

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Cleer Limited

BT Headphone Model No.: BT

FCC ID: 2AETW-BT201501

	:	Cleer Limited
Address	:	Unit518, Lakeside 1, Science Park West Ave. HK Science Park,Hong Kong
Prepared by		ACCURATE TECHNOLOGY CO., LTD
	•	•
Address :	:	
		Rd. Science & Industry Park, Nan Shan, Shenzhen,
		Guangdong P.R. China
		Tel: (0755) 26503290
		Fax: (0755) 26503396

Report Number	:	ATE20151031
Date of Test	:	May 15-Jun 17,2015
Date of Report	:	Jun 17,2015

TABLE OF CONTENTS

Description

Page

Te	st Re	port Certification	
1.	GE	NERAL INFORMATION	4
	.1.	Description of Device (EUT)	
	.2.	Carrier Frequency of Channels	
	.3.	Special Accessory and Auxiliary Equipment	
	.4.	Description of Test Facility	
	1.5.	Measurement Uncertainty	
2.		ASURING DEVICE AND TEST EQUIPMENT	
3.	OP	ERATION OF EUT DURING TESTING	9
	3.1.	Operating Mode	
3	3.2.	Configuration and peripherals	
4.	TES	ST PROCEDURES AND RESULTS	10
5.	6DI	BANDWIDTH MEASUREMENT	11
5	5.1.	Block Diagram of Test Setup	
5	5.2.	The Requirement For Section 15.247(a)(2)	11
	5.3.	EUT Configuration on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
	5.6.	Test Result	
6.	MA	XIMUM PEAK OUTPUT POWER	
	5.1.	Block Diagram of Test Setup	14
	5.2.	The Requirement For Section 15.247(b)(3)	
	5.3.	EUT Configuration on Measurement	
	5.4.	Operating Condition of EUT	
	5.5. 5.6.	Test Procedure Test Result	
7.		WER SPECTRAL DENSITY MEASUREMENT	
	7.1.	Block Diagram of Test Setup	
	7.2. 7.3.	The Requirement For Section 15.247(e) EUT Configuration on Measurement	
	7.3. 7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	
8.	BA	ND EDGE COMPLIANCE TEST	21
8	3.1.	Block Diagram of Test Setup	21
8	3.2.	The Requirement For Section 15.247(d)	
8	3.3.	EUT Configuration on Measurement	
	3.4.	Operating Condition of EUT	
	3.5.	Test Procedure	
	8.6.	Test Result	
9.		DIATED SPURIOUS EMISSION TEST	
	9.1.	Block Diagram of Test Setup	
	9.2.	The Limit For Section 15.247(d)	
	9.3.	Restricted bands of operation	
9	9.4.	Configuration of EUT on Measurement	30

FE20151031 Page 3 of 51

		Report No.: ATE20151031
AT		Page 3 of 51
9.5.	Operating Condition of EUT	
9.6.	Test Procedure	
9.7.	The Field Strength of Radiation Emission Measurement Results	
10. CC	NDUCTED SPURIOUS EMISSION COMPLIANCE TEST	
10.1.	Block Diagram of Test Setup	
10.2.	The Requirement of Section 15.247(d)	
10.3.	EUT Configuration on Measurement	
10.4.	Operating Condition of EUT	
10.5.	Test Procedure	
10.6.	Test Result	
11. PO	WER LINE CONDUCTED MEASUREMENT	
11.1.	Block Diagram of Test Setup	47
11.2.	Power Line Conducted Emission Measurement Limits	
11.3.	Configuration of EUT on Measurement	
11.4.	Operating Condition of EUT	47
11.5.	Test Procedure	
11.6.	Power Line Conducted Emission Measurement Results	
12. AN	TENNA REQUIREMENT	
12.1.	The Requirement	
12.2.	Antenna Construction	

Test Report Certification

Applicant	: Cleer Limited				
Manufacturer	: Shenzhen Grandsun Electronic Co.,Ltd.				
EUT Description	: BT Headphone				
(A	A) MODEL NO.: BT				
(E	3) Trade Name.: Cleer				

(C) POWER SUPPLY: DC 3.7V (Powered by battery) or DC 5V (Powered by USB)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Jun 05, 2014 KDB558074 D01 DTS Meas Guidance v03r02 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date	of	Test :
Date	of	Report:

Prepared by :

May 15-Jun 17,2015 Jun 17,2015

(Eric Zhang, Engineer)

Approved & Authorized Signer :

(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT Model Number Frequency Range Number of Channels Antenna Gain Power Supply Modulation mode Applicant	:::::::::::::::::::::::::::::::::::::::	BT Headphone BT 2402-2480MHz 40 1.0dBi DC 5V (Power by USB)&DC 3.7V(Battery) GFSK Cleer Limited
Address	:	Unit518, Lakeside 1, Science Park West Ave. HK Science Park,Hong Kong
Manufacturer	:	Shenzhen Grandsun Electronic Co.,Ltd.
Address	:	Pingdi Gaoqiao Industry Zone,Longgang District, Shenzhen,China
Date of sample received Date of Test	: :	May 15,2015 May 15-Jun 17,2015

Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channe 1	Frequceny (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.2.Carrier Frequency of Channels

1.3. Special Accessory and Auxiliary Equipment

N/A

1.4.Description of Test Facility

EMC Lab	:	Accredited by TUV Rheinland Shenzhen
		Listed by FCC The Registration Number is 752051
		Listed by Industry Canada The Registration Number is 5077A-2
		Accredited by China National Accreditation Committee for Laboratories The Certificate Registration Number is L3193
Name of Firm		ACCURATE TECHNOLOGY CO. LTD
Site Location	:	F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong
		Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China

1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 10, 2015	One Year
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 10, 2015	One Year
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 10, 2015	One Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 10, 2015	One Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2015	One Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2015	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2015	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Jan. 15, 2015	One Year
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 10, 2015	One Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 10, 2015	One Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 10, 2015	One Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 10, 2015	One Year
Switch Unit with OSP-B157	Rohde & Schwarz	OSP120	101130	Jan. 10, 2015	One Year

Table 1: List of Test and Measurement Equipment

3. OPERATION OF EUT DURING TESTING

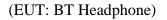
3.1.Operating Mode

The mode is used: **BLE Transmitting mode** Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

3.2. Configuration and peripherals

	EUT		
Figure 1 S	Setup: Transmi	itting mode	

4. TEST PROCEDURES AND RESULTS


FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	Compliant
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 6DB BANDWIDTH MEASUREMENT

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(2)

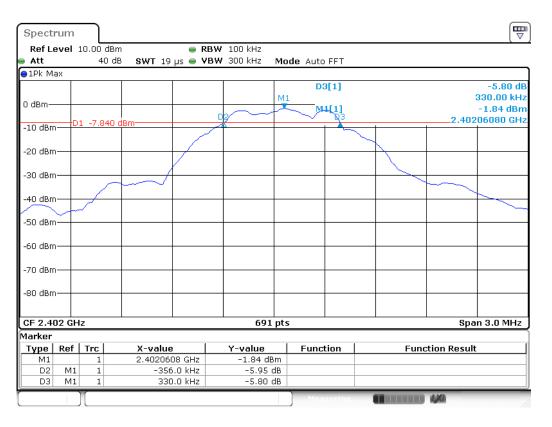
Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

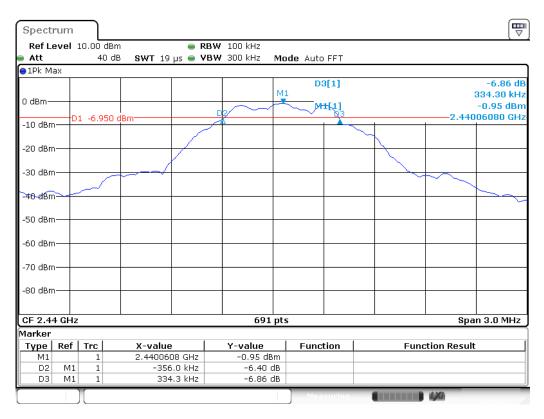
- 5.4.1.Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2.Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.


5.5.Test Procedure

- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to300 kHz.
- 5.5.3.The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

5.6.Test Result

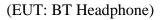
Channel	Frequency (MHz)			PASS/FAIL
0	2402	0.686	0.5	PASS
19	2440	0.690	0.5	PASS
39	2480	0.686	0.5	PASS


The spectrum analyzer plots are attached as below.

channel 0

channel 19

channel 39


Spectrum										
Ref Level				100 kHz						
Att .	40	dB SWT 19	µs 👄 VBW	' 300 kHz	Mode	Auto FF	Т			
⊖1Pk Max				1						
					M1	D3[1]			-5.75 d
0 dBm										334.30 k⊢ -0.49 dBi
r	01 -6.49		D	¢ ~~	~	wıı£ł	<u>е</u>			-0.49 UBI 005640 GH
-10 dBm	/1 -0.45			~			~~~		+	
							~			
-20 dBm			/							
-30 dBm		\rightarrow				-				
										<u> </u>
<u>-40</u> dBm	/									
-50 dBm										
-JU UBIII										
-60 dBm										
oo abiii										
-70 dBm										
-80 dBm-+										
CF 2.48 GH	7			691	nts				Sna	in 3.0 MHz
Marker					P15					
Type Ref	Trc	X-value		Y-value	1	Function	n	Fun	nction Resul	t
M1	1	2.480056		-0.49 dE						-
D2 M1	. 1	-351	.7 kHz	-6.34 (зв					
D3 M1	. 1	334	.3 kHz	-5.75 (dB 📃					
						Measur	ing		1.30	-

6. MAXIMUM PEAK OUTPUT POWER

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

6.4.1.Setup the EUT and simulator as shown as Section 6.1.

- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

6.5.Test Procedure

6.5.1.Set the RBW \geq DTS bandwidth. VBW \geq 3 × RBW.

6.5.2.Set span \geq 3 x RBW

6.5.3.Sweep time = auto couple.

6.5.4. Detector = peak.

6.5.5.Trace mode = max hold.

6.5.6.Allow trace to fully stabilize.

6.5.7.Use peak marker function to determine the peak amplitude level.

6.6.Test Result

Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Output Power (mW)	Peak Power Limit (dBm)	Pass / Fail
0	2402	-1.95	0.64	30	PASS
19	2440	-1.09	0.78	30	PASS
39	2480	-0.69	0.85	30	PASS

The spectrum analyzer plots are attached as below.

channel 0

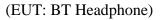
Spectrum				
Ref Level 10.00 dB				
● Att 40 d ● 1Pk Max	IB SWT 1 ms 👄 VBW 3 M	Hz Mode Auto Sweep	0	
The Max		M1[1]		-1.95 dBm 2.40229960 GHz
0 dBm		M1		
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
-80 dBm				
CF 2.402 GHz		691 pts		Span 3.0 MHz
		Measurin	4/4	

 \frown

channel 19

Spectrum								
Ref Level	10.00 dBm 40 dB	SWT 1	e RBW ms e VBW		1ode Auto S [.]	ween		
● 1Pk Max	10 45	0011	115 - 1511	0.000	IDUE AUTO 3	меер		
						1[1] M1		-1.09 dBm 31690 GHz
0 dBm						*		
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
-80 dBm								
CF 2.44 GHz	:			69:	1 pts		Spa	n 3.0 MHz
					Mea	suring	1/1	12109144

channel 39


Spectrum Ref Level 10	1.00 dBm		e RBW	1 MHz					
Att	40 dB	SWT 1	ms 🖷 VBW		1ode Auto S	Sweep			
●1Pk Max									
				M1	M	11[1]		2.479	-0.69 dBn 79160 GH:
0 dBm				-		<u> </u>			
-10 dBm									L
10 0011									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
CF 2.48 GHz	I			. 69	1 pts		·	Spa	n 3.0 MHz

7. POWER SPECTRAL DENSITY MEASUREMENT

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.3.EUT Configuration on Measurement

The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1.Setup the EUT and simulator as shown as Section 8.1.
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

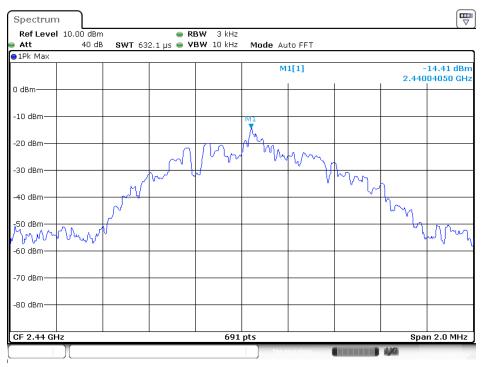
- 7.5.1.The EUT was tested according to DTS test procedure of KDB558074 D01 DTS Meas Guidance v03r02 for compliance to FCC 47CFR 15.247 requirements.
- 7.5.2.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.3.Measurement Procedure PKPSD:

This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.

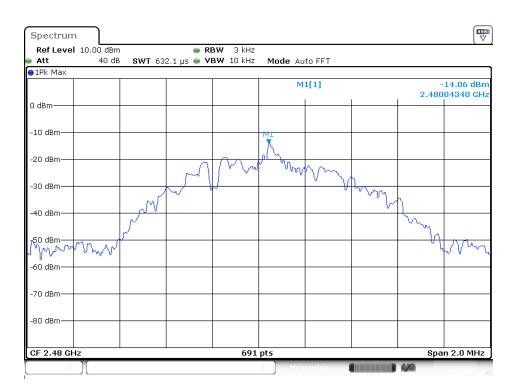
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 7.5.4.Measurement the maximum power spectral density.

7.6.Test Result

CHANNEL NUMBER	FREQUENCY (MHz)	PSD (dBm/3KHz)	LIMIT (dBm/3KHz)	PASS/FAIL
0	2402	-16.99	8	PASS
19	2440	-14.41	8	PASS
39	2480	-14.06	8	PASS

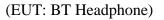

The spectrum analyzer plots are attached as below.

channel 0



channel 19

channel 39



8. BAND EDGE COMPLIANCE TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.209(a).

8.3.EUT Configuration on Measurement

The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4.Operating Condition of EUT

- 8.4.1.Setup the EUT and simulator as shown as Section 9.1.
- 8.4.2.Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

8.5.Test Procedure

Conducted Band Edge:

- 8.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 8.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.

Radiate Band Edge:

- 8.5.3. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 8.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 8.5.5. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 8.5.6. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

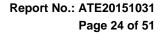
RBW=1MHz, VBW=1MHz

8.5.7.The band edges was measured and recorded.

8.6.Test Result

Pass

Channel	Delta peak to band emission	Limit(dBc)
0	42.74	20
39	49.71	20



channel 0

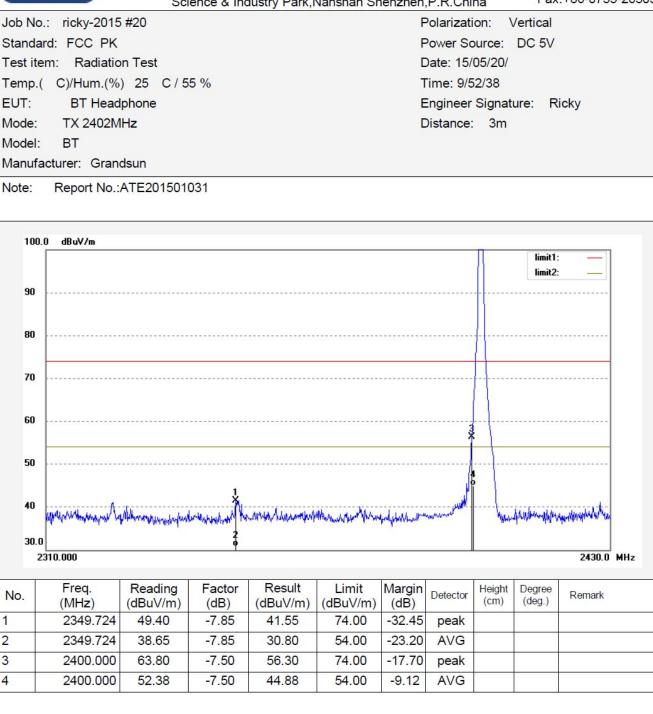
Spectrum							
Ref Level	10.00 dBr	m 😑 R	BW 100 kHz				
Att	40 d	B SWT 1 ms 👄 V	BW 300 kHz Mo	de Auto Sweep	1		
∋1Pk Max							
				M2[1]		-52.	16 dBm
0 dBm							000 GM
o donn				M1[1]			10 dBn
-10 dBm						2.4021	130 GH
							- 1
-20 dBm							
-30 dBm							\rightarrow
							[
-40 dBm			M4		M3		
50 d8m					[M2	
	Upder and the	mounter	madenter	warmonteller	rellen war war war	and the work	ad have
-60 dBm							
-70 dBm —							
-80 dBm							
Start 2.31 G	iHz		691 pt	5		Stop 2.40	33 GHz
4arker							
Type Ref	Trc	X-value	Y-value	Function	Func	tion Result	
M1	1	2.40213 GHz	-2.10 dBm				
M2	1	2.39 GHz	-52.16 dBm				
M3	1	2.38221 GHz	-45.17 dBm				
M4	1	2.35287 GHz	-44.84 dBm				
				Measuring.		24.04	.2015

channel 39

Spectrum						
Ref Level	10.00 dB	sm e	RBW 100 kHz			(•
Att 🛛	40 (dB SWT 56.9 µs 🖷	VBW 300 kHz M	Aode Auto FFT		
●1Pk Max						
MI				M4[1]		-50.25 dBm 2.4941260 GHz
				M1[1]		-0.54 dBm 2.4800540 GHz
-10 dBm	$\left\{ - \right\}$					
-20 dBm						
-30 dBm	<u>h</u>					
-40 dBm	- fr) M2	мз		M4	
∿50 dBm			_	- marine	mahun	mmmmm
-60 dBm						
-70 dBm						
-80 dBm						
Start 2.478	GHz		691 pts	5		Stop 2.5 GHz
Marker						
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.480054 GHz	-0.54 dBm			
M2	1	2.4835 GHz	-51.83 dBm			
MЗ	1	2.487408 GHz	-51.54 dBm			
M4	1	2.494126 GHz	-50.25 dBm			
][Measuring.		24.04.2015

Radiated Band Edge Result

Note:


- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows: Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

1

2

3

4

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

		Sci	ence & Ind	dustry Park,	Nanshan Sh	enzhen	,P.R.Chi	na	гах	.+60-0700-2000038		
lob No	o.: ricky-2015	5 # 21				F	Polarizati	ion: H	-lorizont	al		
Standa	ard: FCC PK					F	Power Source: DC 5V					
est ite	em: Radiatio	on Test				0	Date: 15/	05/20/				
emp.	(C)/Hum.(%) 25 C/5	5 %			٦	Time: 9/5	54/09				
EUT:	BT Head					E	Engineer	Signat	ure: R	icky		
Node:							Distance:			White a		
Aodel:	BT											
/anufa	acturer: Gran	dsun										
lote:	Report No.:	ATE201501	031									
	3-											
100).0 dBu∀/m											
									limit1:			
									limit2:			
90												
80								11				
70								<u> </u>				
60												
50								•				
							1	í				
40	Wedtherden Amen Augeley Avel	in about the a	allicate a wie	wasa An Manata Mikilian	wand water of their		Www.www.					
	Nites Martin and Martin	www.walker.walker.	Aun Anthrada.	at the fitter of a	and addition should	http://www.weiling	10000	(www.N	revelopment have	whether we		
30.	o		2									
-	2310.000									2430.0 MHz		
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark		
Į į	2350.201	49.49	-7.85	41.64	74.00	-32.36	peak					
2	2350.201	38.65	-7.85	30.80	54.00	-23.20	AVG					
	0 100 000	65.00	-7.50	58.49	74.00	-15.51	peak					
3	2400.000	65.99	-1.50	00.40	74.00	-10.01	peak					

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Acres 110		Sci	ence & Ind	dustry Park,I	Nanshan Sh	enzhen	P.R.Chi	na	Гах	:+86-0755	-20303380	
Job No	.: ricky-2015	; #28				F	Polarizati	on: ∖	/ertical			
Standa	Standard: FCC PK						Power Source: DC 5V					
Test item: Radiation Test							Date: 15/05/20/					
Temp.(C)/Hum.(%) 25 C / 55 %							Time: 10/15/32					
							Engineer Signature: Ricky					
Mode: TX 2480MHz							Distance: 3m					
Model:	BT											
Manufa	acturer: Gran	dsun										
Note:	Report No.:	ATE201501	031									
100.	0 dBu∀/m								1			
									limit1: limit2:			
90												
80												
00												
70												
10												
60												
60												
							+					
50						····{·						
							5		3	2		
40	united the prophet	have an and the	hallow production that has	he share which have been a start which	ALANA Warden and	w	(h.w	Muhamma	hiller applessively all	within the states		
30.0							2		4			
	440.000						9		Y	2500.0	MHz	
				1	1		1					
No.	Freq.	Reading	Factor	Result		Margin	Detector	Height (cm)	Degree (deg.)	Remark		
1	(MHz) 2483.500	(dBuV/m) 48.92	(dB) -7.38	(dBuV/m) 41.54	(dBuV/m) 74.00	(dB) -32.46		(cm)	(uog.)			
2	2483.500	37.98	-7.38	30.60	54.00	-23.40	-					
3	2494.347	49.25	-7.39	41.86	74.00	-32.14						
4	2494.347	38.55	-7.39	31.16	54.00	-22.84	•					
т	2704.047	50.55	-1.58	51.10	54.00	-22.04	AVG					

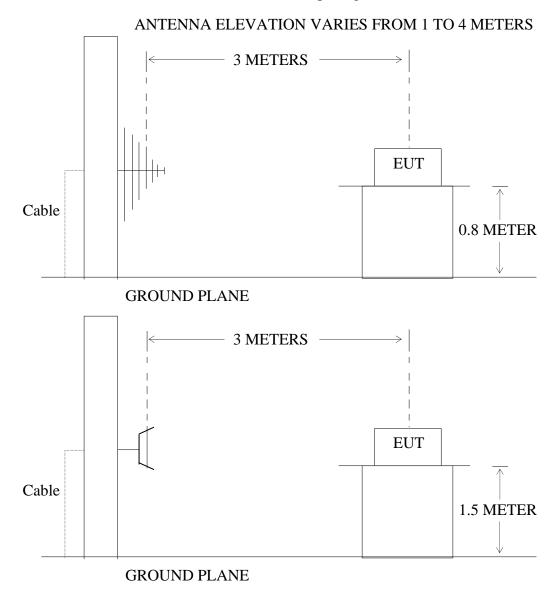
Report No.: ATE20151031 Page 27 of 51

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

		00		addiry i dirk,i	anonan or		,1 .1	na	-16-04-04-04				
Job N	bb No.: ricky-2015 #29							Polarization: Horizontal					
Stand	Standard: FCC PK								Power Source: DC 5V				
Test it	em: Radiatio	n Test		0	Date: 15/05/20/								
Temp.(C)/Hum.(%) 25 C / 55 %								Time: 10/11/21					
EUT:									Engineer Signature: Ricky				
Mode: TX 2480MHz								Distance: 3m					
Model: BT													
Manut	acturer: Gran	dsun											
Note:	Report No.:	ATE201501	031										
Note.	Report No		001										
10	0.0 dBu∀/m												
								limit1: —— limit2: ——					
90									limitz.				
30													
						1	1						
80													
70													
						1							
60													
50							1						
						ſ	*		3				
40		h.				1	1	, libe	and a share	W. March M.			
40	with more hundred with hundred	Anaphen walker by	Aurohally have all housed	man have been a second	hugh when the liter of the when	W	2 🗸	Harry Harris	un halled in	Manual and and all a share all a			
30.	0								đ				
	2440.000									2500.0 MH	Iz		
	_			I			6. F						
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark			
1	2483.500	54.15	-7.38	46.77	74.00	-27.23	peak						
2	2483.500	43.25	-7.38	35.87	54.00	- <mark>18.1</mark> 3	AVG	6					
3	2493.254	<mark>51.79</mark>	-7.39	44.40	74.00	-29.60	peak	0					
4	2493.254	40.96	-7.39	33.57	54.00	-20.43	AVG	0					

9. RADIATED SPURIOUS EMISSION TEST


9.1.Block Diagram of Test Setup

9.1.1.Block diagram of connection between the EUT and peripherals

Setup: Transmitting mode

9.1.2.Semi-Anechoic Chamber Test Setup Diagram

9.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.Restricted bands of operation

9.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
$^{1}0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

9.4. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.5. Operating Condition of EUT

- 9.5.1.Setup the EUT and simulator as shown as Section 10.1.
- 9.5.2.Turn on the power of all equipment.
- 9.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

9.6.Test Procedure

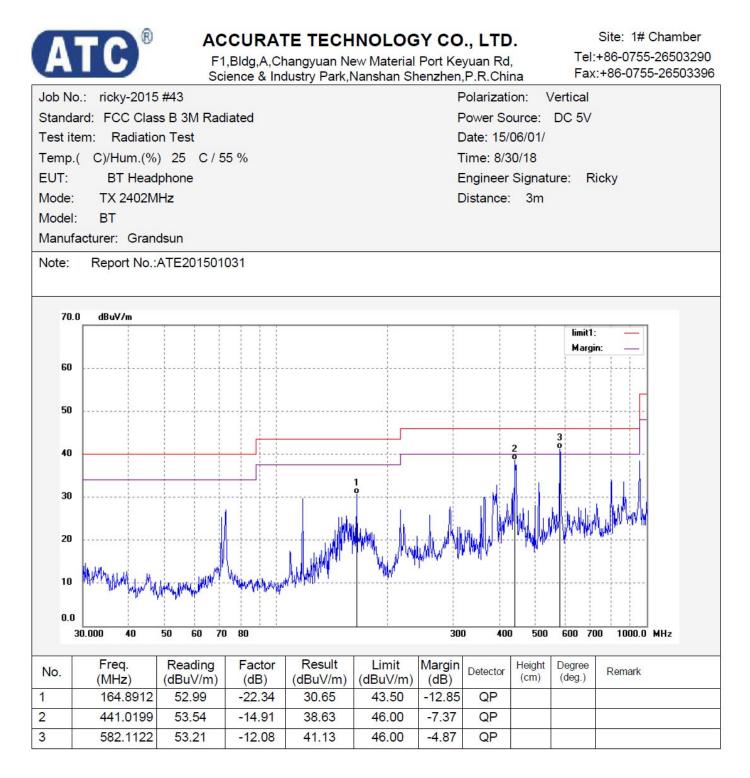
The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna.

For emission measurements above 1 GHz, the EUT shall be placed at a height of 1.5 m above the floor on a support that is RF transparent for the frequencies of interest. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector. When average radiated emissions measurements are specified there is also a limit on the peak emissions level which is 20 dB above the applicable maximum permitted average emission limit

RBW (120 kHz), VBW (300 kHz) for QP detector below 1GHz Peak detector above 1GHz RBW (1 MHz), VBW (3MHz) for Peak measurement RBW (1 MHz), VBW (10Hz) for AV measurement

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

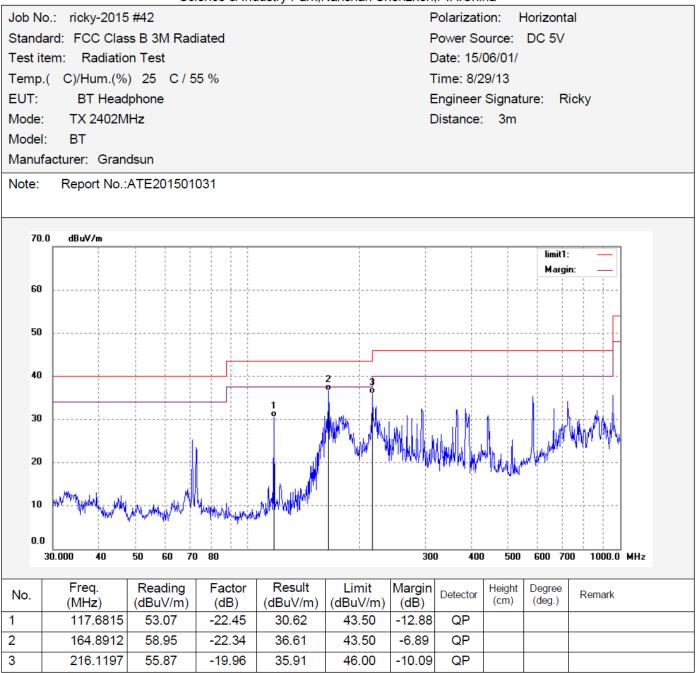

9.7. The Field Strength of Radiation Emission Measurement Results

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The EUT is tested radiation emission at Low, Middle, High channel in three axes. The worst emissions are reported in all channels. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.

3. The radiation emissions from 18-25GHz are not reported, because the test values lower than the limits of 20dB.

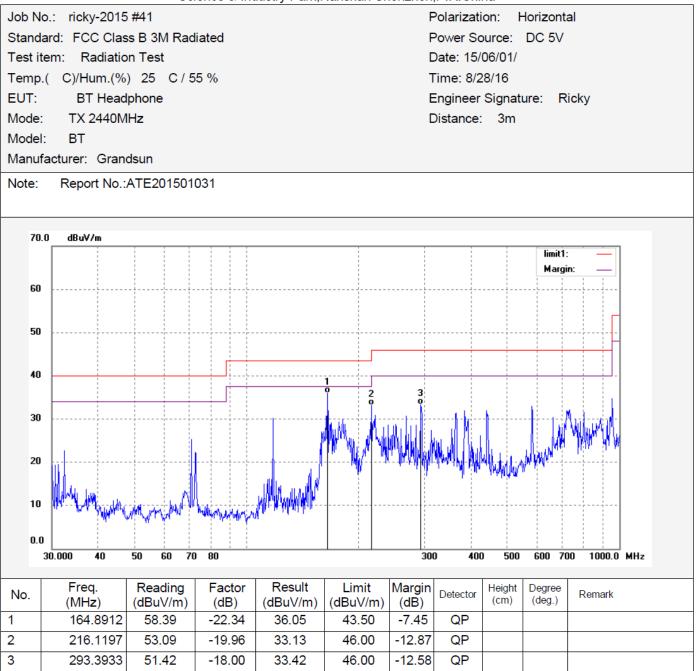
4. The average measurement was not performed when peak measured data under the limit of average detection.



Report No.: ATE20151031 Page 32 of 51

ACCURATE TECHNOLOGY CO., LTD.

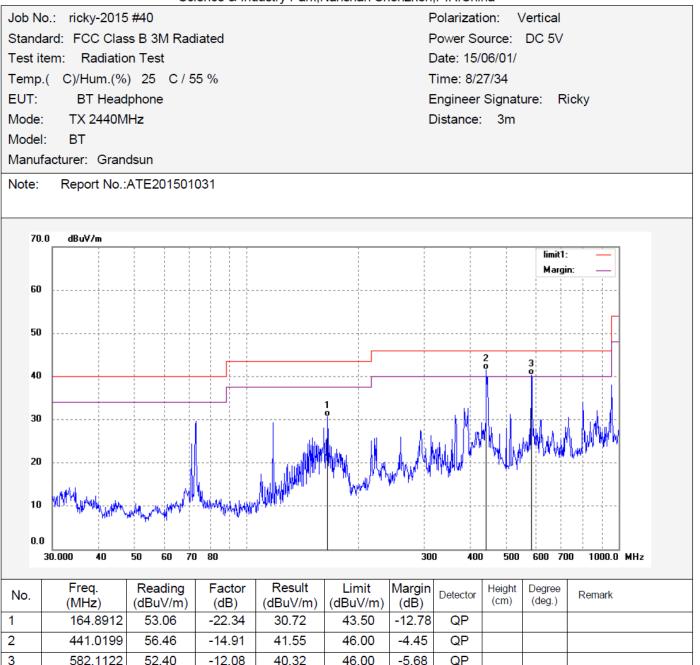
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China



Report No.: ATE20151031 Page 33 of 51

ACCURATE TECHNOLOGY CO., LTD.

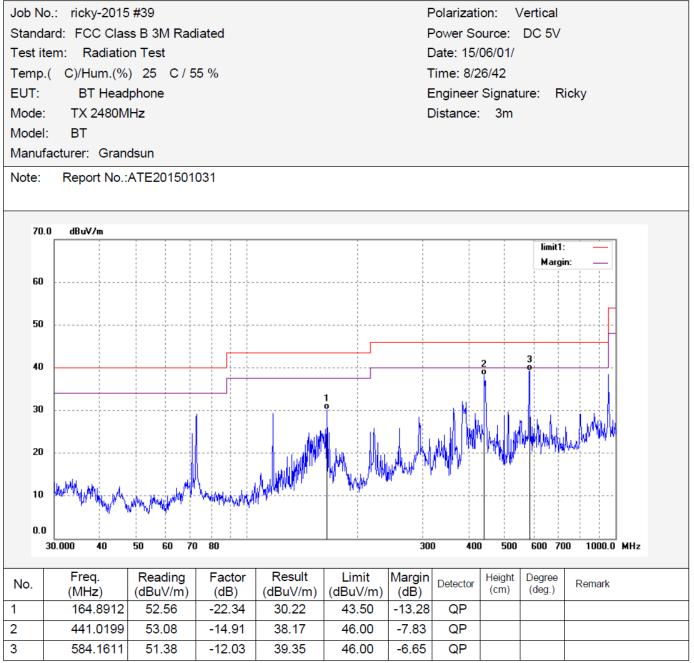
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China



Report No.: ATE20151031 Page 34 of 51

ACCURATE TECHNOLOGY CO., LTD.

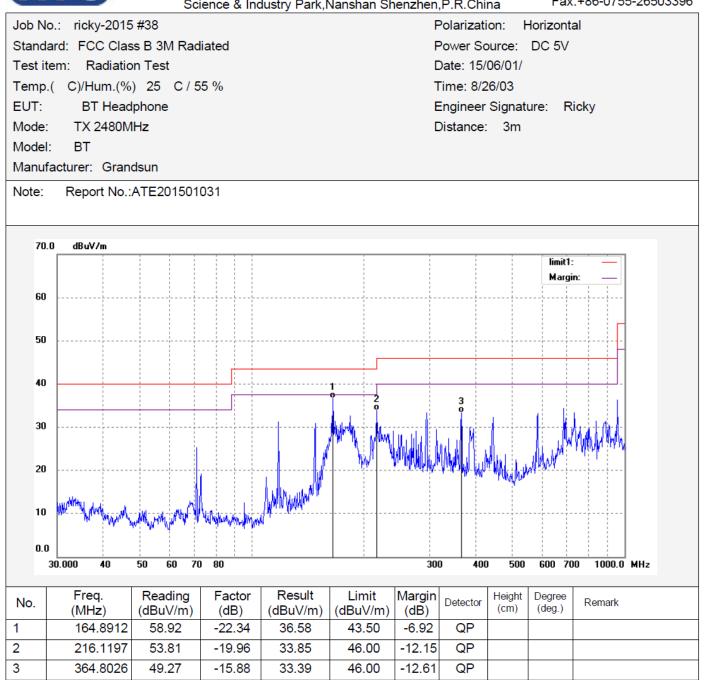
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China



ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20151031


Page 35 of 51

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Report No.: ATE20151031 Page 37 of 51

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

		Sc	ience & Ind	dustry Park,I	Nanshan Sh	enzhen	I,P.R.Chi	na	T ax	.+00-0755-2050558
ob N	o.: ricky-2015	#18				I	Polarizati	on: H	lorizonta	al
tand	ard: FCC Clas	s B 3M Rad	liated			I	Power So	ource:	DC 5V	
est it	em: Radiatio	n Test				I	Date: 15/	05/20/		
emp.	(C)/Hum.(%) 25 C/5	5 %			-	Time: 9/4	7/00		
UT:	BT Head	phone					Engineer	Signat	ure: R	icky
lode:	TX 2402M	Hz				I	Distance:	3m		
lodel	: BT									
lanuf	acturer: Gran	dsun								
lote:	Report No.:	ATE201501	031							
010.	Report NO									
90.	0_dBu¥/m									
									limit1:	
80										
00										
70										
60			·							
					3 M					
50				2					No an	Housenablemal
				* Multiput manded	. Augustic M	which we want	mudappinanap	www.weine	wa. Analyi	
40	. that address		1	N AN ANT MANY MANY	WWWWWW TYNY			· · · · · · · · · · · · · · · · · · ·		
	MANNE WAY	for which which a share	Healland and and							
30										
20.										
	1000.000	20	000	3000	5000	6000	7000 8000 9	9000		18000.0 MHz
	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Domork
۱o.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Delector	(cm)	(deg.)	Remark
	2402.000	118.29	-7.49	110.80	54.00	56.80	peak			
	2935.789	51.92		46.24	54.00	-7.76				

3

4804.000

53.13

0.25

53.38

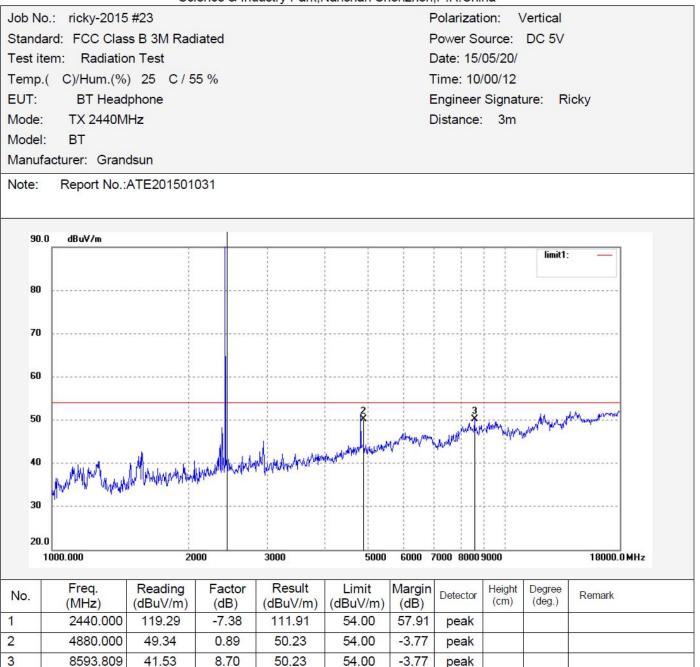
54.00

-0.62

peak

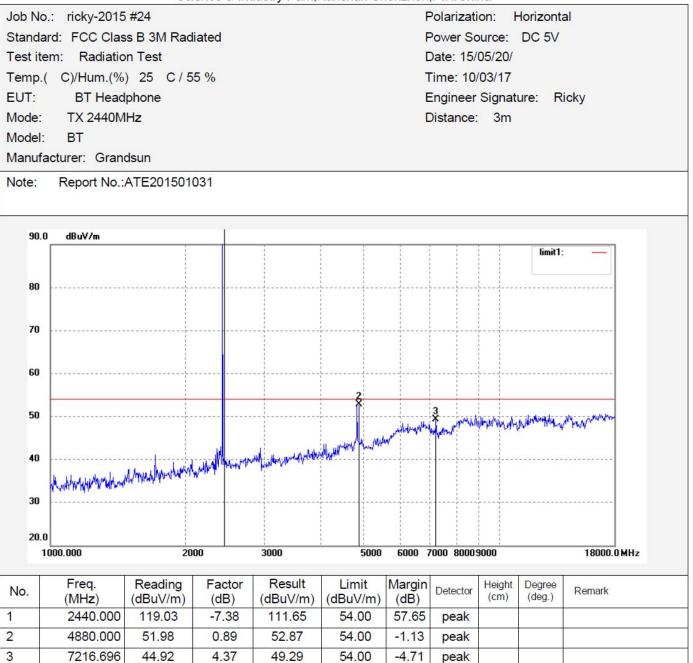
Report No.: ATE20151031 Page 38 of 51

ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

	ricky-2015						Polarizati		/ertical	
	FCC Class		liated				Power So		DC 5V	
Test item:	: Radiation	n Test				[Date: 15/	05/20/		
Temp.(C)/Hum.(%)	25 C/5	5 %			٦	Time: 9/4	9/52		
EUT:	BT Head	phone				E	Engineer	Signat	ure: R	icky
Mode:	TX 2402M	Hz				[Distance:	3m		
Model:	BT									
Manufact	urer: Grand	lsun								
Note: F	Report No.:/	ATE201501	031							
90.0	dBuV/m		1							
			Î						limit1:	_
80										
70										
70										
60					· · · · · · · · · · · · · · · · · · ·					
					ž					
50 40 30										
50				2 X	. hall the work	putrulal Alchin	Halling in Helen and	y way have	Mr. M. W. W. W. W.	ervarden
50 40	well account the other work	hunder	hun	2 Minter Monthal	www.dellyn.put	WM MANNA	And a second for the	M VANAMANAN	yuMuhun	~~~~~
50 40 30	hullippithtydays	hunnaam	hynnillinighn	Z My Antio Monald	in the second	puruhahlana 	hanne Merring	N VMYMPHN		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50 40 30 20.0	pulippiphlydnyd	hunder	hywridd oddynyddau	3 Munantianthrauth	anger del anger a	put uha Aloria	hun hang	N Miningham 		~~~~~
20.0	рифириф 1.000		hwww.U waaayahaa 1000	3000	6490 ¹		7000 8000 s			 18000.0 MHz
20.0	0.000	20	000		5000	6000	7000 8000	9000		18000.0 MHz
20.0				3000			7000 8000		Degree (deg.)	
20.0	0.000 Freq.	20 Reading	Factor	3000 Result	5000 Limit	6000 Margin	7000 8000	9000 Height	Degree	18000.0 MHz
20.0 1000 No.	0.000 Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	3000 Result (dBuV/m)	5000 Limit (dBuV/m)	6000 Margin (dB)	Detector	9000 Height	Degree	18000.0 MHz

ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Report No.: ATE20151031 Page 39 of 51

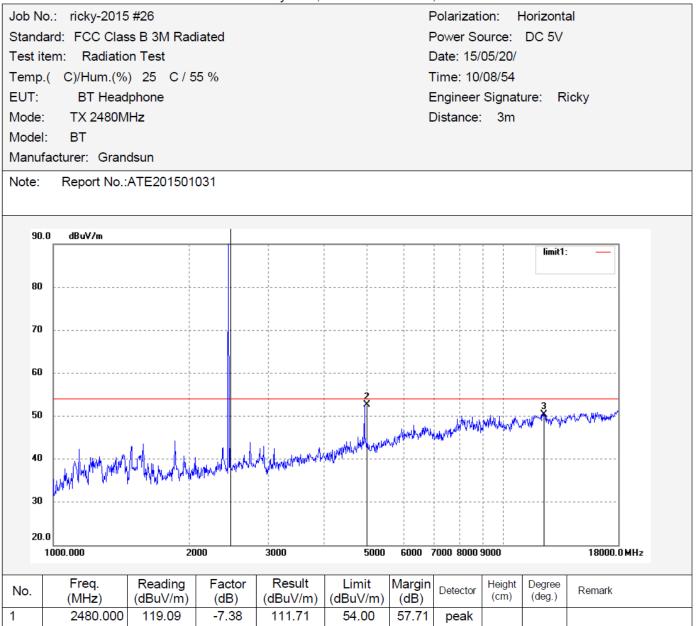
ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Report No.: ATE20151031 Page 40 of 51

Report No.: ATE20151031 Page 41 of 51

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China


ob N	o.: ricky-2015			dustry Park,	Nationali Of		Polarizati		/ertical	
	ard: FCC Clas		iated				Power Sc			
	em: Radiatio		aleu				Date: 15/		DC 5V	
			F 0/							
	.(C)/Hum.(%		5 %				Time: 10/ 		_	
UT:	BT Head	-					Engineer	-	ure: R	icky
/lode:		Hz				L	Distance:	3m		
/lodel										
	facturer: Gran	dsun								
lote:	Report No.:	ATE201501	031							
90.	.0 dBuV/m		ţ							
			ſ						limit1:	
80							·			
70										
60					· · · · · · · · · · · · · · · · · · ·			·		
50	pypypunniytum						3 X	CALINE AL	ha sharkara	Tothe Act May Coal
					Ĵ.	John work	- ANN WINT WAY	www.ypr~v	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second
40			1 x at	de	Mutorethan Muller	У "				
		Lugardinament	WHY HANN YANT	A DAYA A A A A A A A A A A A A A A A A A						
30	htter and the second second	(Hele and								
30										
20.	.0									
	1000.000	20	00	3000	5000	6000 7	7000 8000 9	9000		18000.0 MHz
	Freq.	Reading	Factor	Result	Limit	Margin		Height	Degree	
No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark
VO .				90.70	54.00	36.70	peak			
NO.	2480.000	98.08	-7.38	90.70	54.00	30.70	peak			
	2480.000 4960.000	98.08 47.52	-7.38 1.33	48.85	54.00	-5.15	peak			

Report No.: ATE20151031 Page 42 of 51

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

4960.000

12329.252

51.35

5.28

1.33

45.16

52.68

50.44

54.00

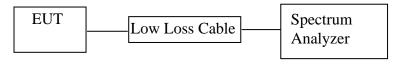
54.00

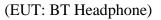
-1.32

-3.56

peak

peak


2


3

10.CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement of Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.4.Operating Condition of EUT

10.4.1.Setup the EUT and simulator as shown as Section 11.1.

- 10.4.2.Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

10.5.Test Procedure

- 10.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz
- 10.5.3. The Conducted Spurious Emission was measured and recorded.

10.6.Test Result

Pass.

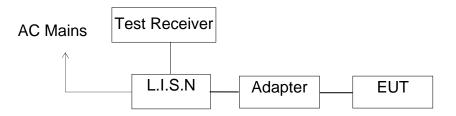
The spectrum analyzer plots are attached as below.

BLE Channel Low 2402MHz

Spectr	um										
Ref Le	vel 1			_	RBW 100 kHz						
Att 1Pk Ma		40	dB SWT 26	5 ms 😑	VBW 300 kHz	Mode Au	ito Swei	ер			
отьк ма	×			1			4[1]				-40.51 dBn
	м1					14	H[1]				18.0920 GH
0 dBm—	Y					N	1[1]				-2.22 dBn
-10 dBm-											2.3860 GH
-10 ubiii-											
-20 dBm-											
-30 dBm-											
								M4			
-40 dBm-			M2			M3	4.4.6.6		Nestra		
-50 dBm-		um	monorun	mehrer	- www.	within	a viz mus	wvi	www.mu	in Monan	would
-JU UBILE	~~~~~										
-60 dBm-											
-70 dBm-	_										
-80 dBm-							1				
Start 30).0 MH	lz			691	pts				St	op 26.5 GHz
Marker											
	Ref		X-valu		Y-value	Fund	tion		Fur	nction Res	ult
M1		1		86 GHz	-2.22 dB						
M2 M3		1		61 GHz	-45.64 dB -44.71 dB						
M4		1		192 GHZ	-44.71 dB -40.51 dB						
						··· ·		-		A 14.1474	_
						I Me				174	

BLE Channel Middle 2440MHz

Spectrum															
Ref Level	10.00	dBm			RBW	100 kHz									
🕳 Att	41	odb s	WT 2	265 ms 👄	VBW	300 kHz	Mo	ode Aut	to Swe	ер					
●1Pk Max															
								M	4[1]				-	42.07 0	1Bm
M1													18	3.0530	GHz
0 dBm 🕂 🔻								M	1[1]					-1.45 0	1Bm
-10 dBm													2	2.4240	GHz
-10 UBIII															
-20 dBm															
-20 abiii															
-30 dBm															
00 0.0															
-40 dBm			M2						3	M4					
1			Υ.			u yanala	, du s	multer	how	why	many	m	roun	man	yne
-50 dBm	Mary Mary	mon	- Au	manund	mon	- Carlon	-Pro	-W-				Andra			-
personan a															
-60 dBm				_											
-70 dBm				_			<u> </u>								
-80 dBm															
Start 30.0	MHz					691	pts						Stop	26.5 G	Hz
Marker															\neg
Type Ref	Trc	3	(-val	lie		r-value	1	Funct	ion	1	Eı	Inction	Result		1
M1	1	,		.424 GHz		-1.45 dE	m	- and				monori	Nosuit		
M2	1			.676 GHz		-45.10 dE									
M3	1			.985 GHz		-42.69 dE									
M4	1			.053 GHz		-42.07 dE									
	1							Maria					_	_	_
L															


BLE Channel High 2480MHz

Spect	rum											
Ref Lo	evel	10.00 c	Bm		RBW 100 kHz							
🔵 Att		40	dB SWT 2	55 ms 👄	VBW 300 kHz	Μ	ode Aut	to Swe	ер			
😑 1 Pk M	ах											
							M	4[1]				-41.66 dBm
0 dBm—	M1											18.0530 GHz
0 40	T.						M	1[1]				-1.22 dBm
-10 dBm	א_ו									1		2.4620 GHz
-20 dBm	ו++-											
-30 dBm	ד ו											
-40 dBm								MЗ	M4			
-40 000	'		M2		maynam		Make	nuhu	nuh	minde	MUM	Jun Mary Mary Mary
-50 dBm	ull.	marken	monthling	openanthe	maphimmen	with	www	· · · ·		400	MAC MAN	1
work												
-60 dBm	ι 											
-70 dBm	ו—ר			1								
-80 dBrr												
-80 UBII												
Start 3	0.0 N	1Hz			691	pts					Si	top 26.5 GHz
Marker												
Туре	Ref	Trc	X-valu		Y-value		Func	tion		Fun	ction Res	ult
M1 M2		1		462 GHz 217 GHz	-1.22 dB -45.54 dB							
M2 M3		1		536 GHz	-41.72 dB							
M4		1		053 GHz	-41.66 dB							
		7				1]				4.944	
		Л					, nie a				1/1	

11.POWER LINE CONDUCTED MEASUREMENT

11.1.Block Diagram of Test Setup

(EUT: BT Headphone)

11.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit dB(μV)					
(MHz)	Quasi-peak Level	Average Level				
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *				
0.50 - 5.00	56.0	46.0				
5.00 - 30.00	60.0	50.0				
NOTE1: The lower limit shall apply at the transition frequencies. NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.						

11.3.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

- 11.4.Operating Condition of EUT
 - 11.4.1.Setup the EUT and simulator as shown as Section 5.1.
 - 11.4.2.Turn on the power of all equipment.
 - 11.4.3.Let the EUT work in test mode and measure it.

11.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

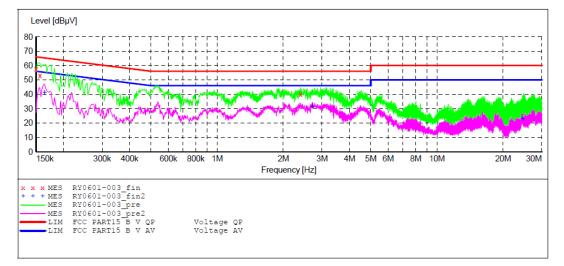
The frequency range from 150kHz to 30MHz is checked.

11.6.Power Line Conducted Emission Measurement Results

PASS.

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART15 B

EUT:	BT Headphone M/N:BT					
Manufacturer:	Grandsun					
Operating Condition:	Operation					
Test Site:	1#Shielding Room					
Operator:	Ricky					
Test Specification:	L 120V/60Hz					
Comment:	Report No.:ATE201501031					
Start of Test:	6/1/2015 / 8:55:02AM					

SCAN TABLE: "V 9K-30MHz fin"

Short Desci	ciption:	SU	JB STD VTER	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency				Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008
			Average			
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
			Average			

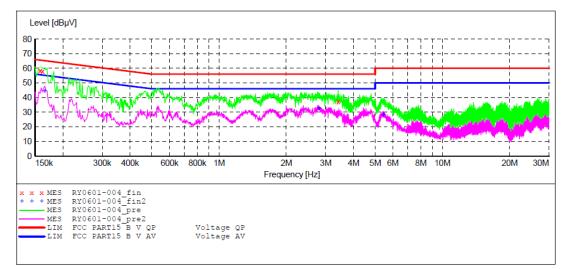
MEASUREMENT RESULT: "RY0601-003_fin"

6/1/2015 8:56AM

Frequency MHz	Level		Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.156000 2.395000	52.70	10.5	66	8.4 13.0 16.0	ÕР	L1 L1 L1	GND GND GND

MEASUREMENT RESULT: "RY0601-003_fin2"

6/1/2015 8:564		_					
Frequency MHz	Level dBuV		Limit dBuV	Margin dB	Detector	Line	PE
	42 p 1		4241				
0.164000	41.30	10.5	55	14.0	AV	L1	GND
2.705000	31.60	11.0	46	14.4	AV	L1	GND
24.595000	22.70	11.5	50	27.3	AV	L1	GND


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART15 B

EUT:	BT Headphone M/N:BT						
Manufacturer:	Grandsun						
Operating Condition:	Operation						
Test Site:	1#Shielding Room						
Operator:	Ricky						
Test Specification:	N 120V/60Hz						
Comment:	Report No.:ATE201501031						
Start of Test:	6/1/2015 / 8:57:35AM						

SCAN TABLE: "V 9K-30MHz fin"

~	Short Desci	ription:	S	SUB STD VTERM2 1.70				
	Start	Stop	Step –	Detector	Meas.	IF	Transducer	
	Frequency	Frequency	Width		Time	Bandw.		
	9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008	
				Average				
	150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008	
				Average				

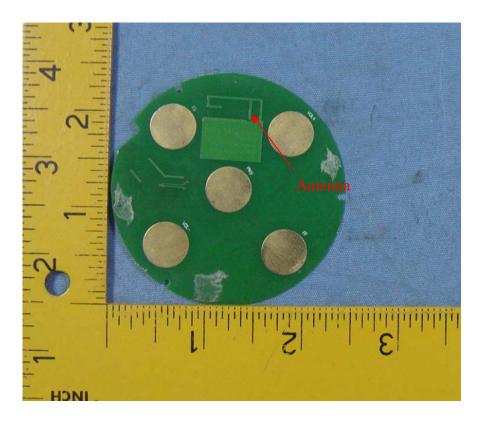
MEASUREMENT RESULT: "RY0601-004_fin"

6/1/2015 8:59 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.158000 0.162000 3.415000	58.20 58.10 37.20	10.5 10.5 11.1	65	7.3	QP	N N N	GND GND GND

MEASUREMENT RESULT: "RY0601-004_fin2"

6/1/2015 8:59AM

Frequency MHz		Transd dB		Margin dB	Detector	Line	PE
0.166000	44.20	10.5	55	11.0	AV	Ν	GND
2.795000	32.50	11.0	46	13.5	AV	Ν	GND
5.450000	28.50	11.2	50	21.5	AV	Ν	GND


12.ANTENNA REQUIREMENT

12.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2.Antenna Construction

Device is equipped with unique antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

