

RF Exposure Evaluation Report

Date of Report Number of pages:			Juha Soininen			
		Responsible Test engineer:	Ilari kinnunen			
Testing laboratory:	Verkotan Oy	Client:	Haltian Oy			
•	Elektroniikkatie 17 90590 Oulu Finland		Yrttipellontie 1D 90230 Oulu, Finland			
Tested device	This area Cotomor Clobal					
i ested device	Thingsee Gateway Global					
Related reports:						
Testing has been carried out in accordance with:	KDB procedures KDB 447498 D01 General RF Exposure Guidance v06					
Documentation:	The test report must always be rep to written approval of the testing	•	duction of an excerpt only is subject			
Test Results:	The EUT complies with the requirements in respect of all parameters subject to the test. The test results relate only to devices specified in this document					

Laboratory Manager

02.04.2020

Date and

signatures:

TABLE OF CONTENTS

1.	EVA	LUATION SUMMARY	3
		EQUIPMENT UNDER EVALUATION:	
		EVALUATION RESULT	
	1.1.1	Simultaneous transmission exposure	4
2.	DESC	CRIPTION OF THE EQUIPMENT UNDER EVALUATION	5
	2.1	SUPPORTED FREQUENCY BANDS AND OPERATIONAL MODES	5
3.	GEN	ERAL CONSIDERATIONS	6
4	POW	VER DENSITY CALCULATIONS	Q

1. EVALUATION SUMMARY

1.1 Equipment under Evaluation:

Product:	Thingsee Gateway Global			
Manufacturer:	HALTIAN PRODUCTS OY			
Model:	MTXG			
FCC ID Number:	2AEU3TSGWGBL			
IC ID Number:	20236-TSGWGBL			
Hardware Version:	0201			
Mobile/Portable device	Mobile			
Controlled/ Uncontrolled Environment	Uncotrolled			
Document ID:	FCC RF exposure evaluation report_MTXG_ID4010_02042020. This report replaces FCC RF exposure evaluation report_MTXG_ID4010_28022020			

1.1 Evaluation Result

Calculated power densities are reported below. The device conforms the radiofrequency radiation exposure limits of 47CFR §1.1310 when the calculated power density value is less than or equal to the limit.

Modes of Operation	Power Density, S [mW/cm2]	Power Density Limit [mW/cm2]	Evaluation Result
GPRS 850	0.18	0.59	Pass
GPRS 1900	0.25	1.00	Pass
LTE M1 2	0.10	1.00	Pass
LTE M1 4	0.13	1.00	Pass
LTE M1 5	0.04	0.55	Pass
LTE M1 12	0.03	0.47	Pass
LTE M1 13	0.04	0.50	Pass
LTE M1 26	0.04	0.54	Pass
NB-IoT 2	0.10	1.00	Pass
NB-IoT 4	0.13	1.00	Pass
NB-IoT 5	0.04	0.55	Pass
NB-IoT 12	0.03	0.47	Pass
NB-IoT 13	0.04	0.50	Pass
NB-IoT 26	0.04	0.54	Pass
Wirepass	0.001	1.00	Pass

1.1.1 Simultaneous transmission exposure

The compatibility in case of simultaneous cellular and Wirepass transmission was evaluated based on equation \sum (S_f / L_f) \leq 1, where: S_f is power density at a specific frequency and L_f is the power density limit for the frequence. GPRS 850 cellular power density was used in the calculation.

(0.18/0.59) + (0.001/1) = 0.3 < 1 Thus the evaluation result is **Pass**

2. DESCRIPTION OF THE EQUIPMENT UNDER EVALUATION

The DUT is a gateway device collecting data from sensors connected to the same Wirepas protocol mesh network as itself. The data is delivered from the device via cellular connection to a data center

Generally, it is used in such a way that a separation distance of at least 20 centimeters is maintained between the transmitter and the body of the user or nearby persons.

2.1 Supported Frequency Bands and Operational Modes

	Modes of Operation	Modulation Mode	Transmitter Frequency Range (MHz)	
	GSM/GPRS/EDGE 850	GMSK/8-PSK	824-894	
	GSM/GPRS/EDGE 1900	GMSK/8-PSK	1850-1990	
	LTE M1 2	QPSK/16QAM	1850.7 - 1909.3	
	LTE M1 4	QPSK/16QAM	1710.7 - 1754.3	
	LTE M1 5	QPSK/16QAM	824-894	
TX Frequency bands	LTE M1 12	QPSK/16QAM	699-716	
, ,	LTE M1 13	QPSK/16QAM	746-787	
	LTE M1 26	QPSK/16QAM	814-894	
	NB-IoT 2	QPSK	1850.7 - 1909.3	
	NB-IoT 4	QPSK	1710.7 - 1754.3	
	NB-IoT 5	QPSK	824-894	
	NB-IoT 12	QPSK	699-716	
	NB-IoT 13	QPSK	746-787	
	NB-IoT 26	QPSK	814-894	
	Wirepas	GFSK	2400-2483	

Wirepass transmitter can be active simultaneously with cellular transmitter.

3. GENERAL CONSIDERATIONS

For devices that operate at larger distances from persons, where there are minimal RF coupling interactions between a device and the user or nearby persons, the more complex SAR evaluation can be avoided by evaluating RF exposure compliance using MPE (Maximum Permissible Exposure) limits. When these limits are used, a minimum separation distance of \geq 20 cm is required between the antenna and radiating structures of the device and nearby persons. The limits are presented in table below.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm 2)	Averaging time (minutes)						
Limits for Occupational/Controlled Exposure										
0.3-3.0 614 1.63 *100 6										
3.0-30	1842/f	4.89/f	* 900/f ²	6						
30-300	61.4	0.163	1.0	6						
300-1,500			f/300	6						
1,500-100,000			5	6						
	Limits fo	or General Population/Un	controlled Exposure							
0.3-1.34	614	1.63	* 100	30						
1.34-30	824/f	2.19/f	* 180/f ²	30						
30-300	27.5	0.073	0.2	30						
300-1,500			f/1500	30						
1,500-100,000			1.0	30						

f = frequency in MHz
* = Plane-wave equivalent power densi

Occupational/controlled exposure limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when a person is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

General population/uncontrolled exposure limits apply in situations in which the general public may be exposed, or in which persons who are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Power Density is calculated by equation:

$$S = \frac{P \cdot G}{4 \cdot \pi \cdot R^2}$$

Where,

S = Power Density

P = Power Input to Antenna

G = Gain of Antenna

R = Distance from transmitting Antenna

4. POWER DENSITY CALCULATIONS

Modes of Operation	Low Ch Frequency [MHz]	Distance, R [cm]	UL slot configuration	Maximum Power Input to Antenna, P [dBm]	Maximum duty cycle	Power Input to Antenna, P [mW]	Power Gain of Antenna, G [dBi]	Power Density, S [mW/cm ²]	Limit [mW/cm²]
GPRS 850	880	20	4/8	33	1	997.6	-0.5	0.18	0.59
GPRS 1900	1850	20	4/8	30	1	500.0	4	0.25	1.00
LTE M1 2	1850.7	20	NA	23	1	199.5	4	0.10	1.00
LTE M1 4	1710.7	20	NA	23	1	199.5	5	0.13	1.00
LTE M1 5	824	20	NA	23	1	199.5	-0.5	0.04	0.55
LTE M1 12	699	20	NA	23	1	199.5	-1.7	0.03	0.47
LTE M1 13	746	20	NA	23	1	199.5	-0.5	0.04	0.50
LTE M1 26	814	20	NA	23	1	199.5	-0.5	0.04	0.54
NB-IoT 2	1850.7	20	NA	23	1	199.5	4	0.10	1.00
NB-IoT 4	1710.7	20	NA	23	1	199.5	5	0.13	1.00
NB-IoT 5	824	20	NA	23	1	199.5	-0.5	0.04	0.55
NB-IoT 12	699	20	NA	23	1	199.5	-1.7	0.03	0.47
NB-IoT 13	746	20	NA	23	1	199.5	-0.5	0.04	0.50
NB-IoT 26	814	20	NA	23	1	199.5	-0.5	0.04	0.54
Wirepas	2400	20	NA	4	1	2.5	3	0.001	1.00

Simultaneous transmission can be evaluated based on equation $\sum (S_f / L_f) \le 1$, where: S_f is power density at a specific frequency and L_f is the power density limit for the frequence.

GPRS 850 cellular power density is used in the calculation with Wirepas power density:

$$(0.18/0.59) + (0.001/1) = 0.3 < 1$$

Based on power density calculations at distance of 20cm, the power density of the equipment under evaluation is below the MPE limit.

== End of the report=