

EMC TEST REPORT – 387256-1R1TRFEMC

Applicant:

Ring LLC

Product name:

Ring

Model:

4HB1V9

FCC ID:

2AEUPBHABV002

Specifications:

• FCC 47 CFR Part 15, Subpart B – Verification

Date of issue: July 7, 2020

Alvin Liu, EMC Specialist

Tested by

Kevin Rose, Wireless/EMC Specialist

Reviewed by

Signature

Signature

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

Lab and test locations

Company name	Nemko Canada Inc.			
Facilities	Ottawa site:	Montréal site:	Cambridge site:	Almonte site:
	303 River Road	292 Labrosse Avenue	1-130 Saltsman Drive	1500 Peter Robinson Road
	Ottawa, Ontario	Pointe-Claire, Québec	Cambridge, Ontario	West Carleton, Ontario
	Canada	Canada	Canada	Canada
	K1V 1H2	H9R 5L8	N3E 0B2	KOA 1LO
	Tel: +1 613 737 9680	Tel: +1 514 694 2684	Tel: +1 519 650 4811	Tel: +1 613 256-9117
	Fax: +1 613 737 9691	Fax: +1 514 694 3528		Fax: +1 613 256-8848
Test site registration	Organization	Recognition numbers and location	n	
5	FCC/ISED	CA2040 (Ottawa/Almonte); CA20	41 (Montreal); CA0101 (Cambrid	lge)
Website	www.nemko.com			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of Contents

Table of C	Contents	3
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Exclusions	4
1.3	Statement of compliance	
1.4	Test report revision history	4
Section 2	Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	
2.3	Deviations from laboratory tests procedures	5
Section 3	Test conditions	6
3.1	Atmospheric conditions	6
3.2	Power supply range	6
Section 4	Measurement uncertainty	7
4.1	Uncertainty of measurement	7
Section 5	Summary of test results	8
5.1	Testing location	8
5.2	Testing period	8
5.3	Sample information	8
5.4	North America test results	8
Section 6	Information provided by the applicant	9
6.1	Disclaimer	9
6.2	Applicant and manufacturer	9
6.3	EUT information	9
6.4	EUT setup details	9
Section 7	Terms and definitions1	1
7.1	Product classifications definitions1	1
7.2	General definitions1	1
Section 8	Testing data1	2
8.1	Radiated emissions1	2
8.2	Conducted emissions – from AC mains power ports1	5

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart B – Verification Title 47: Telecommunication; Part 15—Radio Frequency Devices

1.2 Exclusions

None

1.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.2 above. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.4 Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	November 28, 2019	Original report issued
R1TRF	July 7, 2020	Updated product model and description/theory of operation, removed setup photos.

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

None

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	30 % - 60 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 4 Measurement uncertainty

4.1 Uncertainty of measurement

Nèmko

Nemko Canada Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4-2 Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-2: Uncertainties, statistics and limit modelling - Measurement instrumentation uncertainty. The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Table 4.1-1: Measurement uncertainty calculations

		Ucispr	U _{lab} dB			
Measurement		dB	Ottawa	Montreal	Cambridge	Almonte
Conducted disturbance at AC mains and other port power	(9 kHz to 150 kHz)	3.8	2.9	2.8	2.8	N/A
using a V-AMN	(150 kHz to 30 MHz)	3.4	2.3	2.2	2.2	N/A
Conducted disturbance at telecommunication port using AAN	(150 kHz to 30 MHz)	5.0	4.3	4.3	4.3	N/A
Conducted disturbance at telecommunication port using CVP	(150 kHz to 30 MHz)	3.9	2.9	2.8	2.8	N/A
Conducted disturbance at telecommunication port using CP	(150 kHz to 30 MHz)	2.9	1.4	1.1	1.1	N/A
Conducted disturbance at telecommunication port using CP and CVP	(150 kHz to 30 MHz)	4.0	3.1	3.0	3.0	N/A
Disturbance power	(30 MHz to 300 MHz)	4.0	3.7	3.7	3.7	N/A
Radiated disturbance (electric field strength at an OATS or in a SAC)	(30 MHz to 1 GHz)	6.3	5.7	5.5	5.5	5.5
Radiated disturbance (electric field strength in a FAR)	(1 GHz to 6 GHz)	5.2	4.8	5.1	4.8	N/A
Radiated disturbance (electric field strength in a FAR)	(6 GHz to 18 GHz)	5.5	5.1	5.0	4.7	N/A

If U_{lab} is less than or equal to U_{cispr} then:

compliance is deemed to occur is no measured disturbance level exceeds the disturbance limit;

_ non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit

If U_{lab} is greater than U_{cispr} then:

compliance is deemed to occur is no measured disturbance level, increased by (U_{lab} - U_{cispr}), exceeds the disturbance limit;

non-compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} - U_{cispr}), exceeds the disturbance limit

Section 5 Summary of test results

5.1 Testing location

Test	location	(s)
------	----------	-----

Cambridge

5.2 Testing period

Test start date	November 11, 2019
Test end date	November 11, 2019

5.3 Sample information

Receipt date	November 11, 2019
Nemko sample ID number	Item # 2 (radiated sample)

5.4 North America test results

Table 5.4-1: Result summary for emissions

Standard	Clause	Test description	Verdict
FCC 47 CFR Part 15, Subpart B	§15.109	Radiated emissions limits ¹	Pass
FCC 47 CFR Part 15, Subpart B	§15.107	Conducted emissions limits (AC mains) ¹	Pass
Natary 1 Decident descification D			

Notes: ¹ Product classification B

Section 6 Information provided by the applicant

6.1 Disclaimer

Nèmko

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

6.2 Applicant and manufacturer

Company name	Ring LLC
Address	1523 26 th Street, Santa Monica, CA, United States, 90404

6.3 EUT information

Product name	Ring
Model	4HB1V9
Serial number	BHBV21931PG001894 (radiated sample)
Power requirements	5 V_{DC} (via external 100-240 VAC, 50/60 Hz power adapter)
Description/theory of operation	Communications device using LTE, BLE, Wi-Fi, ZigBee, Z-Wave, and SimpleLink (TI1310) technologies.
Operational frequencies	Highest clock frequency 38.4 MHz
Software details	2.0-x

6.4 EUT setup details

6.4.1 EUT Exercise and monitoring

EUT description of the methods used to exercise the EUT and all relevant ports:

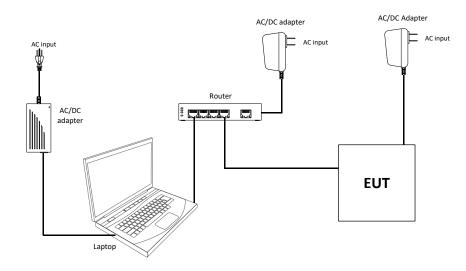
- Configure device into 'stress test' mode to activate all ports and processors, with Ethernet connected

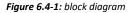
EUT setup/configuration rationale:

- The EUT setup in a configuration that was expected to produce the highest amplitude emissions relative to the limit and that satisfy normal
 operation/installation practice by the end user.
- The type and construction of cables used in the measurement set-up were consistent with normal or typical use. Cables with mitigation features (for example, screening, tighter/more twists per length, ferrite beads) have been noted below:

 None
- The EUT was setup in a manner that was consistent with its typical arrangement and use. The measurement arrangement of the EUT, local AE
 and associated cabling was representative of normal practice. Any deviations from typical arrangements have been noted below:
 - None

6.4.2 EUT test configuration


Table 6.4-1: EUT sub assemblies			
Description	Brand name	Model, Part number, Serial number, Revision level	
AC/DC Adapter	Ring	DSA-13PFG-05 050250	
Laptop	Dell	Inspiron 15	
Router	D-Link	DIR-822	


Table 6.4-2: EUT interface ports

Description	Qty.
Ethernet	1
USB	1

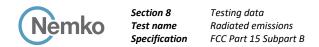
Table 6.4-3: Inter-connection cables

Cable description	From	То	Length (m)
Adapter output cable	Adapter	EUT	2.0

Section 7 Terms and definitions

Nemko

7.1 Product classifications definitions


7.1.1 Title 47: Telecommunication – Part 15-Radio Frequency devices, Subpart A – General – Equipment classification

Class A digital device	A digital device that is marketed for use in a commercial, industrial or business environment, exclusive of a device which is marketed for use by the general public or is intended to be used in the home.
Class B digital device	A digital device that is marketed for use in a residential environment notwithstanding use in commercial, business and industrial environments. Examples of such devices include, but are not limited to, personal computers, calculators, and similar electronic devices that are marketed for use by the general public. Note: The responsible party may also qualify a device intended to be marketed in a commercial, business or industrial environment as a Class B device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B digital device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B digital device.

7.2 General definitions

7.2.1 Title 47: Telecommunication – Part 15-Radio Frequency devices, Subpart A – General – Digital device definitions

Digital device (Previously defined as a computing device)	An unintentional radiator (device or system) that generates and uses timing signals or pulses at a rate in excess of 9,000 pulses (cycles) per second and uses digital techniques; inclusive of telephone equipment that uses digital techniques or any device or system that generates and uses radio frequency energy for the purpose of performing data processing functions, such as electronic computations, operations, transformations, recording, filing, sorting, storage, retrieval, or transfer. A radio frequency device that is specifically subject to an emanation requirement in any other FCC Rule part or an intentional radiator subject to subpart C of this part that contains a digital device is not subject to the standards for digital devices, provided the digital device is used only to enable operation of the radio frequency device and the digital device does not control additional functions or capabilities.
	Note: Computer terminals and peripherals that are intended to be connected to a computer are digital devices.

Section 8 Testing data

8.1 Radiated emissions

8.1.1 References and limits

FCC 47 CFR Part 15, Subpart B: Clause §15.109 (Test method ANSI C63.4:2014)

Table 8.1-1: Requirements as per FCC Part 15 Subpart B for radiated emissions for Class B

		limits	
Frequency range [MHz]	Distance [m] Detector type/ bandwidth		[dBµV/m]
30–88			
88–216	2	Outrail Barah (120 hills	43.5
216–960	3	Quasi Peak/120 kHz	46.0
960–1000			54.0
>1000	2	Linear average/1 MHz	54.0
	3	Peak/1 MHz	74.0

Notes: Where there is a step in the relevant limit, the lower value was applied at the transition frequency.

8.1.2 Test summary

Verdict	Pass		
Tested by	Alvin Liu	Test date	November 11, 2019

8.1.3 Notes

- The spectral plots within this section are a summation of a vertical and horizontal scans. The spectral scans have been corrected with the associated applicable transducer factors.
- Where tabular data has not been provided, no emissions were observed within 10 dB of the specified limit when measured with the appropriate detector. Additionally; where less than 6 measurements per detector has been provided, fewer than 6 emissions were observed within 10 dB of the specified limit when measured with the appropriate detector.
- The spectrum was scanned to 1 GHz according to the EUT highest digital operating frequency.

Table 8.1-2: Maximum frequency test range based on highest digital operating frequency

	Highest internal frequency [Fx]	Highest measured frequency
	$F_X \le 108 \text{ MHz}$	1 GHz
	108 MHz < F _x ≤ 500 MHz	2 GHz
	500 MHz < $F_X \le 1$ GHz	5 GHz
	$F_X > 1 \text{ GHz}$	$5 \times F_x$ up to a maximum of 40 GHz
Notes:	Highest internal frequency [F _x] – highest fundamental frequency gene	rated or used within the EUT or highest frequency at which it operates. This

: Highest internal frequency [F_x] – highest fundamental frequency generated or used within the EUT or highest frequency at which it operates. This includes frequencies which are solely used within an integrated circuit.

For FM and TV broadcast receivers F_x is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

Section 8Testing dataTest nameRadiated emissionsSpecificationFCC Part 15 Subpart B

8.1.4 Setup details

Port under test	Enclosure Port
EUT power input during test	5 V _{DC} (Powered via external power adapter @ 120 Vac 60 Hz)
EUT setup configuration	Table top
Test facility	Semi anechoic chamber
Measuring distance	3 m
Antenna height variation	1–4 m
Turn table position	0–360°
Measurement details	A preview measurement was generated with receiver in continuous scan or sweep mode while the EUT was rotated
	and antenna adjusted to maximize radiated emission. Emissions detected within 10 dB or above the limit were re-
	measured with the appropriate detector against the correlating limit and recorded as the final measurement.

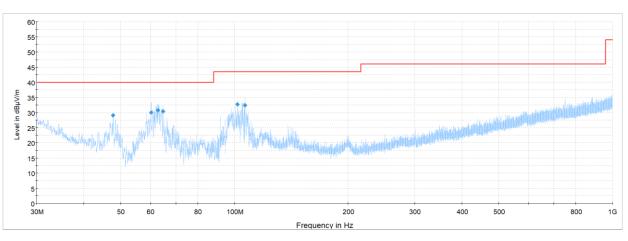
Receiver/spectrum analyzer settings.

Resolution bandwidth	Measurements below 1 GHz: 120 kHz, Measurements above 1 GHz: 1 MHz
Video bandwidth	Measurements below 1 GHz: 300 kHz, Measurements above 1 GHz:3 MHz
Detector mode	Measurements below 1 GHz: Peak (Preview), Quasi-peak (Final)
	Measurements above 1GHz: Peak (Preview), Peak and CAverage (Final)
Trace mode	Max Hold
Measurement time	100 ms

Table 8.1-3: Radiated emissions equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA003012	1 year	Oct. 10/20
Flush mount turntable	SUNAR	FM2022	FA003006	_	NCR
Controller	SUNAR	SC110V	FA002976	—	NCR
Antenna mast	SUNAR	TLT2	FA003007	_	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESR26	FA002969	1 year	June 04/20
Bilog antenna (30–2000 MHz)	SUNAR	JB1	FA003010	1 year	Sept. 17/20
50 Ω coax cable	Huber + Suhner	None	FA003047	1 year	Sept 30/20
50 Ω coax cable	Huber + Suhner	None	FA003044	1 year	Oct. 7/20

Notes: NCR - no calibration required


Table 8.1-4: Radiated emissions test software details

Manufacturer of Software	Details
Rohde & Schwarz	EMC32, Software for EMC Measurements, Version 10.40.10

Section 8 Testing data Test name Radiated emissions Specification FCC Part 15 Subpart B

8.1.5 Test data

Radiated emissions 30-1000 MHz

Preview Result 1-PK+ FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m Final_Result QPK

Figure 8.1-1: Radiated emissions spectral plot (30 to 1000 MHz)

Table 8.1-5: Radiated emissions results

Frequency (MHz)	Quasi-Peak field strength ¹ (dBµV/m)	Quasi-Peak limit ³ (dBµV/m)	Quasi-Peak margin (dB)	Correction factor ² (dB)
47.790	29.0	40.0	11.0	10.0
60.206	30.0	40.0	10.0	8.6
62.747	30.8	40.0	9.2	8.8
64.745	30.5	40.0	9.5	8.9
101.877	32.7	43.5	10.8	11.9
106.688	32.4	43.5	11.1	13.1

Notes: ¹ Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

² Correction factor = antenna factor ACF (dB) + cable loss (dB) - amplifier gain (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Sample calculation: 29.0 dBµV/m (field strength) = 19.0 dBµV (receiver reading) + 10.0 dB (Correction factor)

8.2 Conducted emissions – from AC mains power ports

8.2.1 References and limits

FCC 47 CFR Part 15, Subpart B: Clause §15.107 (Test method ANSI C63.4:2014)

Table 8.2-1: Requirements for conducted emissions from the AC mains power ports for Class B

	Measurement		Limits	
Frequency range [MHz]	Coupling device	Detector type/ bandwidth	[dBµV]	
0.15-0.5			66–56	
0.5–5	AMN	Quasi Peak/9 kHz	56	
5–30			60	
0.15-0.5			56–46	
0.5–5	AMN	CAverage/9 kHz	46	
5–30			50	
Notes: The lower limit shall apply	at the transition frequency.			

8.2.2 Test summary

Verdict	Pass		
Tested by	Alvin Liu	Test date	November 11, 2019

8.2.3 Notes

The spectral plots within this section have been corrected with applicable transducer factors.

Where tabular data has not been provided, no emissions were observed within 10 dB of the specified limit when measured with the appropriate detector. Additionally; where less than 6 measurements per detector has been provided, fewer than 6 emissions were observed within 10 dB of the specified limit when measured with the appropriate detector.

 Equipment with a DC power port powered by a dedicated AC/DC power converter is considered to be AC mains powered equipment and was tested with a power converter. Where the power converter was provided by the manufacturer, the provided converter was used.

Section 8 Test name Specification Testing data Conducted emissions – from AC mains power ports FCC Part 15 Subpart B

8.2.4 Setup details

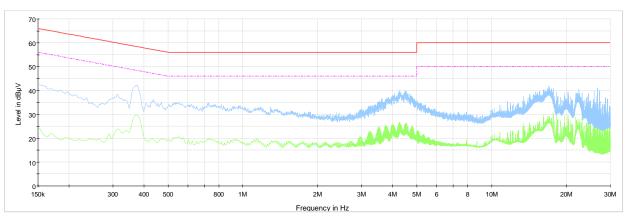
Port under test – Coupling device	AC Power input (AC adapter) – Artificial Mains Network (AMN)
EUT power input during test	5 V _{DC} (Powered via external power adapter @ 120 Vac 60 Hz)
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB or above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the
	final measurement.

Receiver settings:	
Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average (Preview), Quasi-peak and CAverage (Final)
Trace mode	Max Hold
Measurement time	100 ms (Preview), 160 ms (Final)

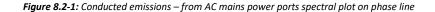
Table 8.2-2: Conducted emissions - from AC mains power ports equipment list

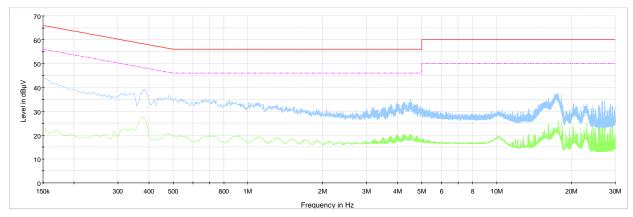
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Receiver/spectrum analyzer	Rohde & Schwarz	ESR26	FA002969	1 year	June 04/20
Two-Line V-Network	Rohde & Schwarz	ENV216	FA002965	1 year	June 20/20
Notes: None					

Table 8.2-3: Conducted emissions - from AC mains power ports test software details

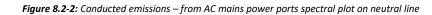

Manufacturer of Software	Details
Rohde & Schwarz	EMC32, Software for EMC Measurements, Version 10.40.10

Section 8 Test name Specification


Testing data Conducted emissions – from AC mains power ports FCC Part 15 Subpart B


8.2.5 Test data

Conducted emissions 150 kHz - 30 MHz 120 Vac 60 Hz Phase


Preview Result 2-AVG Preview Result 1-PK+ CISPR 32 Limit - Class B, Mains (Quasi-Peak) CISPR 32 Limit - Class B, Mains (Average)

Conducted emissions 150 kHz - 30 MHz 120 Vac 60 Hz Neutral

Preview Result 2-AVG Preview Result 1-PK+ CISPR 32 Limit - Class B, Mains (Quasi-Peak) CISPR 32 Limit - Class B, Mains (Average)

End of the test report