

ONE WORLD O OUR APPROVAL

Wireless Test Report – 1R368533-5TRFWL

Applicant: **Ring LLC** Product name: Ring Model: **Base Station NA** FCC ID: 2AEUPBHABN002

ISED Registration number: 20271-BHABN002

Specifications:

FCC 47 CFR Part 15 Subpart E, §15.407

Unlicensed National Information Infrastructure Devises

RSS-247, Issue 2, Feb 2017, Section 6

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices, Section 6 Technical requirements for licence-exempt local area network devices and digital transmission systems operating in the 5 GHz band

Date of issue: April 2, 2019

Mark Libbrecht, EMC/Wireless Specialist Test engineer(s):

Signature:

Mark Lillredot

Reviewed by:

David Duchesne, Senior EMC/Wireless Specialist

Signature:

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

Lab and Test location(s)

Company name	Nemko Canada Inc. (Can	nbridge)
Facility	130 Saltsman Drive, Unit #1 Cambridge, ON Canada, N3E 0B2 Tel: +1 519 680 4811	
	Test Firm Registration N	umber: 332406
Test site registration	Organization	Designation Number
	FCC/ISED	CA0101
Website	www.nemko.com	

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

Table of contents

Table of	ontents	3
Section 1	Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Test specifications	4
1.4	Statement of compliance	4
1.5	Exclusions	4
1.6	Test report revision history	4
Section 2	. Summary of test results	5
2.1	Testing period	5
2.2	FCC Part 15 Subpart C, general requirements test results	5
2.3	FCC Part 15 Subpart E, test results	5
2.4	ISED RSS-GEN, Issue 5, test results	6
2.5	RSS-247, Issue 2, test results	6
Section 3	. Equipment under test (EUT) details	7
3.1	Sample information	7
3.2	EUT information	7
3.3	Technical information	7
3.4	Product description and theory of operation	8
3.5	EUT exercise details	8
3.6	EUT setup diagram	8
3.7	EUT sub assemblies	8
Section 4	. Engineering considerations	9
4.1	Modifications incorporated in the EUT for compliance	9
4.2	Technical judgment	9
4.3	Deviations from laboratory tests procedures	9
Section 5	. Test conditions	. 10
5.1	Atmospheric conditions	10
5.2	Power supply range	10
Section 6	. Measurement uncertainty	. 11
6.1	Uncertainty of measurement	11
Section 7	. Test equipment	. 12
7.1	Test equipment list	12
Section 8	. Testing data	. 13
8.1	FCC 15.31(e) Variation of power source	13
8.2	FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies	14
8.3	FCC 15.203 and RSS-Gen 6.8 Antenna requirement	16
8.4	FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits	17
8.5	FCC 15.407(e) and RSS-247 6.2.4.1, Minimum 6 dB bandwidth	20
8.6	FCC 15.403(i) Emission bandwidth	22
8.7	RSS-Gen 6.7 Occupied bandwidth	24
8.8	FCC 15.407(a)(3) and RSS-247 6.2.4 (1) 5.725–5.85 GHz band output power and spectral density limits	26
8.9	FCC 15.407(b) and RSS-247 6.2.4.2 Undesirable (unwanted) emissions	29
8.10	FCC 15.407(g) and RSS-Gen 8.11 Frequency stability	44
Section 9	Block diagrams of test set-ups	.46
9.1	Radiated emissions set-up for frequencies below 1 GHz.	46
9.2	kadiated emissions set-up for frequencies above 1 GHz	46
9.3	Conducted emissions set-up	47
9.4	Antenna port set-up	47

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Ring LLC
Address	1523 26 th Street, Santa Monica, CA, United States, 90404

1.2 Test specifications

FCC 47 CFR Part 15, Subpart E, Clause 15.407	Unlicensed National Information Infrastructure Devises
RSS-247, Issue 2, Feb. 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

1.3 Test specifications

789033 D02 General UNII Test Procedures New	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part
Rules v02r01 (Dec. 14, 2017)	15, Subpart E
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.4 Statement of compliance

In the configuration tested, the EUT was found non-compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test does not comply in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None.

1.6 Test report revision history

 Table 1.6-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report	
TRF	April 1, 2019	Original report issued	
R1	April 2, 2019	Model Variant removed, Update min frequency and transmitter spurious	

Section 2. Summary of test results

2.1 Testing period

Test start date	February 1, 2019
Test end date	March 29, 2019

2.2 FCC Part 15 Subpart C, general requirements test results

 Table 2.2-1: FCC general requirements results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass
Notes:	Only test pertaining to the EUT have been included in this table.	

2.3 FCC Part 15 Subpart E, test results

Table 2.3-1: FCC Part 15, Subpart E, results

Part	Test description	Verdict
§15.403(i)	Emission bandwidth	Pass
§15.407(a)(3)	Power and density limits within 5.725–5.85 GHz band	Pass
§15.407(b)(4)	Undesirable emission limits for 5.725–5.85 GHz band	Pass
§15.407(b)(6)	Conducted limits for U-NII devices using an AC power line	Pass
§15.407(e)	Minimum 6 dB bandwidth of U-NII devices within the 5.725-5.85 GHz band	Pass
§15.407(g)	Frequency stability	Pass

Notes: Only test pertaining to the EUT have been included in this table.

2.4 ISED RSS-GEN, Issue 5, test results

Table 2.4-1: RSS-Gen results

Part	Test description	Verdict
6.7	Occupied Bandwidth	Pass
6.8	Antenna requirement	Pass
6.9	Number of tested frequencies	Pass
8.8	Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus	Pass
8.11	Frequency stability	Pass
Natas	Only test wastering to the FUT have been included in this table.	

Notes: Only test pertaining to the EUT have been included in this table.

2.5 RSS-247, Issue 2, test results

Table 2.5-1: RSS-247, Issue 2, results

Section	Test description	Verdict
6.1 ¹	Types of Modulation	Pass
6.2.4.1	Power limits for 5725–5850 MHz band	Pass
6.2.4.1	Minimum 6 dB bandwidth	Pass
6.2.4.2	Unwanted emission limits for 5725–5850 MHz band	Pass
Notes:	¹ The EUT employs digital modulations, such as: 802.11a and 802.11n	

Only test pertaining to the EUT have been included in this table.

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	February 1, 2019
Nemko sample ID number	Item # 1 (conducted sample) and Item # 3 (radiated sample)

3.2 EUT information

Product name	Ring
Model	Base Station NA
Serial number	BHBN21851PG000046 (conducted), BHBN21851PG000052 (radiated)

3.3 Technical information

Applicant IC company number	20271
IC UPN number	20271-BHABN002
All used IC test site(s) Reg. number	332406
RSS number and Issue number	RSS-247 Issue 2, Feb 2017
Frequency band	5725–5850 MHz
Frequency Min (MHz)	5745 (20 MHz), 5755 (40 MHz)
Frequency Max (MHz)	5825 (20 MHz), 5795 (40 MHz)
RF power Min (W),	N/A
RF power Max (W), Conducted	0.011 (10.3 dBm) 20 MHz, 0.016 (11.9 dBm) 40 MHz
Field strength, Units @ distance	N/A
Measured 26 dB BW (MHz)	20.0 (20MHz), 42.1 (40 MHz)
Calculated BW (kHz), as per TRC-43	N/A
Type of modulation	802.11a (20 MHz), 802.11n (40 MHz)
Emission classification (F1D, G1D, D1D)	W7D
Transmitter spurious	-16.9 dBm EIRP
Power requirements	5 V _{DC} (via external 100-240 VAC, 50/60 Hz power adapter)
Antenna information	Antenna Gain is 5.6 dBi (inverted F)
	The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator.

3.4 Product description and theory of operation

Communications Hub for Home Security Products

3.5 EUT exercise details

The EUT was setup in continuous transmit state. Channel power setting for 802.11a = 16 Channel power setting for 802.11n = 16

3.6 EUT setup diagram

Figure 3.6-1: Setup diagram

3.7 EUT sub assemblies

Table 3.7-1: EUT sub assemblies

Description	Brand name	Model/Part number	Serial number
AC/DC Adapter	Ring	DSA-13PFG-05	BHAB11851DV000116
Laptop	Dell	Inspiron 15	DW78NJ2
Network switch	TP-Link	TL-SG1008D	2171682000263

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Table 6.1-1	: Measurement	uncertainty
-------------	---------------	-------------

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list						
Equipment	Manufacturer	Model no.	Serial no.	Asset no.	Cal./Ver. cycle	Next cal./ver.
3 m EMI test chamber	TDK	SAC-3		FA003012	1 year	Aug. 22/19
Flush mount turntable	SUNAR	FM2022		FA003006	-	NCR
Controller	SUNAR	SC110V	050118-1	FA002976	-	NCR
Antenna mast	SUNAR	TLT2	042418-5	FA003007	-	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESR26	101367	FA002969	1 year	June 1/19
Spectrum analyzer	Rohde & Schwarz	FSW43	104437	FA002971	1 year	June 1/19
Horn antenna (1–18 GHz)	ETS-Lindgren	3117	00052793	FA002911	1 year	Aug. 16/19
Preamp (1–18 GHz)	ETS-Lindgren	124334	00224880	FA002956	1 year	Sept 18/19
Bilog antenna (30–2000 MHz)	SUNAR	JB1	A053018-2	FA003010	1 year	Sept. 6/19
50 Ω coax cable	Huber + Suhner	None	457630	FA003047	1 year	Nov 12/19
50 Ω coax cable	Huber + Suhner	None	457624	FA003044	1 year	Nov 12/19
Two-line v-network	Rohde & Schwarz	ENV216	101376	FA002964	1 year	Mar. 27/19
50 Ω coax cable	Rohde & Schwarz	None		FA003074	1 year	Dec. 21/19
AC Power source	Chroma	61605	616050002253	FA003034	-	VOU
Filter 5.725 – 5.85 GHz	Microwave Circuits	N0257881	499783	FA003029	1 year	Oct. 1/19
Horn antenna (18-40 GHz)	ETS-Lindgren	3116B	00122305	FA002948	1 year	Apr. 18/19

Note: NCR - no calibration required, VOU - verify on use

Section 8. Testing data

8.1 FCC 15.31(e) Variation of power source

8.1.1 Definitions and limits

FCC §15.31:

(e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.1.2 Test date

Start date	February 14, 2019

8.1.3 Observations, settings and special notes

The testing was performed as per ANSI C63.10 Section 5.13.

- a) Where the device is intended to be powered from an external power adapter, the voltage variations shall be applied to the input of the adapter provided with the device at the time of sale. If the device is not marketed or sold with a specific adapter, then a typical power adapter shall be used.
- b) For devices where operating at a supply voltage deviating ±15% from the nominal rated value may cause damages or loss of intended function, test to minimum and maximum allowable voltage per manufacturer's specification and document in the report.
- c) For devices with wide range of rated supply voltage, test at 15% below the lowest and 15% above the highest declared nominal rated supply voltage.
- d) For devices obtaining power from an input/output (I/O) port (USB, firewire, etc.), a test jig is necessary to apply voltage variation to the device from a support power supply, while maintaining the functionalities of the device.

For battery-operated equipment, the equipment tests shall be performed using a variable power supply.

8.1.4 Test data

The EUT AC Input supply voltage was varied between 85% and 115% of the nominal rated supply voltage. No change to transmitter performance was observed.

8.2 FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies

8.2.1 Definitions and limits

FCC §15.31:

(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

RSS-Gen Section 6.9:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Frequency range over which the device operates (in each band)	Number of test frequencies required	Location of measurement frequency inside the operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Notes: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.2.2 Test date

Start date February 14, 2019

8.2.3 Observations, settings and special notes

Per ANSI C63.10 Subclause 5.6.2.1:

- The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate: a) For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
 - b) For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
 - c) If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

Per ANSI C63.10 Subclause 5.6.2.2:

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:

- a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.

8.2.4 Test data

Table 8.2-2: Test channels selection 20 MHz channels					
Start of Frequency End of Frequency Frequency range range, MHz range, MHz bandwidth, MHz Low channel, MHz Mid channel, MHz High					
5725	5850	125	5745	5785	5825

Table 8.2-3: Test channels selection 40 MHz channels

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	High channel, MHz
5725	5850	125	5755	5795

8.3 FCC 15.203 and RSS-Gen 6.8 Antenna requirement

8.3.1 Definitions and limits

FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

RSS-Gen Section 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

8.3.2 Tes	Test date		
Start date	February 14, 2019		

8.3.3 Observations, settings and special notes

None

8.3.4 Test data

- The EUT has an internal integrated antenna, non-detachable.

The EUT will not be professionally installed

8.4 FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits

8.4.1 Definitions and limits

FCC §15.207:

a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

ANSI: C63.10 subclause 6.2

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements shall be made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is

operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an "off-the-shelf" unmodified ac power adapter shall be used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

RSS-GEN Section 8.8:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 8.4-1: AC power line conducted emissions limit

Conducted limit, dBµV		
Quasi-peak	Average**	
66 to 56*	56 to 46*	
56	46	
60	50	
	Conduct Quasi-peak 66 to 56* 56 60	

Notes: * - The level decreases linearly with the logarithm of the frequency.

** - A linear average detector is required.

8.4.2 Test date

Start date	February 14, 2019

8.4.3 Observations, settings and special notes

Port under test – Coupling device	AC Input – Artificial Mains Network (AMN)		
EUT power input during test	5 V _{DC} (Powered via external power adapter @ 120 V _{AC} 60 Hz)		
EUT setup configuration	Table top		
Measurement details	 A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB or above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement. No conducted emissions were overserved within 10 dB of limit. The spectral plots have been corrected with transducer factors. 		

Receiver settings: Resolution bandwidth 9 kHz Video bandwidth 30 kHz Detector mode Peak and Average (Preview measurement), Quasi-peak and CAverage (Final measurement) Trace mode Max Hold Measurement time 100 ms (Peak and Average preview measurement) _ _ 100 ms (Quasi-peak final measurement) _ 160 ms (CAverage final measurement)

8.4.4 Test data

NEX 368533 150 kHz - 30 MHz 120 VAC 60 Hz Line

Preview Result 2-AVG

Preview Result 1-PK+ CISPR 32 Limit - Class B, Mains (Quasi-Peak) CISPR 32 Limit - Class B, Mains (Average)

Figure 8.4-1: AC power line conducted emissions - spectral plot on phase line

NEX 368533 150 kHz - 30 MHz 120 VAC 60 Hz Neutral

Preview Result 2-AVG

Preview Result 1-PK+

CISPR 32 Limit - Class B, Mains (Quasi-Peak)

CISPR 32 Limit - Class B, Mains (Average)

Figure 8.4-2: AC power line conducted emissions - spectral plot on neutral line

8.5 FCC 15.407(e) and RSS-247 6.2.4.1, Minimum 6 dB bandwidth

8.5.1 Definitions and limits

FCC:

15.407 (8)(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

ISED:

RSS 247 6.2.4.1

For equipment operating in the band 5725-5850 MHz, the minimum 6 dB bandwidth shall be at least 500 kHz

8.5.2 Test date

Start date	March 14, 2019
Start date	1110101111,2013

8.5.3 Observations, settings and special notes

The test was performed as per KDB 789033, section C (2).

Spectrum analyser settings:

Resolution bandwidth	100 kHz
Video bandwidth	≥3 × RBW
Frequency span	30 MHz for 20 MHz channel; 70 MHz for 40 MHz channel
Detector mode	Peak
Trace mode	Max Hold

8.5.4 Test data

Table 8.5-1: 6 dB bandwidth results				
Modulation	Frequency, MHz	6 dB bandwidth, MHz	Minimum limit, MHz	Margin, MHz
	5745	16.7	0.50	16.2
802.11a	5785	16.7	0.50	16.2
	5825	16.7	0.50	16.2
802 11 -	5755	36.4	0.50	35.9
802.110	5795	36.5	0.50	36.0

Figure 8.5-1: 6 dB bandwidth on 802.11a, sample plot

Figure 8.5-2: 6 dB bandwidth on 802.11n, sample plot

8.6 FCC 15.403(i) Emission bandwidth

8.6.1 Definitions and limits

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

8.6.2 Test	date
Start date	March 12, 2019

8.6.3 Observations, settings and special notes

The test was performed as per KDB 789033, section C (1)

Spectrum analyser settings:

Resolution bandwidth	approximately 1% of the emission bandwidth
Video bandwidth	> RBW
Detector mode	Peak
Trace mode	Max Hold

8.6.4 Test data

Table 8.6-1: 26 dB bandwidth results

Modulation	Frequency, MHz	26 dB bandwidth, MHz
	5745	19.7
802.11a	5785	20.0
	5825	19.9
902 11 -	5755	42.1
802.110	5705	/1 9

Figure 8.6-1: 26 dB bandwidth on 802.11a, sample plot

Figure 8.6-2: 26 dB bandwidth on 802.11n, sample plot

8.7 RSS-Gen 6.7 Occupied bandwidth

8.7.1 Definitions and limits

The emission bandwidth (×dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated × dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3× the resolution bandwidth.

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

8.7.2	Test da	ate
	_	
Start date		March 12, 2019
8.7.3	Observ	vations, settings and special notes

The test was performed as per KDB 789033, section D

Spectrum	analyser	settings:
----------	----------	-----------

Resolution bandwidth:	1 – 5 % of OBW
Video bandwidth:	≥3 × RBW
Detector mode:	Peak
Trace mode:	Max Hold

8.7.4 Test data

Table 8.7-1: 99 % bandwidth results				
Modulation Frequency, MHz 99 % occupied bandwidth, MH				
	5745	20.9		
802.11a	5785	21.8		
	5825	20.5		
802.11m	5755	51.4		
802.110	5795	36.2		

...

- . . .

. . . .

15:26:10 16.03.2019

Figure 8.7-1: 99 % bandwidth on 802.11a, sample plot

15:28:44 16.03.2019

Figure 8.7-2: 99 % bandwidth on 802.11n, sample plot

8.8 FCC 15.407(a)(3) and RSS-247 6.2.4 (1) 5.725–5.85 GHz band output power and spectral density limits

8.8.1 Definitions and limits

FCC:

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

IC:

The maximum conducted output power shall not exceed 1 W. The power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

8.8.2 Test date

4, 2019	h 14, 2019	

8.8.3 Observations, settings and special notes

EUT set to transmit continuously with duty cycle \ge 98%.

KDB 789033 section E.2(b) method SA-1 referenced for power measurements

KDB 789033 section F.5 referenced for PSD measurements with reduced RBW, integrated over 500 kHz

Spectrum analyser settings fo	r PSD:
Departurble in the malu statute	100 111-

Resolution bandwidth:	100 KHZ
Video bandwidth:	≥3 × RBW
Detector mode:	RMS
Trace mode:	Average
Trace counts:	100
Power Integration BW	500 kHz

Spectrum analyser settings for Output Power:

Resolution bandwidth:	1 MHz
Video bandwidth:	≥3 × RBW
Detector mode:	RMS
Trace mode:	Average
Trace counts:	100
Power Integration BW	EBW

8.8.4 Test data

Table 8.8-1: Output power measurements results

Modulation	Frequency, MHz	Conducted output power, dBm	Power limit, dBm	Margin, dB
802.11a	5745	10.3	30.0	19.7
	5785	9.5	30.0	20.5
	5825	8.8	30.0	21.2
802.11n	5755	11.9	30.0	18.1
	5795	11.2	30.0	18.8

Table 8.8-2: PSD measurements results

Modulation	Frequency, MHz	PPSD, dBm/500 kHz	PPSD limit, dBm/500 kHz	Margin, dB
802.11a	5745	-4.7	30.0	34.7
	5785	-3.8	30.0	33.8
	5825	-2.6	30.0	32.6
802.11n	5755	-6.1	30.0	36.1
	5795	-3.6	30.0	33.6

14:15:34 14.03.2019

Figure 8.8-1: Sample plot for Power on 802.11a

14:19:33 14.03.2019

MultiView Spectrum		MultiView Spectrum		
Ref Level 20.00 dBm Offset 21.3 dB • RBW 100 kHz		Ref Level 20.00 dBm Offset 21.3 dB = RBW 100 kHz		
Att 5 dB SWT 1.04 ms WBW 300 kHz Mode Auto Sweep	Count 100/100	Att 5 dB SWT 1.03 ms = VBW 300 kHz Mode Auto Sweep	Count 100/100	
1 ACLR	●1Rm Avg	1 ACLR	●1Rm Avg	
	M1[1] -9.85 dBm 5.7418350 GHz		M1[1] -11.80 dBm 5.7499660 GHz	
10 dBm		10 dBm		
0.49m		0. d9m		
-10 d8m		-10 dem	White has a superior with the superior of the	
-20 dBm		-20 dBm	allowers and	
		and the second s		
-30 dBm		-30 dBm	"www.gp.gl/Reprint Analytic An	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	() of the		
20 Bach and Canada and C		- THE UDITS		
- 50 d8m		-50 d8m		
-00 08m		-ou dem		
-70 dBm		-70 dBm		
CF 5.741835 GHz 1001 pts	3.0 MHz/ Span 30.0 MHz	CF 5.749966 GHz 1001 pts 7.0 MHz/	/ Span 70.0 MHz	
2 Result Summary None	Dower	2 Result Summary None Channel Bandwidth Officet Poi	wer	
Tx1 (Ref) 500.000 kHz	-4.66 dBm -4.66 dBm	Tx1 (Ref) 500.000 kHz -6.08	dBm dBm	
	Measuring 14.03.2019	· · · · · · · · · · · · · · · · · · ·	Measuring	
15:14:41 14.03.2019	40.034	15:17:17 14.03.2019	Adv. A.F AM	
Figure 8.8-3: Sample plot	for PPSD on 802.11a	Figure 8.8-4: Sample plot for PPSD	on 802.11n	



### 8.9 FCC 15.407(b) and RSS-247 6.2.4.2 Undesirable (unwanted) emissions

#### 8.9.1 Definitions and limits

#### FCC:

#### 15.407 (4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

#### RSS-247 6.2.4.2

Devices operating in the band 5725-5850 MHz shall have e.i.r.p. of unwanted emissions comply with the following: a. 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 Bm/MHz at 5 MHz above or below the band edges; b.15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges; c.10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and d.-27 dBm/MHz at frequencies more than 75 MHz above or below the bandedges

#### Table 8.9-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency,	Field str	ength of emissions	Measurement distance,
MHz	μV/m	dBµV/m	m
0.009–0.490	2400/F (F in kHz)	67.6 – 20 × log ₁₀ (F) (F in kHz)	300
0.490-1.705	24000/F (F in kHz)	87.6 – 20 × log ₁₀ (F) (F in kHz)	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test



### 8.9.1 Definitions and limits, continued

#### Table 8.9-2: ISED restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.57675-12.57725	399.9–410	7.25–7.75
0.495-0.505	13.36-13.41	608–614	8.025-8.5
2.1735-2.1905	16.42–16.423	960–1427	9.0-9.2
3.020-3.026	16.69475-16.69525	1435–1626.5	9.3–9.5
4.125-4.128	16.80425-16.80475	1645.5-1646.5	10.6–12.7
4.17725-4.17775	25.5–25.67	1660–1710	13.25–13.4
4.20725-4.20775	37.5–38.25	1718.8–1722.2	14.47–14.5
5.677-5.683	73–74.6	2200–2300	15.35-16.2
6.215-6.218	74.8–75.2	2310–2390	17.7–21.4
6.26775-6.26825	108–138	2483.5-2500	22.01-23.12
6.31175–6.31225	149.9–150.05	2655–2900	23.6–24.0
8.291-8.294	156.52475-156.52525	3260-3267	31.2-31.8
8.362-8.366	156.7–156.9	3332–3339	36.43–36.5
8.37625-8.38675	162.0125-167.17	3345.8-3358	
8.41425-8.41475	167.72–173.2	3500–4400	Abovo 28 6
12.29-12.293	240–285	4500–5150	ADOVE 38.0
12.51975-12.52025	322–335.4	5350–5460	

Note: Certain frequency bands listed in Table 8.9-2 and above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

### Table 8.9-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8–1722.2	13.25–13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9-150.05	2310-2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6–24.0
12.29-12.293	167.72-173.2	3332–3339	31.2-31.8
12.51975-12.52025	240–285	3345.8–3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36–13.41			

### 8.9.2 Test date

Start date February 14, 2019



### 8.9.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to 40 GHz.
 EUT was set to transmit with 100 % duty cycle.

- Radiated measurements 30 MHz 18 GHz were performed at a distance of 3 m.
- Radiated measurements 18 25 GHz were performed at a distance of 30 cm.
- Radiated measurements 25 40 GHz were performed at a distance of 3 cm.
- No transmitter related radiated emissions were detected below 1 GHz. Emissions detected within restricted bands that were close to the limit were found to be digital emissions.
- Conducted spurious EIRP emission limit line calculated as follows: -27 dBm EIRP Antenna Gain (5.6 dBi) = -32.6 dBm
- For radiated band edge Kdb 789033 section 3(d)(ii) integration method was used.

#### Spectrum analyzer settings for measurements below 1 GHz:

Detector mode	Peak or Quasi-Peak
Resolution bandwidth	100 kHz or 120 kHz
Video bandwidth	300 kHz
Trace mode	Max Hold

Spectrum analyser for peak measurements above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

#### Spectrum analyser for average measurements above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	RMS
Trace mode:	Power average
Number of averaging traces:	100

Spectrum analyser for band edge measurements above 1 GHz:

Resolution bandwidth:	1MHz
Video bandwidth:	3MHz
Detector mode:	RMS
Trace mode:	Average



### 8.9.4 Test data



Figure 8.9-1: Radiated spurious emissions 30 MHz – 1 GHz low channel, 802.11a



#### Figure 8.9-2: Radiated spurious emissions 30 MHz – 1 GHz mid channel, 802.11a











Figure 8.9-4: Radiated spurious emissions 30 MHz – 1 GHz low channel, 802.11n



Figure 8.9-5: Radiated spurious emissions 30 MHz – 1 GHz high channel, 802.11n









•















Preview Result I-FK+ FCC Part 15 and ICES-003 Limit - Class B (Peak) above 1 GHz, 3 m FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m Final_Result FK+ Final_Result CAV

•

Figure 8.9-10: Radiated spurious emissions 1 - 18 GHz high channel, 802.11n





Figure 8.9-11: Radiated spurious emissions 18 - 25 GHz low channel, 802.11a



AVG_MAXH PK+ MAXH FCC Part 15 and ICES-003 Limit - Class B (Peak) above 1 GHz, 3 m FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m

Figure 8.9-12: Radiated spurious emissions 18 - 25 GHz mid channel, 802.11a









Figure 8.9-14: Radiated spurious emissions 18 - 25 GHz low channel, 802.11n



Figure 8.9-15: Radiated spurious emissions 18 - 25 GHz high channel, 802.11n





Figure 8.9-16: Radiated spurious emissions 25 - 40 GHz low channel, 802.11a



Figure 8.9-17: Radiated spurious emissions 25 - 40 GHz mid channel, 802.11a



Figure 8.9-18: Radiated spurious emissions 25 - 40 GHz high channel, 802.11a





Figure 8.9-19: Radiated spurious emissions 25 - 40 GHz low channel, 802.11n



Figure 8.9-20: Radiated spurious emissions 25 - 40 GHz high channel, 802.11n



Modulation	Frequency, MHz	PSD dBm/MHz	Antenna Gain	PSD dBm/MHz EIRP	limit, dBm/MHz EIRP	Margin, dB
802.11a	5725	-34.3	5.6	-28.7	27.0	55.7
802.11a	5720	-37.6	5.6	-32.0	15.6	16.4
802.11a	5700	-46.6	5.6	-41.0	10.0	31.0
802.11a	5650	-55.7	5.6	-50.1	-27.0	23.1
802.11n	5725	-22.5	5.6	-16.9	27.0	43.9
802.11n	5720	-22.5	5.6	-16.9	15.6	32.5
802.11n	5700	-30.2	5.6	-24.6	10.0	34.6
802.11n	5650	-36.6	5.6	-31.0	-27.0	4.0



12:13:49 01.04.2019





Figure 8.9-22: Conducted emissions at lower band edge measurement, 802.11n



Table 8.9-5: Conducted upper b	and edge emissions	measurement results
--------------------------------	--------------------	---------------------

Modulation	Frequency, MHz	PSD dBm/MHz	Antenna Gain	PSD dBm/MHz EIRP	limit, dBm/MHz EIRP	Margin, dB
802.11a	5850	-35.9	5.6	-30.3	27.0	57.3
802.11a	5855	-39.5	5.6	-33.9	15.6	49.5
802.11a	5875	-46.9	5.6	-41.3	10.0	51.3
802.11a	5925	-55.3	5.6	-49.7	-27.0	22.7
802.11n	5850	-26.8	5.6	-21.2	27.0	48.2
802.11n	5855	-28.3	5.6	-22.7	15.6	38.3
802.11n	5875	-30.5	5.6	-24.9	10.0	34.9
802.11n	5925	-37.6	5.6	-32.0	-27.0	5.0



12:32:48 01.04.2019

Figure 8.9-23: Conducted emissions at upper band edge measurement, 802.11a



Figure 8.9-24: Conducted emissions at upper band edge measurement, 802.11n





Figure 8.9-25: Conducted spurious emissions 30 MHz – 40 GHz low channel, 802.11a



Figure 8.9-26: Conducted spurious emissions 30 MHz – 40 GHz mid channel, 802.11a

heathilting.	. Coostraine	V co	o strum 3	V					
Pluluview	spectrum	A sp	ectrum z	<u>^</u>					
Spectrum	Ref Level 20.0	0 dBm Offset	21.2 dB • RBW	100 kHz	ada data Caraa				
Erequency:	Sweep	0 00 5441	10.1 ms • vov	300 KHZ IN	one who sweep				●1Pk Mex
Limit Ch	20.000 tim	1	PA	SS		1	1	M1[1]	-61.75 dBr
Line -32	.6 DBM		PA	SS					547,5890 MH
) d8m									
-20 d8m									
32.6 DBM									
-40 d8m									
					ML				
-60 dBm	and the second			to the second second	at a last to a state		and the second second	a state of the state of the state	middle and the last
Particular sectors.									
30.0 MHz	1		10001 pt	s	9	7.0 MHz/	-	1	1.0 GH
	Dof Louol D	o oo daw offe	ot 21 2 /2 = DR	W. Childre					
Spectrum	2 Ref Level 2	0.00 dBm Offs 8 dB SWT	et 21.2 d8 • RB	WIMHZ WIMHZ M	ode Auto Sweep				
Spectrum	2 Ref Level 2 Att Sweep	0.00 dBm Offs 8 d8 SWT	et 21.2 d8 • RB 156 ms • VB	WIMHZ WIMHZ M	ode Auto Sweep				• 1Pk Max
Spectrum Frequency Limit Ch	2 Ref Level 2 Att Sweep	0.00 dBm Offs 8 dB SWT	et 21.2 d8 • RB 156 ms • VB	WIMHZ WIMHZ M SS	ode Auto Sweep	1	1	D1[1]	● 1Pk Max -45,40 di
Spectrum Frequency Limit Ch Line -32	2 Ref Level 2 Att Sweep	0.00 dBm Offs 8 dB SWT	et 21.2 d8 ● RB 156 ms ● VB PA PA	WIMHZ WIMHZ M SS SS	ode Auto Sweep			D1[1]	● 15k Mox -45.40 di 1.938670 GH
Spectrum Limit Ch Line -32 0 d8m	2 Ref Level 24 Att Sweep CAU Not dem	0.00 dBm Offs 8 dB SWT	et 21.2 dB • RB 156 ms • VB PA PA	W 1 MHz W 3 MHz M SS SS	ode Auto Sweep			D1[1] M1[1]	• 15k Mox -45.40 di -1.938670 GH 8.02 dBn
Spectrum Frequency Limit Ch Line -32	2 Ref Level 24 Att Sweep 2 Ref Level 24 Att Sweep 2 Ref Level 24 Att	0.00 dBm Offs 8 dB SWT	et 21.2 d8 * RB 156 ms * V8 PA PA	W 1 MHz W 3 MHz M SS SS	ode Auto Sweep			D1[1] M1[1]	-15k Mox -45,40 di -1,938670 GH 8,02 dBn 5,821720 GH
Spectrum Frequency Limit Ch Line -32 0 dam	2 Ref Level 24 Att Sweep Californi stre A DEM	0.00 dBm Offs 8 dB SWT	et 21.2 dB = RB 156 ms = VB PA	W 1 MHz M W 3 MHz M SS SS	ode Auto Sweep			D1[1] M1[1]	0188 Mbx -45.40 di 1.938670 GH 8.02 dBr 5.821720 GH
Spectrum Frequency Limit Ch Line -32 0 dam -20 dam -20 dam	2 Ref Level 24 Att Sweep C Marine and A D M	0.00 dBm Offs 8 dB SWT	et 21.2 d8 ● RB 156 ms ● VB PA PA	W 1 MHz W 3 MHz M SS SS	ode Auto Sweep			D1[1] M1[1]	018k Max -45.40 di 1.938670 GH 8.02 dBr 5.821720 GH
Spectrum Frequency Limit Ch Line -32 0 d8m -20 d8m -20 d8m -20 d8m	Att Sweep Settle ring ADM	0.00 dBm Offs 8 dB SWT	et 21.2 d8 ● RB 156 ms ● VB PA PA	W 1 MHz W 3 MHz M SS SS	ode Auto Sweep			D1[1] M1[1]	<ul> <li>15k Mox</li> <li>-45.40 di</li> <li>1.938670 GH</li> <li>8.02 dBr</li> <li>5.821720 GH</li> </ul>
Spectrum 1 Frequency Limit Ch Line -32 0 dam- -20 dbm- -20 dbm- -40 dbm- -40 dbm-	Ref Level 21     Att Sweep     Sweep     Strength     DE4	0.00 dBm Offs 8 dB SWT	et 21.2 d8 = R8 156 ms = V8 PA PA	W 1MHz W 3MHz M SS SS	ode Auto Sweep			D1[1] M1[1]	0.15k Mox -45.40 dl 1.938670 GH 8.02 dBr 5.821720 GH
Spectrum Frequency Linit Ch Line -32 0 d8m -20 d8m -20 d8m -40 d8m -40 d8m -40 d8m	2 Ref Level 21 Att Sweep	0.00 dBm Offs 8 dB SWT	et 21.2 d8 = RB 156 ms = VB PA	W 1 MHZ W 3 MHZ M SS SS	ode Auto Sweep			D1[1] M1[1]	<ul> <li>154 Max</li> <li>-45.40 GH</li> <li>-38670 GH</li> <li>8.02 dBn</li> <li>5.821720 GH</li> </ul>
Spectrum Enequency Linit Ch Line -32 0 d8m -20 d8m -20 d8m -40 d8m -40 d8m -40 d8m	2 RefLevel 21 Att Sweep	0.00 dBm Offs 8 dB SWT	et 21.2 d5 # R8 156 ms # VB PA	W 1 MHZ W 3 MHZ M SS SS	ode Auto Sweep			D1[1] M1[1]	●15k Mox -45,40 d 1.938670 GH 8.02 dBn 5.821720 GH
Spectrum Frequency Limit Ch Line -32 0 dbm -20 dbm -20 dbm -40 dbm -40 dbm -40 dbm	After and a set of the	0.00 dBm Offs 8 d8 sw1	et 21.2 d5 * RB 156 ms * VB PA PA	W 1 MHz M W 3 MHz M SS SS	ode Auto Sweep			D1[1] M1[1]	15k Max     -45.40 dt     1.938670 GH     8.02 dbn     5.821720 GH     40.0 GH
Spectrum Irrequency Limit Ch Line -32 0 dam -23 dam -23 dam -23 dam -23 dam -23 dam -10 GHz	Attended att	0.00 dBm Offs 8 d8 SWT	et 21.2 d5 * RB 156 ms * VB PA PA 100001 p	W 1 MHz M W 3 MHz M SS SS ts	ade Auto Sweep	.9 GHz/		01[1] MI[1]	15k Msx     -45.40 d     -1.938670 GH     8.02 dB     5.821720 GH     4.03 GH     40.0 GH     40.0 GH

12:47:46 25.03.2019

Figure 8.9-27: Conducted spurious emissions 30 MHz – 40 GHz high channel, 802.11a



MultiView	Spectrum		K Sp	ectrum 2	x					
Spectrum	Ref Level 20.0 Att	00 dBm 8 dB	Offset SWT	21.2 dB • RBW	/ 100 kHz / 300 kHz	Mode Auto Sweep				
1 Frequency S	Sweep									1Pk Max
Limit Che	20.000 dBm			PA	SS				M1 11	-64.10 dBn
Line -32.	.6 DBM			PA	SS					547.5890 MH
0 dem-										
-20 dBm										
32.6 DBM										
-40 dBm-										
-60 dBm						M1				he
Many interesting to the		-	روميا <b>يدۇرۇ</b>	interaction conversion		with the second second second		****	Andersteine warmen se	and a second second
20.0 MHz		-								10.00
LANGUNG THE R.				10001 p	ts	5	77.0 MH27			1.0 GH2
50.0 Hi 12	Defitional of	o. o.oin	0//-	10001 pt	ts	,	7.0 MHz/			1.0 GH2
Spectrum :	2 Ref Level 20 Att	0.00 dBm 8 dB	Offse	10001 p et 21.2 dB = RE 156 ms = VB	W 1 MHz	Mode Auto Sweep	7.0 MHz/			1.0 GH2
Spectrum :	2 Ref Level 20 Att Sweep	0.00 dBm 8 dB	Offs SWT	10001 p et 21.2 dB • RB 156 ms • VB	W 1 MHz W 3 MHz	Mode Auto Sweep	17.0 MHz/			• 1Pk Max
Spectrum : I Frequency S Limit Che	2 Ref Level 20 Att Sweep	0.00 dBm 8 dB	Offse SWT	10001 p et 21.2 dB • RB 156 ms • VB	SW 1 MHz W 3 MHz SS	Mode Auto Sweep	77.0 MHz/		D1[1]	• 1Pk Max
Spectrum : I Frequency S Limit Chr Line -32.	Ref Level 20 Att Sweep	0.00 dBm 8 dB	Offse SWT	10001 pt at 21.2 dB = RB 156 ms = VB PA PA	SS SS SS	Mode Auto Sweep	77.0 MHz7		D1[1]	• 1Pk Max -46,12 dt -1,918000 GH
Spectrum : 1 Frequency S Limit Che Line -32. 0 d8m	2 Ref Level 20 Att Sweep Add 000 dam	0.00 dBm 8 dB	Offse SWT	10001 pi at 21.2 dB = RE 156 ms = VB PA	IS 1 MHz IW 3 MHz ISS ISS	Mode Auto Sweep	17.0 MHz7		D1[1] M1[1]	e 1Fk Max -46.12 dt -1.918000 GH 8.48 dBn
Spectrum : I Frequency S Limit Che Line -32.	Att Sweep Callood dam	0.00 dBm 8 dB	Offse SWT	10001 pi et 21.2 dB = RE 156 ms = VB PA	IS SW 1 MHz IW 3 MHz ISS	Mode Auto Sweep	//.0 MHz/		D1[1] M1[1]	• 1Fk Max -46.12 dl 1.918000 GH 8.48 dBn 5.748010 GH
Spectrum : I Frequency S Limit Che Line -32. 0 dBm-	2 Ref Level 20 Att Sweep 8/20:000 dBm 4 DIM	0.00 dBm 8 dB	Offs SWT	10001 p at 21.2 dB = RE 156 ms = VB PA PA	IS SW 1 MHz IW 3 MHz ISS ISS	Mode Auto Sweep	//.0 MHz/		D1[1] M1[1]	• 1Fk Max -46.12 dl 1.918000 GH 8.48 dBn 5.748010 GH
Spectrum : Limit Chr Limit Chr Line -32. 0 d8m -20 d8m- -22.6 08M	2 Ref Level 20 Att Sweep 3 201000 dBm 4 014	0.00 dBm 8 dB	Offse SWT	10001 pi at 21.2 dB • RE 156 ms • VB PA PA	IS SW 1 MHz IW 3 MHz ISS ISS	Mode Auto Sweep	//.0 MHz/		D1[1] M1[1]	• 1Pk Max ~46.12 dt 1.918000 GH 8.48 dBn 5.748010 GH
Spectrum : Limit Che Line -32. 0 d8m -20 d8m -40 d8m	Att Sweep Stationo dam	0.00 dBm 8 dB	Offse SWT	10001 p at 21.2 dB = RE 156 ms = VB PA	IS SW 1 MHz IW 3 MHz ISS ISS	Mode Auto Sweep	//.0 MHz/		D1[1] M1[1]	• 1Fk Max -46.12 di 1.918000 GH 8.48 dBn 5.748010 GH
Spectrum : I Frequency 5 Linit Chi Line -32. 0 d8m -20 d8m -40 d8m	2 Ref Level 20 Att Sweep Satisficon dem A DIM	0.00 dBm 8 dB	Offsi SWT	10001 pi et 21.2 dB = RB 156 ms = VB PA PA	IS I MH2 IW 3 MH2 ISS ISS	Mode Auto Sweep			D1[1] M1[1]	1.0 GHz
Spectrum : I Frequency 5 Limit Ch Lime -32. 0 dBm -20 dBm -40 dBm -40 dBm	2 Ref Level 20 Att Sweep Bathoo dan D M	0.00 dBm 8 dB	Offse SWT	10001 pi et 21.2 dB = RE 156 ms = VB PA PA	IS I MH2 IW 3 MH2 ISS ISS	Mode Auto Sweep			D1[1] M1[1]	-46.12 dE -46.12 dE 1.918000 GH 8.48 dBn 5.748010 GH
Spectrum : I Frequency S Limit Che Line -32. 0 dBm -20 dBm -40 dBm -60 dBm	2 Ref Level 20 Att Sweep 3/201000 dbm 4 DTM	0.00 dBm 8 dB	Offse SWT	10001 pi et 21.2 dB = RE 156 ms = VB PA PA	SW 1 MHz W 3 MHz SS SS	Mode Auto Sweep			D1[1] M1[1]	1.0 GHz ~46.12 dl 1.918000 GH 8.48 dBn 5.748010 GH
Socore and a second sec	Ref Level 20 Att Sweep Biz0000 dim A D H4	0.00 dBm 8 dB	Offse SWT	10001 pi et 21.2 dB = RE 156 ms = VB PA PA	SW 1 MHz WW 3 MHz SS SS	Mode Auto Sweep			D1[1] M1[1]	-46.12 df -46.12 df -1.918000 GH 8.48 dBn 5.748010 GH
Spectrum : Spectrum : IFrequency 2 Limit Che Line -32. 0 d8m -20 d8m -20 d8m -40 d8m -40 d8m -10 d8m	2 Ref Level 20 Att Sweep BR201000 dbm A D H4	0.00 dBm 8 dB	Offsa SWT	10001 p t 21.2 dB = R HE 156 ms = VB PA PA	sw 1 MHz ww 3 MHz ss ss	Mode Auto Sweep	3.9 GHz/		D1(1) M1(1)	1.0 GH2     1.12 dB    46.12

12:50:52 25.03.2019

Figure 8.9-28: Conducted spurious emissions 30 MHz – 40 GHz low channel, 802.11n

MultiView	<ul> <li>Spectrum</li> </ul>	×	Sp	ectrum 2	×						•
	RefLevel 20.0	0.dBm (	Offeet	21.2.48 • DRW	100 kHz						
Spectrum	Alt	8.48.4	SWT	10.1 ms • VBW	300 kHz	Mode A	to Sweep				
1 Frequency S	Sweep			1011 113 0 1011	DOD IT IE	TTP-DE F-0	te otreep				●1Pk Max
Limit Che	20.000 d8m			PA	SS					M1[1]	-67.91 dBm
Line -32.	6 DBM			PA	SS						547.5890 MHz
0 dBm-											
-20 dBm-						_					
-32.6 DBM									-		
-40 dBm-						-					
-60 dBm											And the second state of the
		<del>tainal in the s</del>		- Alter and a state of the second state of the		-	-				and Waterson and States
30.0 MHz				10001 pt	15		9	7.0 MHz/			1.0 GHz
				10001 01				10 111 127			
	Ref Level 20	0.00 dBm	Offse	t 21.2 dB • RB	W 1 MHz			10 10 12			
Spectrum 2	Ref Level 20 Att	0.00 dBm 8 dB	Offse SWT	et 21.2 dB • RB 156 ms • VB	W 1 MHz W 3 MHz	Mode Au	to Sweep	10 10 127			
Spectrum 2 1 Frequency S	Ref Level 20 Att	0.00 dBm 8 dB	Offse SWT	156 ms = VB	W 1 MHz W 3 MHz	Mode Au	to Sweep	10 10 12			●1Pk Max
Spectrum 2 1 Frequency S Limit Che	Ref Level 20 Att Weep	0.00 dBm 8 dB	Offse SWT	et 21.2 dB • RB 156 ms • VB	W 1 MHz W 3 MHz	Mode Au	to Sweep			D1[1]	● 1Pk Max -43.04 dB
Spectrum 2 1 Frequency S Limit Che Line -32.	Ref Level 20 Att Sweep	0.00 dBm 8 dB	Offse SWT	PA	W 1 MHz W 3 MHz SS SS	Mode Au	to Sweep			D1[1]	•15k M3x -43.04 dB 1.947640 GHz
Spectrum 2 1 Frequency S Limit Che Line -32. 0 d8m	Ref Level 20 Att Sweep	0.00 dBm 8 dB	Offse SWT	PA	W 1 MHz W 3 MHz SS SS	Mode Au	to Sweep			D1[1] M1[1]	0 1Ek Msx -43.04 dB 1.947640 GHz 6.82 dBm
Spectrum 2 1 Frequency S Limit Che Line -32. 0 dBm	Att Att Sweep	0.00 dBm 8 dB	Offse SWT	PA	W 1 MHz W 3 MHz SS SS	Mode Au	to Sweep			D1[1] M1[1]	01Ek Msx -43.04 dB 1.947640 GHz 6.82 dBm 5.826010 GHz
Spectrum 2 I Frequency S Limit Che Line -32. 0 dBm	Ref Level 20 Att Sweep	0.00 dBm 8 dB	Offse SWT	et 21.2 dB = RB 156 ms = VB PA	W 1 MHz W 3 MHz SS SS	Mode Au	to Sweep			D1[1] M1[1]	• 1Fk Max -43.04 dB 1.947640 GHz 6.82 dBm 5.826010 GHz
Spectrum 2 1 Frequency S Limit Che Line -32. 0 dBm -20 dBm -22.0 DBM 01	Ref Level 20 Att Sweep	0.00 dBm 8 dB	Offse SWT	et 21.2 dB = RB 156 ms = VB PA	W 1 MHz W 3 MHz SS SS	Mode Au	to Sweep			D1[1] M1[1]	e 1Fk M5x ~43.04 dB 1.947640 GHz 6.82 dBm 5.826010 GHz
Spectrum 2 Limit Che Limit Che Line -32. 0 dBm -20 dBm -20 dBm -40 dBm	Ref Level 20 Att Sweep	0.00 dBm 8 dB	Offse SWT	et 21.2 dB • RB 156 ms • VB PA PA	W 1 MHz W 3 MHz SS SS	Mode Au	to Sweep			D1[1] M1[1]	e 1Pk Max ~43.04 dB 1.947640 GHz 6.82 dBm 5.826010 GHz
Spectrum 2 Limit Che Line -32. 0 dBm -22.0 DBM -40 dBm	Ref Level 20 Att Sweep	0.00 dBm 8 dB	Offse SWT	et 21.2 dB = RB 156 ms = VB PA PA	W 1 MHz W 3 MHz SS SS	Mode Au	to Sweep			D1[1] M1[1]	• 1Fk Max -43.04 dB 1.947640 GHz 6.82 dBm 5.826010 GHz
Spectrum 2 1 Frequency 5 Limit Che Line -32. 0 d8m -20 d8m -20 d8m -40 d8m -40 d8m -80 d8m	Ref Level 20 Att Sweep DF4	0.00 d8m 8 d8	Offse SWT	et 21.2 dB = RB 156 ms = VB PA PA	W 1 MHz W 3 MHz SS SS	Mode Au	to Sweep			D1[1] M1[1]	01Ek Max -43.04 dB -1.947640 GHz 6.82 dBm 5.826010 GHz
Spectrum 2 I Frequency S Limit Che Line -32. 0 dBm -20 dBm -22.6 DBM 01 -40 dBm -40 dBm	Ref Level 20 Att weep 75000000000000000000000000000000000000	0.00 dBm 8 dB	Offse SWT	et 212 d8 = RB 156 ms = VB PA PA	W 1 MHz W 3 MHz SS SS	Mode Au	to Sweep			D1(1) M1(1)	• 19k Max -43.04 dB 1.947640 GHz 6.82 dBm 5.826010 GHz
Spectrum 2 Limit Che Limit Che Line -32. 0 dem -20 dem -20 dem -40 dem -40 dem -40 dem	Ref Level 20 Att Sweep	0.00 dBm 8 dB	Offse SWT	et 21.2 dB = RB 156 ms = VB PA PA	W 1 MHz W 3 MHz SS SS	Mode Au	to Sweep			D1[1] M1[1]	0 15k Max -43.04 dB 1.947640 GHz 6.82 dBm 5.826010 GHz
Spectrum 2 I Frequency 5 Limit Che Line -32. 0 d8m -20 d8m -40 d8m -40 d8m -40 d8m -10 GHz	Ref Level 20 Att Sweep Att Dirit	0.00 dBm 8 dB	Offse SWT	et 212 dB = RB 156 ms = VB PA PA	W 1 MHz W 3 MHz SS SS	Mode Au	to Sweep	8.9 GHz/		D1[1] M1[1]	0.19k Max -43.04 dB -1.947640 GHz 6.82 dBm 5.826010 GHz 40.0 GHz

12:49:40 25.03.2019

Figure 8.9-29: Conducted spurious emissions 30 MHz – 40 GHz high channel, 802.11n



### 8.10 FCC 15.407(g) and RSS-Gen 8.11 Frequency stability

#### 8.10.1 Definitions and limits

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

8.10.2	Test da	ite
Start date		February 20, 2019

### 8.10.3 Observations, settings and special notes

Spectrum analyser settings:

_

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold



### 8.10.4 Test data

#### Table 8.10-1: Frequency drift measurement

Test conditions	Frequency, Hz	Drift, Hz
+50 °C, Nominal	5784983125	-22500
+40 °C, Nominal	5784979375	-26250
+30 °C, Nominal	5785001875	-3750
+20 °C, +15 %	5785013125	7500
+20 °C, Nominal	5785005625	Reference
+20 °C, –15 %	5784994375	-11250
+10 °C, Nominal	5785028125	22500
0 °C, Nominal	5785031875	26250
–10 °C, Nominal	5785035625	30000
–20 °C, Nominal	5785005625	0
–30 °C, Nominal	5784986875	-18750

#### Table 8.10-2: Lower band edge drift calculation

Modulation	26 dBc lower cross point, GHz	Max Negative drift, Hz	Drifted upper cross point, GHz	Band edge, GHz	Margin, MHz
802.11a	5.7354	-26250	5.7354	5.725	10.4
802.11n	5.7341	-26250	5.7341	5.725	9.1
			16		

Notes: Drifted upper cross point = -26 dBc upper cross point + max positive drift.

### Table 8.10-3: Upper band edge drift calculation

Modulation	26 dBc upper cross point, GHz	Max positive drift, Hz	Drifted upper cross point, GHz	Band edge, GHz	Margin, MHz
802.11a	5.83495	30000	5.83498	5.85	15.0
802.11n	5.81528	30000	5.81531	5.85	34.7

Notes: Drifted upper cross point = -26 dBc upper cross point + max positive drift.



# Section 9. Block diagrams of test set-ups





### 9.2 Radiated emissions set-up for frequencies above 1 GHz





### 9.3 Conducted emissions set-up



### 9.4 Antenna port set-up

