

EMC TEST REPORT – 337515-7TRFWL

Applicant:

BOT Home Automation Inc.

Product name:

Ring

Model:

Base Station

FCC ID:

2AEUPBHABS001

IC Registration number:

20271-BHABS001

Specifications:

FCC 47 CFR Part 15 Subpart C, §15.249

Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz.

RSS-210 Issue 9, August 2016, Annex B.10

Devices operating in 902–928, 2400–2483.5 and 5725–5875 MHz frequency band for any application

Date of issue: October 5, 2017

Test engineer(s):

David Duchesne, Senior EMC/Wireless Specialist Sig

Signature:

Reviewed by:

Andrey Adelberg, Senior Wireless/EMC Specialist Signature:

www.nemko.com Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

Lab and test locations

Company name	Nemko Canada Inc.			
Facilities	Ottawa site:		Montreal site:	Almonte site:
	303 River Road, Ottawa,	ON, Canada,	292 Labrosse Avenue, Pointe-Claire, QC,	1500 Peter Robinson Road, West
	K1V 1H2		Canada, H9R 5L8	Carleton, ON, Canada, KOA 1L0
	Tel: +1 613 737 9680		Tel: +1 514 694 2684	Tel: +1 613 256-9117
	Fax: +1 613 737 9691		Fax: +1 514 694 3528	Fax: +1 613 256-8848
Test site registration	Organization	Recognition nur	nbers and location	
	FCC	CA2040 (Ottawa); CA2041 (Montreal)	
	ISED	CA2040A-4 (Otta	awa); CA2040G-5 (Montreal); CA2040A-3 (Al	monte)
Website	www.nemko.com			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of contents

Table of	contents	3
Section 1	. Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Test methods	4
1.4	Exclusions	4
1.5	Statement of compliance	4
1.6	Test report revision history	4
Section 2	Summary of test results	5
2.1	Testing period	5
2.2	FCC Part 15 Subpart C, general requirements test results	5
2.3	FCC Part 15 Subpart C, intentional radiators test results	5
2.4	ISED RSS-GEN, Issue 4, test results	6
2.5	ISED RSS-210, Issue 9, test results	6
Section 3	. Equipment under test (EUT) details	7
3.1	Sample information	7
August 2	1, 2017 7	
3.2	EUT information	7
3.3	Technical information	7
3.4	Product description and theory of operation	7
3.5	EUT exercise details	7
3.6	EUT setup diagram	8
Section 4	. Engineering considerations	9
4.1	Modifications incorporated in the EUT for compliance	9
4.2	Technical judgment	9
4.3	Deviations from laboratory tests procedures	9
Section 5	. Test conditions	10
5.1	Atmospheric conditions	10
5.2	Power supply range	10
Section 6	6. Measurement uncertainty	11
6.1	Uncertainty of measurement	11
Section 7	7. Test equipment	12
7.1	Test equipment list	12
Section 8	8. Testing data	13
8.1	FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits	13
8.2	FCC 15.215(c) and RSS-Gen Section 6.6 Occupied (Emission) bandwidth	16
8.3	FCC 15.249(a) RSS 210 and Section B.10(a) Field strength of fundamental and harmonics outside restricted bands	19
8.4	FCC 15.249(d) and RSS-210 Section B.10 (b) Spurious emissions (except for harmonics)	24
Section 9). Block diagrams of test set-ups	31
9.1	Radiated emissions set-up for frequencies below 1 GHz	31
9.2	Radiated emissions set-up for frequencies above 1 GHz	31
9.3	Conducted emissions set-up	32

Section 1. Report summary

1.1 Applicant and manufacturer

•	
Company name	BOT Home Automation Inc.
Address	1523 26th Street, Santa Monica, California United States 90404

1.2 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause 15.249	Operation within the bands 902–928 MHz, 2400–2483.5 MHz, 5725–5875 MHz, and 24.0–24.25 GHz.
RSS-210 Issue 9, August 2016, Annex B.10	Devices operating in 902–928, 2400–2483.5 and 5725–5875 MHz

1.3 Test methods

ANSI C63.10 v2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.4 Exclusions

None

1.5 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.6 Test report revision history

Table 1.6-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report	
TRF	October 5, 2017	Original report issued	

Section 2. Summary of test results

2.1 Testing period

Test start date	August 25, 2017
Test end date	August 30, 2017

2.2 FCC Part 15 Subpart C, general requirements test results

Table 2.2-1: Result summary for Subpart C, general

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass ¹
§15.203	Antenna requirement	Pass ²
§15.215(c)	20 dB bandwidth	Pass
Notes:	¹ Measurements of the variation of the input power or the radiated signal level of the fundamental frequency comport	nent of the emission, as appropriate, was

¹ Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

² The antennas are located within the enclosure of EUT and not user accessible.

2.3 FCC Part 15 Subpart C, intentional radiators test results

Table 2.3-1: Result summary for Subpart C, intentional radiator

Part	Test description	Verdict
§15.249(a)	Radiated emissions not in restricted bands	Pass
§15.249(b)	Fixed Point-to-Point operation in the 24.0–24.25 GHz band	Not applicable
§15.249(d)	Spurious emissions (except harmonics)	Pass

Notes: None

2.4 ISED RSS-GEN, Issue 4, test results

Table 2.4-1: Result summary for ISED RSS-GEN

Part	Test description	Verdict
6.6	Occupied bandwidth	Pass
7.1.2	Receiver radiated emission limits	Not applicable
7.1.3	Receiver conducted emission limits	Not applicable
8.8	Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus	Pass
Notes:	¹ According to sections 5.2 and 5.3 of RSS-Gen, Issue 4 the EUT does not have a stand-alone receiver neither scanner	receiver, therefore exempt from receiver

requirements.

2.5 ISED RSS-210, Issue 9, test results

Table 2.5-1: Result summary for ISED RSS-210

Section	Test description	Verdict
4.1	Emissions Falling Within Restricted Frequency Bands	Pass
B.10a	Fundamental and harmonics emissions limits	Pass
B.10b	Spurious emissions (except harmonics) limits	Pass

Notes: None

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	August 21, 2017
Nemko sample ID number	Item # 3

3.2 EUT information

Product name	Ring
Model	Base Station
Serial number	BHHB11731PG000029

3.3 Technical information

Applicant IC company number	20271
IC UPN number	BHABS001
All used IC test site(s) Reg. number	2040A-4
RSS number and Issue number	RSS-210 Annex B.10 Issue 9, August 2016
Frequency band (MHz)	902–928
Frequency Min (MHz)	908.4
Frequency Max (MHz)	916.0
RF power Max (W), Conducted	N/A
Field strength, Units @ distance	93.9 dBµV/m at 3 m
Measured BW (kHz) (99%)	111.54
Calculated BW (kHz), as per TRC-43	N/A
Type of modulation	2FSK
Emission classification	F1D
Transmitter spurious, Units @ distance	40.8 dB μ V/m Peak and 35.1 dB μ V/m Average at 2725.26 MHz @ 3 m
Power requirements	5 V_{DC} (via external 100–240 V_{AC} , 50/60 Hz power adapter)
Antenna information	Antenna gain is 1.2 dBi (Inverted F)
	The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator.
Hardware and software details	1.0-x

3.4 Product description and theory of operation

Communications Hub for Home Security Products

3.5 EUT exercise details

The EUT was setup in continuous transmit state.

3.6 EUT setup diagram

Figure 3.6-1: Setup diagram

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list					
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	Jan. 31/18
AC Power source	Chenwa	2700M-10k	FA002716	_	VOU
LISN	Rohde & Schwarz	ENV216	FA002023	1 year	May 19/18
50 Ω coax cable	C.C.A.	None	FA002556	1 year	May 2/18
3 m EMI test chamber	ТDК	SAC-3	FA002047	1 year	Dec. 1/17
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	Jan. 31/18
Horn with Preamp	ETS-Lindgren	3117-PA	FA002840	1 year	Nov. 11/17
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	June 27/18
50 Ω coax cable	Huber + Suhner	None	FA002830	1 year	May 12/18
50 Ω coax cable	C.C.A.	None	FA002555	1 year	May 2/18

Notes: NCR - no calibration required, VOU - verify on use

Section 8. Testing data

FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits 8.1

8.1.1 Definitions and limits

FCC §15.207:

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) a) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

IC RSS-GEN Section 8.8:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 8.1-1: AC power line conducted emissions limit

Frequency of emission,	Conduc	ted limit, dBμV
MHz	Quasi-peak	Average**
0.15-0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50
Notes: * - The level decreases linearly with	the logarithm of the frequency.	

The level decreases linearly with the logarithm of the frequency.

** - A linear average detector is required.

Test summary 8.1.2

Verdict	Pass		
Test date	August 25, 2017	Temperature	22 °C
Test engineer	David Duchesne	Air pressure	1002 mbar
Test location	Ottawa	Relative humidity	67 %

8.1.3 Observations, settings and special notes

Port under test – Coupling device	AC Input – Artificial Mains Network (AMN)
EUT power input during test	$5 V_{DC}$ (Powered via external power adapter @ 120 V _{AC} 60 Hz)
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB
	or above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the
	final measurement.

Receiver settings:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average (Preview measurement), Quasi-peak and CAverage (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak and Average preview measurement) 100 ms (Quasi-peak final measurement) 160 ms (CAverage final measurement)

8.1.4 Test data

Preview Result 2-AVG Preview Result 1-PK+ CISPR 22 Mains Q-Peak Class B Limit CISPR 22 Mains Average Class B Limit

The spectral plot has been corrected with transducer factors. (i.e. cable loss, LISN factors, and attenuators)

120VAC 60Hz, Neutral Preview Result 2-AVG Preview Result 1-PK+ CISPR 22 Mains Q-Peak Class B Limit CISPR 22 Mains Average Class B Limit

The spectral plot has been corrected with transducer factors. (i.e. cable loss, LISN factors, and attenuators)

Figure 8.1-2: AC power line conducted emissions – spectral plot on neutral line

8.2 FCC 15.215(c) and RSS-Gen Section 6.6 Occupied (Emission) bandwidth

8.2.1 Definitions and limits

FCC §15.215 (c):

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80 % of the permitted band in order to minimize the possibility of out-of-band operation.

IC RSS-GEN Section 6.6:

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

8.2.2 Test summary

Verdict	Pass		
Test date	September 1, 2017	Temperature	23 °C
Test engineer	David Duchesne	Air pressure	1000 mbar
Test location	Ottawa	Relative humidity	44.6 %

8.2.3 Observations, settings and special notes

None

Spectrum analyser settings:	
Detector mode	Peak
Resolution bandwidth	1 % to 5 % of OBW
Video bandwidth	RBW × 3
Trace mode	Max Hold

8.2.4 Test data

Table 8.2-1: Occupied bandwidth results

Frequency, MHz	Baud rate, k	20 dB bandwidth, kHz	99% bandwidth, kHz
908.42	9.6	73.07	78.21
908.42	40	91.66	86.54
908.4	9.6	73.08	74.36
916.0	100	126.28	111.54

Notes: None

8.2.4 Test data, continued

Figure 8.2-1: 20 dB bandwidth @ 908.42 MHz, 9.6k baud rate

Figure 8.2-3: 20 dB bandwidth @ 908.4 MHz, 9.6k baud rate

Figure 8.2-2: 20 dB bandwidth @ 908.42 MHz, 40k baud rate

Figure 8.2-4: 20 dB bandwidth @ 916.0 MHz, 100k baud rate

Figure 8.2-5: 99% bandwidth, @ 908.42 MHz, 9.6k baud rate

Figure 8.2-7: 99% bandwidth, @ 908.4 MHz, 9.6k baud rate

Figure 8.2-6: 99% bandwidth, @ 908.42 MHz, 40k baud rate

Figure 8.2-8: 99% bandwidth, @ 916.0 MHz, 100k baud rate

FCC 15.249(a) RSS 210 and Section B.10(a) Field strength of fundamental and harmonics outside restricted 8.3 bands

Definitions and limits 8.3.1

FCC §15.249 (a):

The field strength of emissions from intentional radiators shall comply with the following table. Field strength limits are specified at a distance of 3 meters.

IC RSS-210 Section B.10 (a):

The field strength of fundamental and harmonic emissions, measured at 3 m, shall not exceed 50 mV/m and 0.5 mV/m respectively. See table below.

Table 8.3-1: Field strength limits Fundamental frequencies, Field strength of fundamental Field strength of harmonics MHz dBµV/m mV/m dBµV/m μV/m 902–928 50 94 500 54 2400-2483.5 50 94 500 54 5725-5875 50 94 500 54 24000-24250 250 108 2500 68 Notes:

The field strength limits shall be measured using an average detector, except for the fundamental emission in the frequency band 902–928 MHz, which is based on measurements using an International Special Committee on Radio Interference (CISPR) quasi-peak detector.

In the emission table above, the tighter limit applies at the band edges. For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

8.3.2 Test summary

Verdict	Pass		
Test date	September 1, 2017	Temperature	23 °C
Test engineer	David Duchesne	Air pressure	1000 mbar
Test location	Ottawa	Relative humidity	44.6 %

Report reference ID: 337515-7TRFWL

8.3.3 Observations, settings and special notes

- The spectrum was searched from 30 MHz to 10th harmonic of fundamental frequency.

- EUT was set to transmit with 100 % duty cycle.
- Radiated measurements were performed at a distance of 3 m.
- The spectral plots have been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators)

Spectrum analyzer settings for Q-peak measurements at the frequencies from 902 to 928 MHz:

Detector mode	Q-Peak
Resolution bandwidth	120
Video bandwidth	300 kHz
Trace mode	Max Hold

Spectrum analyzer settings for peak measurements at the frequencies above 1000 MHz:

Detector mode	Peak
Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Trace mode	Max Hold

Spectrum analyzer settings for average measurements at the frequencies above 1000 MHz:

Detector mode	Average
Resolution bandwidth	1 MHz
Video bandwidth	10 Hz
Trace mode	Max Hold

8.3.4 Test data

Table 8.3-2: Field strength of fundamental results

Frequency, MHz	Baud rate, k	Power setting	Q-Peak field strength at 3 m, dBμV	Q-Peak field strength limit at 3 m, dBμV/m	Margin, dB
908.42	9.6	12	93.3	94.0	0.7
908.42	40	12	93.7	94.0	0.3
908.4	9.6	12	93.9	94.0	0.1
916.0	100	15	93.1	94.0	0.9

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Table 8.3-3: Radiated field strength of harmonics results

Tx freq.,	Tx freq., Baud Frequency, MHz	d Peak Field strength, dBμV/m		Peak margin, DCCF, dB	Average Field strength, dBμV/m		Margin,		
IVIHZ rate, K		Measured	Limit	üБ		Calculated	Limit	uв	
908.42	9.6	2725.26	40.8	74.0	33.2	-5.7	35.1	54.0	18.9
908.42	40	2726.26	40.7	74.0	33.3	-11.4	29.3	54.0	24.7
908.40	9.6	2726.00	40.9	74.0	33.1	-5.7	35.2	54.0	18.8
916.00	100	2748.00	41.9	74.0	32.1	-17.9	24.0	54.0	30.0

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Average field strength calculation was performed using the following formula: Average Field strength = Peak Field strength + Duty cycle correction factor

All other emissions were greater than 20 dB form limit.

8.3.4 Test data

Figure 8.3-1: 908.42 MHz, 9.k baud rate

Figure 8.3-3: 916 MHz, 100k baud rate

Figure 8.3-2: 908.4 MHz, 40k baud rate

Duty cycle calculation:

908.42 MHz, 9.6k baud rate

Tx on Time: 51.6 ms Duty cycle correction factor: $20 \times Log_{10}$ [(51.6) / 100] = -5.7 dB

908.40 MHz, 40k baud rate

Tx on Time: 26.9 ms Duty cycle correction factor: $20 \times Log_{10} [(26.9) / 100] = -11.4 dB$

908.42 MHz, 100k baud rate

Tx on Time: 12.8 ms Duty cycle correction factor: $20 \times Log_{10}$ [(12.8) / 100] = -17.9 dB

Test data, continued 8.3.4

AVG_MAXH PK+_MAXH FCC Part 15 and ICES- Class B 3m Peak Limit FCC Part 15 and ICES - Class B 3m Average Limit

Figure 8.3-4: Field strength of harmonics, Tx 908.42 MHz, 9.6 k baud rate

AVG_MAXH PK+_MAXH FCC Part 15 and ICES- Class B 3m Peak Limit FCC Part 15 and ICES - Class B 3m Average Limit

Figure 8.3-5: Field strength of harmonics, Tx 908.42 MHz, 40 k baud rate

Test data, continued 8.3.4

AVG_MAXH PK+_MAXH FCC Part 15 and ICES- Class B 3m Peak Limit FCC Part 15 and ICES - Class B 3m Average Limit

Figure 8.3-6: Field strength of harmonics, Tx 908.4 MHz, 9.6 k baud rate

AVG_MAXH PK+_MAXH FCC Part 15 and ICES-Class B 3m Peak Limit FCC Part 15 and ICES - Class B 3m Average Limit

Figure 8.3-7: Field strength of harmonics, Tx 916.0 MHz, 100 k baud rate

FCC 15.249(d) and RSS-210 Section B.10 (b) Spurious emissions (except for harmonics) 8.4

Definitions and limits 8.4.1

FCC §15.249 (d):

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

IC RSS-210 Section B.10 (b):

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

Table 8.4-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency,	Field stren	gth of emissions	Measurement distance, m	
MHz	μV/m	dBµV/m		
0.009-0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300	Ī
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30	
1.705-30.0	30	29.5	30	
30–88	100	40.0	3	
88–216	150	43.5	3	
216–960	200	46.0	3	
above 960	500	54.0	3	

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.4-2: ISED restricted frequency bands

MHz		MHz	MHz	GHz
0.090-0	110 1	12.51975–12.52025	399.9–410	5.35-5.46
2.1735-2	1905 1	12.57675–12.57725	608–614	7.25-7.75
3.020-3	026	13.36–13.41	960–1427	8.025-8.5
4.125-4	128	16.42-16.423	1435–1626.5	9.0–9.2
4.17725-4	17775 1	16.69475–16.69525	1645.5–1646.5	9.3–9.5
4.20725-4	20775 1	16.80425–16.80475	1660–1710	10.6–12.7
5.677-5.	683	25.5-25.67	1718.8–1722.2	13.25–13.4
6.215-6	218	37.5–38.25	2200–2300	14.47-14.5
6.26775-6	26825	73–74.6	2310–2390	15.35-16.2
6.31175-6	31225	74.8–75.2	2655–2900	17.7–21.4
8.291-8	294	108–138	3260–3267	22.01-23.12
8.362-8	366 15	56.52475–156.52525	3332–3339	23.6-24.0
8.37625-8	38675	156.7–156.9	3345.8–3358	31.2–31.8
8.41425-8	41475	240–285	3500-4400	36.43-36.5
12.29-12	.293	322-335.4	4500–5150	Above 38.6
Notes: None				

Notes:

Table 8.4-3: FCC restricted frequency bands

M	IHz	MHz	MHz	GHz
0.090	-0.110	16.42-16.423	399.9–410	4.5-5.15
0.495	-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735	-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125	-4.128	25.5-25.67	1300–1427	8.025-8.5
4.17725	-4.17775	37.5–38.25	1435-1626.5	9.0–9.2
4.20725	-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215	-6.218	74.8–75.2	1660–1710	10.6-12.7
6.26775	-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175	-6.31225	123–138	2200–2300	14.47–14.5
8.291	-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362	-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625	-8.38675	156.7-156.9	2690–2900	22.01-23.12
8.41425	-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-	-12.293	167.72-173.2	3332–3339	31.2-31.8
12.51975	-12.52025	240–285	3345.8-3358	36.43-36.5
12.57675	-12.57725	322-335.4	3600-4400	Above 38.6
13.36	-13.41			
Notes: None				

8.4.2 Test summary

Verdict	Pass		
Test date	September 1, 2017	Temperature	23 °C
Test engineer	David Duchesne	Air pressure	1000 mbar
Test location	Ottawa	Relative humidity	44.6 %

8.4.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to $10^{\rm th}$ harmonic of fundamental frequency. _

EUT was set to transmit with 100 % duty cycle. _

- _ Radiated measurements were performed at a distance of 3 m.
- The spectral plots have been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators) _

Spectrum analyser settings for measurements below 1 GHz:

Resolution bandwidth:	100 or 120 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak or Quasi-Peak
Trace mode:	Max Hold

Spectrum analyser settings for peak measurements above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser settings for average measurements above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	RMS
Trace mode:	Average (100 Traces)

8.4.4 Test data

 No spurious emissions detected within 10 dB of limit below 1 GHz. Emissions detected within 10 dB of limit were determined to be digital emissions not associated with the transmitter.

- No spurious emissions detected within 10 dB of limit above 1 GHz

8.4.4 Test data, continued

PK+_MAXH FCC Part 15 and ICES - Class B 3m Q-Peak Limit

Figure 8.4-3: Spurious emission – below 1 GHz s, Tx 908.42 MHz, 40 k baud rate

8.4.4 Test data, continued

Figure 8.4-4: Spurious emissions – below 1 GHz, Tx 908.4 MHz, 9.6 k baud rate

PK+_MAXH FCC Part 15 and ICES - Class B 3m Q-Peak Limit

Figure 8.4-5: Spurious emissions – below 1 GHz, Tx 916.0 MHz, 100 k baud rate

8.4.4 Test data, continued

AVG_MAXH PK+_MAXH FCC Part 15 and ICES- Class B 3m Peak Limit FCC Part 15 and ICES - Class B 3m Average Limit

Figure 8.4-6: Spurious emissions – above 1 GHz, Tx 908.42 MHz, 9.6 k baud rate

Figure 8.4-7: Spurious emissions – above 1 GHz, Tx 908.42 MHz, 40 k baud rate

8.4.4 Test data, continued

AVG_MAXH PK+_MAXH FCC Part 15 and ICES- Class B 3m Peak Limit FCC Part 15 and ICES - Class B 3m Average Limit

Figure 8.4-8: Spurious emissions – above 1 GHz, Tx 908.4 MHz, 9.6 k baud rate

AVG_MAXH PK+,MAXH FCC Part 15 and ICES-Class B 3m Peak Limit FCC Part 15 and ICES - Class B 3m Average Limit

Figure 8.4-9: Spurious emissions – above 1 GHz, Tx 916.0 MHz, 100 k baud rate

Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up for frequencies below 1 GHz

9.2 Radiated emissions set-up for frequencies above 1 GHz

9.3 Conducted emissions set-up

