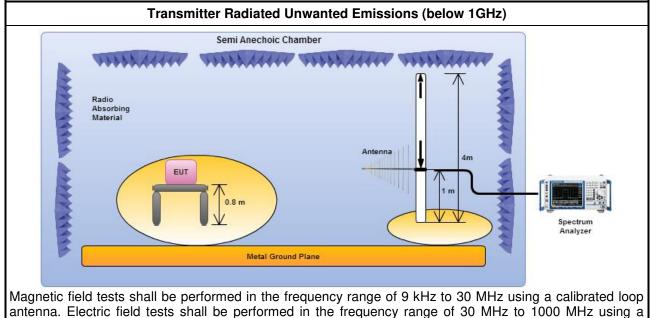
Un-restricted Band	Emissions Limit
RF output power procedure	Limit (dB)
Peak output power procedure	20
Average output power procedure	30
Note 1: If the peak output power procedure is used to m	easure the fundamental emission power to

demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

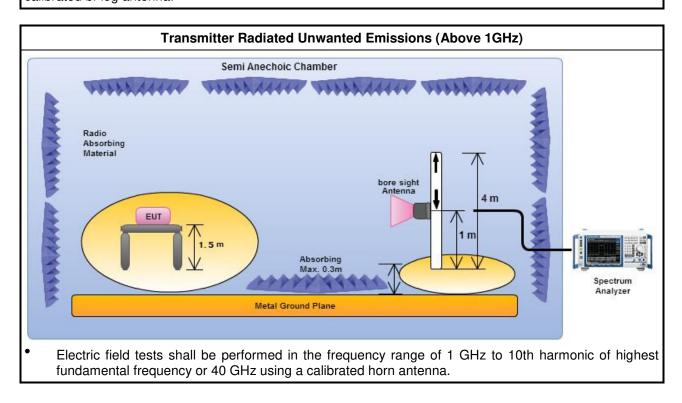
Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

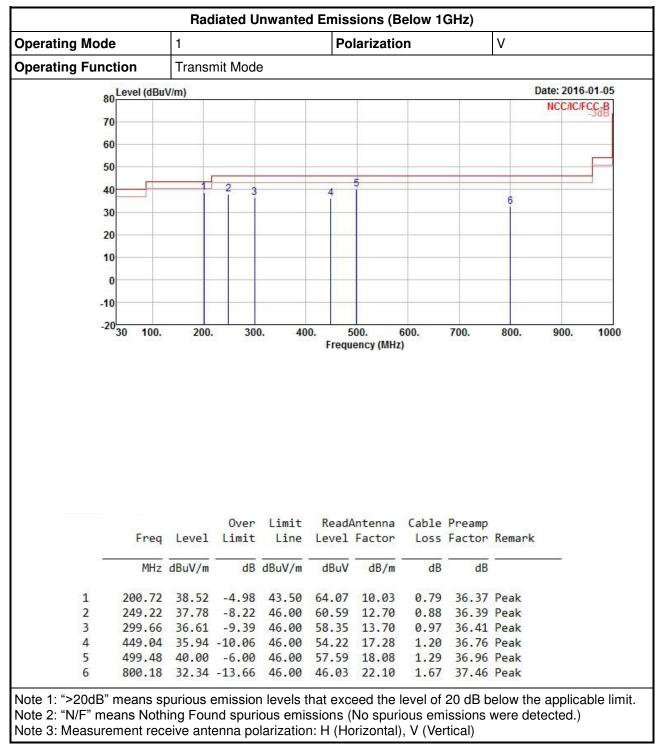
Refer a test equipment and calibration data table in this test report.



3.6.3 Test Procedures

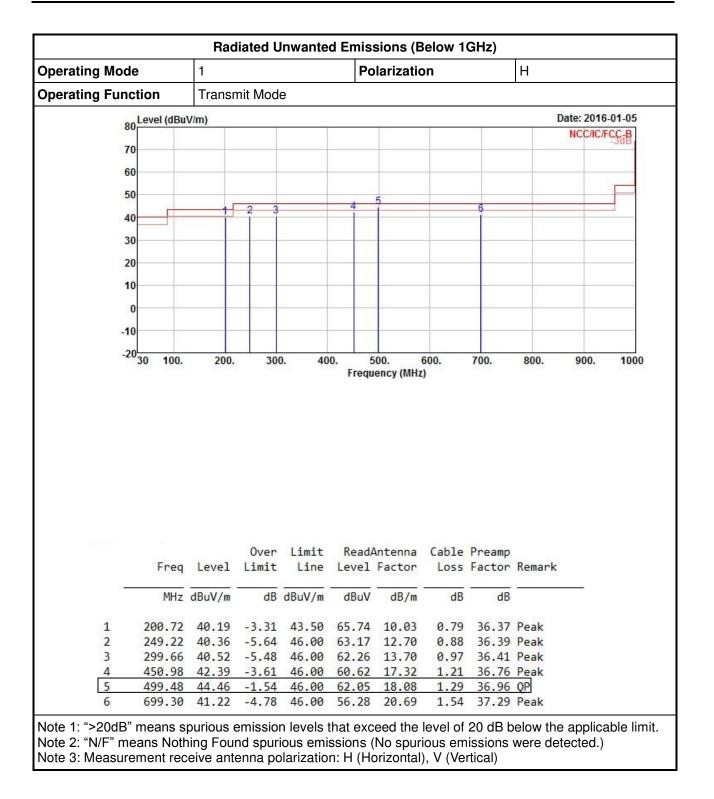

		Test Method
	perfe equi extra dista	asurements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement ipment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density asurements).
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	\square	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
		Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
		□ Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
		Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.
\boxtimes	For	radiated measurement, refer as FCC KDB 558074, clause 12.2.7.
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
	\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.
	\boxtimes	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.
\boxtimes	The	any unwanted emissions level shall not exceed the fundamental emission level.
\boxtimes		implitude of spurious emissions that are attenuated by more than 20 dB below the permissible value no need to be reported.

3.6.4 Test Setup

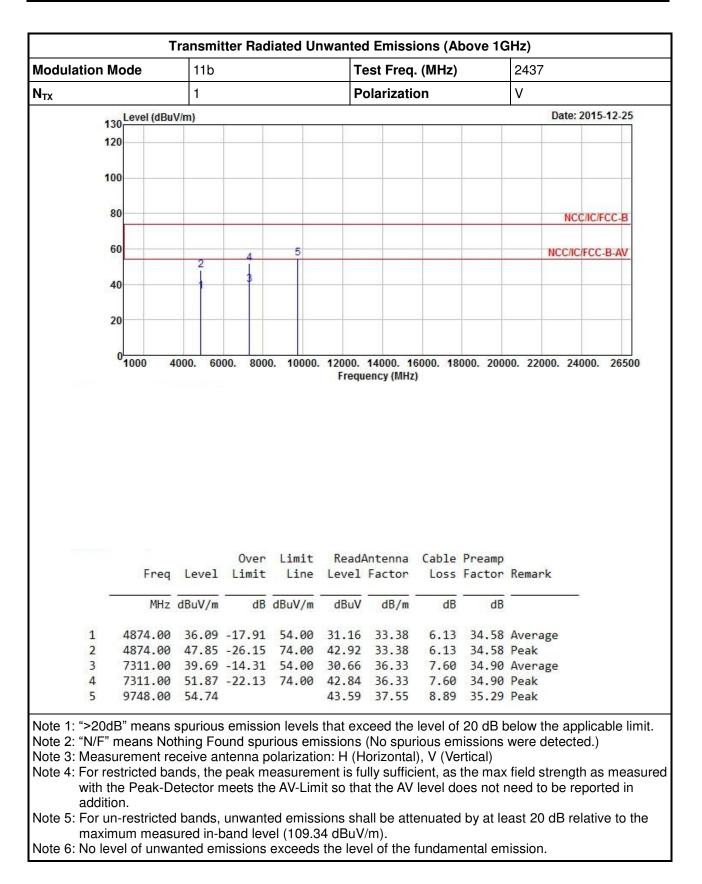

calibrated bi-log antenna.

3.6.5 Radiated Unwanted Emissions (Below 30MHz)

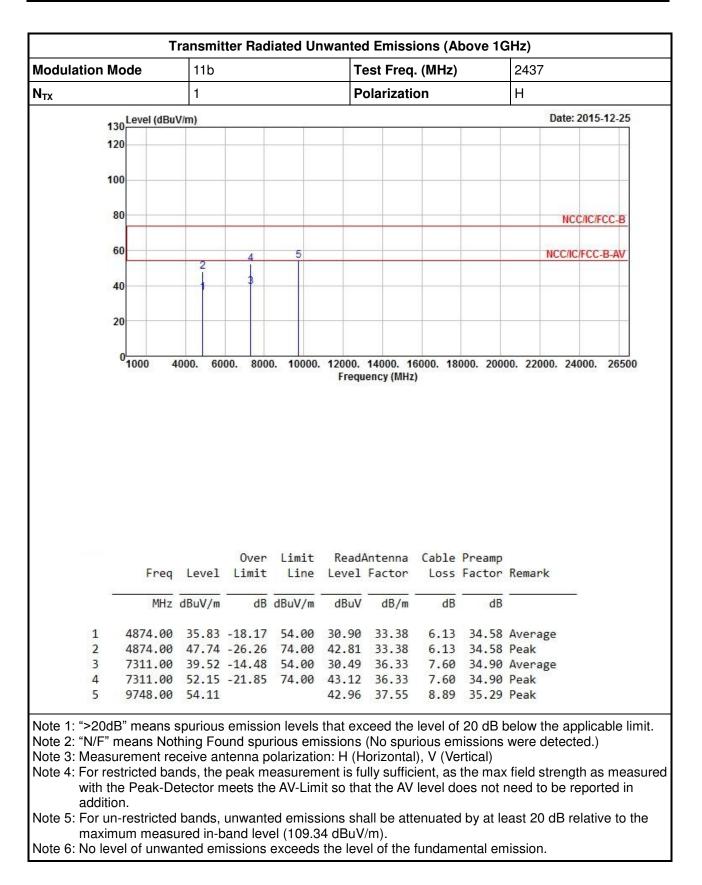
All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

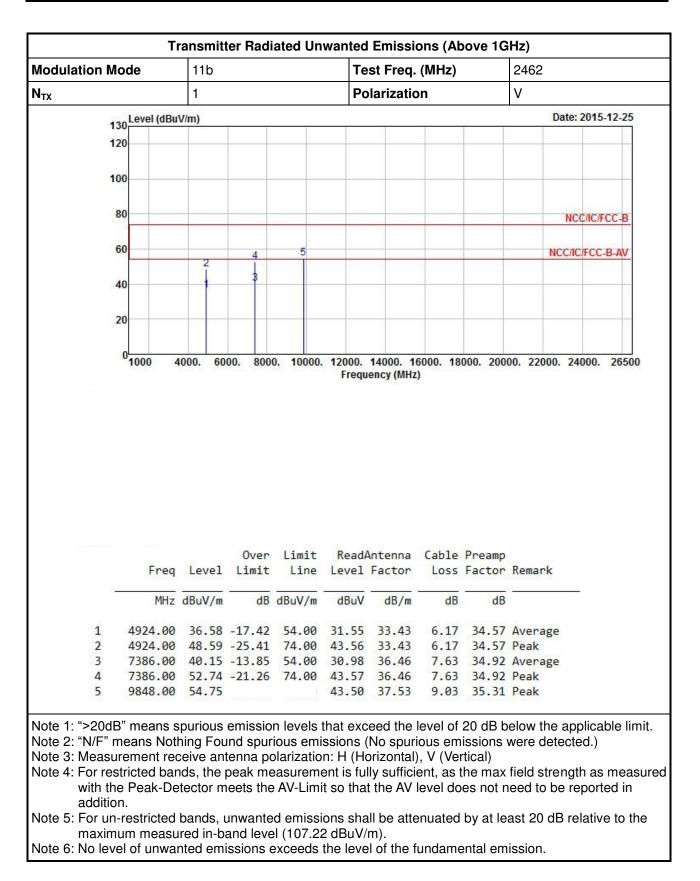


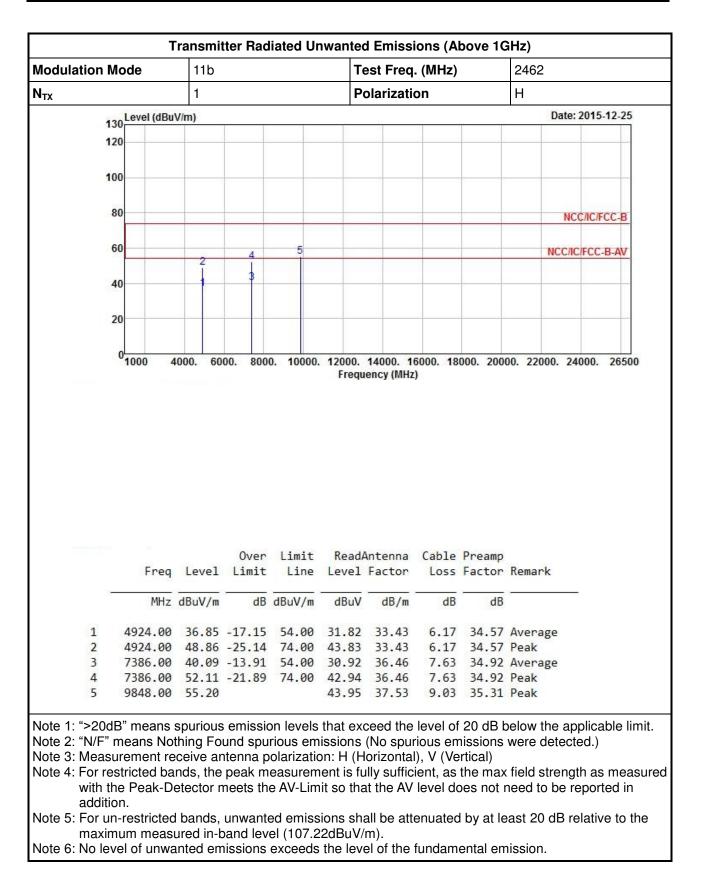
3.6.6 Radiated Unwanted Emissions (Below 1GHz)

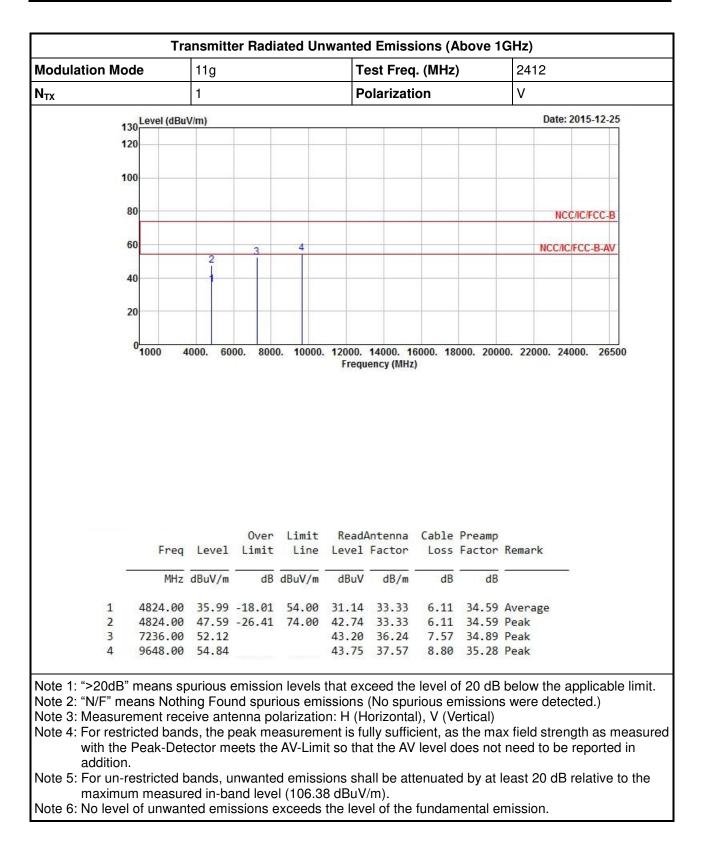

MAAIIISTIANI	Mode	11b				l Emissie	•		<i>.</i> 2412			
Modulation I	WOUE	1				olarizatio	. ,		V			
		-					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		75	Data: 1	045 4	2 25
13	30 Level (dBu\	//m)							3	Date: 2	2015-12	2-25
12	20											
10	00											
8	во									NCC	Nerec	
							1			NUC	C/IC/FC(D
6	50		3	4	-				1		FCC-B-	AV
		2	Î									2
4	40											-103
	20											
4	20											
			Over	Limit	ReadA	Antenna	Cable	Preamp				
	Freq	Level				Antenna Factor		Preamp Factor	Remark			
-	100000	Level dBuV/m	Limit		Level	Factor			Remark			
1	MHz	dBuV/m	Limit dB	Line dBuV/m	Level dBuV	Factor 	Loss dB	Factor dB		1 10		
1 2	MHz 4824.00	dBuV/m 36.78	Limit dB -17.22	Line dBuV/m 54.00	Level dBuV 31.93	Factor dB/m 33.33	Loss dB 6.11	Factor dB 34.59	Averag	1 10		
1 2 3	MHz	dBuV/m 36.78 48.61	Limit dB -17.22	Line dBuV/m 54.00	Level dBuV 31.93 43.76	Factor dB/m 33.33	Loss dB 6.11 6.11 7.57	Factor dB 34.59 34.59 34.89	Averag Peak Peak	1 10		
2	MHz 4824.00 4824.00	dBuV/m 36.78 48.61 51.32	Limit dB -17.22	Line dBuV/m 54.00	Level dBuV 31.93 43.76 42.40	Factor dB/m 33.33 33.33	Loss dB 6.11 6.11 7.57	Factor dB 34.59 34.59	Averag Peak Peak	1 10		
2 3 4	MHz 4824.00 4824.00 7236.00 9648.00	dBuV/m 36.78 48.61 51.32 54.89	Limit 	Line dBuV/m 54.00 74.00	Level dBuV 31.93 43.76 42.40 43.80	Factor dB/m 33.33 33.33 36.24 37.57	Loss dB 6.11 6.11 7.57 8.80	Factor dB 34.59 34.59 34.89 35.28	Averag Peak Peak Peak	e		limi
2 3 4 Note 1: ">200 Note 2: "N/F"	MHz 4824.00 4824.00 7236.00 9648.00 dB" means means No	dBuV/m 36.78 48.61 51.32 54.89 spurious thing Fo	Limit 	Line dBuV/m 54.00 74.00 on levels rious em	Level dBuV 31.93 43.76 42.40 43.80 that exc issions	Factor dB/m 33.33 33.33 36.24 37.57 ceed the (No spuri	Loss dB 6.11 6.11 7.57 8.80 level of ious em	Factor dB 34.59 34.59 34.89 35.28 20 dB be issions v	Averag Peak Peak Peak Peak	e appli		limi
2 3 4 Note 1: ">200 Note 2: "N/F" Note 3: Meas	MHz 4824.00 4824.00 7236.00 9648.00 dB" means means No surement re	dBuV/m 36.78 48.61 51.32 54.89 spurious thing Fo eceive ar	Limit 	Line dBuV/m 54.00 74.00 on levels rious em olarizatio	Level dBuV 31.93 43.76 42.40 43.80 that exc issions (on: H (He	Factor dB/m 33.33 33.33 36.24 37.57 ceed the (No spuri orizontal)	Loss dB 6.11 6.11 7.57 8.80 level of jous em), V (Ver	Factor dB 34.59 34.59 34.89 35.28 20 dB be issions v tical)	Averag Peak Peak Peak Peak elow the	e appli ected	l.)	
2 3 4 Note 1: ">200 Note 2: "N/F" Note 3: Meas Note 4: For re with t	MHz 4824.00 4824.00 7236.00 9648.00 dB" means means No surement re estricted bat the Peak-D	dBuV/m 36.78 48.61 51.32 54.89 spurious thing Fo eceive ar inds, the	Limit 	Line dBuV/m 54.00 74.00 on levels rious em olarizatio easurem	Level dBuV 31.93 43.76 42.40 43.80 that exc issions on: H (Ho ent is fu	Factor dB/m 33.33 33.33 36.24 37.57 ceed the (No spuri orizontal) Ily sufficie	Loss dB 6.11 6.11 7.57 8.80 level of ious em), V (Ver ent, as t	Factor dB 34.59 34.59 34.89 35.28 20 dB be issions v tical) he max	Averag Peak Peak Peak elow the vere det	e appli ected	l.) as me	easu
2 3 4 Note 1: ">200 Note 2: "N/F" Note 3: Meas Note 4: For re with t additi	MHz 4824.00 4824.00 7236.00 9648.00 dB" means means No surement re estricted ba the Peak-D ion.	dBuV/m 36.78 48.61 51.32 54.89 spurious thing Fo eceive ar inds, the etector r	Limit dB -17.22 -25.39 s emission und spu tenna p peak m neets the	Line dBuV/m 54.00 74.00 on levels rious em olarizatio easurem e AV-Lim	Level dBuV 31.93 43.76 42.40 43.80 that exc issions on: H (He eent is fu it so that	Factor dB/m 33.33 33.33 36.24 37.57 ceed the (No spuri orizontal) lly sufficient t the AV	Loss dB 6.11 6.11 7.57 8.80 level of ious em 0, V (Ver ent, as t level do	Factor dB 34.59 34.59 34.89 35.28 20 dB be issions v tical) he max es not no	Averag Peak Peak Peak elow the vere det field stre eed to b	e appli ected ength e rep	l.) as me orted	easu in
2 3 4 Note 1: ">200 Note 2: "N/F" Note 3: Meas Note 3: Meas Note 4: For re with t additi	MHz 4824.00 4824.00 7236.00 9648.00 dB" means means No surement re estricted ba the Peak-D ion.	dBuV/m 36.78 48.61 51.32 54.89 spurious thing Fo eceive ar inds, the etector r	Limit dB -17.22 -25.39 s emission und spuntering peak models the unwantering the spectrum of the	Line dBuV/m 54.00 74.00 on levels rious em olarizatio easurem e AV-Lim	Level dBuV 31.93 43.76 42.40 43.80 that exc issions of on: H (He is so that it so that it so that	Factor dB/m 33.33 33.33 36.24 37.57 ceed the (No spuri orizontal) lly sufficient the AV	Loss dB 6.11 6.11 7.57 8.80 level of ious em 0, V (Ver ent, as t level do	Factor dB 34.59 34.59 34.89 35.28 20 dB be issions v tical) he max es not no	Averag Peak Peak Peak elow the vere det field stre eed to b	e appli ected ength e rep	l.) as me orted	easu in

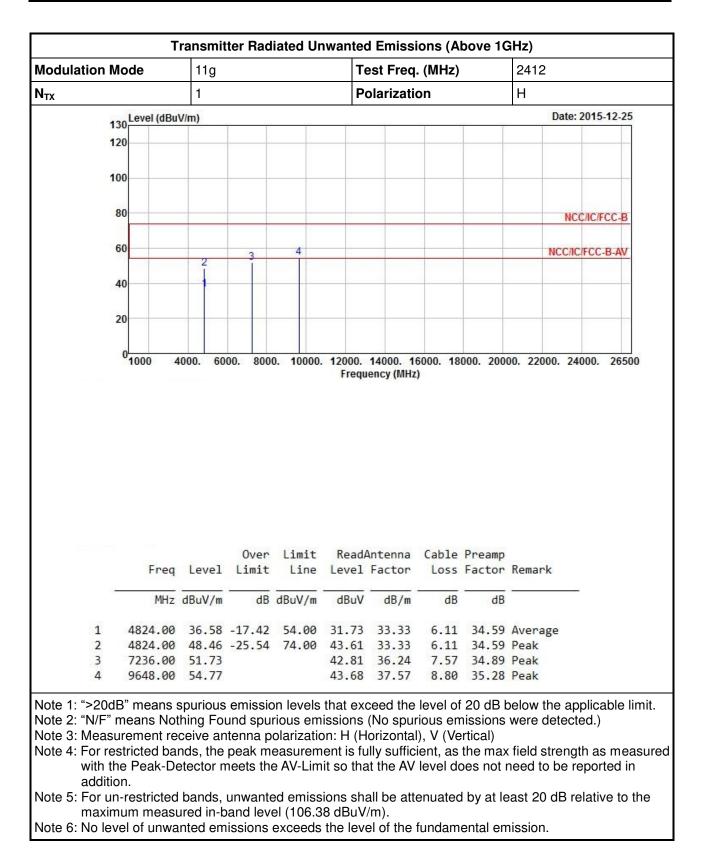
3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)

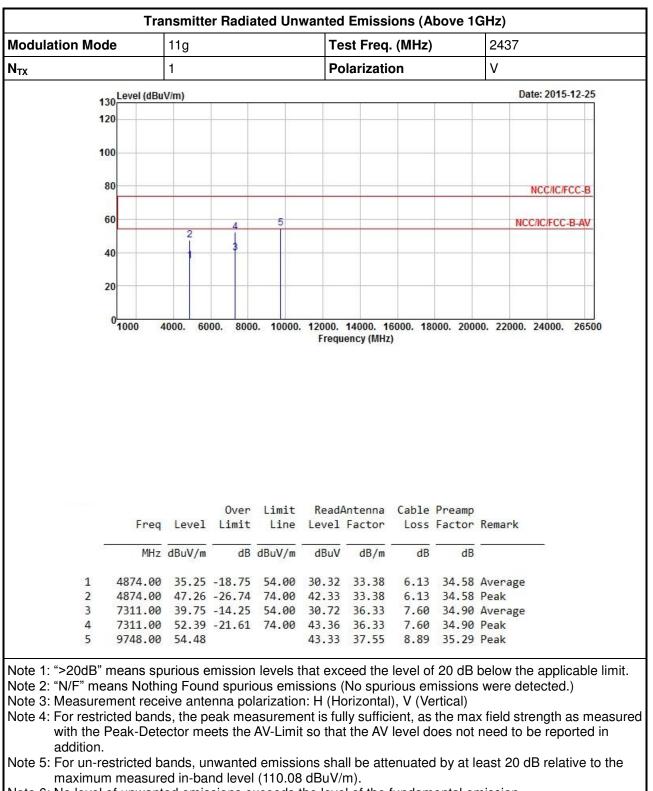


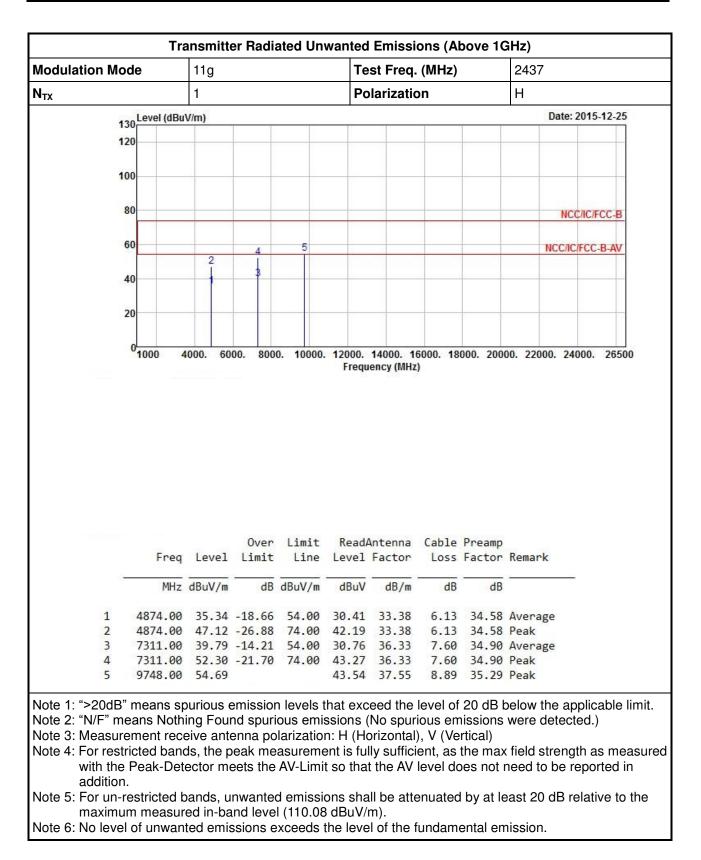


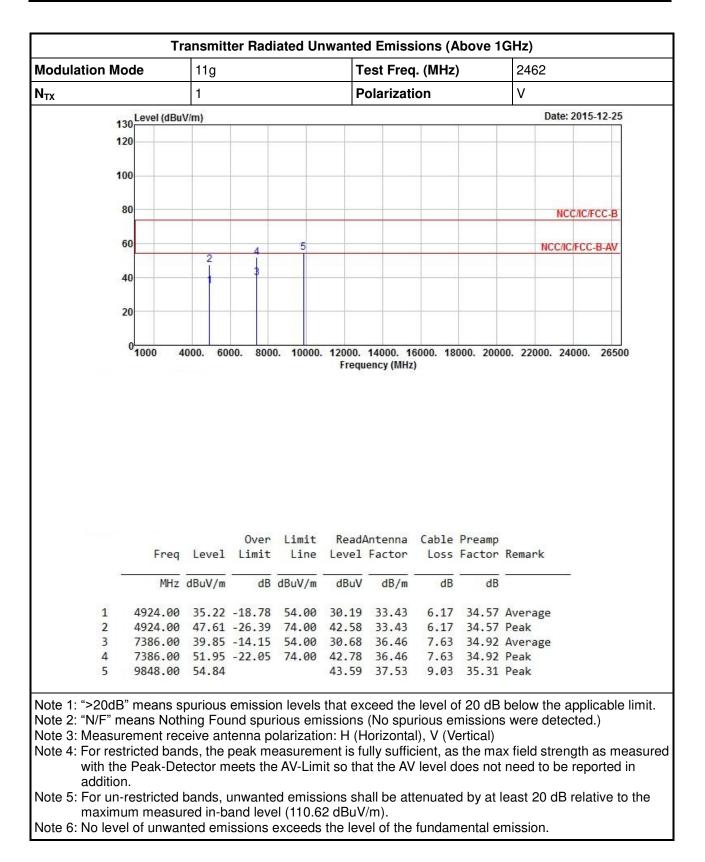




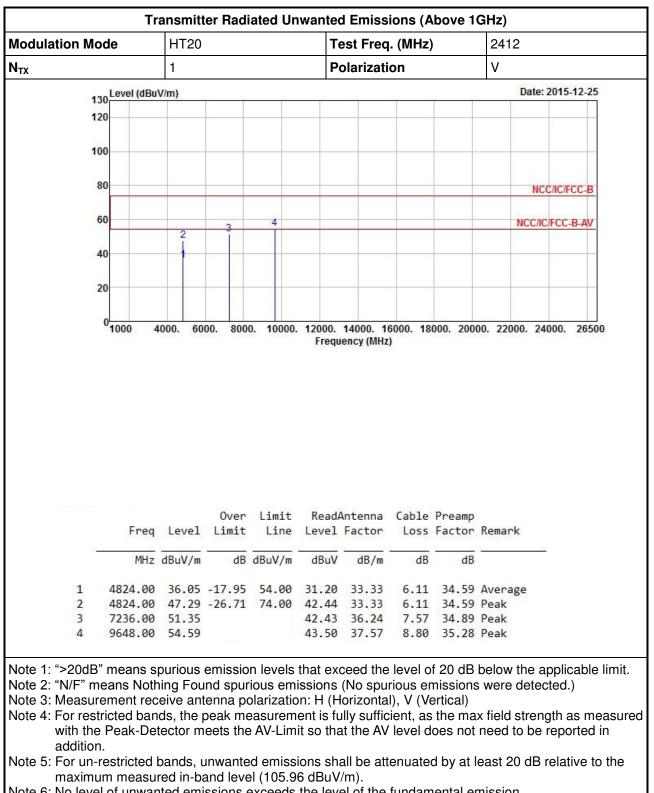


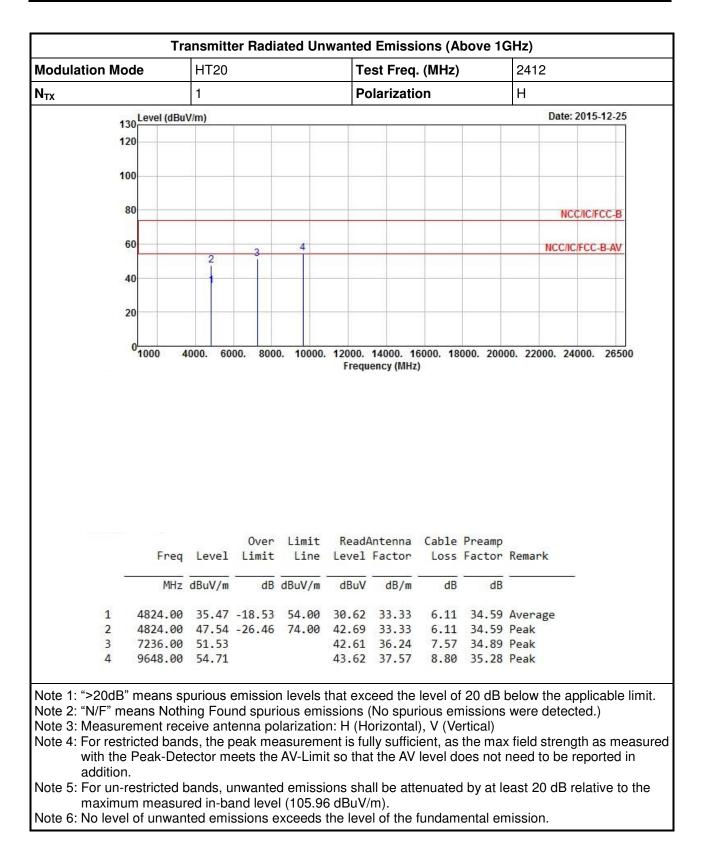




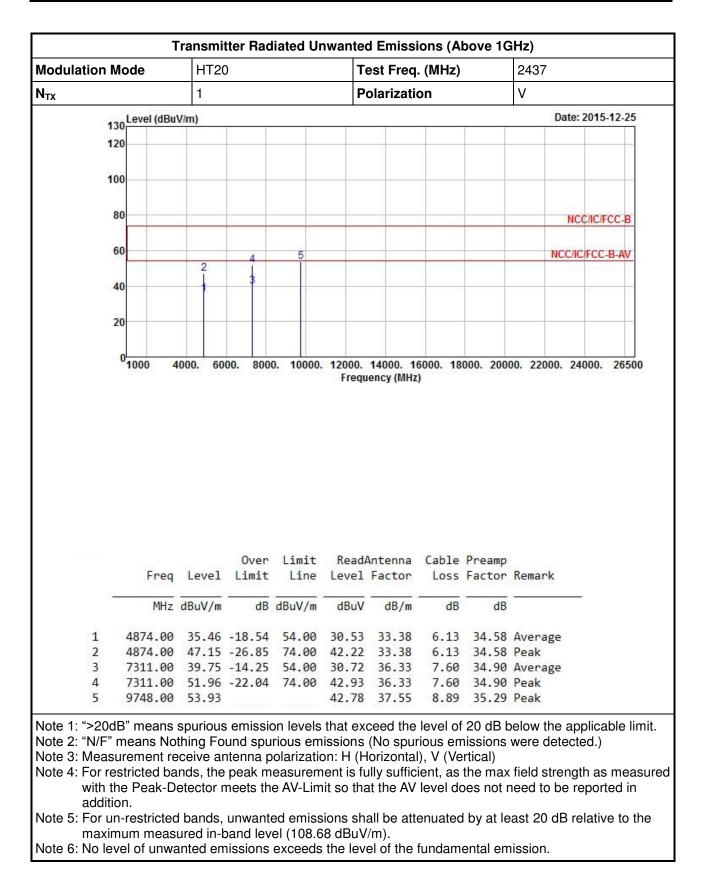


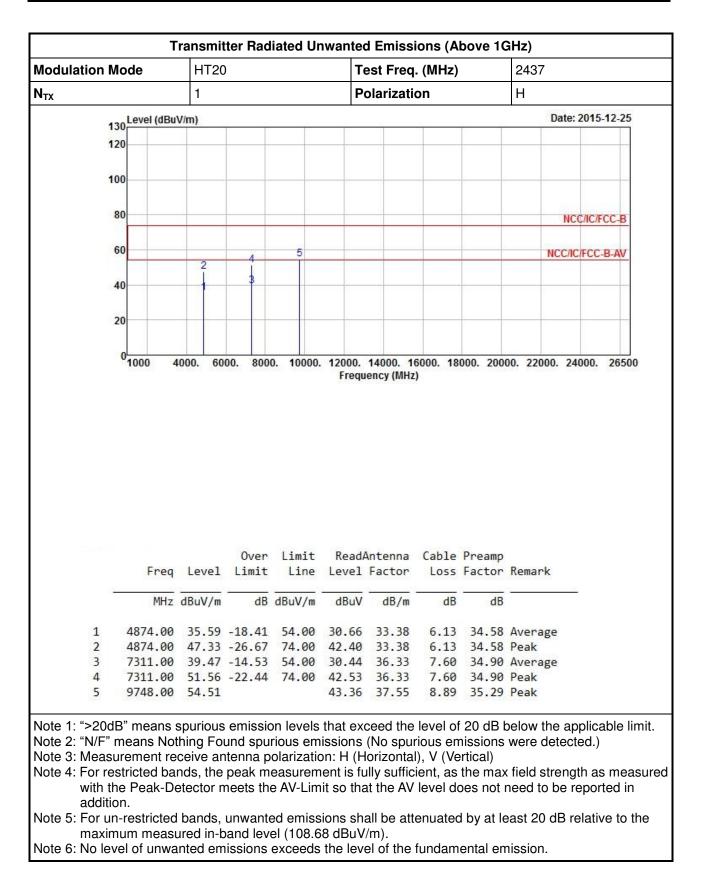
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

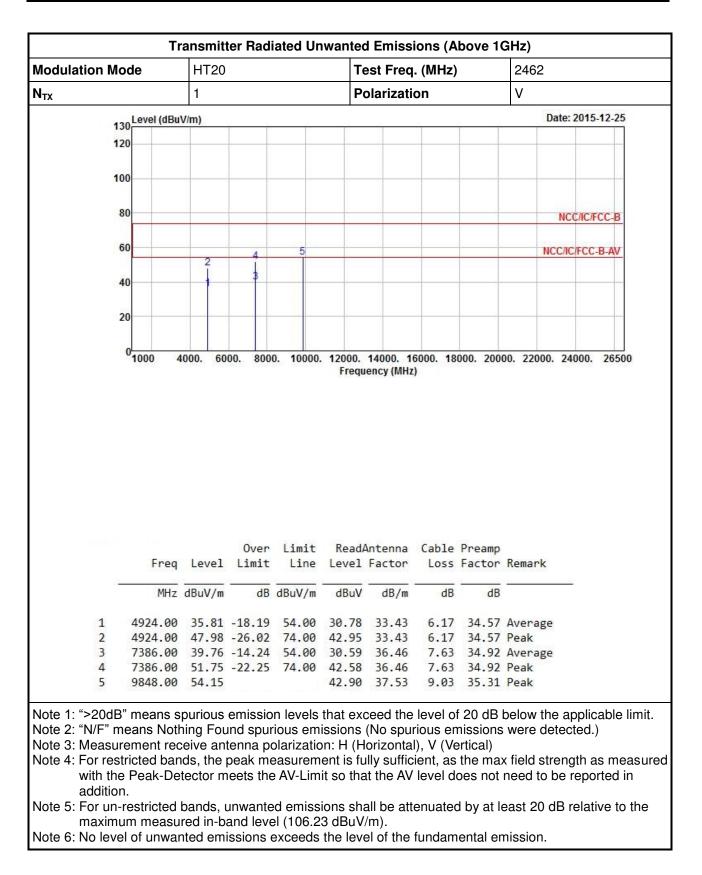


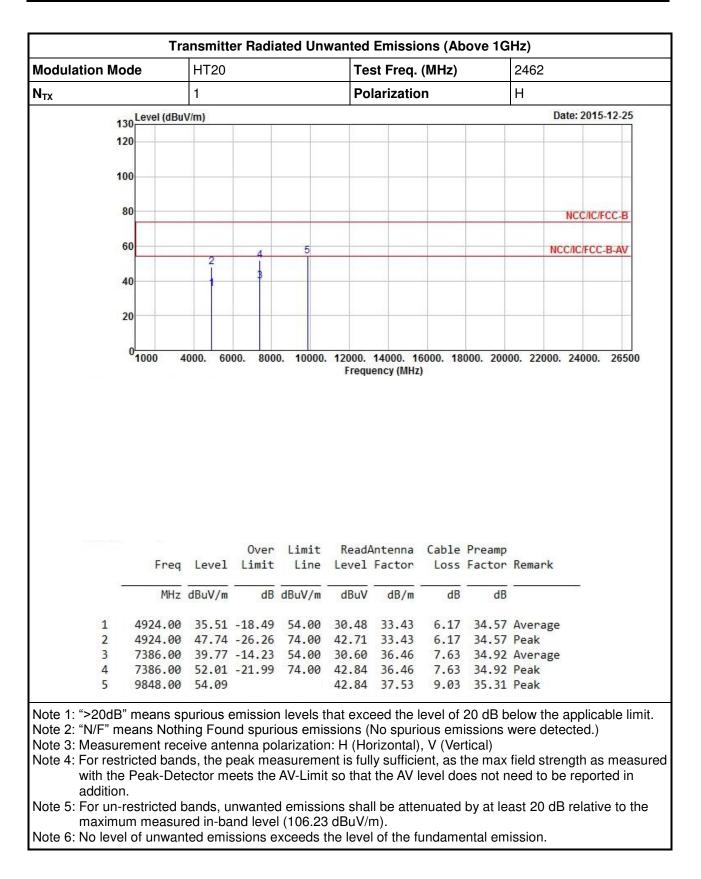


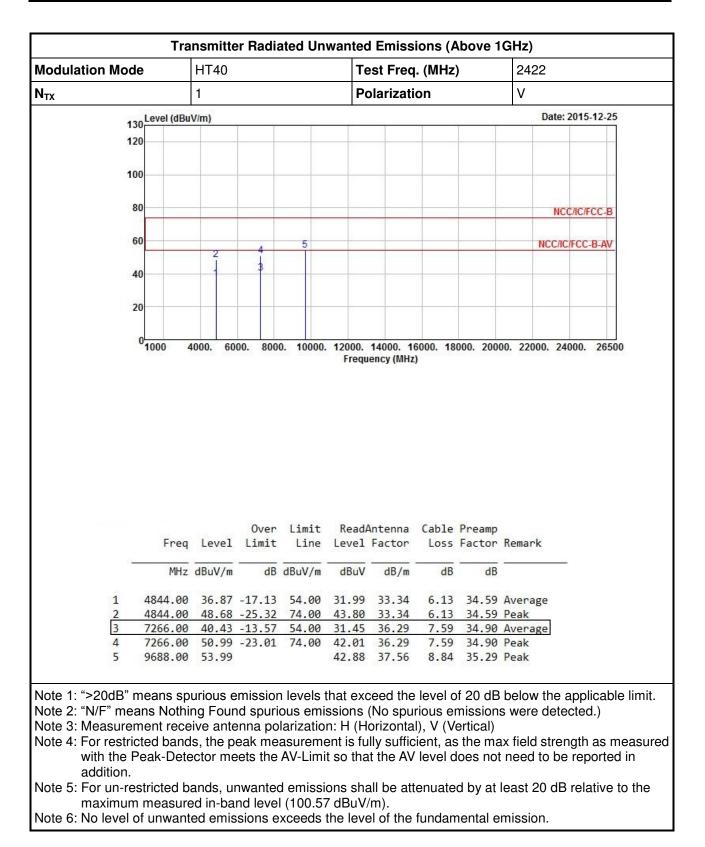
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

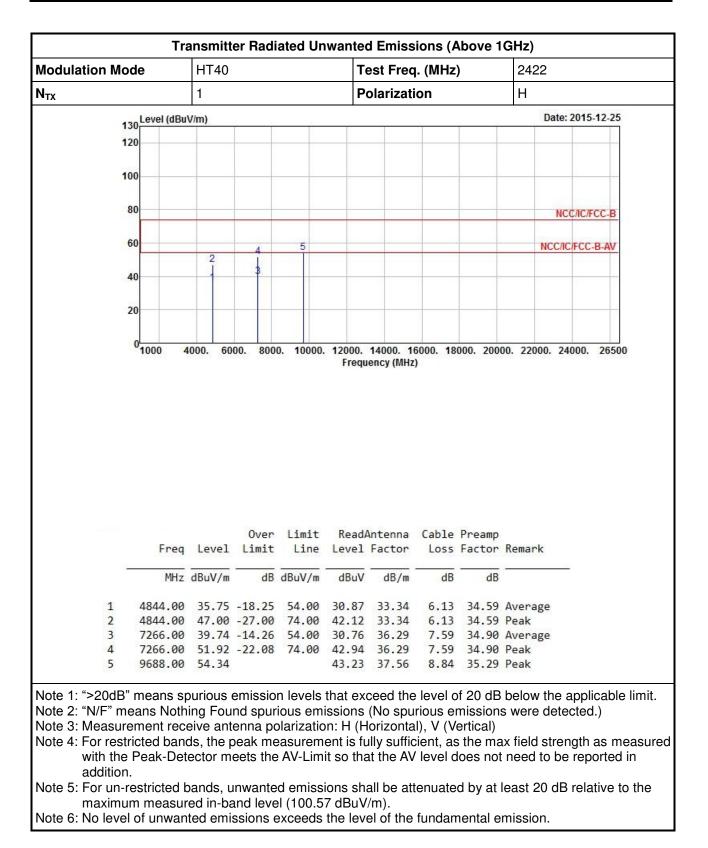


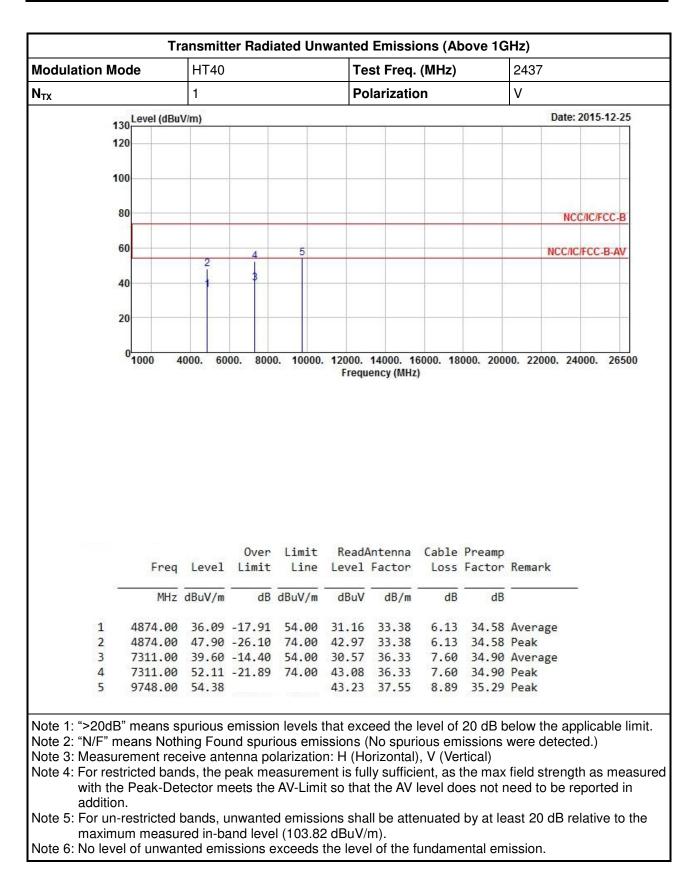


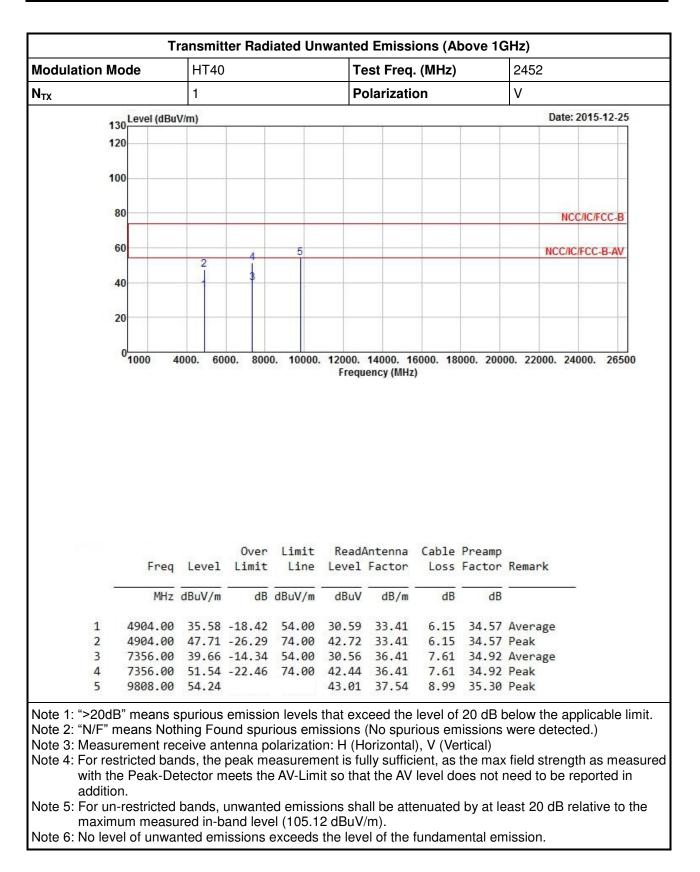


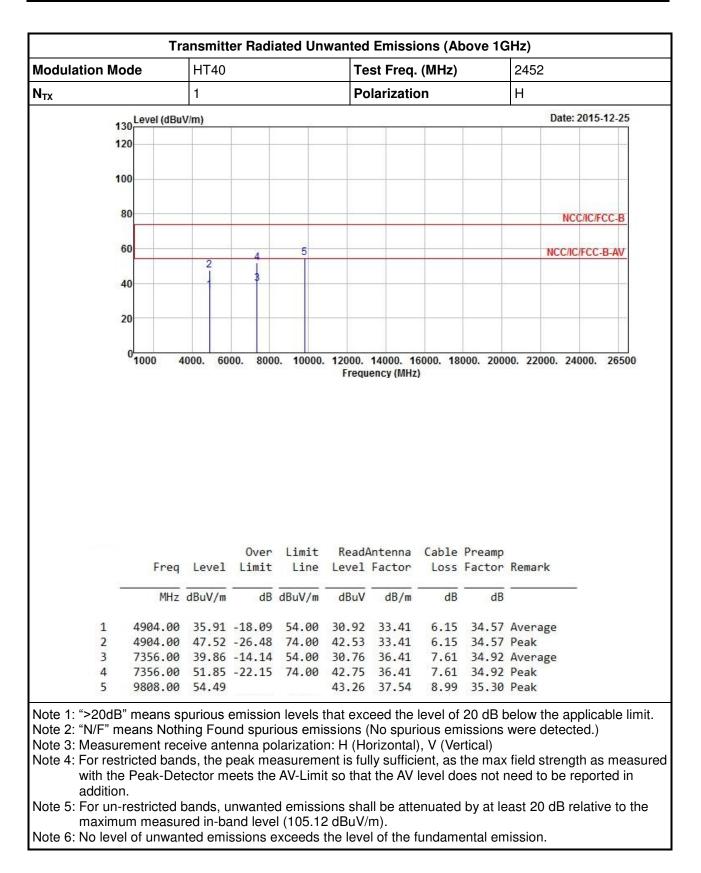












	Modulation Mode				10	st Freq.			2437				
N _{TX}	1	1			Polarization			Н					
	130 Level (dBu	V/m)	//m)								Date: 2015-12-25		
	120												
	100	_											
	00												
	80									NCC	C/IC/FC	C-B	
	60			5			_			NCC/IC	FCC-B	AV	
		2	1										
	40		8										
	20							-					
	20												
	01000 4	1000. 60	00. 800	0. 10000.		14000. 1 ency (MHz		000. 200	00. 2200	00. 240	000.	2650	
	1000 4		Over	Limit	Frequ	ency (MHz Antenna) Cable	Preamp			000.	2650	
	1000 4		Over		Frequ	ency (MHz Antenna) Cable	Preamp			000.	2650	
	1000 4		Over Limit	Limit	Frequ	ency (MHz Antenna) Cable	Preamp			000.	2650	
1	1000 4	Level dBuV/m	Over Limit 	Limit Line dBuV/m	ReadA Level dBuV	ency (MHz Antenna Factor	Cable Loss 	Preamp Factor	Remark	¢	000.	2650	
2	1000 4 Freq MHz 4874.00 4874.00	Level dBuV/m 35.41 47.00	Over Limit dB -18.59 -27.00	Limit Line dBuV/m 54.00 74.00	Read/ Level dBuV 30.48 42.07	Antenna Factor dB/m 33.38 33.38	Cable Loss dB 6.13 6.13	Preamp Factor dB 34.58 34.58	Remark Averag Peak	¢	000.	2650	
	1000 4 Freq 	Level dBuV/m 35.41 47.00 39.72	Over Limit dB -18.59 -27.00 -14.28	Limit Line dBuV/m 54.00 74.00 54.00	Read/ Level dBuV 30.48 42.07 30.69	Antenna Factor dB/m 33.38 33.38 36.33	Cable Loss dB 6.13 6.13 7.60	Preamp Factor 	Remark Averag Peak Averag	¢	000.	2650	

4 Test Equipment and Calibration Data

< AC Conduction >								
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date		
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Apr. 15, 2015	Apr. 14, 2016		
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 22, 2015	Jan. 21, 2016		
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9kHz ~ 30MHz	Oct. 30, 2015	Oct. 29, 2016		
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	N/A		

< RF Conducted >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Spectrum Analyzer	R&S	FSV 40	101500	9KHz~40GHz	May 06, 2015	May 05, 2016
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jul. 28, 2015	Jul. 27, 2016
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Feb. 17, 2015	Feb. 16, 2016
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Feb. 17, 2015	Feb. 16, 2016

< Radiated Emission >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
3m Semi Anechoic Chamber	ТDК	SAC-3M	03CH09-HY	30MHz ~ 1GHz 3m	Jul. 01, 2015	Jun. 30, 2016
3m Semi Anechoic Chamber	ТDК	SAC-3M	03CH09-HY	1GHz ~ 18GHz 3m	Jul. 01, 2015	Jun. 30, 2016
Amplifier	EMC	EMC9135	980232	9kHz ~ 1.0GHz	Jan. 27, 2015	Jan. 26, 2016
Amplifier	Agilent	8449B	3008A02096	1GHz ~ 26.5GHz	Apr. 09, 2015	Apr. 08, 2016
Spectrum	KEYSIGHT	N9010A	MY54200885	10Hz ~ 44GHz	Jul. 15, 2015	Jul. 14, 2016
Bilog Antenna	TESEQ	CBL 6112D	35418	30MHz ~ 1GHz	Mar. 30, 2015	Mar. 29, 2016
Horn Antenna	AARONIA AG	POWERLOG 70180	05192	1GHz ~ 18GHz	Jan. 05, 2015	Jan. 04, 2016
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	18GHz ~ 40GHz	Jan. 27, 2015	Jan. 26, 2016
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Jul. 23, 2015	Jul. 22, 2016
RF Cable-high	Jye Bao	RG142	03CH09-HY	1GHz ~ 40GHz	Jul. 23, 2015	Jul. 22, 2016

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Loop Antenna	ROHDE&SCHWARZ	HFH2-Z2	100330	9 kHz~30 MHz	Nov. 10, 2014	Nov. 09, 2016