ONE WORLD OUR APPROVAL

Wireless Test Report – 1R368533-4TRFWL

Applicant: **Ring LLC** Product name: Ring Model: **Base Station NA** FCC ID: 2AEUPBHABN002

ISED Registration number: 20271-BHABN002

Specifications:

FCC 47 CFR Part 15 Subpart E, §15.407

Unlicensed National Information Infrastructure Devises

RSS-247, Issue 2, Feb 2017, Section 6

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices, Section 6 Technical requirements for licence-exempt local area network devices and digital transmission systems operating in the 5 GHz band

Date of issue: April 2, 2019

Test engineer(s):

Reviewed by:

Mark Libbrecht, EMC/Wireless Specialist

David Duchesne, Senior EMC/Wireless Specialist

Signature:

Signature:

Mark Lillruhot

www.nemko.com

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

Lab and Test location(s)

Company name	Nemko Canada Inc. (Ca	nbridge)	
Facility	130 Saltsman Drive, Ur	t #1	
	Cambridge, ON		
	Canada, N3E 0B2		
	Tel: +1 519 680 4811		
	Test Firm Registration	umber: 332406	
Test site registration	Organization	Designation Number	
	FCC/ISED	CA0101	
Website	www.nemko.com		

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of contents

Table of	contents	3
Section 1	. Report summary	4
1.1	Applicant and manufacturer	. 4
1.2	Test specifications	. 4
1.3	Test methods	. 4
1.4	Exclusions	. 4
1.5	Statement of compliance	. 4
1.6	Test report revision history	. 4
Section 2	2. Summary of test results	5
2.1	Testing period	. 5
2.2	FCC Part 15 Subpart C, general requirements test results	. 5
2.3	FCC Part 15 Subpart E, test results	. 5
2.4	ISED RSS-GEN, Issue 5, test results	. 6
2.5	IC RSS-247, Issue 2, test results	. 6
Section a	3. Equipment under test (EUT) details	7
3.1	Sample information	. 7
3.2	EUT information	. 7
3.3	Technical information	. 7
3.4	Product description and theory of operation	. 8
3.5	EUT exercise details	. 8
3.6	EUT setup diagram	. 8
3.7	EUT sub assemblies	. 8
Section 4	I. Engineering considerations	9
4.1	Modifications incorporated in the EUT for compliance	. 9
4.2	Technical judgment	. 9
4.3	Deviations from laboratory tests procedures	. 9
Section g	;. Test conditions	10
5.1	Atmospheric conditions	10
5.2	Power supply range	10
Section 6	5. Measurement uncertainty	11
6.1	Uncertainty of measurement	11
Section 7	7. Test equipment	12
7.1	Test equipment list	12
Section 8	3. Testing data	13
8.1	FCC 15.31(e) Variation of power source	
8.2	FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies	14
8.3	FCC 15.203 and RSS-Gen 6.8 Antenna requirement	16
8.4	FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits	
8.5	FCC 15.403(i) Emission bandwidth	
8.6	RSS-Gen 6.7 Occupied bandwidth	22
8.7	FCC 15.407(a)(2) and RSS-247 6.2.3(1) 5.470–5.725 GHz band output power and spectral density limits	24
8.8	FCC 15.407(b) and RSS-247 6.2.3(2) Undesirable (unwanted) emissions	28
8.9	FCC 15.407(g) and RSS-Gen 8.11 Frequency stability	43
Section 9		
9.1	Radiated emissions set-up for frequencies below 1 GHz	44
9.2	Radiated emissions set-up for frequencies above 1 GHz	44
9.3	Conducted emissions set-up	45
9.4	Antenna port set-up	45

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Ring LLC
Address	1523 26 th Street, Santa Monica, CA, United States, 90404

1.2 Test specifications

FCC 47 CFR Part 15, Subpart E, Clause 15.407	Unlicensed National Information Infrastructure Devises
RSS-247, Issue 2, Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

1.3 Test methods

789033 D02 General UNII Test Procedures	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part
New Rules v02r01 (December 14, 2017)	15, Subpart E
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.4 Exclusions

TPC not applicable as maximum EIRP is less than 500 mW

1.5 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard or as per detailed in the section 1.3 Exclusions above. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.6 Test report revision history

Table	1.6-1:	Test re	nort re	evision	history
TUDIC	T .O T.	105010	ροιιιί		inscory

Revision #	Date of issue	Details of changes made to test report
TRF	March 29, 2019	Original report issued
R1	April 2, 2019	Remove model variant, update test channel selection

Section 2. Summary of test results

2.1 Testing period

Test start date	February 1, 2019
Test end date	March 29, 2019

2.2 FCC Part 15 Subpart C, general requirements test results

Table 2.2-1: FCC general requirements results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass

2.3 FCC Part 15 Subpart E, test results

Table 2.3-1: FCC Part 15, Subpart E, results

Part	Test description	Verdict
§15.403(i)	Emission bandwidth	Pass
§15.407(a)(2)	Power and density limits within 5.25–5.35 GHz and 5.47–5.725 GHz bands	Pass
§15.407(b)(3)	Undesirable emission limits for 5.47–5.725 GHz bands	Pass
§15.407(b)(6)	Conducted limits for U-NII devices using an AC power line	Pass
§15.407(g)	Frequency stability	Pass
§15.407(h)(2) ¹	Dynamic Frequency Selection (DFS)	Pass

Note: ¹ See DFS Test results in separate test report, Reference ID: 368533-12TRFWL

2.4 ISED RSS-GEN, Issue 5, test results

Table 2.4-1: RSS-Gen results

Part	Test description	Verdict
6.7	Occupied Bandwidth	Pass
6.8	Antenna requirement	Pass
6.9	Number of tested frequencies	Pass
8.8	Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus	Pass

2.5 IC RSS-247, Issue 2, test results

Table 2.5-1: RSS-247, Issue 2, results

Section	Test description	Verdict
6.1 ¹	Types of Modulation	Pass
6.2.3 (1)	Power limits for 5470–5600 MHz and 5650–5725 MHz bands	Pass
6.2.3 (2)	Unwanted emission limits for 5470–5600 MHz and 5650–5725 MHz bands	Pass
6.3 ²	Dynamic Frequency Selection (DFS) for devices operating in the bands 5250–5350 MHz, 5470–5600 MHz and 5650–5725 MHz	Pass
Notes: ¹ The E	UT employs digital modulations, such as: 802.11a and 802.11n	

² See DFS Test results in separate test report, Reference ID: 368533-12TRFWL

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	February 1, 2019
Nemko sample ID number	Item # 1 (conducted sample) and Item # 3 (radiated sample)

3.2 EUT information

Product name	Ring
Model	Base Station NA
Serial number	BHBN21851PG000046 (conducted), BHBN21851PG000052 (radiated)

3.3 Technical information

Applicant IC company number	20271
IC UPN number	20271-BHABN002
All used IC test site(s) Reg. number	332406
RSS number and Issue number	RSS-247 Issue 2, Feb 2017
Frequency band	FCC: 5470–5725 MHz; IC: 5470–5600 MHz and 5650 MHz–5725 MHz
Frequency Min (MHz)	5500 (20 MHz), 5510 (40 MHz)
Frequency Max (MHz)	5700 (20 MHz), 5670 (40 MHz)
RF power Min (W),	N/A
RF power Max (W), Conducted	0.016 (12.1 dBm) 20 MHz, 0.023 (13.6 dBm) 40 MHz
Field strength, Units @ distance	N/A
Measured EBW (MHz) (26 dB)	22.0 (20MHz), 44.3 (40 MHz)
Calculated BW (kHz), as per TRC-43	N/A
Type of modulation	802.11a (20 MHz), 802.11n (40 MHz)
Emission classification (F1D, G1D, D1D)	W7D
Transmitter spurious, Units @ distance	5470 MHz, 66.8 dBμV/m (Peak) 49.6 dBμV/m @ 3 m
Power requirements	5 V_{DC} (via external 100-240 VAC, 50/60 Hz power adapter)
Antenna information	Reported Antenna Gain = 5.6 dBi
	The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator.

3.4 Product description and theory of operation

Communications Hub for Home Security Products

3.5 EUT exercise details

The EUT was setup in continuous transmit state. Channel power setting for 802.11n band edge @ 5470 MHz = 11 Channel power setting for 802.11a band edge @ 5470 MHz = 15 Channel power setting for 802.11a mid channels = 16 Channel power setting for 802.11n mid channels = 16

3.6 EUT setup diagram

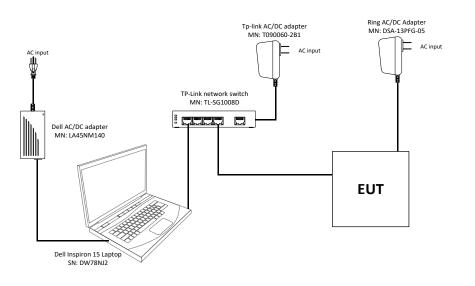


Figure 3.6-1: Setup diagram

3.7 EUT sub assemblies

Table 3.7-1: EUT sub assemblies

Description	Brand name	Model/Part number	Serial number
AC/DC Adapter	Ring	DSA-13PFG-05	BHAB11851DV000116
Laptop	Dell	Inspiron 15	DW78NJ2
Network switch	TP-Link	TL-SG1008D	2171682000263

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

EUT configured to transmit between 5600 – 5650 MHz

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Table 6.1-1: Measurement uncertainty

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

7.1 Test equipment list

Table 7.1-1: Equipment list						
Equipment	Manufacturer	Model no.	Serial no.	Asset no.	Cal./Ver. cycle	Next cal./ver.
3 m EMI test chamber	TDK	SAC-3		FA003012	1 year	Aug. 22/19
Flush mount turntable	SUNAR	FM2022		FA003006	_	NCR
Controller	SUNAR	SC110V	050118-1	FA002976	_	NCR
Antenna mast	SUNAR	TLT2	042418-5	FA003007	_	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESR26	101367	FA002969	1 year	June 1/19
Spectrum analyzer	Rohde & Schwarz	FSW43	104437	FA002971	1 year	June 1/19
Horn antenna (1–18 GHz)	ETS-Lindgren	3117	00052793	FA002911	1 year	Aug. 16/19
Preamp (1–18 GHz)	ETS-Lindgren	124334	00224880	FA002956	1 year	Sept 18/19
Bilog antenna (30–2000 MHz)	SUNAR	JB1	A053018-2	FA003010	1 year	Sept. 6/19
50 Ω coax cable	Huber + Suhner	None	457630	FA003047	1 year	Nov 12/19
50 Ω coax cable	Huber + Suhner	None	457624	FA003044	1 year	Nov 12/19
Two-line v-network	Rohde & Schwarz	ENV216	101376	FA002964	1 year	Mar. 27/19
50 Ω coax cable	Rohde & Schwarz	None		FA003074	1 year	Dec. 21/19
AC Power source	Chroma	61605	616050002253	FA003034	-	VOU
Filter 5.47 – 5.725 GHz	Microwave Circuits	N0555983	499785	FA003028	1 year	Oct. 1/19
Horn antenna (18-40 GHz)	ETS-Lindgren	3116B	00122305	FA002948	1 year	Apr. 18/19

Note: NCR - no calibration required, VOU - verify on use

Section 8. Testing data

8.1 FCC 15.31(e) Variation of power source

8.1.1 Definitions and limits

FCC §15.31:

(e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.1.2 Test	date
Start date	February 14, 2019

8.1.3 Observations, settings and special notes

The testing was performed as per ANSI C63.10 Section 5.13.

- a) Where the device is intended to be powered from an external power adapter, the voltage variations shall be applied to the input of the adapter provided with the device at the time of sale. If the device is not marketed or sold with a specific adapter, then a typical power adapter shall be used.
- b) For devices where operating at a supply voltage deviating ±15% from the nominal rated value may cause damages or loss of intended function, test to minimum and maximum allowable voltage per manufacturer's specification and document in the report.
- c) For devices with wide range of rated supply voltage, test at 15% below the lowest and 15% above the highest declared nominal rated supply voltage.
- d) For devices obtaining power from an input/output (I/O) port (USB, firewire, etc.), a test jig is necessary to apply voltage variation to the device from a support power supply, while maintaining the functionalities of the device.

For battery-operated equipment, the equipment tests shall be performed using a variable power supply.

8.1.4 Test data

The EUT AC Input supply voltage was varied between 85% and 115% of the nominal rated supply voltage. No change to transmitter performance was observed.

8.2 FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies

8.2.1 Definitions and limits

FCC §15.31:

(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

RSS-Gen Section 6.9:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Table 8.2-1: Frequence	cy Range of Operation
------------------------	-----------------------

Number of test frequencies required	Location of measurement frequency inside the operating frequency range
1	Center (middle of the band)
2	1 near high end, 1 near low end
3	1 near high end, 1 near center and 1 near low end
	1 2 3

Notes: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.2.2 Test date

Start date February 14, 2019

8.2.3 Observations, settings and special notes

Per ANSI C63.10 Subclause 5.6.2.1:

- The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate: a) For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
 - b) For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
 - c) If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

Per ANSI C63.10 Subclause 5.6.2.2:

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:

- a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.

8.2.4 Test data

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MH
5470	5725	255	5500	5580	5700
	т	able 8.2-3: Test channels so	election 40 MHz channels FC	CC	
Start of Frequency End of Frequency range, MHz range, MHz		Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
5470	5725	255	5510	5590	5710
Start of Frequency range, MHz	To End of Frequency range, MHz	ible 8.2-4: Test channels se Frequency range bandwidth, MHz	election 20 MHz channels ISE	D Mid channel, MHz	High channel, MH
5470	5725	255	5500	5580	5700

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	High channel, MHz
5470	5725	255	5510	5710

8.3 FCC 15.203 and RSS-Gen 6.8 Antenna requirement

8.3.1 Definitions and limits

FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

RSS-Gen Section 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

8.3.2	Test date		
Start date	February 14, 2019		

8.3.3 Observations, settings and special notes

None

8.3.4 Test data

The EUT has an internal integrated antenna, non-detachable.

The EUT will not be professionally installed

FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits 8.4

Definitions and limits 8.4.1

FCC §15.207:

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) a) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

ANSI: C63.10 subclause 6.2

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements shall be made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is

operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an "off-the-shelf" unmodified ac power adapter shall be used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

RSS-GEN Section 8.8:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 8.4-1: AC power line conducted emissions limit

Frequency of emission,		Conducted limit, dBµV		
	MHz	Quasi-peak	Average**	
	0.15–0.5	66 to 56*	56 to 46*	
	0.5–5	56	46	
	5–30	60	50	
Notes:	* - The level decreases linearly with the	e logarithm of the frequency.		

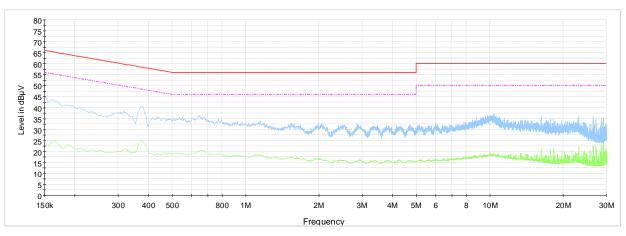
* - The level decreases linearly with the logarithm of the frequency.

** - A linear average detector is required.

8.4.2 Test date

Start date	February 14, 2019	

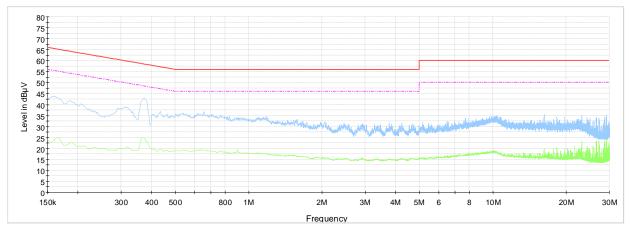
8.4.3 Observations, settings and special notes


_

Port under test – Coupling device	AC Input – Artificial Mains Network (AMN)			
EUT power input during test	$5 V_{DC}$ (Powered via external power adapter @ 120 V _{AC} 60 Hz)			
UT setup configuration Table top				
Measurement details	 A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB or above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement. No conducted emissions were overserved within 10 dB of limit. The spectral plots have been corrected with transducer factors. 			
Receiver settings:				
Receiver settings: Resolution bandwidth	9 kHz			
5	9 kHz 30 kHz			
Resolution bandwidth				
Resolution bandwidth Video bandwidth	30 kHz			

160 ms (CAverage final measurement)

8.4.4 Test data



NEX 368533 150 kHz - 30 MHz 120 VAC 60 Hz Line

Preview Result 2-AVG

Preview Result 1-PK+ CISPR 32 Limit - Class B, Mains (Quasi-Peak) CISPR 32 Limit - Class B, Mains (Average)

Figure 8.4-1: AC power line conducted emissions – spectral plot on phase line

NEX368533 150 kHz - 30 MHz 120 VAC 60 Hz Neutral

Preview Result 2-AVG Preview Result 1-PK+

CISPR 32 Limit - Class B, Mains (Quasi-Peak) CISPR 32 Limit - Class B, Mains (Average)

Figure 8.4-2: AC power line conducted emissions - spectral plot on neutral line

8.5 FCC 15.403(i) Emission bandwidth

8.5.1 Definitions and limits

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

8.5.2 Test date

Start date March 12, 2019

8.5.3 Observations, settings and special notes

Spectrum analyser settings:

Resolution bandwidth	approximately 1% of the emission bandwidth
Video bandwidth	> RBW
Detector mode	Peak
Trace mode	Max Hold

8.5.4 Test data

Modulation	Frequency, MHz	26 dB bandwidth, MHz
802.11a	5500	22.0
	5580	19.9
	5700	20.8
802.11n	5500	44.0
	5590	39.6
	5710	44.3



Figure 8.5-1: 26 dB bandwidth on 802.11a, sample plot

Figure 8.5-2: 26 dB bandwidth on 802.11n, sample plot

8.6 RSS-Gen 6.7 Occupied bandwidth

8.6.1 Definitions and limits

The emission bandwidth (×dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated × dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3× the resolution bandwidth.

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

8.6.2 Test date

Start date March 4, 2019

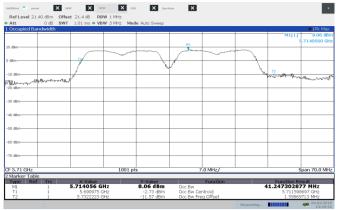
8.6.3 Observations, settings and special notes

 Spectrum analyser settings:

 Resolution bandwidth:
 1-5% of OBW

 Video bandwidth:
 ≥3 × RBW

 Detector mode:
 Peak


 Trace mode:
 Max Hold

8.6.4 Test data

Table 8.6-1: 99 % bandwidth results				
Modulation	Frequency, MHz	99 % occupied bandwidth, MHz		
	5500	17.1		
802.11a	5580	17.0		
	5700	17.0		
	5510	37.5		
802.11n	5590	42.4		
	5710	41.2		

13:48:10 04.03.2019

Figure 8.6-1: 99 % bandwidth on 802.11a, sample plot

Figure 8.6-2: 99 % bandwidth on 802.11n, sample plot

8.7 FCC 15.407(a)(2) and RSS-247 6.2.3(1) 5.470-5.725 GHz band output power and spectral density limits

8.7.1 Definitions and limits

FCC:

The maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW (24 dBm) or 11 dBm + 10 \log_{10} (B), where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(h)(1) Transmit power control (TPC).

U-NII devices shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

IC:

Until further notice, devices subject to this section shall not be capable of transmitting in the band 5600–5650 MHz. This restriction is for the protection of Environment Canada's weather radars operating in this band.

The maximum conducted output power shall not exceed 250 mW (24 dBm) or $11 + 10 \log_{10}(B)$, dBm, whichever is less, where B is the 99% emission bandwidth in megahertz. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W (30 dBm) or $17 + 10 \log_{10}$ (B), dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW (27 dBm) shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W (30 dBm).

8.7.2 Test date

019	te March 4, 2019

8.7.3 Observations, settings and special notes

EUT set to transmit continuously with duty cycle \ge 98%.

KDB 789033 section E.2(b) method SA-1 referenced for power measurements KDB 789033 section F.5 referenced for PSD measurements with reduced RBW, integrated over 1 MHz

The maximum measured 26 dB emission bandwidth for 802.11a was 22.0 MHz, and for 802.11n was 44.3 MHz. FCC output power limit for 802.11a was calculated as follows: $11 \text{ dBm} + 10 \times \log 10$ (22.0) = 24.4 dBm > 24 dBm, therefore the limit is 24 dBm FCC output power limit for 802.11n was calculated as follows: $11 \text{ dBm} + 10 \times \log 10$ (44.3) = 27.4 dBm > 24 dBm, therefore the limit is 24 dBm

The maximum measured 99 % occupied bandwidth for 802.11a was 17.1 MHz, and for 802.11n was 47.2 MHz. IC output power limit for 802.11a was calculated as follows: $11 + 10 \times \log_{10} (17.1) = 23.3 \text{ dBm} < 24 \text{ dBm}$ IC output power limit for 802.11n HT20 was calculated as follows: $11 + 10 \times \log_{10} (47.2) = 27.7 \text{ dBm} > 24 \text{ dBm}$, therefore the limit is 24 dBm

IC EIRP limit for 802.11a was calculated as follows: $17 + 10 \times Log_{10}$ (17.1) = 29.3 dBm < 30 dBm IC EIRP limit for 802.11n HT20 was calculated as follows: $17 + 10 \times Log_{10}$ (47.2) = 33.7 dBm > 30 dBm, therefore the limit is 30 dBm

IC EIRP limit for 802.11a was calculated as follows: $17 + 10 \times Log_{10}$ (17.1) = 29.3 dBm < 30 dBm IC EIRP limit for 802.11n was calculated as follows: $17 + 10 \times Log_{10}$ (47.2) = 33.7 dBm > 30 dBm, therefore the limit is 30 dBm

Spectrum analyser settings for PSD:

Resolution bandwidth:	100 kHz
Video bandwidth:	≥3 × RBW
Detector mode:	RMS
Trace mode:	Average
Trace counts:	100

Spectrum analyser settings for Output Power:

Resolution bandwidth:	1 MHz
Video bandwidth:	≥3 × RBW
Detector mode:	RMS
Trace mode:	Average
Trace counts:	100

8.7.4 Test data

Table 8.7-1: Output power measurements results for FCC

Modulation	Frequency, MHz	Conducted output power, dBm	Power limit, dBm	Margin, dB
	5500	9.0	24.0	15.0
802.11a	5580	12.1	24.0	11.9
	5700	11.9	24.0	12.1
	5510	6.4	24.0	17.6
802.11n	5590	13.6	24.0	10.4
	5710	13.3	24.0	10.7

Table 8.7-2: PSD measurements results for FCC

Modulation	Frequency, MHz	PPSD, dBm/MHz	PPSD limit, dBm/MHz	Margin, dB
	5500	-2.9	11.0	13.9
802.11a	5580	0.7	11.0	10.3
	5700	-0.1	11.0	11.1
802.11n	5510	-8.6	11.0	19.6
	5590	-1.0	11.0	12.0
	5710	-1.3	11.0	12.3

Table 8.7-3: Output power measurements results for IC

Modulation	Frequency, MHz	Conducted output power, dBm	Conducted Output Power limit, dBm	Margin, dB
	5500	9.0	23.3	14.3
802.11a	5580	12.1	23.3	11.2
	5700	11.9	23.3	11.4
	5510	6.4	24.0	17.6
802.11n	5590	13.6	24.0	10.4
	5710	13.3	24.0	10.7

Table 8.7-4: PSD measurements results for IC

Modulation	Frequency, MHz	PSD, dBm/MHz	EIRP PSD limit, dBm/MHz	Margin, dB
	5500	-2.9	11.0	13.9
802.11a	5580	0.7	11.0	10.3
	5700	-0.1	11.0	11.1
	5510	-8.6	11.0	19.6
802.11n	5590	-1.0	11.0	12.0
	5710	-1.3	11.0	12.3

8.7-5: EIRP measurements results for IC

Modulation	Frequency, MHz	Conducted output power, dBm	Antenna gain, dBi	EIRP, dBm	EIRP limit, dBm	Margin, dB
	5500	9.0	5.6	14.6	29.3	14.7
802.11a	5580	12.1	5.6	17.7	29.3	11.6
	5700	11.9	5.6	17.5	29.3	11.8
	5510	6.4	5.6	12.0	30.0	18.0
802.11n	5590	13.6	5.6	18.9	30.0	11.1
	5710	13.3	5.6	19.2	30.0	10.8

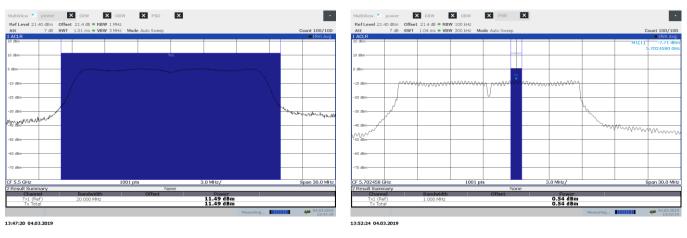


Figure 8.7-1: Sample plot for power on 802.11a

Figure 8.7-2: Sample plot for PSD on 802.11a

Nations * prev X 10W *X 00W X P0 X spectrum X Ref Level 21.40 dBm Offset 21.40 dB * RBW 1 MHz		Ref Level 20.00 dBm Offset	21.4 dB • RBW 100 kHz	X Spectrum		
Att 7 dB SWT 1.01 ms WBW 3 MHz Mode Auto Sweep	Count 100/100		1.03 ms • VBW 300 kHz Mode A	uto Sweep		Count 100/10
1 AGR 741 20 dbh 741 10 dbh 741 6 dbh 741 12 dbh 741 -12 dbh 741 -12 dbh 741 -13 dbh 741	- IFm Avg	1 ACLR 10 dbn		1012-101 1010-1011-1010 11-000 1010-1011-1010 11-000		(10) (10)
CF 5.51 GHz 7.0 MHz/ 2 Result Summary None	Span 70.0 MHz	CF 5.714965 GHz 2 Result Summary	1001 pts	7.0 None	MHz/	Span 70.0 M
Channel Bandwidth Offset Dower Tist (Per) 40.000 MHz 12.92 dBm Tx Total 12.92 dBm	B4.03.2019	Channel	Bandwidth 0 1.000 MHz	Difset	Power 1.30 dBm 1.30 dBm	04.03.20)
13:26:32 04.03.2019	13:26:31	13:30:19 04.03.2019			Measuring	
Figure 8.7-3: Sample plot for power 802.11	n		Figure 8.7-4: San	nple plot for PS	SD on 802.111	า

8.8 FCC 15.407(b) and RSS-247 6.2.3(2) Undesirable (unwanted) emissions

8.8.1 Definitions and limits

FCC:

KDB 789033 III (B)(b)(iii)

Straddle channels 138, 142 and 144 are considered to be operating in both U-NII-2C and U-NII-3. The worst case out-of-band emission limit, i.e., -27 dBm/MHz peak EIRP, applies at the band edges. The band edges are considered to be 5.47 GHz and 5.85 GHz

(3) For transmitters operating in the 5.470-5.725 GHz band: all emissions outside of the 5.470-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz. (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.

(7) The provisions of § 15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

IC:

RSS-247 6.2.3.2

Emissions outside the band 5470-5725 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, devices with bandwidth overlapping the band edge of 5725 MHz can meet the emission limit of -27 dBm/MHz e.i.r.p. at 5850 MHz instead of 5725 MHz.

RSS-Gen 8.10 Emissions falling within restricted frequency bands

Restricted bands, identified in Table 8.8-2, are designated primarily for safety-of-life services (distress calling and certain aeronautical bands), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following restrictions apply:

(a) fundamental components of modulation of licence-exempt radio apparatus shall not fall within the restricted bands of below;

(b) unwanted emissions falling into restricted bands of below shall comply with the limits specified in RSS-Gen;

(c) unwanted emissions not falling within restricted frequency bands shall either comply with the limits specified in the applicable RSS, or with those specified in RSS-Gen.

Frequency,	Field strength of emissions		Measurement distance, m
MHz	μV/m	dBµV/m	
0.009–0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	$87.6 - 20 \times \log_{10}(F)$	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88-216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Table 8.8-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

8.8.1 Definitions and limits, continued

Table 8.8-2: ISED restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.57675-12.57725	399.9–410	7.25–7.75
0.495-0.505	13.36–13.41	608–614	8.025-8.5
2.1735-2.1905	16.42–16.423	960–1427	9.0–9.2
3.020-3.026	16.69475-16.69525	1435–1626.5	9.3–9.5
4.125-4.128	16.80425-16.80475	1645.5-1646.5	10.6–12.7
4.17725-4.17775	25.5-25.67	1660–1710	13.25–13.4
4.20725-4.20775	37.5–38.25	1718.8–1722.2	14.47–14.5
5.677-5.683	73–74.6	2200-2300	15.35–16.2
6.215-6.218	74.8–75.2	2310–2390	17.7–21.4
6.26775-6.26825	108–138	2483.5-2500	22.01-23.12
6.31175–6.31225	149.9–150.05	2655–2900	23.6–24.0
8.291-8.294	156.52475-156.52525	3260-3267	31.2–31.8
8.362-8.366	156.7–156.9	3332–3339	36.43–36.5
8.37625-8.38675	162.0125-167.17	3345.8-3358	
8.41425-8.41475	167.72–173.2	3500–4400	Above 28 6
12.29–12.293	240–285	4500–5150	Above 38.6
12.51975-12.52025	322–335.4	5350-5460	

Note: Certain frequency bands listed in Table 8.8-2 and above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Table 8.8-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690–2900	22.01-23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29-12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36–13.41			

8.8.2 Test date

Start date	February 14, 2019

8.8.3 Observations, settings and special notes

- The spectrum was searched from 30 MHz to 40 GHz.
 EUT was set to transmit with 100 % duty cycle.
- Radiated measurements from 30 MHz to 18 GHz were performed at a distance of 3 m.
- Radiated measurements from 18 to 25 GHz were performed at a distance of 30 cm.
- Radiated measurements from 25 to 40 GHz were performed at a distance of 3 cm.
- No transmitter related radiated emissions were detected below 1 GHz. Emissions detected within restricted bands that were close to the limit were found to be digital emissions.
- Conducted spurious EIRP emission limit line calculated as follows: -27 dBm EIRP Antenna Gain (5.6 dBi) = -32.6 dBm

Spectrum analyzer settings for measurements below 1 GHz:

Detector mode	Peak or Quasi-Peak
Resolution bandwidth	100 kHz or 120 kHz
Video bandwidth	300 kHz
Trace mode	Max Hold

Spectrum analyser settings for peak measurements above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser for average radiated measurements in restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	RMS
Trace mode:	Power average
Number of averaging traces:	100

Spectrum analyzer settings for conducted band edge measurements:

Detector mode	Peak
Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Trace mode	Max Hold

8.8.4 Test data

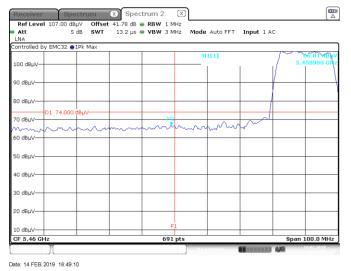


Figure 8.8-1: Peak spurious emissions within restricted bands at 5.46 GHz, low channel, 802.11a

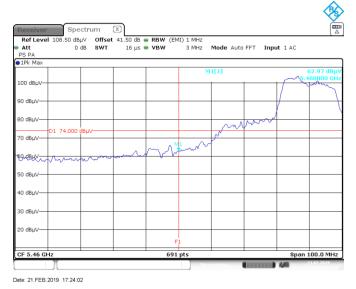
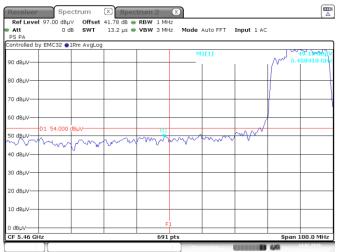
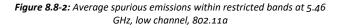
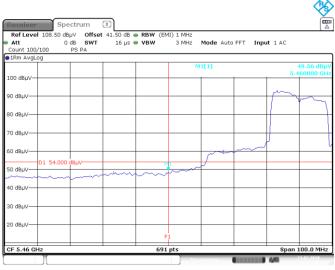





Figure 8.8-3: Peak spurious emissions within restricted bands at 5.46 GHz, low channel, 802.11n

Date: 21.FEB.2019 17:15:57

Figure 8.8-4: Average spurious emissions within restricted bands at 5.46 GHz, low channel, 802.11n

 Table 8.8-4: Radiated field strength measurement results – Restricted Bands

Modulation	Frequency,	y, Peak Field strength, dBµV/m Margin,		Average Field str	Margin,		
Modulation	MHz	Measured	Limit	dB	Measured	Limit	dB
802.11a	5460	66.8	74.00	7.2	49.2	54.00	4.8
802.11n	5460	63.0	74.00	11.0	49.6	54.00	4.4

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

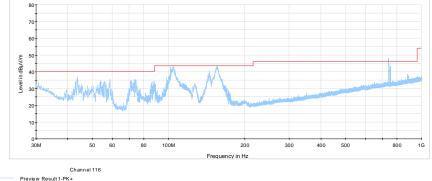

Report reference ID: 1R368533-4TRFWL

Figure 8.8-5: Radiated spurious emission 30 MHz to 1 GHz, low channel, 802.11a

Preview Result 1-R/+ FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m Final, Result QFK Final, Result PK+ :

Figure 8.8-6: Radiated spurious emission 30 MHz to 1 GHz, mid channel, 802.11a

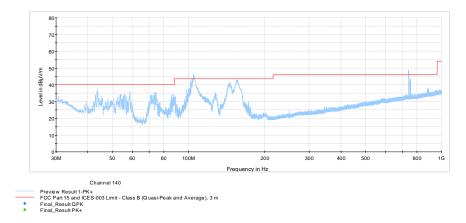
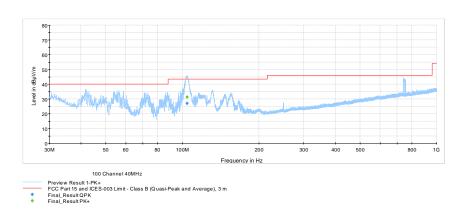
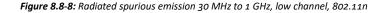
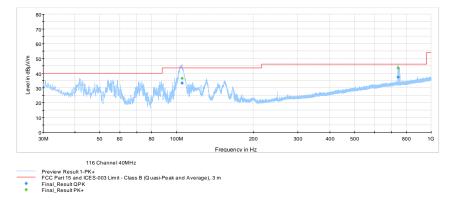
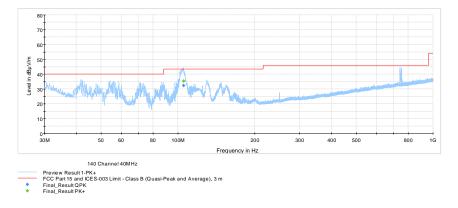
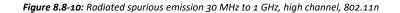
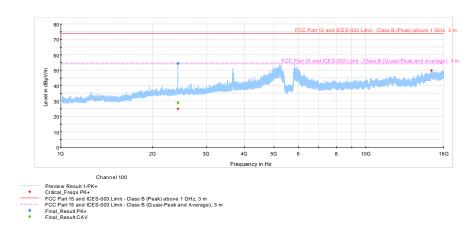
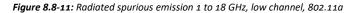





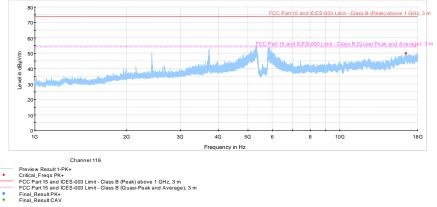
Figure 8.8-7: Radiated spurious emission 30 MHz to 1 GHz, high channel, 802.11a

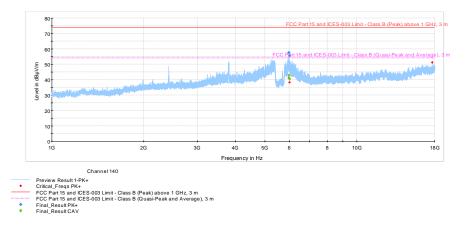


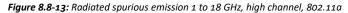


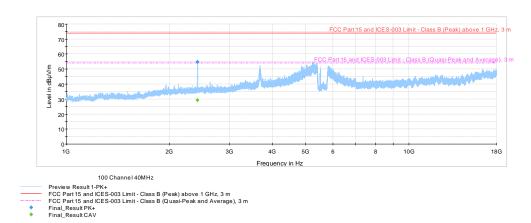


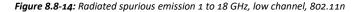

Figure 8.8-9: Radiated spurious emission 30 MHz to 1 GHz, mid channel, 802.11n

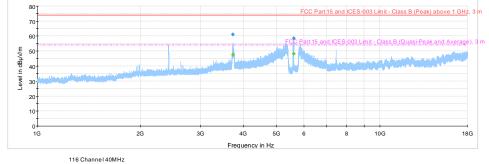


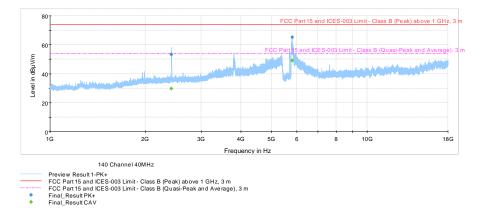





:







Preview Result 1-PK+ FCC Part 16 and ICE5-003 Limit - Class B (Peak) above 1 GHz, 3 m FCC Part 16 and ICE5-003 Limit - Class B (Quasi-Peak and Average), 3 m Final_Result FK+ Final_Result CAV

•

Figure 8.8-15: Radiated spurious emission 1 to 18 GHz, mid channel, 802.11n

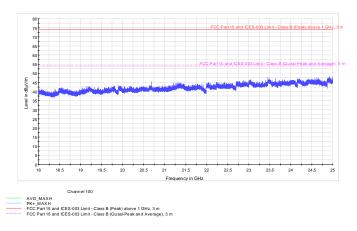
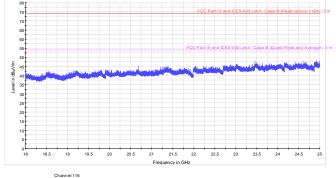



Figure 8.8-17: Radiated spurious emission 18 to 25 GHz, low channel, 802.11a

AVG_MAXH PK+_MAXH FCC Part 15 and ICES-003 Limit - Class B (Peak) above 1 GHz, 3 m FCC Part 15 and ICES-003 Limit - Class B (duasi-Peak and Average), 3 m

Figure 8.8-18: Radiated spurious emission 18 to 25 GHz, mid channel, 802.11a

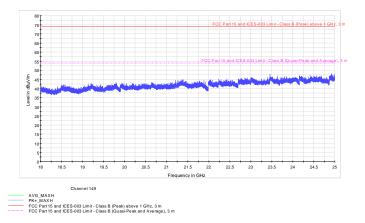


Figure 8.8-19: Radiated spurious emission 18 to 25 GHz, high channel, 802.11a

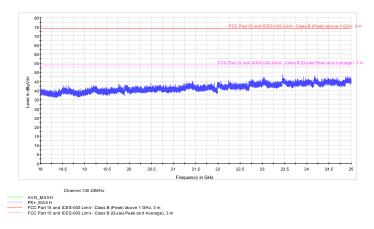
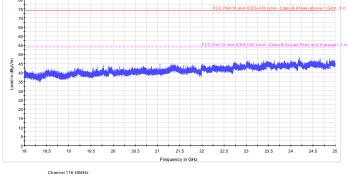



Figure 8.8-20: Radiated spurious emission 18 to 25 GHz, low channel, 802.11n

Channel 116 40MHz AVG_MAXH PK+_MAXH FCC Part 15 and ICES-003 Limit- Class B (Peak) above 1 GHz, 3 m FCC Part 15 and ICES-003 Limit- Class B (Quasi-Peak and Average), 3 m

Figure 8.8-21: Radiated spurious emission 18 to 25 GHz, mid channel, 802.11n

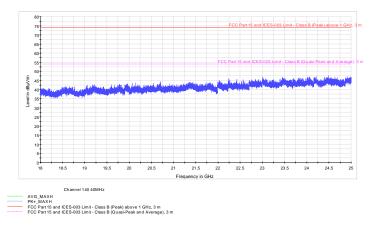
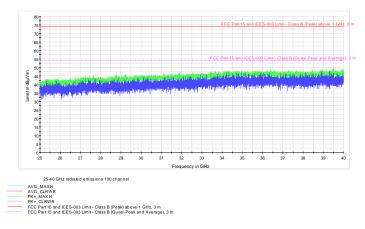



Figure 8.8-22: Radiated spurious emission 18 to 25 GHz, high channel, 802.11n

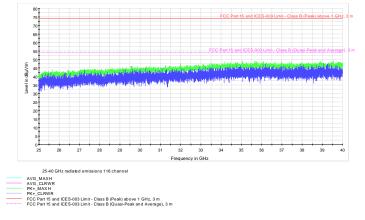
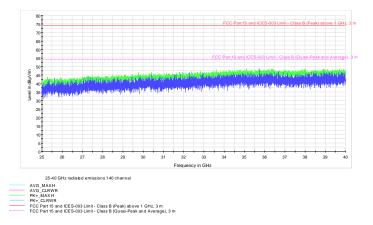



Figure 8.8-24: Radiated spurious emission 25 to 40 GHz, mid channel, 802.11a

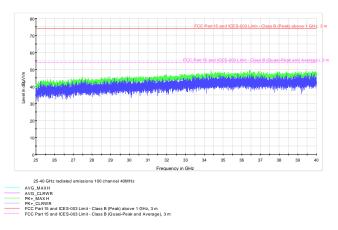


Figure 8.8-26: Radiated spurious emission 25 to 40 GHz, low channel, 802.11n

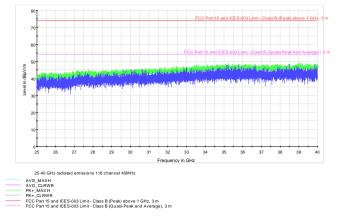


Figure 8.8-27: Radiated spurious emission 25 to 40 GHz, mid channel, 802.11n

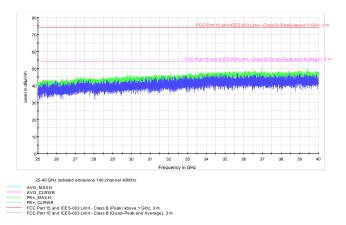


Figure 8.8-28: Radiated spurious emission 25 to 40 GHz, high channel, 802.11n

Channel	Modulation	Frequency, GHz	Emission strength, dBm / MHz	Antenna Gain	Emission strength EIRP, dBm / MHz	EIRP limit, dB	Margin, dB
100	802.11a	5.47	-33.5	5.6	-27.9	-27	0.9
100	802.11n	5.47	-34.3	5.6	-28.7	-27	1.7

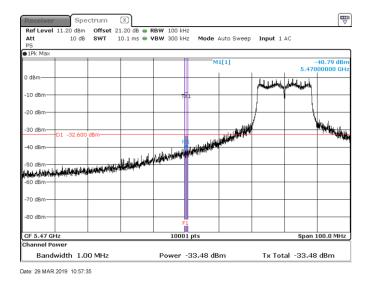


Figure 8.8-29: Conducted band edge emissions 5.47 GHz, low channel, 802.11a

Date: 29.MAR.2019 10:49:31

Figure 8.8-30: Conducted band edge emissions 5.47 GHz, low channel, 802.11n

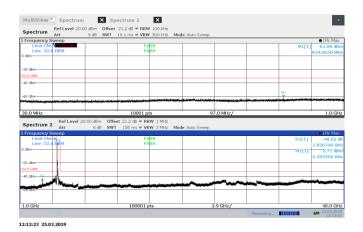


Figure 8.8-31: Conducted spurious emissions 30 MHz – 40 GHz, low channel, 802.11a

	Roff avail 20.0	0.48m 0#	set 21.2 dB • RBW	100 kHz				
Spectrum	Att		T 10.1 ms = VBW		Mode Auto Sweep			
Frequency								91Pk Max
Limit Ch			PA				M1[1]	
Line -32	.6 DBM		PA	ss				981.2320 MH
Gem								
20 dBm								
32.6 DBM								
40 dBm								
AD OBIII								
60 d8m								M1
and the second							 بالدامة المتكارة ومتاحزه وبالما	****
	Ref Level 2		10001 p Offset 21.2 dB • RB	W 1 MHz		7.0 MHz/		1.0 GH
Spectrum	2 Att Sweep		Offset 21.2 dB = RB SWT 156 ms = VB	W 1 MHz W 3 MHz		7.0 MHz/		●1Pk Max
Spectrum Frequency: Limit Che Line -32	2 Att Sweep		Offset 21.2 dB • RB	W 1 MHz W 3 MHz		i7.0 MHz/	MILLI	●1Pk Max 4.35 dBr
Spectrum Frequency: Limit Che Line -32	2 Att Sweep		Offset 21.2 dB • RB SWT 156 ms • VB	W 1 MHz W 3 MHz		7.0 MHz/		
Spectrum : Frequency : Limit Ch Line -32 0 dBm	2 Att Sweep		Offset 21.2 dB • RB SWT 156 ms • VB	W 1 MHz W 3 MHz		7.0 MHz/		●1Pk Max 4.35 d8 5.583820 GH 42.67 d
Spectrum : Frequency : Limit Chi Line -32 0 dBm-	2 Att Sweep		Offset 21.2 dB • RB SWT 156 ms • VB	W 1 MHz W 3 MHz		7.0 MHz/		●1Pk Max 4.35 d8 5.583820 GH 42.67 d
Spectrum : Erequency : Limit Ch Line -32 0 dBm 20 dBm 20 dBm 20 dBm	2 Att Sweep		Offset 21.2 dB • RB SWT 156 ms • VB	W 1 MHz W 3 MHz		7.0 MHz/		●1Pk Max 4.35 d8 5.583820 GH 42.67 d
Spectrum : Erequency : Limit Ch Line -32 0 dBm 20 dBm 20 dBm 20 dBm	2 Att Sweep		Offset 21.2 dB • RB SWT 156 ms • VB	W 1 MHz W 3 MHz		7.0 MHz/		●1Pk Max 4.35 d8 5.583820 GH 42.67 d
Spectrum : Erequency : Limit Ch Line -32 0 dBm 20 dBm 20 dBm 20 dBm	2 Att Sweep		Offset 21.2 dB • RB SWT 156 ms • VB	W 1 MHz W 3 MHz		7.0 MHz/		●1Pk Max 4.35 d8 5.583820 GH 42.67 d
Spectrum : Frequency : Limit Ch Line -32 dBm 20 dBm 20 dBm 20 dBm 20 dBm	2 Att Sweep		Offset 21.2 dB • RB SWT 156 ms • VB	W 1 MHz W 3 MHz		7.0 MHz/		●1Pk Max 4.35 d8 5.583820 GH 42.67 d
	2 Att Sweep		Offset 21.2 dB • RB SWT 156 ms • VB	W 1 MHz W 3 MHz		7.0 MHz/		● 1Pk Man 4.35 dB 5.588820 G 42.67
Spectrum : Limit Ch Line -32 0 dBm -20 dBm- 22.0 dBm- 22.0 DBM	2 Att Sweep		Offset 21.2 dB • RB SWT 156 ms • VB	W 1 MHz W 3 MHz SS SS	Mode Auto Sweep	3.9 GHz/		●1Pk Max 4.35 dB 5.583820 G 42.67

12:14:00 25.03.2019

Figure 8.8-32: Conducted spurious emissions 30 MHz – 40 GHz, mid channel, 802.11a

RefLev	trum 🔀 S	st 21.2 dB • RBW 100 kHz				
Spectrum Att		10.1 ms . VBW 300 kHz				
Frequency Sweep						●1Pk Max
Limit Check Line -32.6 DBM		PASS			M1[1]	
D dBm						564.8530 M
20 dBm						
32.6 DBM						
-40 dBm-						
-60 dBm			MI		 	
**************************************	فيدد المستبادات كيمت المردسة الالت	in the state of th		and the state of t	 	
		10001 ptr		27.0 MHz/		1.0.64
30.0 MHz		10001 pts		97.0 MHz/		1.0 G
30.0 MHz Spectrum 2 Ref Lo Att		10001 pts fset 21.2 dB	:	97.0 MHz/		
30.0 MHz Spectrum 2 Ref Lt Att Frequency Sweep		fset 21.2 dB ● RBW 1 MHz VT 156 ms ● VBW 3 MHz	:	97.0 MHz/		●1Pk Ma
30.0 MHz Spectrum 2 Ref Lo Att		fset 21.2 d8 🖷 RBW 1 MHz	:	97.0 MHz/	DIEU	●1Pk Ma 48.40
30.0 MHz Spectrum 2 Ref Li Att Limit Che ku Line - 32.6 DMM		fset 21.2 d8 • RBW 1 MHz VT 156 ms • VBW 3 MHz PASS	:	97.0 MHz/		• 1Pk Ma -48.40 1.900060 G
30.0 MHz Spectrum 2 Ref Li Att I Frequency Sweep Limit Chekky		fset 21.2 d8 • RBW 1 MHz VT 156 ms • VBW 3 MHz PASS	:	97.0 MHz/		0 1Pk Ma 48.40 1.900060 G 6.65 dB
30.0 MHz Spectrum 2 Ref Li IFrequency Sweep Limit Checklo Line -32.6 DFM 0 dBm -20 dBm		fset 21.2 d8 • RBW 1 MHz VT 156 ms • VBW 3 MHz PASS	:	97.0 MHz/		0 1Pk Ma 48.40 1.900060 G 6.65 dB
30.0 MHz Spectrum 2 Ref Li IFrequency Sweep Limit Checklo Line -32.6 DFM 0 dBm -20 dBm		fset 21.2 d8 • RBW 1 MHz VT 156 ms • VBW 3 MHz PASS	:	97.0 MHz/		0 1Pk Ma 48.40 1.900060 G 6.65 dB
30.0 MHz Spectrum 2 Ref Li Att Frequency Sweep Limit Chejk(s) Line -32.6 DFM		fset 21.2 d8 • RBW 1 MHz VT 156 ms • VBW 3 MHz PASS	:	97.0 MHz/		1.0 GF
30.0 MHz Spectrum 2 Ref Li Frequency Sweep Limit Chesk, Line -32.4 UEM dam -20		fset 21.2 d8 • RBW 1 MHz VT 156 ms • VBW 3 MHz PASS	:	27.0 MHz/		0 1Pk Ma 48.40 1.900060 G 6.65 dB
30.0 MHz Spectrum 2 Ref Li Frequency Sweep Limit Chesk, Line -32.4 UEM dam -20		fset 21.2 d8 • RBW 1 MHz VT 156 ms • VBW 3 MHz PASS	:	27.0 MHz/		0 1Pk Ma 48.40 1.900060 G 6.65 dB
30.0 MHz Spectrum 2 Ref Li Frequency Sweep Limit Chesk, Line -32.4 UEM dam -20		fset 21.2 d8 • RBW 1 MHz VT 156 ms • VBW 3 MHz PASS	:	97.0 MHz/		0 1Pk Mar -48.40 1.900060 G 6.65 dB
30.0 MHz Spectrum 2 Ref Li Frequency Sweep Limit Che kl, Line -32.4 UtM dBm 20 dBm 22.6 DBM		fset 21.2 d8 • RBW 1 MHz VT 156 ms • VBW 3 MHz PASS	Mode Auto Sweep	27.0 MHz/		• 1Pk Ma -48.40 1.900060 G 5.65 df

Figure 8.8-33: Conducted spurious emissions 30 MHz – 40 GHz, high channel, 802.11a

	20.00 dBm Offset	21.2 dB • RBW 100 kHz				
Att	8 d8 SWT	10.1 ms • VBW 300 kHz	Mode Auto Sweep			
Frequency Sweep						 1Pk Ma
Limit Check Line -32.6 DBM		PASS			M1[1]	-61.72 d
Pm		PASS				914 .50 30 M
Join .						
dBm-						
-6 OBM						
dBm-						
dBm-						M1
		a state of the local state of the second state	all and the second s	and the second sec		
-	الجالات كالمراجل المتحدث فيأجر وحاته	the second s	and the second se			
		10001 pts set 21.2 dB @ RBW 1 MHz L 156 ms @ VBW 3 MHz	97.0 Mł	lz/		1.0 0
0.0 MHz pectrum 2 Ref Leve Att			97.0 Mł	iz/		
D.0 MHz pectrum 2 Ref Leve Att requency Sweep Limit Chest		et 21.2 dB = RBW 1 MHz 156 ms = VBW 3 MHz PASS	97.0 Mł	lz/	MIEII	e 1Pk M
D.0 MHz pectrum 2 Ref Leve Att		et 21.2 dB • RBW 1 MHz T 156 ms • VBW 3 MHz	97.0 Mł	iz/		● 1Pk M 4.35 d
D.0 MHz pectrum 2 Ref Leve Att Frequency Sweep Limit Chest		et 21.2 dB = RBW 1 MHz 156 ms = VBW 3 MHz PASS	97.0 Mł	tz/		• 1Pk M 4.35 d 5.514400 (
0.0 MHz pectrum 2 Ref Leve Att Trequency Sweep Limit Cheb Line - 32.0 MM		et 21.2 dB = RBW 1 MHz 156 ms = VBW 3 MHz PASS	97.0 Mł	tz/	01[1]	• 1Pk M 4.35 d 5.514400 (-44.24
0.0 MHz pectrum 2 Ref Levo Att requency Sweep Limit CheS Line -32.6 Of M Bm		et 21.2 dB = RBW 1 MHz 156 ms = VBW 3 MHz PASS	97.0 Mł	iz/	01[1]	• 1Pk M 4.35 d 5.514400 (-44.24
0.0 MHz Pectrum 2 Ref Leve Att requency Sweep Line 32.4 Q/M Bm dBm dBm dBm dBm dBm dBm dBm dBm dBm		et 21.2 dB = RBW 1 MHz 156 ms = VBW 3 MHz PASS	97.0 Mł		01[1]	• 1Pk M 4.35 d 5.514400 (-44.24
0.0 MHz Pectrum 2 Ref Leve Att requency Sweep Limit Che3 Line -32.0 PMM Bm dBm dBm D dBm D D		et 21.2 dB = RBW 1 MHz 156 ms = VBW 3 MHz PASS	97.0 Mł		01[1]	• 1Pk M 4.35 d 5.514400 (-44.24
0.0 MHz Pectrum 2 Ref Leve Att requency Sweep Limit Che3 Line -32.0 PMM Bm dBm dBm D dBm D D		et 21.2 dB = RBW 1 MHz 156 ms = VBW 3 MHz PASS	97.0 Mł		01[1]	• 1Pk M 4.35 d 5.514400 (-44.24
0.0 MHz pectrum 2 Ref Leve requency Sweep Lime -32.4 GMM em		et 21.2 dB = RBW 1 MHz 156 ms = VBW 3 MHz PASS	97.0 Mł		01[1]	• 1Pk M 4.35 d 5.514400 (-44.24
D.0 MHz pectrum 2 Ref Leve Att requency Sweep Limit Che3 Line -32.6 L/M 8m 0 dBm 6 0 BM		et 21.2 dB = RBW 1 MHz 156 ms = VBW 3 MHz PASS	97.0 Mł		01[1]	• 1Pk M 4.35 d 5.514400 (-44.24
2.0 MHz pectrum 2 Ref Leve requency Sweep Lime 12.4 FMM 8m 0 d8m 4 00M 1		et 21.2 dB = RBW 1 MHz 156 ms = VBW 3 MHz PASS	97.0 Mł		01[1]	1.0 C
0.0 MHz pectrum 2 Ref Leve requency Sweep Lime -32.4 GMM em		et 21.2 dB = RBW 1 MHz 156 ms = VBW 3 MHz PASS	97.0 Mł		01[1]	● 1Pk M 4.35 6 5.514400 (-44.23

Figure 8.8-34: Conducted spurious emissions 30 MHz – 40 GHz, low channel, 802.11n

pectrum	Ref Level 20.0	IO dBm Off	et 21.2 dB 🖷 RBV	N 100 kHz			
	Att	8 dB SW	T 10.1 ms 🖷 VBV	V 300 kHz Ma	ide Auto Sweep		
Frequency S				ASS			 ●1Pk Ma
Limit Chi Line -32.				ASS			M1[1] -61.16 d 914,3090 M
:8m							 914/3090 N
0 d8m							
-6 DBM							
) dBm			_				
0 d8m							 M1
*****	and the second se	والمراجعة والمحاجزة والمحا	****				
netisti piri wagin		-					
	Ref Level 2 Att		10001 p ffset 21.2 dB = Ri WI 156 ms = Vi	BW 1 MHz) MHz/	1.0 G
pectrum :	Att			BW 1 MHz) MHz/	
pectrum : requency s	Att Sweep		ffset 21.2 dB = Ri WT 156 ms = Vi	BW 1 MHz BW 3 MHz Mo) MHz/	1.0 G
pectrum : requency s Limit Che Line -32.	Att Sweep		ffset 21.2 dB = Ri WT 156 ms = Vi	BW 1 MHz BW 3 MHz Mo) MHz/	e i Pk Ma
pectrum : requency s Limit Che Line -32.	Att Sweep		ffset 21.2 dB = Ri WT 156 ms = Vi	BW 1 MHz BW 3 MHz Mo) MHz/	01[1]
pectrum : requency 3 Limit Chu Line -32. 8m	Att Sweep		ffset 21.2 dB = Ri WT 156 ms = Vi	BW 1 MHz BW 3 MHz Mo) MHz/	0 [Pk M: 01[1] 40.59 1.847800 0
pectrum : Frequency & Limit Chu Line -32. Bm	Att Sweep		ffset 21.2 dB = Ri WT 156 ms = Vi	BW 1 MHz BW 3 MHz Mo) MHz/	01[1]
pectrum : Limit Che Line -32. 8m- 0 d8m- 6 D8M ot	Att Sweep		ffset 21.2 dB = Ri WT 156 ms = Vi	BW 1 MHz BW 3 MHz Mo) MHz/	01[1]
pectrum : Limit Che Line -32. 8m- 0 d8m- 6 D8M ot	Att Sweep		ffset 21.2 dB = Ri WT 156 ms = Vi	BW 1 MHz BW 3 MHz Mo		0 MHz/	01[1]
pectrum : Limit Chr Line -32. Bm 0 dBm 	Att Sweep		ffset 21.2 dB = Ri WT 156 ms = Vi	BW 1 MHz BW 3 MHz Mo		DMHz/	01[1]
	Att Sweep		ffset 21.2 dB = Ri WT 156 ms = Vi	BW 1 MHz BW 3 MHz Mo		D MHz/	01[1]
pectrum : Limit Chr Line -32. Bm 0 dBm 	Att Sweep		ffset 21.2 dB ● Ri WT 156 ms ● Vi	BW 1 MHz BW 3 MHz Mo		3 MHz/	01[1]
pectrum : Limit Chr Line -32. Bm 0 dBm 	Att Sweep		ffset 21.2 dB ● Ri WT 156 ms ● Vi	BW 1MHz Mo BW 3MHz Mo ASS	de Auto Sweep	GHz/	01[1]

Figure 8.8-35: Conducted spurious emissions 30 MHz – 40 GHz, mid channel, 802.11n

	0.11.1.00.0			21.2 d8 • RBV						
Spectrum	Att			10.1 ms • VBV		Mode Auto Sweep				
Frequency	weep									●1Pk M
Limit Ch	ck .	I		P/	SS				M1[1]	-61.97 d
Line -32	6 DBM			P/	SS					843.8940
-met									-	
0 dBm-		-								
.6 DBM								_		
I dBm										
									ML	
0 dBm		-			بعدها يعفل		a statut of a second bill			
and the second second	A second statement of the		بربيه الإمدار أرغزت	فالقعطون وتعادله ومحافظ						
				10001 -						
0.0 MHz	Ref Level 2			10001 p et 21.2 d8 = R8	3W 1 MHz		07.0 MHz/			1.0 0
	Att	0.00 dBrr 8 dE		et 21.2 dB 🖷 RB	3W 1 MHz	Mode Auto Sweep	97.0 MHz/			1.0 0
D.0 MHz pectrum : requency : Limit Ch	Att Weep			et 21.2 dB = Ri 156 ms = VE	BW 1 MHz BW 3 MHz SS		97.0 MHz/		D1[1]	e 1Pk M
D.0 MHz pectrum : requency : Limit Chi Line -32	Att Weep			et 21.2 dB = Ri 156 ms = VE	3W 1 MHz 3W 3 MHz		97.0 MHz/		D1[1]	• 1Pk M
D.0 MHz pectrum : requency : Limit Chi Line -32	Att Weep			et 21.2 dB = Ri 156 ms = VE	BW 1 MHz BW 3 MHz SS		97.0 MHz/		D1[1] M1[1]	●1Pk M ~44.6 1.918780
0.0 MHz pectrum 1 requency 1 Limit Chi Line -32	Att Weep			et 21.2 dB = Ri 156 ms = VE	BW 1 MHz BW 3 MHz SS		07.0 MHz/			01Fk M ~44.6 1.918780 5.68
D.0 MHz pectrum : requency : Limit Ch	Att Weep			et 21.2 dB = Ri 156 ms = VE	BW 1 MHz BW 3 MHz SS		97.0 MHz/			01Pk M -44.63 1.918780 5.68
D.O MHz pectrum : requency 1 Limit Chu Line -32 IBM 0 dBm 0 DBM	Att Weep			et 21.2 dB = Ri 156 ms = VE	BW 1 MHz BW 3 MHz SS		07.0 MHz/			01Fk M ~44.6 1.918780 5.68
D.O MHz pectrum : Frequency : Limit Ch Line -32 IBM 0 dBM	Att Weep			et 21.2 dB = Ri 156 ms = VE	BW 1 MHz BW 3 MHz SS		97.0 MHz/			01Fk M ~44.6 1.918780 5.68
D.O MHz pectrum : Frequency : Limit Ch Line -32 IBM 0 dBM	Att Weep			et 21.2 dB = Ri 156 ms = VE	BW 1 MHz BW 3 MHz SS		07.0 MHz/			01Fk M ~44.6 1.918780 5.68
D.O MHz pectrum : Frequency 1 Limit Chu Line -32 d8m 0 d8m 0 DBM	Att Weep			et 21.2 dB = Ri 156 ms = VE	BW 1 MHz BW 3 MHz SS		07.0 MHz/			
0.0 MHz pectrum : Frequency J Limit Chu Limit Chu Lime - 32 JBm 0 dBm 0 dBm 0 dBm 1	Att Weep			et 21.2 dB = Ri 156 ms = VE	BW 1 MHz BW 3 MHz SS					01Fk M ~44.6 1.918780 5.68
I.O MHz pectrum : requency : Line -32 Bm dBm o DBM DI dBm DI	Att Weep			et 21.2 dB = Ri 156 ms = VE	8W 1 MHz 8W 3 MHz 8S 8S	Mode Auto Sweep	3.9 GHz/			01Fk M ~44.6 1.918780 5.68

Figure 8.8-36: Conducted spurious emissions 30 MHz – 40 GHz, high channel, 802.11n

8.9 FCC 15.407(g) and RSS-Gen 8.11 Frequency stability

8.9.1 Definitions and limits

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

8.9.2 1	Test date
Start date	February 20, 2019

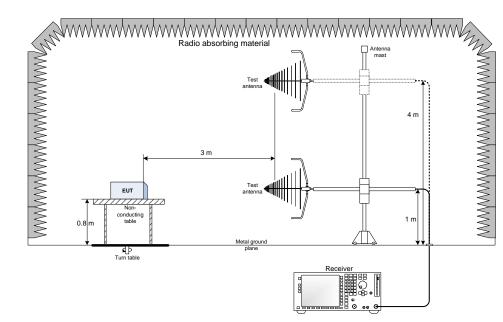
8.9.3 Observations, settings and special notes

Spectrum analyser settings:	
Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

8.9.4 Test data

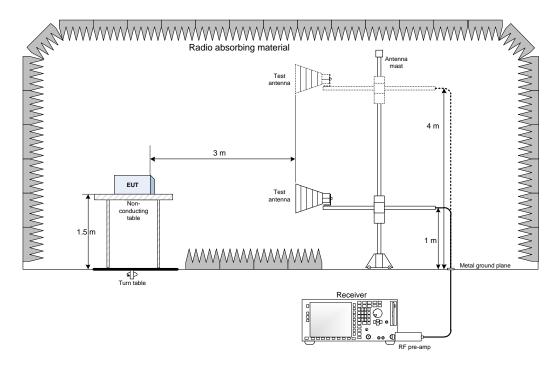
Table 8.9-1: Frequency drift measurement

Test conditions	Frequency, Hz	Drift, Hz
+50 °C, Nominal	5579970000	-22500
+40 °C, Nominal	5579981250	-11250
+30 °C, Nominal	5579992500	0
+20 °C, +15 %	5579985000	-7500
+20 °C, Nominal	5579992500	Reference
+20 °C, –15 %	5580003750	11250
+10 °C, Nominal	5579996250	3750
0 °C, Nominal	5579970000	-22500
–10 °C, Nominal	5580007500	15000
–20 °C, Nominal	5579985000	-7500
–30 °C, Nominal	5579955000	-37500

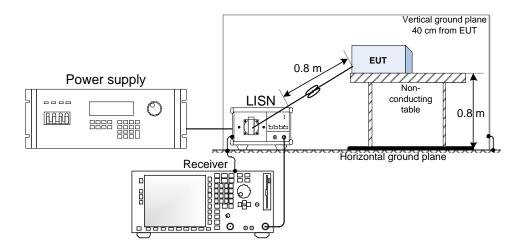

Table 8.9-2: Lower band edge drift calculation

Modulation	–26 dBc lower cross point, GHz	Max negative drift, Hz	Drifted lower cross point, GHz	Band edge, GHz	Margin, MHz
802.11a	5.48993	37500	5.4898925	5.47	19.9
802.11n	5.488312	37500	5.488274500	5.47	18.3
Natary Dulftrad Lawrence	and the action of the law of the second second	a second a second to a shutter			

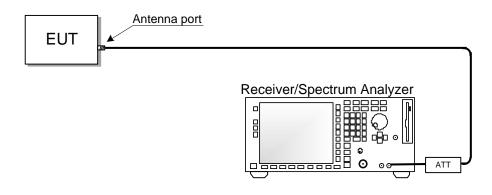
Notes: Drifted lower cross point = -26 dBc lower cross point - max negative drift.



Section 9. Block diagrams of test set-ups


9.1 Radiated emissions set-up for frequencies below 1 GHz

9.2 Radiated emissions set-up for frequencies above 1 GHz



9.3 Conducted emissions set-up

9.4 Antenna port set-up

