

Report No.: FR120337-09A

: 01



# FCC RADIO TEST REPORT

FCC ID : 2AEUPBHAFL031

**Equipment**: Floodlight Cam Wired Pro

Brand Name : Ring
Model Name : 5B28S4
Applicant : Ring LLC

12515 Cerise Ave, Hawthorne, CA 90250 USA

Manufacturer: Ring LLC

12515 Cerise Ave, Hawthorne, CA 90250 USA

Standard : FCC Part 15 Subpart C §15.247

The product was received on Feb. 09, 2021 and testing was started from May 22, 2022 to Aug. 21, 2022. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# **Table of Contents**

| His | tory o | f this test reportf                                   | 3  |
|-----|--------|-------------------------------------------------------|----|
| Su  | mmary  | y of Test Result                                      | 4  |
| 1   | Gene   | eral Description                                      | 5  |
|     | 1.1    | Product Feature of Equipment Under Test               | 5  |
|     | 1.2    | Modification of EUT                                   | 5  |
|     | 1.3    | Testing Location                                      | 5  |
|     | 1.4    | Applicable Standards                                  | 6  |
| 2   | Test   | Configuration of Equipment Under Test                 | 7  |
|     | 2.1    | Carrier Frequency Channel                             | 7  |
|     | 2.2    | Test Mode                                             | 8  |
|     | 2.3    | Connection Diagram of Test System                     | 9  |
|     | 2.4    | EUT Operation Test Setup                              | 9  |
|     | 2.5    | Measurement Results Explanation Example               | 9  |
| 3   | Test   | Result                                                | 10 |
|     | 3.1    | Number of Channel Measurement                         | 10 |
|     | 3.2    | Hopping Channel Separation Measurement                | 11 |
|     | 3.3    | Dwell Time Measurement                                | 12 |
|     | 3.4    | 20dB and 99% Bandwidth Measurement                    | 13 |
|     | 3.5    | Output Power Measurement                              | 14 |
|     | 3.6    | Conducted Band Edges Measurement                      | 15 |
|     | 3.7    | Conducted Spurious Emission Measurement               | 16 |
|     | 3.8    | Radiated Band Edges and Spurious Emission Measurement | 17 |
|     | 3.9    | AC Conducted Emission Measurement                     |    |
|     | 3.10   | Antenna Requirements                                  | 23 |
| 4   | List o | of Measuring Equipment                                | 24 |
| 5   | Unce   | rtainty of Evaluation                                 | 26 |
| Аp  | pendix | x A. Conducted Test Results                           |    |
| Аp  | pendix | x B. AC Conducted Emission Test Result                |    |
| Аp  | pendix | x C. Radiated Spurious Emission                       |    |
| Аp  | pendix | x D. Radiated Spurious Emission Plots                 |    |
| Аp  | pendix | x E. Duty Cycle Plots                                 |    |
| Аp  | pendix | x F. Setup Photographs                                |    |

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FR15CFHSS Version 1.0

Page Number Issue Date : 2 of 26

Report Version

: Sep. 28, 2022

: 01

Report No. : FR120337-09A

# History of this test report

Report No. : FR120337-09A

| Report No.   | Version | Description             | Issue Date    |
|--------------|---------|-------------------------|---------------|
| FR120337-09A | 01      | Initial issue of report | Sep. 28, 2022 |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |

 TEL: 886-3-327-3456
 Page Number
 : 3 of 26

 FAX: 886-3-328-4978
 Issue Date
 : Sep. 28, 2022

# **Summary of Test Result**

Report No.: FR120337-09A

| Report<br>Clause | Ref Std.<br>Clause                                            | Test Items                  | Result<br>(PASS/FAIL) | Remark                                                        |
|------------------|---------------------------------------------------------------|-----------------------------|-----------------------|---------------------------------------------------------------|
| 3.1              | 15.247(a)(1)                                                  | Number of Channels          | Pass                  | -                                                             |
| 3.2              | 15.247(a)(1)                                                  | Hopping Channel Separation  | Pass                  | -                                                             |
| 3.3              | 15.247(a)(1)                                                  | Dwell Time of Each Channel  | Pass                  | -                                                             |
| 3.4              | 15.247(a)(1)                                                  | 20dB Bandwidth              | Pass                  | -                                                             |
| 3.4              | 2.1049                                                        | 99% Occupied Bandwidth      | Reporting only        | -                                                             |
| 3.5              | 15.247(b)(2)                                                  | Output Power                | Pass                  | -                                                             |
| 3.6              | 15.247(d)                                                     | Conducted Band Edges        | Pass                  | -                                                             |
| 3.7              | 15.247(d)                                                     | Conducted Spurious Emission | Pass                  | -                                                             |
| 3.8              | 15.247(d)  Radiated Band Edges and Radiated Spurious Emission |                             | Pass                  | 4.68 dB under<br>the limit at<br>41.640 MHz for<br>Quasi-Peak |
| 3.9              | 15.207                                                        | AC Conducted Emission       | Pass                  | 3.30 dB<br>under the limit<br>at 0.499 MHz                    |
| 3.10             | 15.203 &<br>15.247(b)                                         | Antenna Requirement         | Pass                  | -                                                             |

**Remark:** This report is prepared for FCC class II permissive change. Difference compared with the original equipment is adding Spreading Factor 8/9/10/11 by software.

#### **Declaration of Conformity:**

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.
   It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
- 2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

#### Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Keven Cheng Report Producer: Clio Lo

TEL: 886-3-327-3456 Page Number : 4 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# 1 General Description

# 1.1 Product Feature of Equipment Under Test

Bluetooth-LE, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, LoRa, and 24G Radar.

| Product Feature |                                                                                                                                              |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Antenna Type    | WLAN: <ant. 1="">: FPC Antenna <ant. 2="">: FPC Antenna Bluetooth-LE: FPC Antenna LoRa: PCB Antenna 24GHz Radar: Patch Antenna</ant.></ant.> |  |  |  |  |  |

Report No.: FR120337-09A

| Antenna information |                 |       |  |  |  |  |  |
|---------------------|-----------------|-------|--|--|--|--|--|
| 902 MHz ~ 928 MHz   | Peak Gain (dBi) | -0.83 |  |  |  |  |  |

**Remark:** The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

# 1.2 Modification of EUT

No modifications are made to the EUT during all test items.

# 1.3 Testing Location

| Test Site          | Sporton International Inc. EMC & Wireless Communications Laboratory                                                       |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|
| Test Site Location | No.52, Huaya 1st Rd., Guishan Dist.,<br>Taoyuan City 333, Taiwan (R.O.C.)<br>TEL: +886-3-327-3456<br>FAX: +886-3-328-4978 |
| Test Site No.      | Sporton Site No. TH02-HY, CO05-HY                                                                                         |

Note: The test site complies with ANSI C63.4 2014 requirement.

| Test Site          | Sporton International Inc. Wensan Laboratory                                                                                                     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Site Location | No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist.,<br>Taoyuan City 333010, Taiwan (R.O.C.)<br>TEL: +886-3-327-0868<br>FAX: +886-3-327-0855 |
| Test Site No.      | Sporton Site No.                                                                                                                                 |
| rest Site No.      | 03CH11-HY (TAF Code: 3786)                                                                                                                       |
| Remark             | The Radiated Spurious Emission test item subcontracted to Sporton International Inc. Wensan Laboratory                                           |

**Note:** The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

TEL: 886-3-327-3456 Page Number : 5 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# 1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR120337-09A

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

#### Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

TEL: 886-3-327-3456 Page Number : 6 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# 2 Test Configuration of Equipment Under Test

Report No.: FR120337-09A

# 2.1 Carrier Frequency Channel

# LoRa 125KHz FHSS

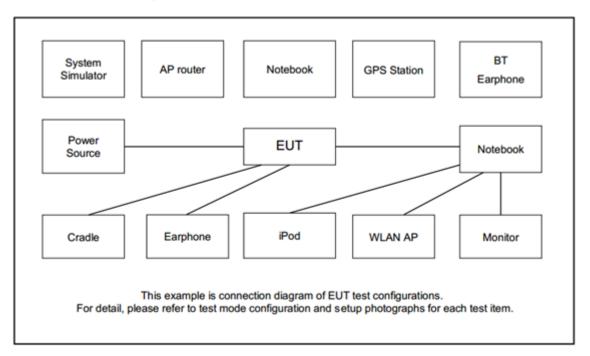
| Frequency<br>Band | Channel | Freq.<br>(MHz) |
|-------------------|---------|----------------|---------|----------------|---------|----------------|---------|----------------|---------|----------------|
|                   | 1       | 902.2          | 28      | 907.6          | 55      | 913.0          | 82      | 918.4          | 109     | 923.8          |
|                   | 2       | 902.4          | 29      | 907.8          | 56      | 913.2          | 83      | 918.6          | 110     | 924.0          |
|                   | 3       | 902.6          | 30      | 908.0          | 57      | 913.4          | 84      | 918.8          | 111     | 924.2          |
|                   | 4       | 902.8          | 31      | 908.2          | 58      | 913.6          | 85      | 919.0          | 112     | 924.4          |
|                   | 5       | 903.0          | 32      | 908.4          | 59      | 913.8          | 86      | 919.2          | 113     | 924.6          |
|                   | 6       | 903.2          | 33      | 908.6          | 60      | 914.0          | 87      | 919.4          | 114     | 924.8          |
|                   | 7       | 903.4          | 34      | 908.8          | 61      | 914.2          | 88      | 919.6          | 115     | 925.0          |
|                   | 8       | 903.6          | 35      | 909.0          | 62      | 914.4          | 89      | 919.8          | 116     | 925.2          |
|                   | 9       | 903.8          | 36      | 909.2          | 63      | 914.6          | 90      | 920.0          | 117     | 925.4          |
|                   | 10      | 904.0          | 37      | 909.4          | 64      | 914.8          | 91      | 920.2          | 118     | 925.6          |
|                   | 11      | 904.2          | 38      | 909.6          | 65      | 915.0          | 92      | 920.4          | 119     | 925.8          |
|                   | 12      | 904.4          | 39      | 909.8          | 66      | 915.2          | 93      | 920.6          | 120     | 926.0          |
|                   | 13      | 904.6          | 40      | 910.0          | 67      | 915.4          | 94      | 920.8          | 121     | 926.2          |
| 902 – 928<br>MHz  | 14      | 904.8          | 41      | 910.2          | 68      | 915.6          | 95      | 921.0          | 122     | 926.4          |
|                   | 15      | 905.0          | 42      | 910.4          | 69      | 915.8          | 96      | 921.2          | 123     | 926.6          |
|                   | 16      | 905.2          | 43      | 910.6          | 70      | 916.0          | 97      | 921.4          | 124     | 926.8          |
|                   | 17      | 905.4          | 44      | 910.8          | 71      | 916.2          | 98      | 921.6          | 125     | 927.0          |
|                   | 18      | 905.6          | 45      | 911.0          | 72      | 916.4          | 99      | 921.8          | 126     | 927.2          |
|                   | 19      | 905.8          | 46      | 911.2          | 73      | 916.6          | 100     | 922.0          | 127     | 927.4          |
|                   | 20      | 906.0          | 47      | 911.4          | 74      | 916.8          | 101     | 922.2          | 128     | 927.6          |
|                   | 21      | 906.2          | 48      | 911.6          | 75      | 917.0          | 102     | 922.4          | 129     | 927.8          |
|                   | 22      | 906.4          | 49      | 911.8          | 76      | 917.2          | 103     | 922.6          | -       | -              |
|                   | 23      | 906.6          | 50      | 912.0          | 77      | 917.4          | 104     | 922.8          | -       | -              |
|                   | 24      | 906.8          | 51      | 912.2          | 78      | 917.6          | 105     | 923.0          | -       | -              |
|                   | 25      | 907.0          | 52      | 912.4          | 79      | 917.8          | 106     | 923.2          | -       | -              |
|                   | 26      | 907.2          | 53      | 912.6          | 80      | 918.0          | 107     | 923.4          | -       | -              |
|                   | 27      | 907.4          | 54      | 912.8          | 81      | 918.2          | 108     | 923.6          | -       | -              |

TEL: 886-3-327-3456 Page Number : 7 of 26
FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

### 2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.

Report No.: FR120337-09A


b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

|                          | Summary table of Test Cases |                                                                                         |  |  |  |  |  |  |
|--------------------------|-----------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Item                | Feature                     | LoRa/FSK                                                                                |  |  |  |  |  |  |
| Conducted                | LoRa 125 KHz FHSS_SF8       | Mode 1: CH01 Tx_902.20 MHz<br>Mode 2: CH65 Tx_915.00 MHz<br>Mode 3: CH129 Tx_927.80 MHz |  |  |  |  |  |  |
| Test Cases               | LoRa 125 KHz FHSS_SF9       | Mode 4: CH01 Tx_902.20 MHz<br>Mode 5: CH65 Tx_915.00 MHz<br>Mode 6: CH129 Tx_927.80 MHz |  |  |  |  |  |  |
| Radiated<br>Test Cases   | LoRa 125 KHz FHSS_SF8       | Mode 1: CH01 Tx_902.20 MHz<br>Mode 2: CH65 Tx_915.00 MHz<br>Mode 3: CH129 Tx_927.80 MHz |  |  |  |  |  |  |
| AC Conducted<br>Emission | Mode 1: LoRa Tx             |                                                                                         |  |  |  |  |  |  |

TEL: 886-3-327-3456 Page Number : 8 of 26
FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# 2.3 Connection Diagram of Test System



Report No.: FR120337-09A

# 2.4 EUT Operation Test Setup

The RF test items, utility "Tera Term Version 4.89 (SVN 6182)" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

# 2.5 Measurement Results Explanation Example

#### For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

#### Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-3456 Page Number : 9 of 26
FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

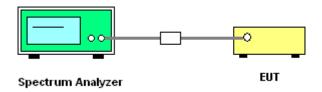
## 3 Test Result

#### 3.1 Number of Channel Measurement

### 3.1.1 Limits of Number of Hopping Frequency

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies.

Report No.: FR120337-09A


## 3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

#### 3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
   RBW = 50kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for LoRa 125kHz FHSS.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

## 3.1.4 Test Setup



### 3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 10 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# 3.2 Hopping Channel Separation Measurement

### 3.2.1 Limit of Hopping Channel Separation

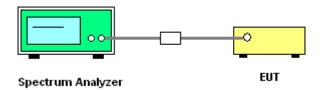
Frequency hopping systems operating in the 902 - 928 MHz band shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: FR120337-09A

### 3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

#### 3.2.3 Test Procedures


- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels;

RBW = 50kHz for; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for LoRa 125KHz FHSS.

6. Measure and record the results in the test report.

## 3.2.4 Test Setup



### 3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

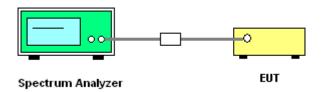
TEL: 886-3-327-3456 Page Number : 11 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

### 3.3 Dwell Time Measurement

#### 3.3.1 Limit of Dwell Time

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

Report No.: FR120337-09A


### 3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

#### 3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
   The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 20 kHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

#### 3.3.4 Test Setup



#### 3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 12 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

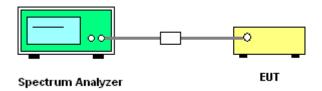
## 3.4 20dB and 99% Bandwidth Measurement

#### 3.4.1 Limit of 20dB and 99% Bandwidth

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz. 99% Bandwidth is reporting only.

## 3.4.2 Measuring Instruments

See list of measuring equipment of this test report.


#### 3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No.: FR120337-09A

- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
  - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
  - RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
  - Trace =  $\max$  hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
  - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
  - RBW  $\geq$  1-5% of the 99% bandwidth; VBW  $\geq$  3 \* RBW; Sweep = auto; Detector function = peak;
  - Trace =  $\max$  hold.
- 6. Measure and record the results in the test report.

#### 3.4.4 Test Setup



#### 3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

# 3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

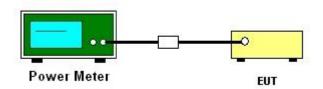
TEL: 886-3-327-3456 Page Number : 13 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# 3.5 Output Power Measurement

# 3.5.1 Limit of Output Power

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Report No.: FR120337-09A


### 3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

#### 3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

### 3.5.4 Test Setup



# 3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

## 3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

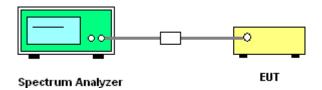
TEL: 886-3-327-3456 Page Number : 14 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# 3.6 Conducted Band Edges Measurement

# 3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR120337-09A


## 3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

#### 3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

#### 3.6.4 Test Setup



### 3.6.5 Test Result of Conducted Band Edges

Please refer to Appendix A.

## 3.6.6 Test Result of Conducted Hopping Mode Band Edges

Please refer to Appendix A.

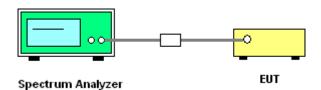
TEL: 886-3-327-3456 Page Number : 15 of 26
FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# 3.7 Conducted Spurious Emission Measurement

### 3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR120337-09A


## 3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

#### 3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

#### 3.7.4 Test Setup



## 3.7.5 Test Result of Conducted Spurious Emission

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 16 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# 3.8 Radiated Band Edges and Spurious Emission Measurement

# 3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR120337-09A

| Frequency     | Field Strength     | Measurement Distance |  |  |
|---------------|--------------------|----------------------|--|--|
| (MHz)         | (microvolts/meter) | (meters)             |  |  |
| 0.009 - 0.490 | 2400/F(kHz)        | 300                  |  |  |
| 0.490 – 1.705 | 24000/F(kHz)       | 30                   |  |  |
| 1.705 – 30.0  | 30                 | 30                   |  |  |
| 30 – 88       | 100                | 3                    |  |  |
| 88 – 216      | 150                | 3                    |  |  |
| 216 - 960     | 200                | 3                    |  |  |
| Above 960     | 500                | 3                    |  |  |

# 3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

TEL: 886-3-327-3456 Page Number : 17 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

#### 3.8.3 Test Procedures

1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

Report No.: FR120337-09A

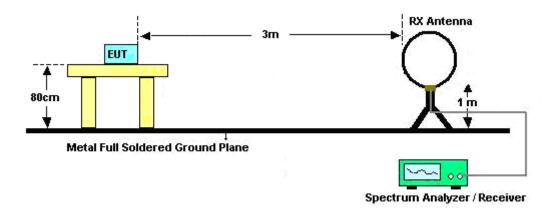
: 01

- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
  - (1) Span shall wide enough to fully capture the emission being measured;
  - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
  - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

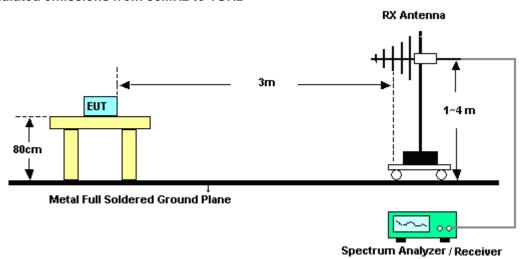
On time =  $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$ 

Where  $N_1$  is number of type 1 pulses,  $L_1$  is length of type 1 pulses, etc.


Average Emission Level = Peak Emission Level + 20\*log(Duty cycle)

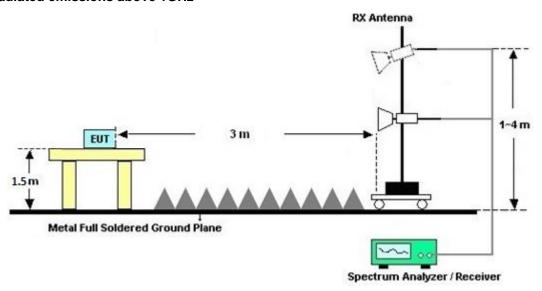
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

TEL: 886-3-327-3456 Page Number : 18 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022


# 3.8.4 Test Setup

#### For radiated emissions below 30MHz




Report No.: FR120337-09A

#### For radiated emissions from 30MHz to 1GHz



TEL: 886-3-327-3456 Page Number : 19 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

#### For radiated emissions above 1GHz



Report No.: FR120337-09A

# 3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

# 3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

### 3.8.7 Duty Cycle

Please refer to Appendix E.

# 3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10<sup>th</sup> Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 Page Number : 20 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

### 3.9 AC Conducted Emission Measurement

#### 3.9.1 Limit of AC Conducted Emission

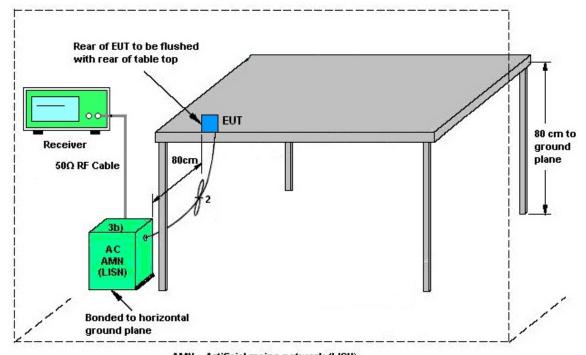
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR120337-09A

| Eroquency of emission (MUz) | Conducted limit (dBμV) |           |  |  |  |
|-----------------------------|------------------------|-----------|--|--|--|
| Frequency of emission (MHz) | Quasi-peak             | Average   |  |  |  |
| 0.15-0.5                    | 66 to 56*              | 56 to 46* |  |  |  |
| 0.5-5                       | 56                     | 46        |  |  |  |
| 5-30                        | 60                     | 50        |  |  |  |

<sup>\*</sup>Decreases with the logarithm of the frequency.

## 3.9.2 Measuring Instruments


See list of measuring equipment of this test report.

# 3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 Page Number : 21 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# 3.9.4 Test Setup



Report No.: FR120337-09A

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

# 3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 22 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# 3.10 Antenna Requirements

### 3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR120337-09A

# 3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

#### 3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 Page Number : 23 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

# 4 List of Measuring Equipment

| Instrument           | Brand Name         | Model No.                           | Serial No.           | Characteristics               | Calibration<br>Date | Test Date                       | Due Date      | Remark                   |
|----------------------|--------------------|-------------------------------------|----------------------|-------------------------------|---------------------|---------------------------------|---------------|--------------------------|
| Loop Antenna         | Rohde &<br>Schwarz | HFH2-Z2                             | 100315               | 9 kHz~30 MHz                  | Jan. 07, 2022       | May 30, 2022~<br>Aug. 17, 2022  | Jan. 06, 2023 | Radiation<br>(03CH11-HY) |
| Bilog Antenna        | TESEQ              | CBL 6111D &<br>N-6-06               | 35414 &<br>AT-N0602  | 30MHz~1GHz                    | Oct. 09, 2021       | May 30, 2022~<br>Aug. 17, 2022  | Oct. 08, 2022 | Radiation<br>(03CH11-HY) |
| Horn Antenna         | SCHWARZBE<br>CK    | BBHA 9120<br>D                      | 9120D-1212           | 1GHz ~ 18GHz                  | Mar. 10, 2022       | May 30, 2022~<br>Aug. 17, 2022  | Mar. 09, 2023 | Radiation<br>(03CH11-HY) |
| Amplifier            | SONOMA             | 310N                                | 187312               | 9kHz~1GHz                     | Dec. 10, 2021       | May 30, 2022~<br>Aug. 17, 2022  | Dec. 09, 2022 | Radiation<br>(03CH11-HY) |
| Preamplifier         | Keysight           | 83017A                              | MY53270080           | 1GHz~26.5GHz                  | Nov. 10, 2021       | May 30, 2022~<br>Aug. 17, 2022  | Nov. 09, 2022 | Radiation<br>(03CH11-HY) |
| Preamplifier         | Jet-Power          | JPA0118-55-<br>303                  | 171000180005<br>5007 | 1GHz~18GHz                    | Jun. 16, 2021       | May 30, 2022~<br>May 31, 2022   | Jun. 15, 2022 | Radiation<br>(03CH11-HY) |
| Preamplifier         | Jet-Power          | JPA0118-55-<br>303                  | 171000180005<br>5007 | 1GHz~18GHz                    | Jun. 15, 2022       | Aug. 16, 2022~<br>Aug. 17, 2022 | Jun. 14, 2023 | Radiation<br>(03CH11-HY) |
| Spectrum<br>Analyzer | Keysight           | N9010A                              | MY54200486           | 10Hz~44GHz                    | Oct. 15, 2021       | May 30, 2022~<br>Aug. 17, 2022  | Oct. 14, 2022 | Radiation<br>(03CH11-HY) |
| EMI Test<br>Receiver | Keysight           | N9038A(MX<br>E)                     | MY55420170           | 20MHz~8.4GHz                  | Jul. 15, 2021       | May 30, 2022~<br>May 31, 2022   | Jul. 14, 2022 | Radiation<br>(03CH11-HY) |
| EMI Test<br>Receiver | Keysight           | N9038A(MX<br>E)                     | MY54130085           | 20MHz~8.4GHz                  | Oct. 21, 2021       | Aug. 16, 2022~<br>Aug. 17, 2022 | Oct. 20, 2022 | Radiation<br>(03CH11-HY) |
| Controller           | EMEC               | EM 1000                             | N/A                  | Control Turn table & Ant Mast | N/A                 | May 30, 2022~<br>Aug. 17, 2022  | N/A           | Radiation<br>(03CH11-HY) |
| Antenna Mast         | EMEC               | AM-BS-4500<br>-B                    | N/A                  | 1~4m                          | N/A                 | May 30, 2022~<br>Aug. 17, 2022  | N/A           | Radiation<br>(03CH11-HY) |
| Turn Table           | EMEC               | TT 2000                             | N/A                  | 0~360 Degree                  | N/A                 | May 30, 2022~<br>Aug. 17, 2022  | N/A           | Radiation<br>(03CH11-HY) |
| Software             | Audix              | E3<br>6.2009-8-24                   | RK-001053            | N/A                           | N/A                 | May 30, 2022~<br>Aug. 17, 2022  | N/A           | Radiation<br>(03CH11-HY) |
| RF Cable             | HUBER +<br>SUHNER  | SUCOFLEX<br>102                     | MY2859/2             | 30MHz-40GHz                   | Mar. 10, 2022       | May 30, 2022~<br>Aug. 17, 2022  | Mar. 09, 2023 | Radiation<br>(03CH11-HY) |
| RF Cable             | HUBER +<br>SUHNER  | SUCOFLEX<br>104                     | MY9837/4PE           | 9kHz-30MHz                    | Mar. 10, 2022       | May 30, 2022~<br>Aug. 17, 2022  | Mar. 09, 2023 | Radiation<br>(03CH11-HY) |
| RF Cable             | HUBER +<br>SUHNER  | SUCOFLEX<br>104                     | MY9837/4PE           | 30MHz-18GHz                   | Mar. 10, 2022       | May 30, 2022~<br>Aug. 17, 2022  | Mar. 09, 2023 | Radiation<br>(03CH11-HY) |
| RF Cable             | HUBER +<br>SUHNER  | SUCOFLEX<br>104                     | 811852/4             | 30MHz-18GHz                   | Mar. 10, 2022       | May 30, 2022~<br>Aug. 17, 2022  | Mar. 09, 2023 | Radiation<br>(03CH11-HY) |
| Filter               | Wainwright         | WLK4-1000-<br>1530-8000-4<br>0SS    | SN11                 | 1.53G Low Pass                | Sep. 13, 2021       | May 30, 2022~<br>Aug. 17, 2022  | Sep. 12, 2022 | Radiation<br>(03CH11-HY) |
| Filter               | Wainwright         | WHKX12-27<br>00-3000-180<br>00-60SS | SN3                  | 3GHz High Pass<br>Filter      | Sep. 13, 2021       | May 30, 2022~<br>Aug. 17, 2022  | Sep. 12, 2022 | Radiation<br>(03CH11-HY) |
| Filter               | Wainwright         | WHKX12-90<br>0-1000-1500<br>0-60SS  | SN12                 | 1GHz High Pass<br>Filter      | Nov. 04, 2021       | May 30, 2022~<br>Aug. 17, 2022  | Nov. 03, 2022 | Radiation<br>(03CH11-HY) |
| Hygrometer           | TECPEL             | DTM-303B                            | TP140325             | N/A                           | Nov. 26, 2021       | May 30, 2022~<br>Aug. 17, 2022  | Nov. 25, 2022 | Radiation<br>(03CH11-HY) |
| Hygrometer           | TECPEL             | DTM-303B                            | TP200880             | N/A                           | Sep. 30, 2021       | May 30, 2022~<br>Aug. 17, 2022  | Sep. 29, 2022 | Radiation<br>(03CH11-HY) |

Report No. : FR120337-09A

 TEL: 886-3-327-3456
 Page Number
 : 24 of 26

 FAX: 886-3-328-4978
 Issue Date
 : Sep. 28, 2022

| Instrument           | Brand Name         | Model No.        | Serial No. | Characteristics | Calibration<br>Date | Test Date                      | Due Date      | Remark                  |
|----------------------|--------------------|------------------|------------|-----------------|---------------------|--------------------------------|---------------|-------------------------|
| AC Power<br>Source   | ChainTek           | APC-1000W        | N/A        | N/A             | N/A                 | Jul. 14, 2022                  | N/A           | Conduction<br>(CO05-HY) |
| EMI Test<br>Receiver | Rohde &<br>Schwarz | ESR3             | 102388     | 9kHz~3.6GHz     | Dec. 01, 2021       | Jul. 14, 2022                  | Nov. 30, 2022 | Conduction<br>(CO05-HY) |
| Hygrometer           | Testo              | 608-H1           | 34913912   | N/A             | Nov. 17, 2021       | Jul. 14, 2022                  | Nov. 16, 2022 | Conduction<br>(CO05-HY) |
| LISN                 | Rohde &<br>Schwarz | ENV216           | 100080     | 9kHz~30MHz      | Dec. 03, 2021       | Jul. 14, 2022                  | Dec. 02, 2022 | Conduction<br>(CO05-HY) |
| Software             | Rohde &<br>Schwarz | EMC32            | N/A        | N/A             | N/A                 | Jul. 14, 2022                  | N/A           | Conduction<br>(CO05-HY) |
| Pulse Limiter        | SCHWARZBE<br>CK    | VTSD<br>9561-F N | 00691      | N/A             | Jul. 28, 2021       | Jul. 14, 2022                  | Jul. 27, 2022 | Conduction<br>(CO05-HY) |
| LISN Cable           | MVE                | RG-400           | 260260     | N/A             | Dec. 30, 2021       | Jul. 14, 2022                  | Dec. 29, 2022 | Conduction<br>(CO05-HY) |
| Hygrometer           | TECPEL             | TR-32            | HE17XB2468 | N/A             | Mar. 18, 2022       | May 22, 2022~<br>Aug. 21, 2022 | Mar. 17, 2023 | Conducted<br>(TH02-HY)  |
| Signal<br>Analyzer   | Rohde &<br>Schwarz | FSV40            | 101564     | 10Hz~40GHz      | Aug. 30, 2021       | May 22, 2022~<br>Aug. 21, 2022 | Aug. 29, 2022 | Conducted<br>(TH02-HY)  |
| Power Meter          | Anritsu            | ML2495A          | 932001     | N/A             | Sep. 30, 2021       | May 22, 2022~<br>Aug. 21, 2022 | Sep. 29, 2022 | Conducted<br>(TH02-HY)  |
| Power Sensor         | Anritsu            | MA2411B          | 846202     | 300MHz~40GHz    | Sep. 30, 2021       | May 22, 2022~<br>Aug. 21, 2022 | Sep. 29, 2022 | Conducted<br>(TH02-HY)  |

Report No. : FR120337-09A

 TEL: 886-3-327-3456
 Page Number
 : 25 of 26

 FAX: 886-3-328-4978
 Issue Date
 : Sep. 28, 2022

# 5 Uncertainty of Evaluation

### **Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)**

| Measuring Uncertainty for a Level of Confidence | 3.1 dB |
|-------------------------------------------------|--------|
| of 95% (U = 2Uc(y))                             | 3.1 uB |

Report No.: FR120337-09A

#### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

| Measuring Uncertainty for a Level of Confidence | 5.8 dB |
|-------------------------------------------------|--------|
| of 95% (U = 2Uc(y))                             | 3.6 UB |

## Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

| Measuring Uncertainty for a Level of Confidence | 5.4 dB |
|-------------------------------------------------|--------|
| of 95% (U = 2Uc(y))                             | 5.4 dB |

#### Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

| Macauring Uncertainty for a Layel of Confidence |        |
|-------------------------------------------------|--------|
| Measuring Uncertainty for a Level of Confidence | 5.9 dB |
| of 95% (U = 2Uc(y))                             | 3.9 db |

TEL: 886-3-327-3456 Page Number : 26 of 26 FAX: 886-3-328-4978 Issue Date : Sep. 28, 2022

Report Number : FR120337-09A

# Appendix A. Test Result of Conducted Test Items

| Test Engineer: | Tommy Lee           | Temperature:       | 20-25 | °C |
|----------------|---------------------|--------------------|-------|----|
| Test Date:     | 2022/5/22~2022/8/21 | Relative Humidity: | 49-56 | %  |

| <u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation |              |     |     |                |                  |                           |                                                       |                                                             |           |  |
|-----------------------------------------------------------------------------------------|--------------|-----|-----|----------------|------------------|---------------------------|-------------------------------------------------------|-------------------------------------------------------------|-----------|--|
| Mod.                                                                                    | Data<br>Rate | NTX | CH. | Freq.<br>(MHz) | 20db BW<br>(MHz) | 99%<br>Bandwidth<br>(MHz) | Hopping Channel<br>Separation<br>Measurement<br>(MHz) | Hopping Channel<br>Separation<br>Measurement<br>Limit (MHz) | Pass/Fail |  |
| Lora 125KHz                                                                             | SF8          | 1   | 1   | 902.2          | 0.156            | 0.133                     | 0.208                                                 | 0.1563                                                      | Pass      |  |
| Lora 125KHz                                                                             | SF8          | 1   | 65  | 915            | 0.152            | 0.132                     | 0.234                                                 | 0.1524                                                      | Pass      |  |
| Lora 125KHz                                                                             | SF8          | 1   | 129 | 927.8          | 0.152            | 0.131                     | 0.210                                                 | 0.1524                                                      | Pass      |  |

|             |                                      |                                      |                                    | RESULTS DA<br>Owell Time | A <i>TA</i>     |           |  |
|-------------|--------------------------------------|--------------------------------------|------------------------------------|--------------------------|-----------------|-----------|--|
| Mod.        | Hopping<br>Channel<br>Number<br>Rate | Hops Over<br>Occupancy<br>Time(hops) | Package<br>Transfer<br>Time (msec) | Dwell Time<br>(sec)      | Limits<br>(sec) | Pass/Fail |  |
| Lora 125KHz | 129                                  | 1                                    | 392.68                             | 0.39                     | 0.4             | Pass      |  |

|             |     |     |                     |                      | RESULTS         |
|-------------|-----|-----|---------------------|----------------------|-----------------|
|             |     |     |                     | Peak                 | <u> Power 1</u> |
| Mod.        | CH. | NTX | Peak Power<br>(dBm) | Power Limit<br>(dBm) | Test<br>Result  |
|             | 1   | 1   | 24.87               | 30.00                | Pass            |
| Lora 125KHz | 65  | 1   | 24.69               | 30.00                | Pass            |
|             | 129 | 1   | 24.34               | 30.00                | Pass            |

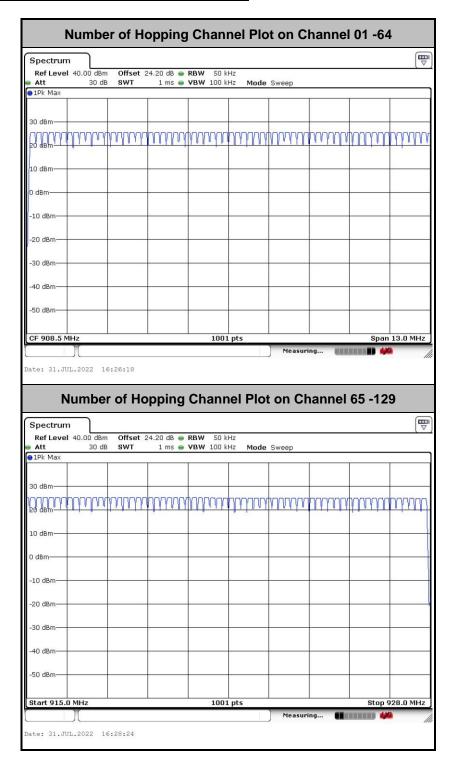
| TEST RESULTS DATA  Average Power Table  (Reporting Only) |     |     |                     |                     |  |  |  |  |  |
|----------------------------------------------------------|-----|-----|---------------------|---------------------|--|--|--|--|--|
| Mod.                                                     | CH. | NTX | Average Power (dBm) | Duty Factor<br>(dB) |  |  |  |  |  |
|                                                          | 1   | 1   | 24.83               | 0.00                |  |  |  |  |  |
| Lora 125KHz                                              | 65  | 1   | 24.65               | 0.00                |  |  |  |  |  |
|                                                          | 129 | 1   | 24.29               | 0.00                |  |  |  |  |  |

|                                | _                   |           | RESULTS DATA<br>Hopping Frequency |
|--------------------------------|---------------------|-----------|-----------------------------------|
| Number of Hopping<br>(Channel) | Limits<br>(Channel) | Pass/Fail |                                   |
| 129                            | > 50                | Pass      |                                   |
|                                |                     | •         | •                                 |

Report Number : FR120337-09A

| TEST RESULTS DATA  20dB and 99% Occupied Bandwidth and Hopping Channel Separation |              |     |     |                |                  |                           |                                                       |                                                             |           |  |
|-----------------------------------------------------------------------------------|--------------|-----|-----|----------------|------------------|---------------------------|-------------------------------------------------------|-------------------------------------------------------------|-----------|--|
| Mod.                                                                              | Data<br>Rate | NTX | CH. | Freq.<br>(MHz) | 20db BW<br>(MHz) | 99%<br>Bandwidth<br>(MHz) | Hopping Channel<br>Separation<br>Measurement<br>(MHz) | Hopping Channel<br>Separation<br>Measurement<br>Limit (MHz) | Pass/Fail |  |
| Lora 125KHz                                                                       | SF9          | 1   | 1   | 902.2          | 0.153            | 0.132                     | 0.201                                                 | 0.1534                                                      | Pass      |  |
| Lora 125KHz                                                                       | SF9          | 1   | 65  | 915            | 0.153            | 0.132                     | 0.261                                                 | 0.1529                                                      | Pass      |  |
| Lora 125KHz                                                                       | SF9          | 1   | 129 | 927.8          | 0.155            | 0.132                     | 0.234                                                 | 0.1549                                                      | Pass      |  |

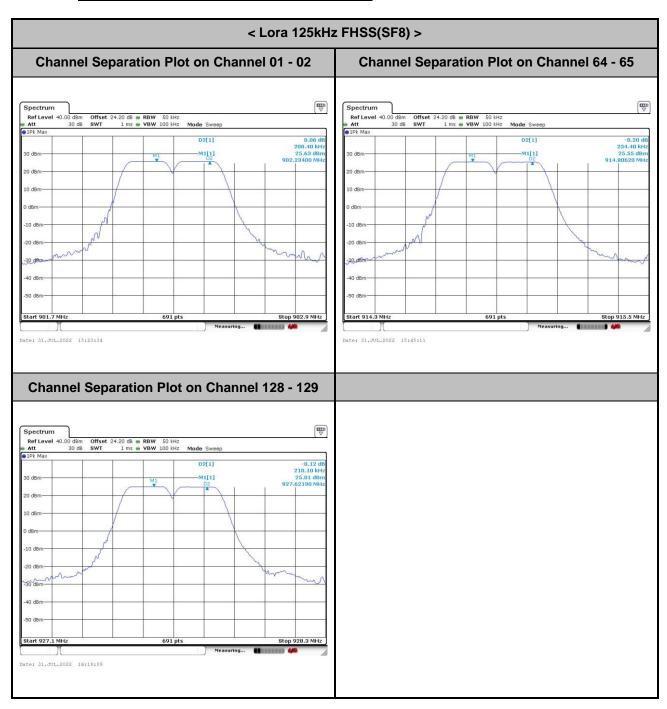
|             |                              |                        |                     | RESULTS DA<br>Owell Time | 1 <u>7A</u> |           |
|-------------|------------------------------|------------------------|---------------------|--------------------------|-------------|-----------|
| Mod.        | Hopping<br>Channel<br>Number | Hops Over<br>Occupancy | Package<br>Transfer | Dwell Time               | Limits      | Pass/Fail |
| Lora 125KHz | Rate                         | Time(hops)             | Time (msec) 375.35  | (sec)<br>0.38            | (sec)       | Pass      |


| <u>TEST RESULTS</u><br>Peak Power 1 |     |     |                     |                      |                |  |
|-------------------------------------|-----|-----|---------------------|----------------------|----------------|--|
| Mod.                                | CH. | NTX | Peak Power<br>(dBm) | Power Limit<br>(dBm) | Test<br>Result |  |
|                                     | 1   | 1   | 24.86               | 30.00                | Pass           |  |
| Lora 125KHz                         | 65  | 1   | 24.68               | 30.00                | Pass           |  |
|                                     | 129 | 1   | 24.32               | 30.00                | Pass           |  |

| <u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only) |     |     |                     |                     |  |  |  |
|----------------------------------------------------------------------|-----|-----|---------------------|---------------------|--|--|--|
| Mod.                                                                 | CH. | NTX | Average Power (dBm) | Duty Factor<br>(dB) |  |  |  |
|                                                                      | 1   | 1   | 24.82               | 0.00                |  |  |  |
| Lora 125KHz                                                          | 65  | 1   | 24.63               | 0.00                |  |  |  |
| Г                                                                    | 129 | 1 1 | 24.27               | 0.00                |  |  |  |

| <u>TEST RESULTS DATA</u> Number of Hopping Frequency |                     |           |  |  |  |  |
|------------------------------------------------------|---------------------|-----------|--|--|--|--|
| Number of Hopping<br>(Channel)                       | Limits<br>(Channel) | Pass/Fail |  |  |  |  |
| 129                                                  | > 50                | Pass      |  |  |  |  |
|                                                      |                     |           |  |  |  |  |

<Data Rate: SF8>

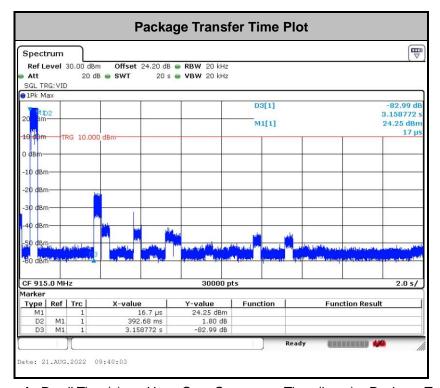

# Number of Hopping Frequency



Report No.: FR120337-09A

TEL: 886-3-327-3456 Page Number : A3-1 of 7

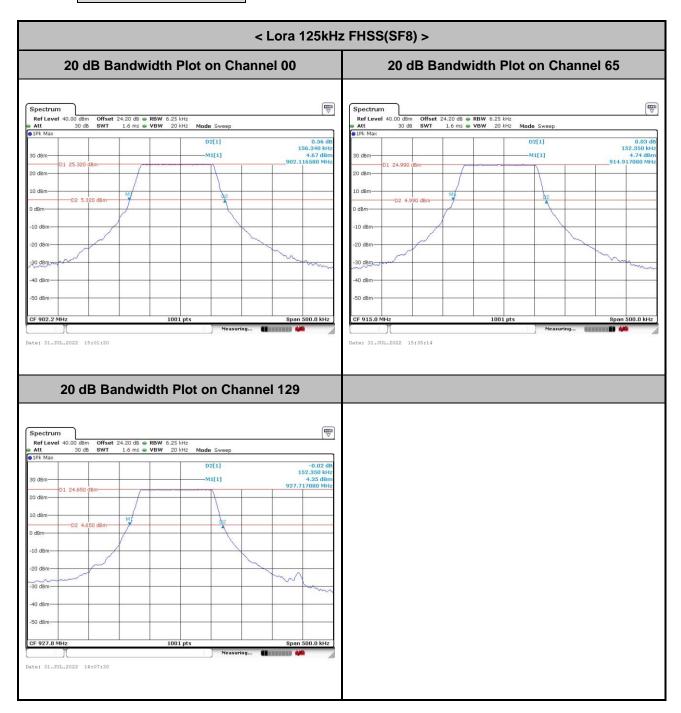
# **Hopping Channel Separation**




Report No.: FR120337-09A

TEL: 886-3-327-3456 Page Number : A3-2 of 7

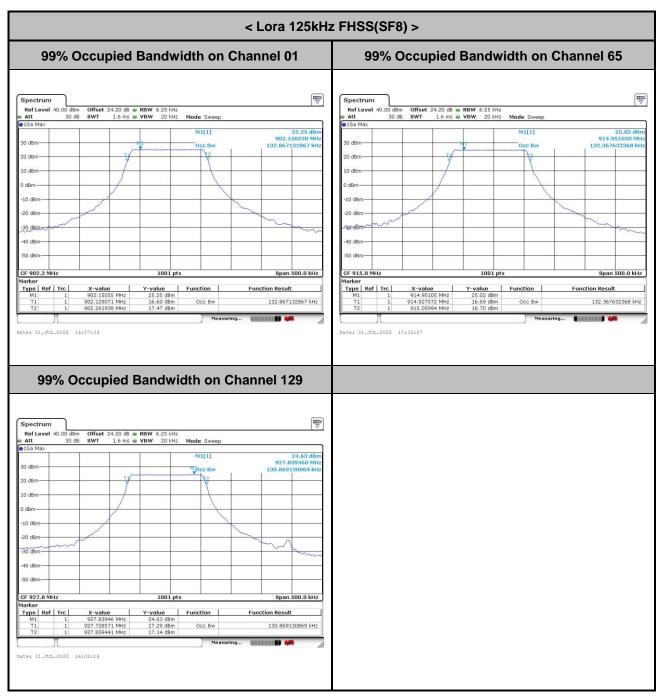
# Report No. : FR120337-09A


# **Dwell Time**



**Remark:** Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 886-3-327-3456 Page Number : A3-3 of 7


# 20dB Bandwidth

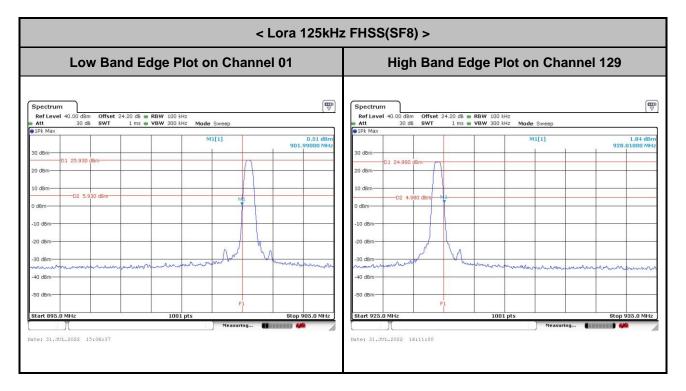


Report No.: FR120337-09A

TEL: 886-3-327-3456 Page Number : A3-4 of 7

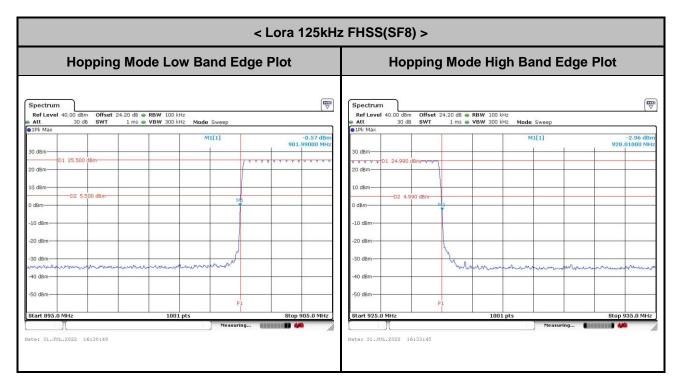
# 99% Occupied Bandwidth




Report No.: FR120337-09A

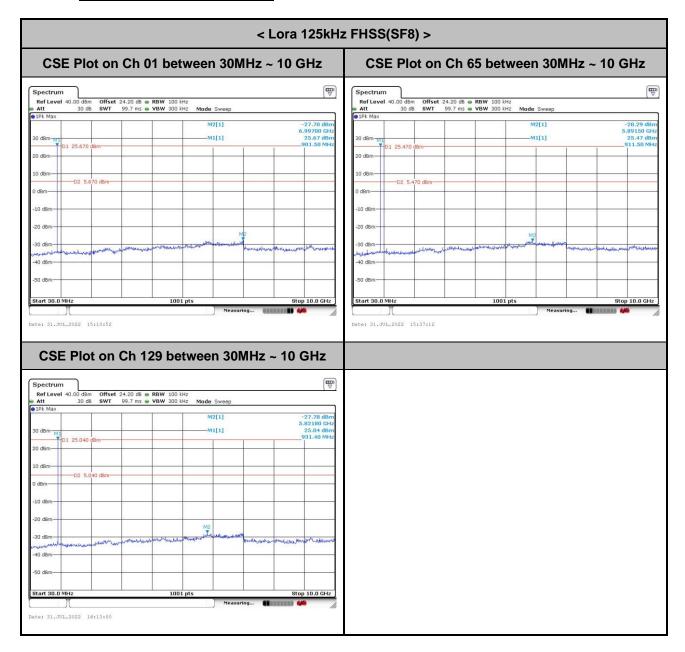
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 Page Number : A3-5 of 7




# **Band Edges**



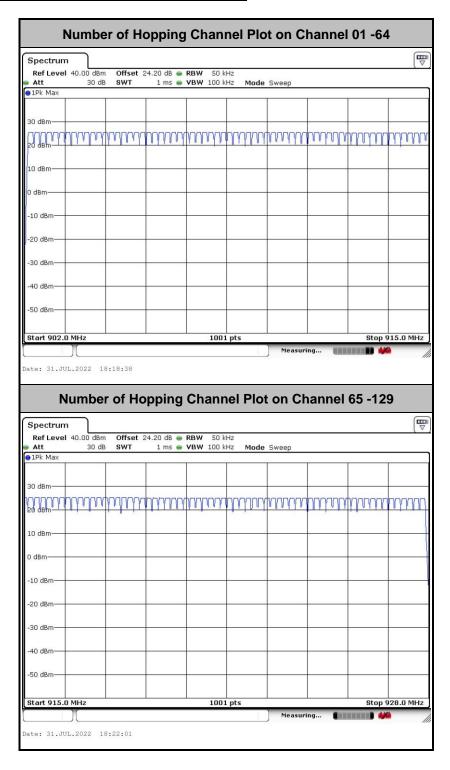

Report No.: FR120337-09A

# **Hopping Mode Band Edges**



TEL: 886-3-327-3456 Page Number : A3-6 of 7

# **Spurious Emission**




Report No.: FR120337-09A

TEL: 886-3-327-3456 Page Number : A3-7 of 7

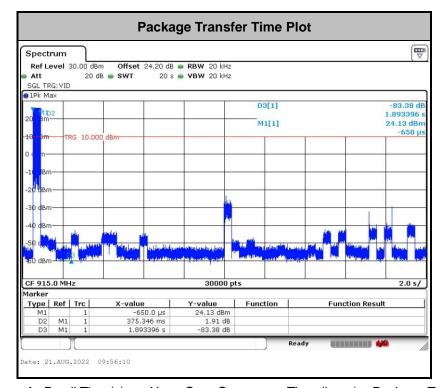
<Data Rate: SF9>

# Number of Hopping Frequency



Report No.: FR120337-09A

TEL: 886-3-327-3456 Page Number : A4-1 of 7

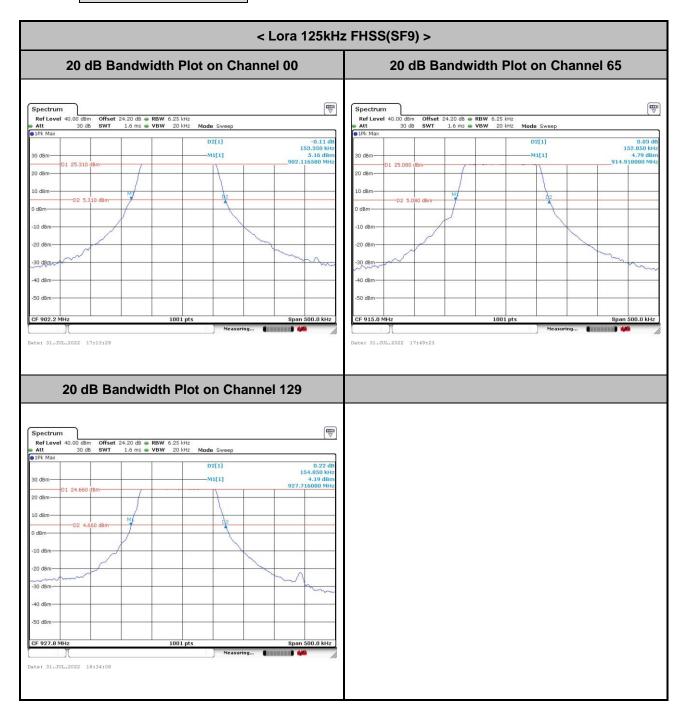

## **Hopping Channel Separation**



Report No.: FR120337-09A

TEL: 886-3-327-3456 Page Number : A4-2 of 7

## **Dwell Time**

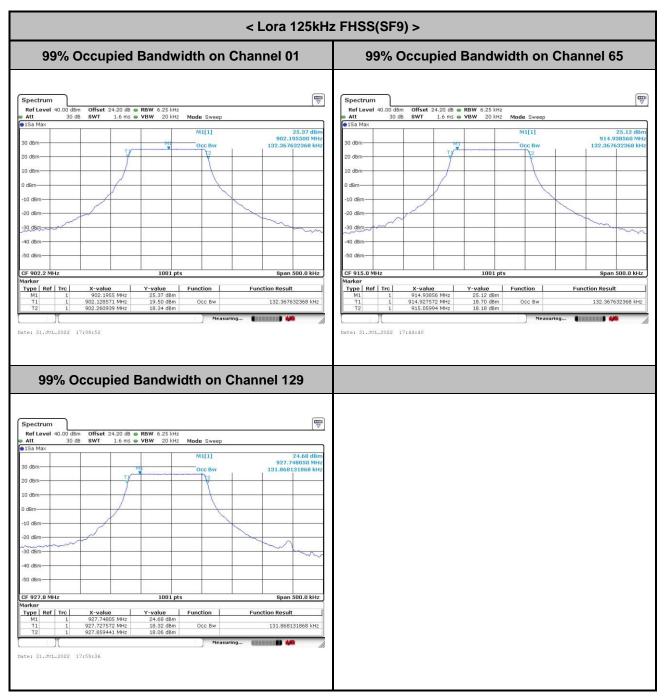



Report No.: FR120337-09A

**Remark:** Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time.

TEL: 886-3-327-3456 Page Number : A4-3 of 7

# 20dB Bandwidth

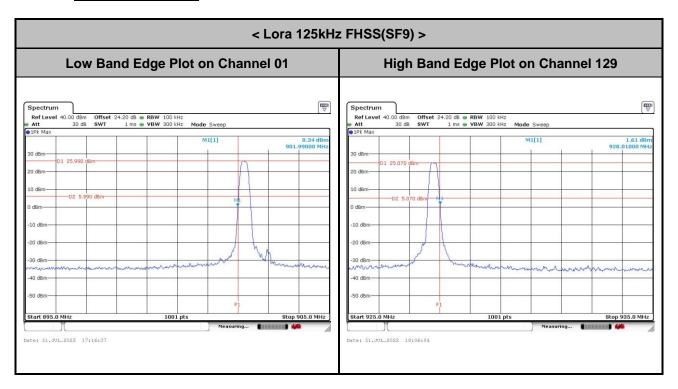



Report No.: FR120337-09A

TEL: 886-3-327-3456 Page Number : A4-4 of 7

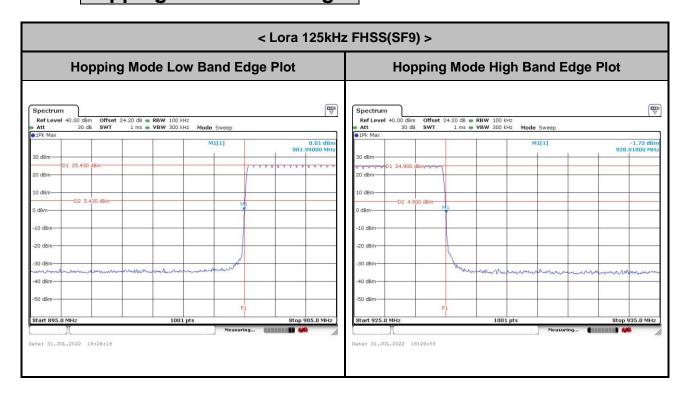
### CC RADIO TEST REPORT Report No. : FR120337-09A

## 99% Occupied Bandwidth



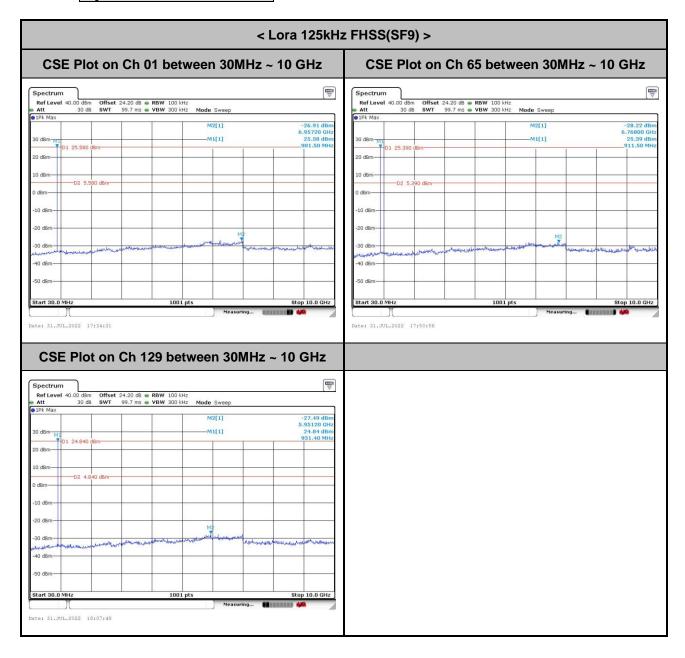

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 Page Number : A4-5 of 7




## **Band Edges**




Report No.: FR120337-09A

# **Hopping Mode Band Edges**



TEL: 886-3-327-3456 Page Number : A4-6 of 7

# **Spurious Emission**



TEL: 886-3-327-3456 Page Number : A4-7 of 7

# **Appendix B. AC Conducted Emission Test Results**

| Toot Engineer   | Tom Loo | Temperature :       | <b>23~26</b> ℃ |
|-----------------|---------|---------------------|----------------|
| Test Engineer : | Tom Lee | Relative Humidity : | 45~55%         |

Report No. : FR120337-09A

TEL: 886-3-327-3456 Page Number : B1 of B1

### **EUT Information**

 Report NO :
 120337-09

 Test Mode :
 Mode 1

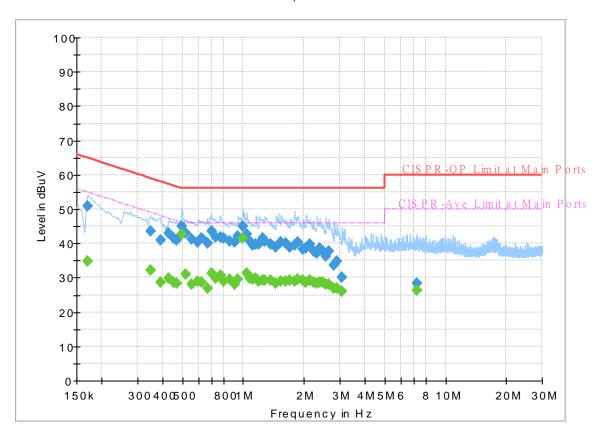
 Test Voltage :
 120Vac/60Hz

Phase: Line

#### FullSpectrum



### **Final Result**


| Frequency<br>(MHz) | QuasiPeak<br>(dBuV) | CAverage<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Line | Filter | Corr.<br>(dB) |
|--------------------|---------------------|--------------------|-----------------|----------------|------|--------|---------------|
| 0.170250           |                     | 37.13              | 54.95           | 17.82          | L1   | OFF    | 19.6          |
| 0.170250           | 54.50               | -                  | 64.95           | 10.45          | L1   | OFF    | 19.6          |
| 0.179250           |                     | 35.93              | 54.52           | 18.59          | L1   | OFF    | 19.6          |
| 0.179250           | 52.78               |                    | 64.52           | 11.74          | L1   | OFF    | 19.6          |
| 0.188250           |                     | 32.56              | 54.11           | 21.55          | L1   | OFF    | 19.6          |
| 0.188250           | 51.08               |                    | 64.11           | 13.03          | L1   | OFF    | 19.6          |
| 0.195000           |                     | 31.25              | 53.82           | 22.57          | L1   | OFF    | 19.6          |
| 0.195000           | 50.01               |                    | 63.82           | 13.81          | L1   | OFF    | 19.6          |
| 0.206250           |                     | 29.75              | 53.36           | 23.61          | L1   | OFF    | 19.6          |
| 0.206250           | 48.23               |                    | 63.36           | 15.13          | L1   | OFF    | 19.6          |
| 0.343500           |                     | 31.44              | 49.12           | 17.68          | L1   | OFF    | 19.6          |
| 0.343500           | 42.71               |                    | 59.12           | 16.41          | L1   | OFF    | 19.6          |
| 0.384000           |                     | 28.55              | 48.19           | 19.64          | L1   | OFF    | 19.6          |
| 0.384000           | 41.04               |                    | 58.19           | 17.15          | L1   | OFF    | 19.6          |
| 0.431250           |                     | 30.24              | 47.23           | 16.99          | L1   | OFF    | 19.6          |
| 0.431250           | 42.14               |                    | 57.23           | 15.09          | L1   | OFF    | 19.6          |
| 0.496500           |                     | 41.62              | 46.06           | 4.44           | L1   | OFF    | 19.6          |
| 0.496500           | 42.35               |                    | 56.06           | 13.71          | L1   | OFF    | 19.6          |
| 0.595500           |                     | 28.66              | 46.00           | 17.34          | L1   | OFF    | 19.6          |
| 0.595500           | 40.17               |                    | 56.00           | 15.83          | L1   | OFF    | 19.6          |
| 0.663000           |                     | 25.82              | 46.00           | 20.18          | L1   | OFF    | 19.6          |

| 0.663000  | 35.73 |       | 56.00 | 20.27 | L1 | OFF | 19.6 |
|-----------|-------|-------|-------|-------|----|-----|------|
| 0.690000  |       | 28.29 | 46.00 | 17.71 | L1 | OFF | 19.6 |
| 0.690000  | 37.21 |       | 56.00 | 18.79 | L1 | OFF | 19.6 |
| 0.773250  |       | 30.09 | 46.00 | 15.91 | L1 | OFF | 19.6 |
| 0.773250  | 39.29 |       | 56.00 | 16.71 | L1 | OFF | 19.6 |
| 0.996000  |       | 41.15 | 46.00 | 4.85  | L1 | OFF | 19.6 |
| 0.996000  | 42.17 |       | 56.00 | 13.83 | L1 | OFF | 19.6 |
| 1.038750  |       | 28.56 | 46.00 | 17.44 | L1 | OFF | 19.7 |
| 1.038750  | 38.32 |       | 56.00 | 17.68 | L1 | OFF | 19.7 |
| 1.155750  |       | 27.96 | 46.00 | 18.04 | L1 | OFF | 19.7 |
| 1.155750  | 36.74 |       | 56.00 | 19.26 | L1 | OFF | 19.7 |
| 1.495500  |       | 38.71 | 46.00 | 7.29  | L1 | OFF | 19.7 |
| 1.495500  | 41.20 | 30.71 | 56.00 | 14.80 | L1 | OFF | 19.7 |
| 1.610250  | 41.20 | 27.23 | 46.00 | 18.77 | L1 | OFF | 19.7 |
|           |       |       |       |       |    | OFF |      |
| 1.610250  | 35.67 |       | 56.00 | 20.33 | L1 |     | 19.7 |
| 1.695750  |       | 28.53 | 46.00 | 17.47 | L1 | OFF | 19.7 |
| 1.695750  | 37.17 |       | 56.00 | 18.83 | L1 | OFF | 19.7 |
| 1.779000  |       | 27.89 | 46.00 | 18.11 | L1 | OFF | 19.7 |
| 1.779000  | 36.07 |       | 56.00 | 19.93 | L1 | OFF | 19.7 |
| 1.860000  |       | 28.20 | 46.00 | 17.80 | L1 | OFF | 19.7 |
| 1.860000  | 36.53 |       | 56.00 | 19.47 | L1 | OFF | 19.7 |
| 1.950000  |       | 28.87 | 46.00 | 17.13 | L1 | OFF | 19.7 |
| 1.950000  | 37.24 |       | 56.00 | 18.76 | L1 | OFF | 19.7 |
| 2.031000  |       | 28.65 | 46.00 | 17.35 | L1 | OFF | 19.7 |
| 2.031000  | 37.16 |       | 56.00 | 18.84 | L1 | OFF | 19.7 |
| 2.121000  |       | 28.62 | 46.00 | 17.38 | L1 | OFF | 19.7 |
| 2.121000  | 36.88 |       | 56.00 | 19.12 | L1 | OFF | 19.7 |
| 2.204250  |       | 29.09 | 46.00 | 16.91 | L1 | OFF | 19.7 |
| 2.204250  | 37.24 |       | 56.00 | 18.76 | L1 | OFF | 19.7 |
| 2.285250  |       | 29.34 | 46.00 | 16.66 | L1 | OFF | 19.7 |
| 2.285250  | 37.59 |       | 56.00 | 18.41 | L1 | OFF | 19.7 |
| 2.368500  |       | 29.91 | 46.00 | 16.09 | L1 | OFF | 19.7 |
| 2.368500  | 37.60 | 29.91 | 56.00 | 18.40 | L1 | OFF | 19.7 |
| 2.458500  | 37.00 | 29.51 | 46.00 | 16.49 | L1 | OFF | 19.7 |
|           |       |       |       |       |    | _   |      |
| 2.458500  | 37.90 |       | 56.00 | 18.10 | L1 | OFF | 19.7 |
| 2.539500  |       | 29.92 | 46.00 | 16.08 | L1 | OFF | 19.7 |
| 2.539500  | 38.32 |       | 56.00 | 17.68 | L1 | OFF | 19.7 |
| 2.627250  |       | 29.79 | 46.00 | 16.21 | L1 | OFF | 19.7 |
| 2.627250  | 37.82 |       | 56.00 | 18.18 | L1 | OFF | 19.7 |
| 2.710500  |       | 30.03 | 46.00 | 15.97 | L1 | OFF | 19.7 |
| 2.710500  | 38.25 |       | 56.00 | 17.75 | L1 | OFF | 19.7 |
| 2.791500  |       | 29.98 | 46.00 | 16.02 | L1 | OFF | 19.7 |
| 2.791500  | 38.27 |       | 56.00 | 17.73 | L1 | OFF | 19.7 |
| 2.881500  |       | 29.70 | 46.00 | 16.30 | L1 | OFF | 19.7 |
| 2.881500  | 37.60 |       | 56.00 | 18.40 | L1 | OFF | 19.7 |
| 2.967000  |       | 29.28 | 46.00 | 16.72 | L1 | OFF | 19.7 |
| 2.967000  | 36.99 |       | 56.00 | 19.01 | L1 | OFF | 19.7 |
| 3.050250  |       | 29.39 | 46.00 | 16.61 | L1 | OFF | 19.7 |
| 3.050250  | 37.27 |       | 56.00 | 18.73 | L1 | OFF | 19.7 |
| 3.138000  |       | 29.11 | 46.00 | 16.89 | L1 | OFF | 19.7 |
| 3.138000  | 36.65 |       | 56.00 | 19.35 | L1 | OFF | 19.7 |
| 3.225750  |       | 28.62 | 46.00 | 17.38 | L1 | OFF | 19.8 |
| 3.225750  | 36.07 |       | 56.00 | 19.93 | L1 | OFF | 19.8 |
| 3.300000  | 30.07 | 28.48 | 46.00 | 17.52 | L1 | OFF | 19.8 |
| 3.300000  |       |       | 56.00 | 19.92 | L1 | OFF | 19.8 |
| 3.392250  | 36.08 | 27.03 |       |       |    |     |      |
|           | 04.50 | 27.93 | 46.00 | 18.07 | L1 | OFF | 19.8 |
| 3.392250  | 34.58 |       | 56.00 | 21.42 | L1 | OFF | 19.8 |
| 3.484500  |       | 28.94 | 46.00 | 17.06 | L1 | OFF | 19.8 |
| 3.484500  | 34.36 |       | 56.00 | 21.64 | L1 | OFF | 19.8 |
| 17.616750 |       | 28.02 | 50.00 | 21.98 | L1 | OFF | 20.4 |
| 17.616750 | 33.20 |       | 60.00 | 26.80 | L1 | OFF | 20.4 |
|           |       |       |       |       |    |     |      |

### **EUT Information**

Report NO: 120337-09
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

FullSpectrum



#### **Final Result**

| Frequency | QuasiPeak | CAverage | Limit  | Margin | Line | Filter | Corr. |
|-----------|-----------|----------|--------|--------|------|--------|-------|
| (MHz)     | (dBuV)    | (dBuV)   | (dBuV) | (dB)   |      |        | (dB)  |
| 0.170250  |           | 34.91    | 54.95  | 20.04  | N    | OFF    | 19.6  |
| 0.170250  | 50.98     |          | 64.95  | 13.97  | N    | OFF    | 19.6  |
| 0.348000  |           | 32.29    | 49.01  | 16.72  | N    | OFF    | 19.6  |
| 0.348000  | 43.59     |          | 59.01  | 15.42  | N    | OFF    | 19.6  |
| 0.388500  |           | 28.60    | 48.10  | 19.50  | N    | OFF    | 19.6  |
| 0.388500  | 40.86     |          | 58.10  | 17.24  | N    | OFF    | 19.6  |
| 0.429000  |           | 29.83    | 47.27  | 17.44  | N    | OFF    | 19.6  |
| 0.429000  | 42.86     |          | 57.27  | 14.41  | N    | OFF    | 19.6  |
| 0.451500  |           | 28.79    | 46.85  | 18.06  | N    | OFF    | 19.6  |
| 0.451500  | 41.42     |          | 56.85  | 15.43  | N    | OFF    | 19.6  |
| 0.469500  |           | 28.44    | 46.52  | 18.08  | N    | OFF    | 19.6  |
| 0.469500  | 40.90     |          | 56.52  | 15.62  | N    | OFF    | 19.6  |
| 0.498750  |           | 42.72    | 46.02  | 3.30   | N    | OFF    | 19.6  |
| 0.498750  | 45.13     |          | 56.02  | 10.89  | N    | OFF    | 19.6  |
| 0.519000  |           | 31.04    | 46.00  | 14.96  | N    | OFF    | 19.6  |
| 0.519000  | 43.13     |          | 56.00  | 12.87  | N    | OFF    | 19.6  |
| 0.555000  |           | 28.07    | 46.00  | 17.93  | N    | OFF    | 19.6  |
| 0.555000  | 41.22     |          | 56.00  | 14.78  | N    | OFF    | 19.6  |
| 0.597750  |           | 28.93    | 46.00  | 17.07  | N    | OFF    | 19.6  |
| 0.597750  | 40.42     |          | 56.00  | 15.58  | N    | OFF    | 19.6  |
| 0.624750  |           | 28.67    | 46.00  | 17.33  | N    | OFF    | 19.6  |

| 0.624750  | 41.64     |       | 56.00 | 14.36  | N | OFF | 19.6 |
|-----------|-----------|-------|-------|--------|---|-----|------|
| 0.665250  |           | 27.02 | 46.00 | 18.98  | N | OFF | 19.6 |
| 0.665250  | 40.12     |       | 56.00 | 15.88  | Ν | OFF | 19.6 |
| 0.694500  | -         | 31.30 | 46.00 | 14.70  | N | OFF | 19.6 |
| 0.694500  | 43.44     |       | 56.00 | 12.56  | N | OFF | 19.6 |
| 0.728250  |           | 29.72 | 46.00 | 16.28  | N | OFF | 19.6 |
|           | 41.86     |       |       | 14.14  | N | OFF |      |
| 0.728250  |           |       | 56.00 |        |   |     | 19.6 |
| 0.771000  |           | 30.59 | 46.00 | 15.41  | N | OFF | 19.6 |
| 0.771000  | 41.89     |       | 56.00 | 14.11  | N | OFF | 19.6 |
| 0.802500  |           | 28.83 | 46.00 | 17.17  | N | OFF | 19.6 |
| 0.802500  | 41.41     |       | 56.00 | 14.59  | Ν | OFF | 19.6 |
| 0.856500  |           | 29.48 | 46.00 | 16.52  | N | OFF | 19.6 |
| 0.856500  | 40.50     |       | 56.00 | 15.50  | N | OFF | 19.6 |
| 0.910500  |           | 28.04 | 46.00 | 17.96  | N | OFF | 19.6 |
|           | 40.20     |       |       |        | N | OFF |      |
| 0.910500  | 40.29     |       | 56.00 | 15.71  | _ |     | 19.6 |
| 0.942000  |           | 29.65 | 46.00 | 16.35  | N | OFF | 19.6 |
| 0.942000  | 42.05     |       | 56.00 | 13.95  | N | OFF | 19.6 |
| 0.996000  |           | 41.40 | 46.00 | 4.60   | N | OFF | 19.6 |
| 0.996000  | 45.15     |       | 56.00 | 10.85  | N | OFF | 19.6 |
| 1.041000  | -         | 31.31 | 46.00 | 14.69  | N | OFF | 19.6 |
| 1.041000  | 42.70     |       | 56.00 | 13.30  | Ν | OFF | 19.6 |
| 1.079250  |           | 29.94 | 46.00 | 16.06  | N | OFF | 19.6 |
| 1.079250  | 40.74     | 29.94 | 56.00 | 15.26  | N | OFF | 19.6 |
|           |           |       |       |        | _ |     |      |
| 1.108500  |           | 29.56 | 46.00 | 16.44  | N | OFF | 19.6 |
| 1.108500  | 39.45     |       | 56.00 | 16.55  | N | OFF | 19.6 |
| 1.158000  |           | 29.72 | 46.00 | 16.28  | N | OFF | 19.6 |
| 1.158000  | 39.80     |       | 56.00 | 16.20  | N | OFF | 19.6 |
| 1.198500  | -         | 29.07 | 46.00 | 16.93  | N | OFF | 19.6 |
| 1.198500  | 39.68     |       | 56.00 | 16.32  | N | OFF | 19.6 |
| 1.243500  |           | 29.11 | 46.00 | 16.89  | N | OFF | 19.6 |
| 1.243500  | 41.58     | 23.11 | 56.00 | 14.42  | N | OFF | 19.6 |
|           |           |       |       |        |   |     |      |
| 1.284000  |           | 29.16 | 46.00 | 16.84  | N | OFF | 19.7 |
| 1.284000  | 40.62     |       | 56.00 | 15.38  | N | OFF | 19.7 |
| 1.365000  |           | 29.10 | 46.00 | 16.90  | N | OFF | 19.7 |
| 1.365000  | 39.90     |       | 56.00 | 16.10  | N | OFF | 19.7 |
| 1.450500  | -         | 28.47 | 46.00 | 17.53  | N | OFF | 19.7 |
| 1.450500  | 38.77     |       | 56.00 | 17.23  | N | OFF | 19.7 |
| 1.536000  |           | 28.96 | 46.00 | 17.04  | N | OFF | 19.7 |
| 1.536000  | 40.27     | 20.30 | 56.00 | 15.73  | N | OFF | 19.7 |
|           |           |       |       |        |   |     |      |
| 1.621500  |           | 29.02 | 46.00 | 16.98  | N | OFF | 19.7 |
| 1.621500  | 40.15     |       | 56.00 | 15.85  | N | OFF | 19.7 |
| 1.707000  |           | 29.27 | 46.00 | 16.73  | N | OFF | 19.7 |
| 1.707000  | 38.94     |       | 56.00 | 17.06  | Ν | OFF | 19.7 |
| 1.797000  |           | 29.02 | 46.00 | 16.98  | N | OFF | 19.7 |
| 1.797000  | 39.37     |       | 56.00 | 16.63  | N | OFF | 19.7 |
| 1.864500  |           | 29.59 | 46.00 | 16.41  | N | OFF | 19.7 |
| 1.864500  | 40.46     |       | 56.00 | 15.54  | N | OFF | 19.7 |
|           |           |       |       | 16.75  |   |     |      |
| 1.963500  |           | 29.25 | 46.00 |        | N | OFF | 19.7 |
| 1.963500  | 38.37     |       | 56.00 | 17.63  | N | OFF | 19.7 |
| 2.049000  |           | 28.76 | 46.00 | 17.24  | N | OFF | 19.7 |
| 2.049000  | 38.55     |       | 56.00 | 17.45  | N | OFF | 19.7 |
| 2.139000  |           | 29.11 | 46.00 | 16.89  | Ν | OFF | 19.7 |
| 2.139000  | 39.66     |       | 56.00 | 16.34  | N | OFF | 19.7 |
| 2.222250  |           | 28.59 | 46.00 | 17.41  | N | OFF | 19.7 |
| 2.222250  | 37.78     |       | 56.00 | 18.22  | N | OFF | 19.7 |
| 2.305500  | 31.10     |       | 46.00 | 17.73  | N | OFF | 19.7 |
|           | <br>0- 10 | 28.27 |       |        | _ |     |      |
| 2.305500  | 37.13     |       | 56.00 | 18.87  | N | OFF | 19.7 |
| 2.395500  |           | 28.78 | 46.00 | 17.22  | N | OFF | 19.7 |
| 2.395500  | 38.52     |       | 56.00 | 17.48  | N | OFF | 19.7 |
| 2.474250  |           | 28.63 | 46.00 | 17.37  | Ν | OFF | 19.7 |
| 2.474250  | 37.69     |       | 56.00 | 18.31  | Ν | OFF | 19.7 |
| 2.559750  |           | 28.05 | 46.00 | 17.95  | N | OFF | 19.7 |
| 2.559750  | 36.17     |       | 56.00 | 19.83  | N | OFF | 19.7 |
| 2.649750  |           | 28.14 | 46.00 | 17.86  | N | OFF | 19.7 |
|           | 27.64     |       |       |        | _ |     |      |
| 2.649750  | 37.61     |       | 56.00 | 18.39  | N | OFF | 19.7 |
| 2.816250  |           | 26.98 | 46.00 | 19.02  | N | OFF | 19.7 |
| 2.816250  | 33.48     |       | 56.00 | 22.52  | N | OFF | 19.7 |
| 2.901750  |           | 26.90 | 46.00 | 19.10  | Ν | OFF | 19.7 |
| 2.901750  | 34.75     |       | 56.00 | 21.25  | N | OFF | 19.7 |
| 3.075000  |           | 25.95 | 46.00 | 20.05  | N | OFF | 19.7 |
| 3.075000  | 30.16     |       | 56.00 | 25.84  | N | OFF | 19.7 |
| 5.07 5550 | 30.10     | _ !   | 33.00 | _5.5-7 |   | J   |      |

| 7.192500 |       | 26.36 | 50.00 | 23.64 | N | OFF | 19.9 |
|----------|-------|-------|-------|-------|---|-----|------|
| 7.192500 | 28.43 |       | 60.00 | 31.57 | N | OFF | 19.9 |

# Appendix C. Radiated Spurious Emission

| Test Engineer : |                        | Temperature :       | 20.1~21.5°C |
|-----------------|------------------------|---------------------|-------------|
| rest Engineer . | Fu Chen and Troy Hsieh | Relative Humidity : | 58.1~67.6%  |

Report No.: FR120337-09A

### Lora 902~928MHz Lora FHSS 125k (Band Edge @ 3m)

| Lora      | Note | Frequency | Level      | Margin | Limit      | Read   | Antenna  | Path   | Preamp | Ant    | Table   | Peak  | Pol.  |
|-----------|------|-----------|------------|--------|------------|--------|----------|--------|--------|--------|---------|-------|-------|
| SF8       |      |           |            |        | Line       | Level  | Factor   | Loss   | Factor | Pos    |         | Avg.  |       |
|           |      | (MHz)     | ( dBµV/m ) |        | ( dBµV/m ) | (dBµV) | ( dB/m ) | ( dB ) | ( dB ) | ( cm ) | ( deg ) | (P/A) | (H/V) |
|           |      | 74.62     | 24.07      | -15.93 | 40         | 32.84  | 12.5     | 11.17  | 32.44  | -      | -       | Р     | Н     |
|           |      | 115.36    | 36.6       | -6.9   | 43.5       | 40.42  | 17.05    | 11.53  | 32.4   | 255    | 161     | Q     | Н     |
|           |      | 144.46    | 31.88      | -11.62 | 43.5       | 35.52  | 17.05    | 11.76  | 32.45  | -      | -       | Р     | Н     |
|           |      | 184.23    | 29.43      | -14.07 | 43.5       | 35.39  | 14.56    | 11.99  | 32.51  | -      | -       | Р     | Н     |
|           |      | 491.72    | 35.37      | -10.63 | 46         | 30.48  | 23.72    | 13.27  | 32.1   | -      | -       | Р     | Н     |
|           |      | 573.2     | 36.56      | -9.44  | 46         | 29.95  | 25.69    | 13.6   | 32.68  | -      | -       | Р     | Н     |
|           | *    | 902.2     | 120.47     | -      | -          | 108.27 | 28.84    | 14.58  | 31.22  | 154    | 198     | Р     | Н     |
|           |      |           |            |        |            |        |          |        |        |        |         |       | Н     |
| Lora      |      |           |            |        |            |        |          |        |        |        |         |       | Н     |
| FHSS 125k |      |           |            |        |            |        |          |        |        |        |         |       | Н     |
| CH 01     |      | 41.64     | 35.32      | -4.68  | 40         | 38.58  | 18.37    | 10.81  | 32.44  | 100    | 356     | Q     | V     |
| 902.2MHz  |      | 74.62     | 29.38      | -10.62 | 40         | 38.15  | 12.5     | 11.17  | 32.44  | -      | -       | Р     | V     |
|           |      | 115.36    | 32.58      | -10.92 | 43.5       | 36.4   | 17.05    | 11.53  | 32.4   | -      | -       | Р     | V     |
|           |      | 180.35    | 28.38      | -15.12 | 43.5       | 34.21  | 14.7     | 11.97  | 32.5   | -      | -       | Р     | V     |
|           |      | 502.39    | 34.76      | -11.24 | 46         | 29.78  | 23.84    | 13.3   | 32.16  | -      | -       | Р     | V     |
|           |      | 562.53    | 35.87      | -10.13 | 46         | 28.95  | 25.95    | 13.57  | 32.6   | -      | -       | Р     | V     |
|           | *    | 902.2     | 116.95     | -      | -          | 104.75 | 28.84    | 14.58  | 31.22  | 109    | 254     | Р     | V     |
|           |      |           |            |        |            |        |          |        |        |        |         |       | V     |
|           |      |           |            |        |            |        |          |        |        |        |         |       | V     |
|           |      |           |            |        |            |        |          |        |        | _      |         |       | V     |

1. No other spurious found.

2. All results are PASS against limit line.

Remark

3. Non restricted band limit is radio frequency level down 30db.

4. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin against limit or emission is noise floor only.

TEL: 886-3-327-3456 Page Number : C1 of C7

| Lora      | Note | Frequency | Level      | Margin | Limit              | Read            | Antenna         | Path         | Preamp      | Ant         | Table          | Peak          | Pol.  |
|-----------|------|-----------|------------|--------|--------------------|-----------------|-----------------|--------------|-------------|-------------|----------------|---------------|-------|
| SF8       |      | ( MHz )   | ( dBµV/m ) | (dB)   | Line<br>( dBµV/m ) | Level<br>(dBµV) | Factor ( dB/m ) | Loss<br>(dB) | Factor (dB) | Pos<br>(cm) | Pos<br>( deg ) | Avg.<br>(P/A) | (H/V) |
|           |      | 72.68     | 24.02      | -15.98 | 40                 | 33.06           | 12.24           | 11.16        | 32.44       | -           | -              | Р             | Н     |
|           |      | 114.39    | 36.43      | -7.07  | 43.5               | 40.38           | 16.94           | 11.51        | 32.4        | 256         | 164            | Q             | Н     |
|           |      | 145.43    | 31.49      | -12.01 | 43.5               | 35.15           | 17.02           | 11.77        | 32.45       | -           | -              | Р             | Н     |
|           |      | 185.2     | 30.3       | -13.2  | 43.5               | 36.24           | 14.57           | 12           | 32.51       | -           | -              | Р             | Н     |
|           |      | 486.87    | 35.28      | -10.72 | 46                 | 30.48           | 23.64           | 13.24        | 32.08       | -           | -              | Р             | Н     |
|           |      | 564.47    | 36.69      | -9.31  | 46                 | 29.8            | 25.93           | 13.58        | 32.62       | -           | -              | Р             | Н     |
|           | *    | 915       | 120.25     | -      | -                  | 107.81          | 28.96           | 14.61        | 31.13       | 147         | 195            | Р             | Н     |
|           |      |           |            |        |                    |                 |                 |              |             |             |                |               | Н     |
|           |      |           |            |        |                    |                 |                 |              |             |             |                |               | Н     |
|           |      |           |            |        |                    |                 |                 |              |             |             |                |               | Н     |
| Lora      |      |           |            |        |                    |                 |                 |              |             |             |                |               | Н     |
| FHSS 125k |      |           |            |        |                    |                 |                 |              |             |             |                |               | Н     |
| CH 65     |      | 41.64     | 35.33      | -4.67  | 40                 | 38.59           | 18.37           | 10.81        | 32.44       | 100         | 356            | Q             | V     |
| 915MHz    |      | 74.62     | 29.57      | -10.43 | 40                 | 38.34           | 12.5            | 11.17        | 32.44       | -           | -              | Р             | V     |
|           |      | 115.36    | 32.5       | -11    | 43.5               | 36.32           | 17.05           | 11.53        | 32.4        | -           | -              | Р             | V     |
|           |      | 155.13    | 29.39      | -14.11 | 43.5               | 33.5            | 16.56           | 11.79        | 32.46       | -           | -              | Р             | V     |
|           |      | 564.47    | 36.47      | -9.53  | 46                 | 29.58           | 25.93           | 13.58        | 32.62       | -           | -              | Р             | V     |
|           |      | 591.63    | 36.83      | -9.17  | 46                 | 30.56           | 25.44           | 13.65        | 32.82       | -           | -              | Р             | V     |
|           | *    | 915       | 116.78     | -      | -                  | 104.34          | 28.96           | 14.61        | 31.13       | 107         | 258            | Р             | V     |
|           |      |           |            |        |                    |                 |                 |              |             |             |                |               | V     |
|           |      |           |            |        |                    |                 |                 |              |             |             |                |               | V     |
|           |      |           |            |        |                    |                 |                 |              |             |             |                |               | V     |
|           |      |           |            |        |                    |                 |                 |              |             |             |                |               | V     |
|           |      |           |            |        |                    |                 |                 |              |             |             |                |               | V     |

- 1. No other spurious found.
- 2. All results are PASS against limit line.

#### Remark

- 3. Non restricted band limit is radio frequency level down 30db.
- 4. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin against limit or emission is noise floor only.

TEL: 886-3-327-3456 Page Number : C2 of C7

| Lora      | Note | Frequency | Level      | Margin | Limit              | Read            | Antenna         | Path         | Preamp      | Ant           | Table          | Peak          | Pol.  |
|-----------|------|-----------|------------|--------|--------------------|-----------------|-----------------|--------------|-------------|---------------|----------------|---------------|-------|
| SF8       |      | (MHz)     | ( dBµV/m ) | (dB)   | Line<br>( dBµV/m ) | Level<br>(dBµV) | Factor ( dB/m ) | Loss<br>(dB) | Factor (dB) | Pos<br>( cm ) | Pos<br>( deg ) | Avg.<br>(P/A) | (H/V) |
|           |      | 74.62     | 24.4       | -15.6  | 40                 | 33.17           | 12.5            | 11.17        | 32.44       | -             | -              | Р             | Н     |
|           |      | 115.36    | 36.64      | -6.86  | 43.5               | 40.46           | 17.05           | 11.53        | 32.4        | 253           | 160            | Q             | Н     |
|           |      | 143.49    | 30.93      | -12.57 | 43.5               | 34.49           | 17.13           | 11.76        | 32.45       | -             | -              | Р             | Н     |
|           |      | 187.14    | 28.94      | -14.56 | 43.5               | 34.91           | 14.53           | 12.01        | 32.51       | -             | -              | Р             | Н     |
|           |      | 560.59    | 36.02      | -9.98  | 46                 | 29.07           | 25.97           | 13.57        | 32.59       | -             | -              | Р             | Н     |
|           |      | 609.09    | 36.39      | -9.61  | 46                 | 30.16           | 25.37           | 13.69        | 32.83       | -             | -              | Р             | Н     |
|           | *    | 927.8     | 119.58     | -      | -                  | 106.67          | 29.3            | 14.65        | 31.04       | 141           | 315            | Р             | Н     |
|           |      |           |            |        |                    |                 |                 |              |             |               |                |               | Н     |
|           |      |           |            |        |                    |                 |                 |              |             |               |                |               | Н     |
|           |      |           |            |        |                    |                 |                 |              |             |               |                |               | Н     |
| Lora      |      |           |            |        |                    |                 |                 |              |             |               |                |               | Н     |
| FHSS 125k |      |           |            |        |                    |                 |                 |              |             |               |                |               | Н     |
| CH 129    |      | 42.61     | 34.8       | -5.2   | 40                 | 38.66           | 17.76           | 10.82        | 32.44       | 100           | 356            | Q             | V     |
| 927.8MHz  |      | 74.62     | 30.08      | -9.92  | 40                 | 38.85           | 12.5            | 11.17        | 32.44       | -             | -              | Р             | V     |
|           |      | 115.36    | 31.71      | -11.79 | 43.5               | 35.53           | 17.05           | 11.53        | 32.4        | -             | -              | Р             | V     |
|           |      | 155.13    | 29.19      | -14.31 | 43.5               | 33.3            | 16.56           | 11.79        | 32.46       | -             | -              | Р             | V     |
|           |      | 491.72    | 33.87      | -12.13 | 46                 | 28.98           | 23.72           | 13.27        | 32.1        | -             | -              | Р             | V     |
|           |      | 568.35    | 36.15      | -9.85  | 46                 | 29.4            | 25.81           | 13.59        | 32.65       | -             | -              | Р             | V     |
|           | *    | 927.8     | 115.7      | -      | -                  | 102.79          | 29.3            | 14.65        | 31.04       | 108           | 263            | Р             | V     |
|           |      |           |            |        |                    |                 |                 |              |             |               |                |               | V     |
|           |      |           |            |        |                    |                 |                 |              |             |               |                |               | V     |
|           |      |           |            |        |                    |                 |                 |              |             |               |                |               | V     |
|           |      |           |            |        |                    |                 |                 |              |             |               |                |               | V     |
|           |      |           |            |        |                    |                 |                 |              |             |               |                |               | V     |

- 1. No other spurious found.
- 2. All results are PASS against limit line.

#### Remark

- 3. Non restricted band limit is radio frequency level down 30db.
- 4. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin against limit or emission is noise floor only.

TEL: 886-3-327-3456 Page Number : C3 of C7



### FCC RADIO TEST REPORT

Lora FHSS 125k (Harmonic @ 3m)

Report No. : FR120337-09A

: C4 of C7

| Lora      | Note | Frequency | Level      | Margin  | Limit      | Read   | Antenna  | Path   | Preamp | Ant    | Table | Peak  | Pol   |
|-----------|------|-----------|------------|---------|------------|--------|----------|--------|--------|--------|-------|-------|-------|
| SF8       | Note | Frequency | Level      | wargiii | Line       | Level  | Factor   | Loss   | Factor | Pos    | Pos   | Avg.  | POI.  |
| 51 0      |      | (MHz)     | ( dBµV/m ) | (dB)    | ( dBµV/m ) | (dBµV) | ( dB/m ) | ( dB ) | (dB)   | ( cm ) |       | (P/A) | (H/V) |
|           |      | 2707.5    | 49.99      | -24.01  | 74         | 47.98  | 27.93    | 7.98   | 33.9   | 100    | 227   | Р     | Н     |
|           |      | 2707.5    | 45.83      | -8.17   | 54         | 43.82  | 27.93    | 7.98   | 33.9   | 100    | 227   | Α     | Н     |
|           |      | 3610      | 38.77      | -35.23  | 74         | 57.47  | 29.72    | 10.78  | 59.2   | -      | -     | Р     | Н     |
|           |      | 4512.5    | 38.12      | -35.88  | 74         | 53.74  | 31.7     | 11.08  | 58.4   | -      | -     | Р     | Н     |
|           |      | 5415      | 38.15      | -35.85  | 74         | 52     | 32.9     | 12.08  | 58.83  | -      | -     | Р     | Н     |
| Lora      |      | 8122.5    | 42.61      | -31.39  | 74         | 50.02  | 37.1     | 14.37  | 58.88  | -      | -     | Р     | Н     |
| FHSS 125k |      | 9025      | 45.16      | -28.84  | 74         | 50.1   | 38.05    | 15.83  | 58.82  | -      | -     | Р     | Н     |
| CH 01     |      | 2707.5    | 45.62      | -28.38  | 74         | 43.61  | 27.93    | 7.98   | 33.9   | 100    | 201   | Р     | V     |
| 902.2MHz  |      | 2707.5    | 41.12      | -12.88  | 54         | 39.11  | 27.93    | 7.98   | 33.9   | 100    | 201   | Α     | V     |
|           |      | 3610      | 36.94      | -37.06  | 74         | 55.64  | 29.72    | 10.78  | 59.2   | -      | -     | Р     | V     |
|           |      | 4512.5    | 38.32      | -35.68  | 74         | 53.94  | 31.7     | 11.08  | 58.4   | -      | -     | Р     | V     |
|           |      | 5415      | 37.88      | -36.12  | 74         | 51.73  | 32.9     | 12.08  | 58.83  | -      | -     | Р     | V     |
|           |      | 8122.5    | 42.94      | -31.06  | 74         | 50.35  | 37.1     | 14.37  | 58.88  | -      | -     | Р     | V     |
|           |      | 9025      | 44.6       | -29.4   | 74         | 49.54  | 38.05    | 15.83  | 58.82  | -      | -     | Р     | V     |
|           |      | 2745      | 48.71      | -25.29  | 74         | 46.48  | 28.08    | 8.05   | 33.9   | 100    | 233   | Р     | Н     |
|           |      | 2745      | 44.64      | -9.36   | 54         | 42.41  | 28.08    | 8.05   | 33.9   | 100    | 233   | Α     | Н     |
|           |      | 3660      | 37.03      | -36.97  | 74         | 55.46  | 29.82    | 10.86  | 59.11  | -      | -     | Р     | Н     |
|           |      | 4575      | 37.6       | -36.4   | 74         | 53.57  | 31.7     | 10.75  | 58.42  | -      | -     | Р     | Н     |
|           |      | 7320      | 41.36      | -32.64  | 74         | 50.07  | 37.02    | 13.44  | 59.17  | -      | -     | Р     | Н     |
| Lora      |      | 8235      | 42.94      | -31.06  | 74         | 50.14  | 37.24    | 14.41  | 58.85  | -      | -     | Р     | Н     |
| FHSS 125k |      | 9150      | 44.78      | -29.22  | 74         | 49.66  | 38.2     | 15.84  | 58.92  | -      | -     | Р     | Н     |
| CH 65     |      | 2745      | 46.44      | -27.56  | 74         | 44.21  | 28.08    | 8.05   | 33.9   | 100    | 198   | Р     | V     |
| 915MHz    |      | 2745      | 42.34      | -11.66  | 54         | 40.11  | 28.08    | 8.05   | 33.9   | 100    | 198   | Α     | V     |
|           |      | 3660      | 36.52      | -37.48  | 74         | 54.95  | 29.82    | 10.86  | 59.11  | -      | -     | Р     | V     |
|           |      | 4575      | 38.34      | -35.66  | 74         | 54.31  | 31.7     | 10.75  | 58.42  | -      | -     | Р     | V     |
|           |      | 7320      | 41.91      | -32.09  | 74         | 50.62  | 37.02    | 13.44  | 59.17  | -      | -     | Р     | V     |
|           |      | 8235      | 42.43      | -31.57  | 74         | 49.63  | 37.24    | 14.41  | 58.85  | -      | -     | Р     | V     |
|           |      | 9150      | 45.18      | -28.82  | 74         | 50.06  | 38.2     | 15.84  | 58.92  | -      | -     | Р     | V     |

TEL: 886-3-327-3456 Page Number



|           | 2783.4 | 47.11 | -26.89 | 74 | 44.78 | 28.1  | 8.12  | 33.89 | 100 | 218 | Р | Н |
|-----------|--------|-------|--------|----|-------|-------|-------|-------|-----|-----|---|---|
|           | 2783.4 | 42.85 | -11.15 | 54 | 40.52 | 28.1  | 8.12  | 33.89 | 100 | 218 | Α | Н |
|           | 3711.2 | 37.62 | -36.38 | 74 | 55.74 | 29.97 | 10.93 | 59.02 | -   | -   | Р | Н |
|           | 4639   | 37.84 | -36.16 | 74 | 53.72 | 31.78 | 10.77 | 58.43 | -   | -   | Р | Н |
| Lora      | 7422.4 | 41.47 | -32.53 | 74 | 50.35 | 36.51 | 13.74 | 59.13 | -   | -   | Р | Н |
| FHSS 125k | 8350.2 | 43.39 | -30.61 | 74 | 50.29 | 37.3  | 14.63 | 58.83 | -   | -   | Р | Н |
| CH 129    | 2783.4 | 44.98 | -29.02 | 74 | 42.65 | 28.1  | 8.12  | 33.89 | 100 | 200 | Р | V |
| 927.8MHz  | 2783.4 | 40.87 | -13.13 | 54 | 38.54 | 28.1  | 8.12  | 33.89 | 100 | 200 | Α | ٧ |
|           | 3711.2 | 39.4  | -34.6  | 74 | 57.52 | 29.97 | 10.93 | 59.02 | -   | -   | Р | ٧ |
|           | 4639   | 37.78 | -36.22 | 74 | 53.66 | 31.78 | 10.77 | 58.43 | -   | -   | Р | ٧ |
|           | 7422.4 | 41.11 | -32.89 | 74 | 49.99 | 36.51 | 13.74 | 59.13 | -   | -   | Р | V |
|           | 8350.2 | 42.63 | -31.37 | 74 | 49.53 | 37.3  | 14.63 | 58.83 | -   | -   | Р | ٧ |
|           | "      |       | 1      |    | 1     | 1     |       |       |     |     |   |   |

#### Remark

3. Non restricted band limit is radio frequency level down 30db.

4. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

TEL: 886-3-327-3456 Page Number : C5 of C7

<sup>1.</sup> No other spurious found.

<sup>2.</sup> All results are PASS against Peak and Average limit line.

### Note symbol

Report No. : FR120337-09A

| *   | Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not |
|-----|----------------------------------------------------------------------------------------------------|
|     | exceed the level of the fundamental frequency.                                                     |
| !   | Test result is <b>over limit</b> line.                                                             |
| P/A | Peak or Average                                                                                    |
| H/V | Horizontal or Vertical                                                                             |

TEL: 886-3-327-3456 Page Number : C6 of C7

#### A calculation example for radiated spurious emission is shown as below:

Report No.: FR120337-09A

| Lora     | Note | Frequency | Level    | Margin | Limit    | Read                | Antenna  | Path   | Preamp | Ant    | Table | Peak  | Pol.  |
|----------|------|-----------|----------|--------|----------|---------------------|----------|--------|--------|--------|-------|-------|-------|
|          |      |           |          |        | Line     | Level               | Factor   | Loss   | Factor | Pos    | Pos   | Avg.  |       |
|          |      | (MHz)     | (dBµV/m) | (dB)   | (dBµV/m) | (dB <sub>µ</sub> V) | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | (deg) | (P/A) | (H/V) |
| Lora     |      | 2707.5    | 49.99    | -24.01 | 74       | 47.98               | 27.93    | 7.98   | 33.9   | 100    | 227   | Р     | Н     |
| CH 01    |      |           |          |        |          |                     |          |        |        |        |       |       |       |
| 902.2MHz |      | 2707.5    | 45.83    | -8.17  | 54       | 43.82               | 27.93    | 7.98   | 33.9   | 100    | 227   | Α     | Н     |

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level( $dB\mu V/m$ ) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin(dB) = Level(dB $\mu$ V/m) – Limit Line(dB $\mu$ V/m)

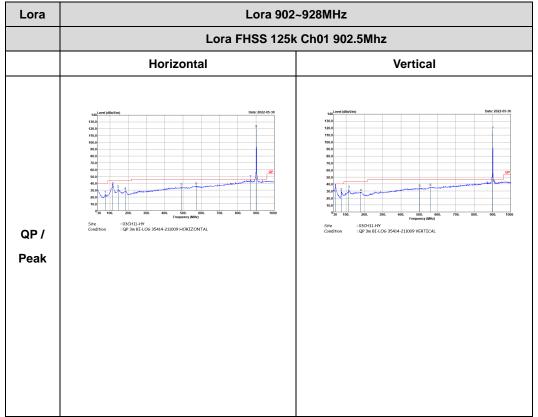
#### For Peak Limit @ 2707.5MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 27.93(dB/m) + 7.98(dB) + 47.98(dB\mu V) 33.9 (dB)$
- $= 49.99 (dB\mu V/m)$
- 2. Margin (dB)
- = Level(dB $\mu$ V/m) Limit Line(dB $\mu$ V/m)
- $= 49.99(dB\mu V/m) 74(dB\mu V/m)$
- = -24.01(dB)

#### For Average Limit @ 2707.5MHz:

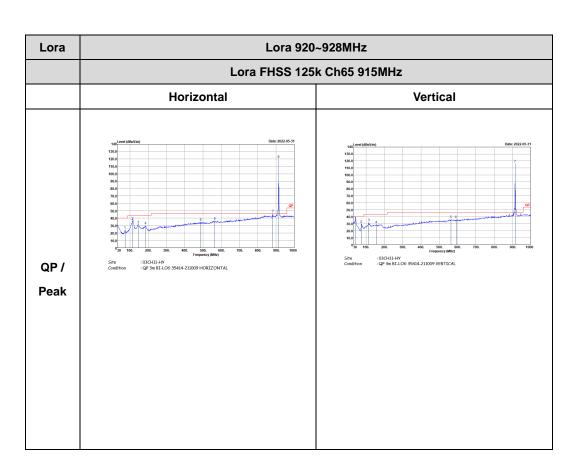
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 27.93(dB/m) + 7.98(dB) + 43.82(dB\mu V) 33.9 (dB)$
- $= 45.83 (dB\mu V/m)$
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 45.83(dB\mu V/m) 54(dB\mu V/m)$
- = -8.17(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".


TEL: 886-3-327-3456 Page Number : C7 of C7

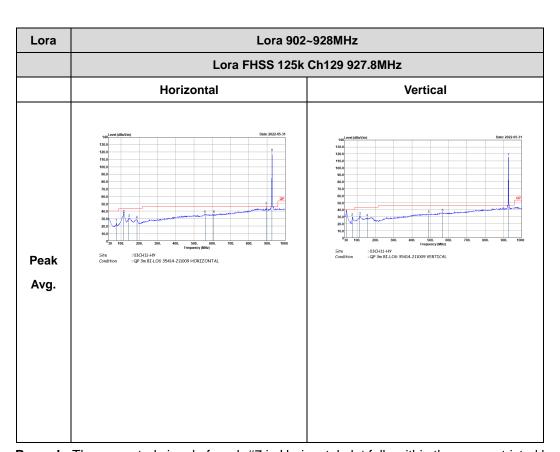
### **Appendix D. Radiated Spurious Emission Plots**

| Toot Engineer   |                        | Temperature :       | 20.1~21.5°C |  |
|-----------------|------------------------|---------------------|-------------|--|
| Test Engineer : | Fu Chen and Troy Hsieh | Relative Humidity : | 58.1~67.6%  |  |


Report No.: FR120337-09A

Lora 902~928MHz Lora FHSS 125k (Band Edge @ 3m)



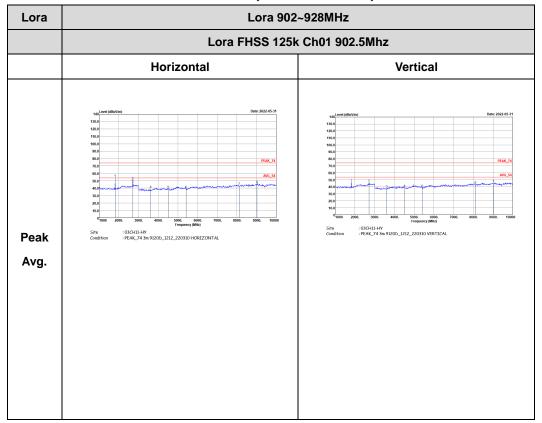

**Remark:** The unwanted signal of mark #7 in Horizontal plot falls within the non-restricted band and meet the requirements of 15.247 (d).

TEL: 886-3-327-3456 Page Number : D1 of D6



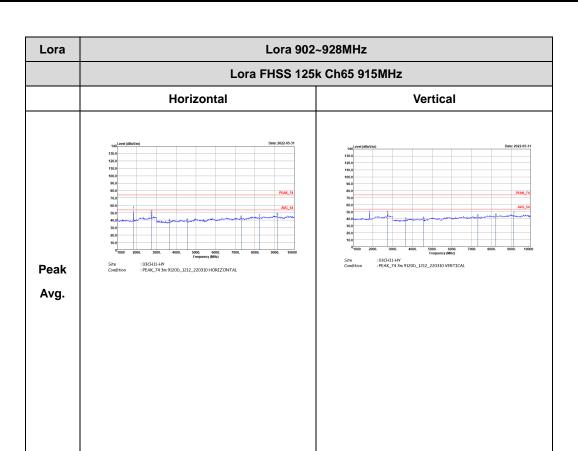
**Remark:** The unwanted signal of mark #7 in Horizontal plot falls within the non-restricted band and meet the requirements of 15.247 (d).

TEL: 886-3-327-3456 Page Number : D2 of D6



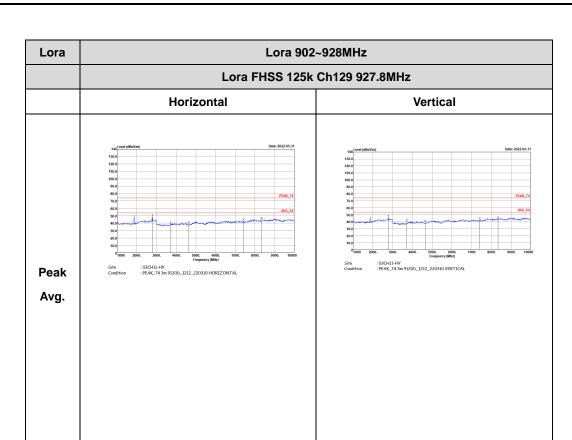

**Remark:** The unwanted signal of mark #7 in Horizontal plot falls within the non-restricted band and meet the requirements of 15.247 (d).

TEL: 886-3-327-3456 Page Number : D3 of D6


### Lora 902~928MHz Lora FHSS 125k (Harmonic @ 3m)

Report No.: FR120337-09A



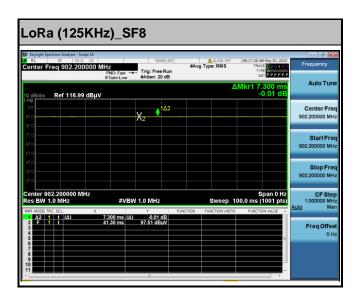

**Remark:** The unwanted signal of mark #1 in Horizontal plot falls within the non-restricted band and meet the requirements of 15.247 (d).

TEL: 886-3-327-3456 Page Number : D4 of D6



**Remark:** The unwanted signal of mark #1 in Horizontal plot falls within the non-restricted band and meet the requirements of 15.247 (d).

TEL: 886-3-327-3456 Page Number : D5 of D6




TEL: 886-3-327-3456 Page Number : D6 of D6

# **Appendix E. Duty Cycle Plots**

| Band              | Duty<br>Cycle(%) | T(us) | 1/T(kHz) | VBW Setting |
|-------------------|------------------|-------|----------|-------------|
| LoRa (125KHz)_SF8 | 100.00           | -     | -        | 10Hz        |

Report No. : FR120337-09A



TEL: 886-3-327-3456 Page Number : E1 of E1