

TEST REPORT

APPLICANT	:	Cleer Limited
PRODUCT NAME	:	Portable Bluetooth Speaker with Alexa Voice Service
MODEL NAME	:	STAGE
BRAND NAME	:	Cleer
FCC ID	:	2AETW-1251
STANDARD(S)	:	47 CFR Part 15 Subpart C
TEST DATE	:	2018-01-29 to 2018-01-30
ISSUE DATE	:	2018-01-31

Tested by:

Approved by:

lang

Su Hang (Test Engineer)

Andy Yeh (Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

DIRECTORY

1. Technical Information 4
1.1. Manufacturer and Factory Information 4
1.2. Equipment Under Test (EUT) Description 4
1.3. Test Standards and Results 5
1.4. Environmental Conditions 5
2. 47 CFR Part 15C Requirements 6
2.1. Antenna requirement ······ 6
2.2. Number of Hopping Frequency 6
2.3. Peak Output Power ······10
2.4. 20dB Bandwidth ······17
2.5. Carried Frequency Separation24
2.6. Time of Occupancy (Dwell time)27
2.7. Conducted Spurious Emissions 40
2.8. Restricted Frequency Bands53
2.9. Conducted Emission
2.10. Radiated Emission
Annex A Test Uncertainty79
Annex B Testing Laboratory Information80

Change History							
Issue	Date	Reason for change					
1.0	2018-01-31	First edition					

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Cleer Limited
Applicant Address:	Unit518, Lakeside 1, Science Park West Ave. HK Science Park,
	Hong Kong
Manufacturer:	Cleer Limited
Manufacturer Address:	Unit518, Lakeside 1, Science Park West Ave. HK Science Park, Hong Kong

1.2. Equipment Under Test (EUT) Description

Product Name:	Portable Bluetooth Speaker with Alexa Voice Service		
Serial No:	(N/A, marked #1 by test site)		
Hardware Version:	V2		
Software Version:	2.04.1		
	FHSS (GFSK(1Mbps), π/4-DQPSK(EDR 2Mbps),		
Modulation Type:	8-DPSK(EDR 3Mbps))		
	The frequency range used is 2402MHz – 2480MHz		
Operating Frequency Range:	(79 channels, at intervals of 1MHz);		
	The frequency block is 2400MHz to 2483.5MHz.		
Bluetooth Version:	Bluetooth 4.2(BR/EDR)		
Antenna Type:	PIFA Antenna		
Antenna Gain:	2.0 dBi		

Note 1: The EUT contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

Note 2: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT into the test mode, and then use MT8852B base station to control the EUT continuous transmission.

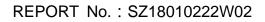
Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

No	Identity	Document Title					
1	47 CFR Part 15 (10-1-15 Edition)	Radio Frequency Devices					
Test d	Test detailed items/section required by FCC rules and results are as below:						

No.	Section in CFR 47	Description	Test Date	Test Engineer	Result
1	15.203	Antenna Requirement	N/A	N/A	PASS
2	15.247(a)	Number of Hopping Frequency	Jan 29, 2018	Su Hang	PASS
3	15.247(b)	Peak Output Power	Jan 29, 2018	Su Hang	PASS
4	15.247(a)	20dB Bandwidth	Jan 29, 2018	Su Hang	PASS
5	15.247(a)	Carrier Frequency Separation	Jan 29, 2018	Su Hang	PASS
6	15.247(a)	Time of Occupancy (Dwell time)	Jan 29, 2018	Su Hang	PASS
7	15.247(d)	Conducted Spurious Emission	Jan 29, 2018	Su Hang	PASS
8	15.247(d)	Restricted Frequency Bands	Jan 30, 2018	Wen Zhichao	PASS
9	15.209, 15.247(d)	Radiated Emission	Jan 29, 2018	Wen Zhichao	PASS
10	15.207	Conducted Emission	Jan 30, 2018	Wen Zhichao	PASS


Note: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013.

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

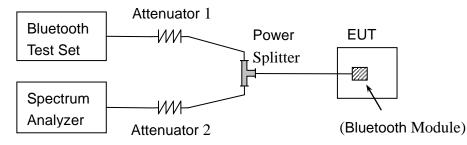
2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.


2.2. Number of Hopping Frequency

2.2.1. Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

2.2.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.2.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW \geq 1% of the span VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize

2.2.4. Test Result

The Bluetooth Module operates at hopping-on test mode; the frequencies number employed is counted to verify the Module's using the number of hopping frequency.

Test Mode	Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Verdict
GFSK	2400 - 2483.5	79	15	PASS
π/4-DQPSK	2400 - 2483.5	79	15	PASS
8-DPSK	2400 - 2483.5	79	15	PASS

A. Test Verdict:

B. Test Plots:

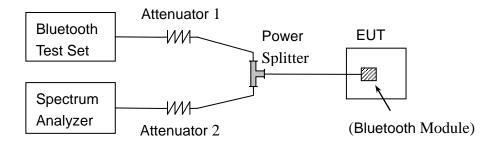
(GFSK)

larker 1	RF 50 Ω Δ 79.07450	PI	iz NO: Fast 😱 Gain:Low				ALIGN AUTO :: Log-Pwr >10/10	TYPE	Jan 29, 2018 1 2 3 4 5 6 MWWWWW P N N N N N	Marker Select Marke
0 dB/div	Ref Offset 1.7 Ref 15.00 (7 dB dBm					ΔMkr	1 79.074 2.	5 MHz 113 dB	o creat maine
5.00									<u>142</u>	Norm
X2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		v-v·v·v·v·v·v·v	C C C C C C C C C C C C C C C C C C C	γ	ᡟᢦᠬᢦᠰᠬᢦ᠆ᡣ᠆ᡟ	᠈᠂᠂ᠬ᠕ᢇ	ᡐᠰᢇ᠋᠊ᢦ᠋᠊ᢦᡧᠰᡟᡧ	www	
										De
5.0										
5.0										Fixe
5.0										
5.0										c
5.0										
5.0										Propertie
5.0										Ma
	000 GHz							Stop 2.48	350 GHz	1 0
	0000 GHz 1.0 MHz		#VBW	3.0 MHz			Sweep 1	Stop 2.48 .000 ms (1	350 GHz	

$(\pi/4-DQPSK)$

(8- DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn


2.3. Peak Output Power

2.3.1. Requirement

According to FCC §15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

2.3.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.3.3. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the module. The lowest, middle and highest channel were tested by USB Wideband Power Sensor.

2.3.3.1 GFSK Mode

A. Test Verdict:

Channel		Measured Output Peak Power		Limit		Verdict	
Channel	(MHz)	dBm W dBi		dBm	W	verdict	
0	2402	0.69	0.00117			PASS	
39	2441	1.79	0.00151	30	1	PASS	
78	2480	0.68	0.00117			PASS	

B. Test Plots:

(GFSK, Channel 0, 2402MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(GFSK, Channel 19, 2440MHz)

(GFSK, Channel 39, 2480MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3.3.2 π/4-DQPSK Mode

A. Test Verdict:

Channel		Measured Output Peak Power		Limit		Verdict	
Channel	(MHz)	dBm W dBn		dBm	W	verdict	
0	2402	1.27	0.00134			PASS	
39	2441	2.01	0.00159	30	1	PASS	
78	2480	1.05	0.00127			PASS	

B. Test Plots:

(π/4-DQPSK, Channel 0, 2402MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(π/4-DQPSK, Channel 19, 2440MHz)

(π/4-DQPSK, Channel 39, 2480MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3.3.3 8-DPSK Mode

A. Test Verdict:

Channel	Frequency	Measured Outp	Limit		Verdict	
Channel	(MHz)	dBm	W	dBm	W	verdict
0	2402	1.71	0.00148			PASS
39	2441	2.45	0.00176	30	1	PASS
78	2480	1.44	0.00139			PASS

B. Test Plots:

(8-DPSK, Channel 0, 2402MHz)

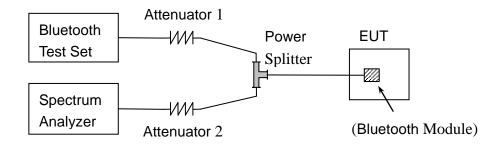
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(8-DPSK, Channel 19, 2440MHz)

(8-DPSK, Channel 39, 2480MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



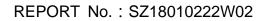
2.4.1. Definition

According to FCC 15.247(a)(1), the 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1% = 20dB) taking the total RF output power.

2.4.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.


B. Equipments List:

Please reference ANNEX A(1.5).

2.4.3. Test Procedure

Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel $RBW \ge 1\%$ of the 20 dB bandwidth $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold

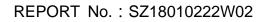
2.4.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

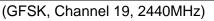
2.4.4.1 GFSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
0	2402	0.9462	PASS
39	2441	0.9444	PASS
78	2480	0.9469	PASS


B. Test Plots:

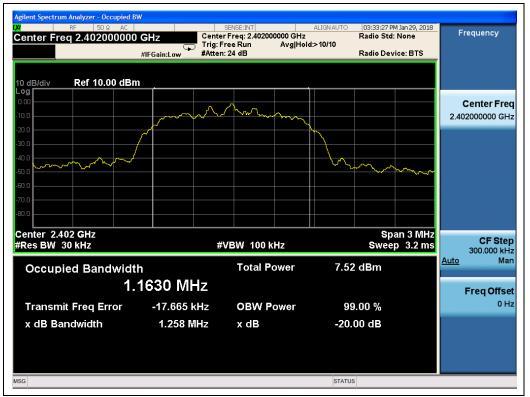
(GFSK, Channel 0, 2402MHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(GFSK, Channel 39, 2480MHz)

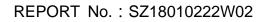
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



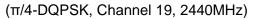
2.4.4.2 π/4-DQPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
0	2402	1.258	PASS
39	2441	1.256	PASS
78	2480	1.250	PASS


B. Test Plots:

(π/4-DQPSK, Channel 0, 2402MHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(π/4-DQPSK, Channel 39, 2480MHz)

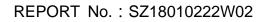
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



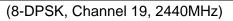
2.4.4.3 8-DPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
0	2402	1.271	PASS
39	2441	1.271	PASS
78	2480	1.273	PASS


B. Test Plots:

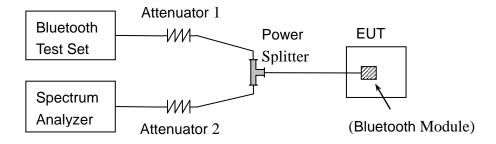
(8-DPSK, Channel 0, 2402MHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(8-DPSK, Channel 39, 2480MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn


2.5. Carried Frequency Separation

2.5.1. Definition

According to FCC §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

2.5.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.5.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) \geq 1% of the span

Video (or Average) Bandwidth (VBW) \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.4. Test Result

The Bluetooth Module operates at hopping-on test mode. For any adjacent channels (e.g. the channel 39 and 40 as showed in the Plot A), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (refer to section 2.4.4), whichever is greater. So, the verdict is PASSING

	Measured	Carried Frequency	20dB			
Test Mode	Channel		bandwidth	Min. Limit	Verdict	
	Numbers	Separation	(MHz)			
GFSK	39 and 40	1.002	0.9444	two thirds of the	PASS	
π/4-DQPSK	39 and 40	1.002	1.250	two-thirds of the - 20dB bandwidth -	PASS	
8-DPSK	39 and 40	1.002	1.271		PASS	

(GFSK)

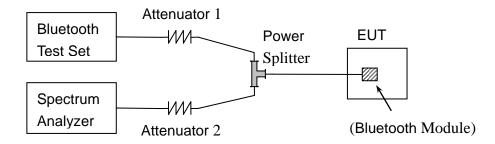
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

arker 1	RF 50 Ω Δ 1.00200		IZ PNO: Fast ⊂ FGain:Low			ALIGN AUTO :: Log-Pwr >10/10	TRAC	1 Jan 29, 2018 E <mark>1 2 3 4 5 6</mark> E M WWWWW T P N N N N N	Marker Select Marker
0 dB/div	Ref Offset 1. Ref 15.00	7 dB dBm				ΔN	1kr1 1.0 -0.	02 MHz 482 dB	Select Marker 1
5.00							1Δ2 -		Norm
5.00					N2				Del
25.0									Fixed
45.0									c
55.0									
65.0 75.0 									Properties
	441000 GHz 300 kHz		#VB)	N 1.0 MHz		Sweep_1	Span 3	.000 MHz 1001 pts)	Mo 1 of

(π/4-DQPSK)

(8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.6. Time of Occupancy (Dwell time)

2.6.1. Requirement

According to FCC §15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.6.2. Test Description

A. Test Setup:

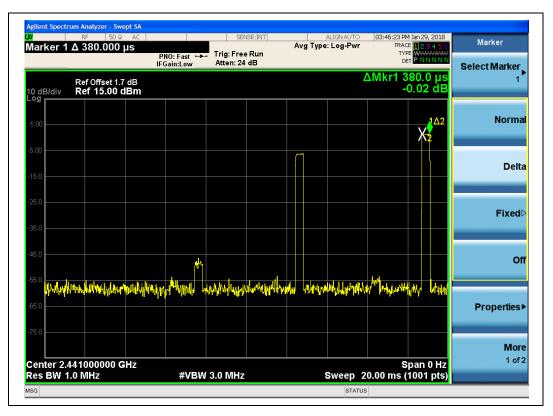
The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

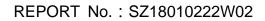
2.6.3. Test Procedure

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence. The average time of occupancy in the specified 31.6 second period (79 channel * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.


2.6.4. Test Result

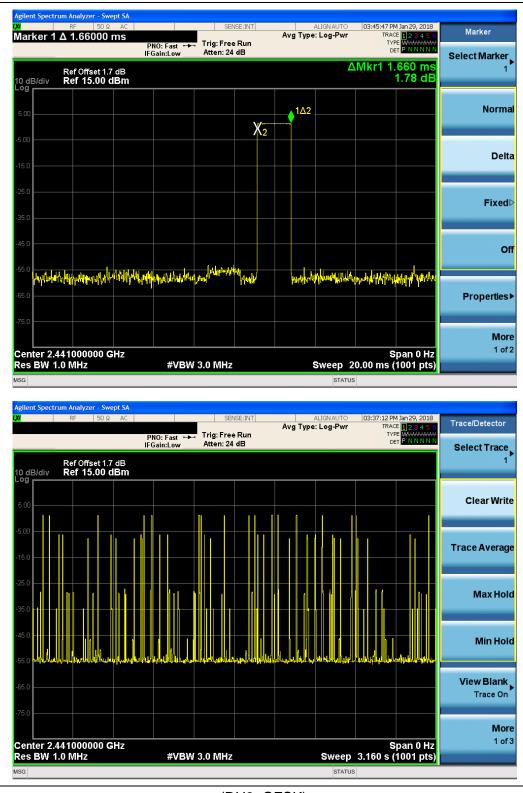
2.6.4.1 GFSK Mode

A. Test Verdict:


DH Packet	Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
DH1	0.38	32	0.01216	0.1216		PASS
DH3	1.66	17	0.02822	0.2822	0.4	PASS
DH5	2.88	10	0.02880	0.2880		PASS

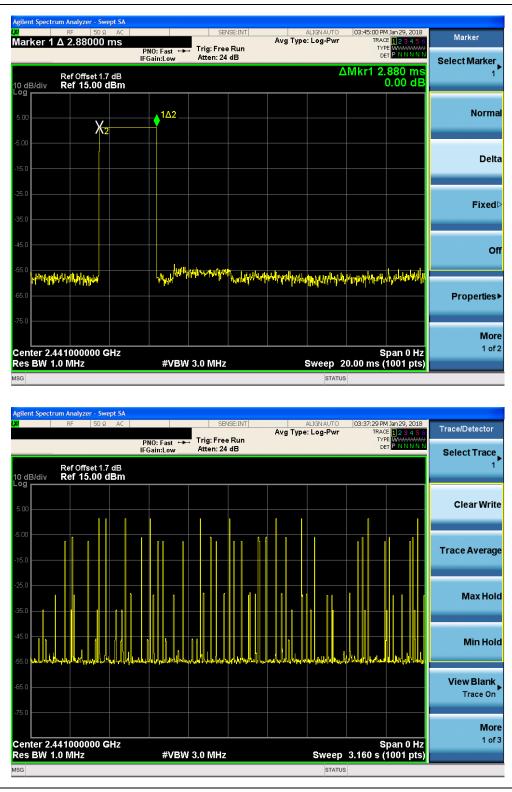
B. Test Plots:

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(DH1, GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


(DH3, GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-ma

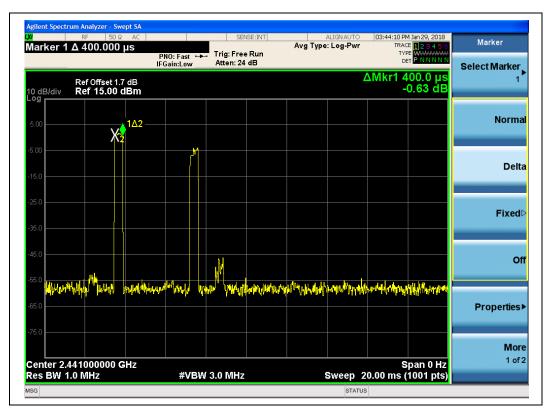
Fax: 86-755-36698525 E-mail: service@morlab.cn

(DH5, GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-755-3

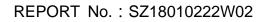
 Http://www.morlab.cn
 E-mail:
 service

Fax: 86-755-36698525 E-mail: service@morlab.cn

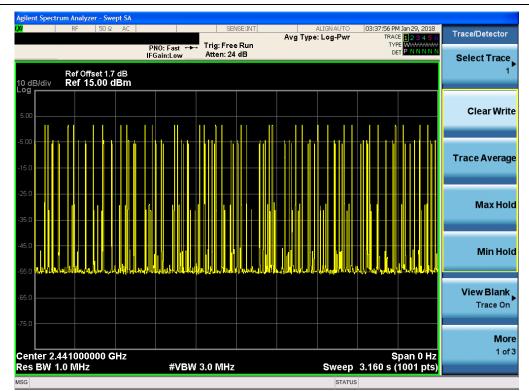


2.6.4.2 π/4-DQPSK Mode

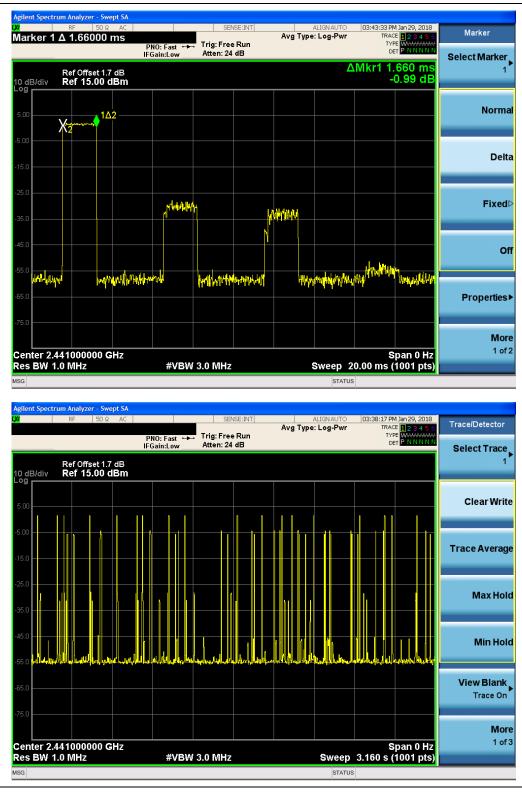
A. Test Verdict:


DH Packet	Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
DH1	0.40	32	0.01280	0.1280		PASS
DH3	1.66	18	0.02988	0.2988	0.4	PASS
DH5	2.90	10	0.02900	0.2900		PASS

B. Test Plots:



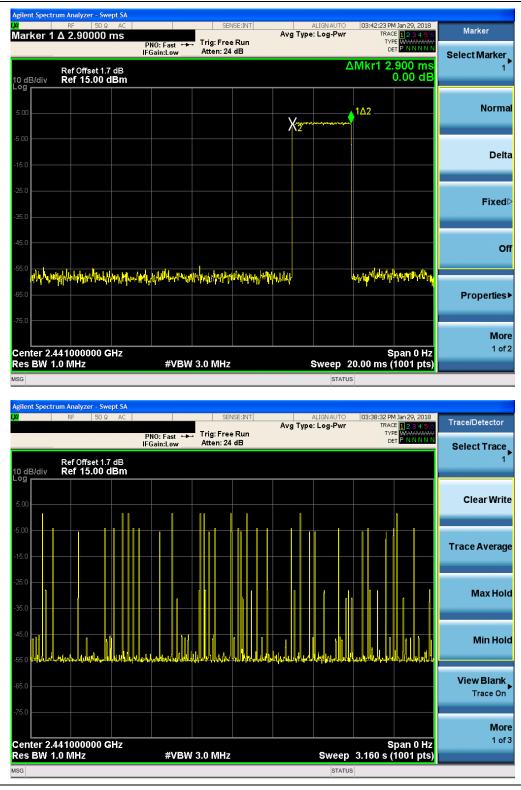
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(DH1, π/4-DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(DH3, π/4-DQPSK)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-7

 Http://www.morlab.cn
 E-mail:
 s

Fax: 86-755-36698525 E-mail: service@morlab.cn

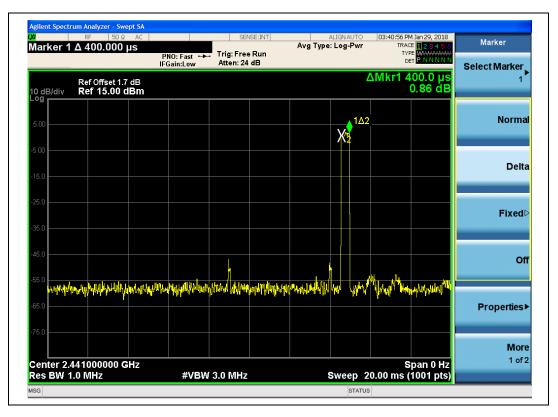
(DH5, $\pi/4$ -DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755

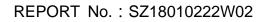
 Http://www.morlab.cn
 E-mail: servi

Fax: 86-755-36698525 E-mail: service@morlab.cn

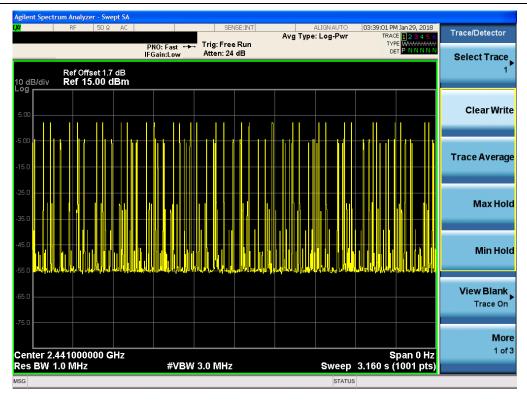


2.6.4.3 8-DPSK mode

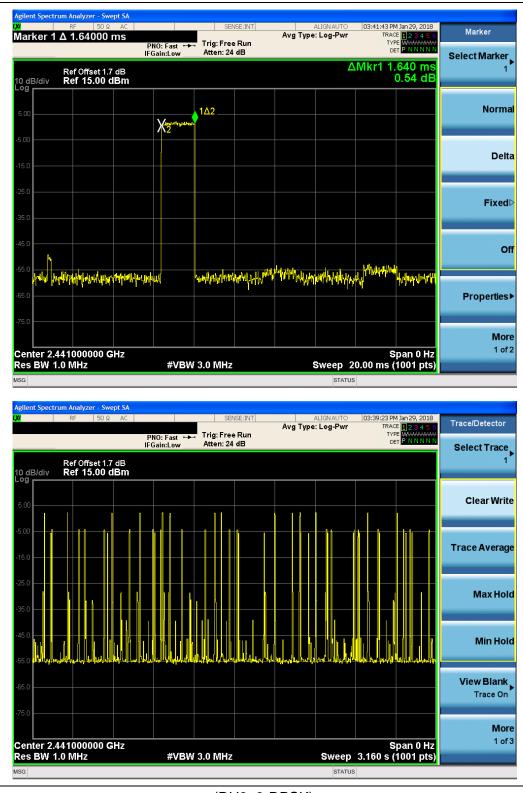
A. Test Verdict:


DH Packet	Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
DH1	0.40	31	0.01240	0.1240		PASS
DH3	1.64	14	0.02296	0.2296	0.4	PASS
DH5	2.90	13	0.03770	0.3770		PASS

B. Test Plots:

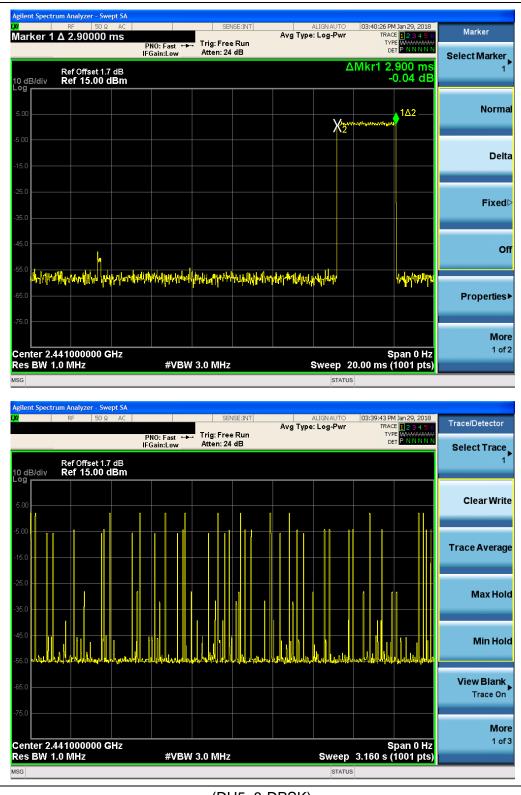


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(DH1, 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


(DH3, 8-DPSK)

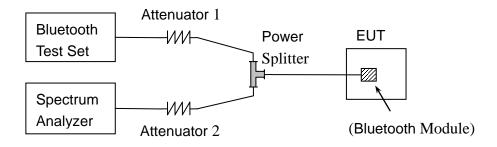
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 80

 Http://www.morlab.cn
 E-mail
 E-mail

(DH5, 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86

 Http://www.morlab.cn
 E-mail:
 \$


2.7. Conducted Spurious Emissions

2.7.1. Requirement

According to FCC §15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.7.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.7.3. Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz VBW ≥ RBW Sweep = auto Detector function = peak

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Trace = max hold Allow the trace to stabilize.

2.7.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.


2.7.4.1 GFSK Mode

A. Test Verdict:

	Froqueney	Measured Max. Out of Band	Limit	(dBm)		
Channel	Frequency (MHz)	Emission (dBm)	Carrier Level	Calculated	Verdict	
				-20dBc Limit		
0	2402	-48.49	0.53	-19.47	PASS	
39	2441	-48.07	1.34	-18.66	PASS	
78	2480	-48.40	-0.04	-20.04	PASS	

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Channel = 0, 30MHz to 25GHz, GFSK Mode)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 0, Band edge, GFSK Mode)

(Channel = 0, Band edge with hopping on, GFSK Mode)

MORLAB

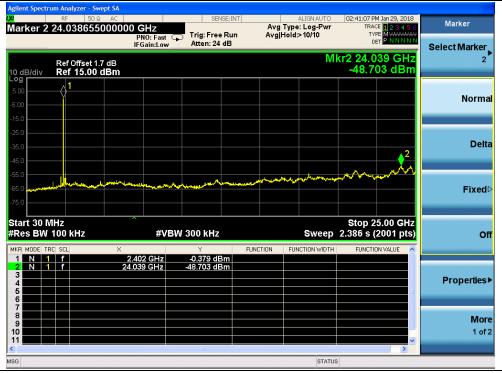
Agilent Spectrum Analyzer - Swept SA				
Marker 2 24.038655000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	02:32:13 PM Jan 29, 2018 TRACE 1 2 3 4 5 6	Marker
PNO: Fas IFGain:Lo		Avg Hold:>10/10	TYPE MWWWW DET PNNNNN	Select Marker
Ref Offset 1.7 dB 10 dB/div Ref 15.00 dBm		М	kr2 24.039 GHz -48.068 dBm	2
5.00 1 5.00				Normal
-25.0			2	Delta
-56.0 -66.0 private and the second and the second s	Martin and a state of the second state of the	and a star of the former of the second star of the		Fixed⊳
MKR MODE TRC SCL X		Sweep	Stop 25.00 GHz 2.386 s (2001 pts) FUNCTION VALUE	Off
1 N 1 f 2.440 GHz 2 N 1 f 24.039 GHz 3 4 4 5 5 6 6 6 6 1 1				Properties►
7 8 9 10 11			>	More 1 of 2
MSG		STATUS	3	

(Channel = 78, 30MHz to 25GHz, GFSK Mode)

(Channel = 78, Band edge, GFSK Mode)

(Channel = 78, Band edge with hopping on, GFSK Mode)

MORLAB

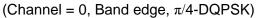

2.7.4.2 π /4-DQPSK Mode

A. Test Verdict:

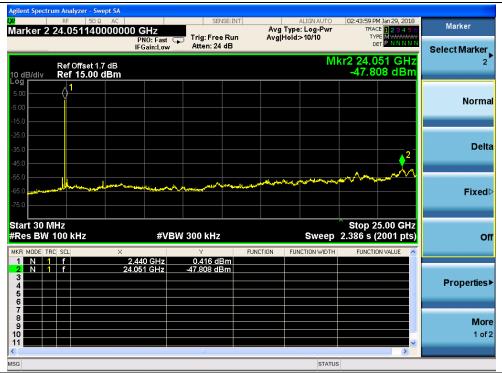
	Fraguanay	Measured Max. Out of Band	Limit	(dBm)	
Channel	Frequency (MHz)	Emission (dBm)	Carrier	Calculated	Verdict
			Level	-20dBc Limit	
0	2402	-48.70	-0.38	-20.38	PASS
39	2441	-47.81	0.42	-19.58	PASS
78	2480	-48.61	-3.30	-23.30	PASS

B. Test Plots:

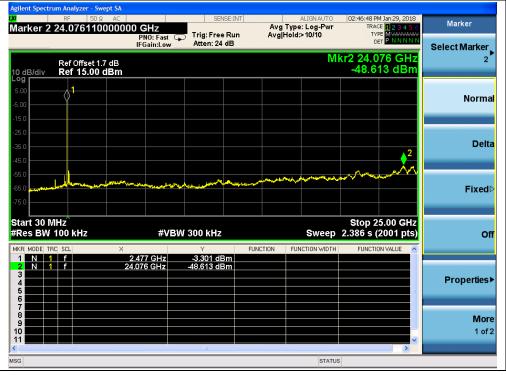
Note: the power of the Module transmitting frequency should be ignored.


(Channel = 0, 30MHz to 25GHz, $\pi/4$ -DQPSK)

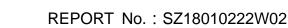
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(Channel = 0, Band edge with hopping on, $\pi/4$ -DQPSK)


MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


(Channel = 39, 30MHz to 25GHz, $\pi/4$ -DQPSK)

(Channel = 78, 30MHz to 25GHz, $\pi/4$ -DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

(Channel = 78, Band edge, $\pi/4$ -DQPSK)

(Channel = 78, Band edge with hopping on, $\pi/4$ -DQPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.7.4.3 8-DPSK Mode

A. Test Verdict:

	Fraguanay	Measured Max. Out of Band	Limi	t (dBm)	
Channel	Frequency	Emission (dBm)	Carrier	Calculated	Verdict
	(MHz)	Emission (dBm)	Level	-20dBc Limit	
0	2402	-48.37	-3.12	-23.12	PASS
39	2441	-49.53	-2.32	-22.32	PASS
78	2480	-49.29	-1.83	-21.83	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Channel = 0, 30MHz to 25GH, 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 0, Band edge, 8-DPSK)

(Channel = 0, Band edge with hopping on, 8-DPSK)

MORLAB

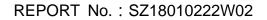
Agilent Spectrum Analyzer - Swept S/							
X RF 50 Ω AC Marker 2 24.712845000		SENSE:I		ALIGN AUTO Type: Log-Pwr	03:12:44 PM Jan 29, 20: TRACE 1 2 3 4	6	Marker
	PNO: Fast C IFGain:Low	Trig: Free Ru Atten: 24 dB		10/10	TYPE MUMM DET PNNN	444	Select Marker
Ref Offset 1.7 dB 10 dB/div Ref 15.00 dBn	n			Μ	kr2 24.713 GH -49.528 dBr		2
5.00 -5.00 -15.0							Normal
-25.0 -35.0 -45.0						3	Delta
-55.0		le la decare de la decare	مولدر المراجع ا	an line and a start of the star	when when		Fixed⊳
Start 30 MHz #Res BW 100 kHz	#VB	W 300 kHz Y	FUNCTION	Sweep	Stop 25.00 GH 2.386 s (2001 pt FUNCTION VALUE	IZ S)	Off
1 N 1 f 2 N 1 f 3 4 5 5 6 8	2.440 GHz 24.713 GHz	-2.318 dBm -49.528 dBm					Properties▶
7 8 9 10 11					>	•	More 1 of 2
MSG				STATUS	3		

(Channel = 39, 30MHz to 25GHz, 8-DPSK)

(Channel = 78, 30MHz to 25GH, 8-DPSK)

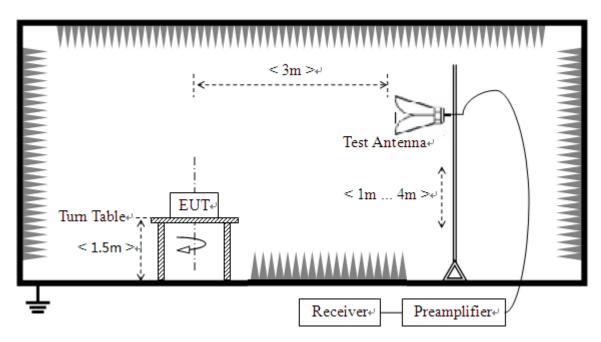
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA					
μ RF 50Ω AC		SENSE:INT	ALIGNAUTO	03:09:53 PM Jan 29, 2018 TRACE 1 2 3 4 5 6	Marker
Marker 2 2.483500000000	PNO: Wide		Avg Hold>10/10		Select Marker
Ref Offset 1.7 dB 10 dB/div Ref 15.00 dBm			Mkr	2 2.483 50 GHz -60.786 dBm	2
5.00 -15.0					Normal
-25 0 -35 0 -45 0	m	2			Delta
-55.0 -65.0 -75.0			Amm	nn han de same de la companya de la comp	Fixed⊳
Center 2.483500 GHz #Res BW 100 kHz	#VBW 300	KHZ FUNCTI		Span 10.00 MHz .000 ms (1001 pts) FUNCTION VALUE	Off
2 N 1 f 2.48 3 -		36 dBm 36 dBm			Properties▶
7 8 9 10 11				~	More 1 of 2
MSG			STATUS		


(Channel = 78, Band edg, 8-DPSK)

(Channel = 78, Band edge with hopping on, 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.8. Restricted Frequency Bands

2.8.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.8.2. Test Description

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under non hopping-on test mode transmitting 339 bytes DH5, 679 bytes 2DH5 and 1021 bytes 3DH5 packages at maximum power. For the Test Antenna:

Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Equipments List:

Please reference ANNEX A(1.5).

2.8.3. Test Procedure

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 KHz for f < 1GHz VBW = 3 MHz for peak and 10Hz for average Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize.

2.8.4. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; AT = L_{Cable loss} [dB] - G_{preamp} [dB]$

AT: Total correction Factor except Antenna

UR: Receiver Reading

Gpreamp: Preamplifier Gain

AFactor: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.8.4.1 GFSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U _R (dBuV)	A _T (dB)	A _{Factor} (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
0	2376.22	PK	45.49	-33.63	32.56	44.42	74	Pass
0	2383.22	AV	32.90	-33.63	32.56	31.83	54	Pass
78	2484.63	PK	44.33	-33.18	32.5	43.65	74	Pass
78	2484.86	AV	32.80	-33.18	32.5	32.12	54	Pass

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

B. Test Plots:

📕 Keysight Spectrum Analyzer - Swept SA Aug Type: Voltage Avg|Hold:>100/100 06:39:45 PM Jan 30, 2018 TRACE 12345 (TYPE MWWWW DET P P NNN Trace/Detector Marker 1 2.376220000000 GHz Trig: Free Run PNO: Fast 🖵 IFGain:Low Atten: 6 dB Select Trace Mkr1 2.376 220 GHz 45.488 dBµV Ref 100.00 dBµV 10 dB/div Detector Peak▶ Man Auto Preset **∂**2 <u>1</u> Detectors Clear Trace Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.40300 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz **Clear All Traces** FUNCTION FUNCTION WIDTH FUNCTION VALUE 2.376 220 GHz 2.390 000 GHz 45.488 dBµV 44.116 dBµV N f Preset **All Traces** More 2 of 3

(Channel = 0, PEAK, GFSK)

(Channel = 0, AVERAGE, GFSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyze							
RL RF PRESEL Arker 2 2.48462	PNO: Fa	SENSE:	Avg	ALIGN OFF Type: Voltage Hold:>100/100	TYPE	an 30, 2018 1 2 3 4 5 6 MMWWWW P R N N N N	Mode Setup
dB/div Ref 10	IFGain:Lo	Atten: 6 dB		Mkr2	2.484 62 44.330	8 GHz	Radio Std None
							Enable Non-S Measuremer Yes <u>l</u>
		unan Manuah Mantana see	6	งราง-สาระที่สร้า _ย สะทางการเป็น		Plone Mahara	EMC Standard CISPR
0 0 0							CISPR Preset
art 2.47900 GHz s BW (CISPR) 1		VBW 3.0 MHz		Sweep 1	Stop 2.500 .000 ms (10		Noise Reduction INFE:Off
R MODE TRC SCL	× 2.483 500 GHz			FUNCTION WIDTH	FUNCTION	VALUE 🔺	-
2 N 1 f 3 4	2.484 628 GHz	44.330 dBμV				=	Globa Setting (All Modes
							M c 1 c
						-	

(Channel = 78, PEAK , GFSK)

(Channel = 78, AVERAGE, GFSK)

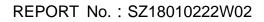
MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.8.4.2 π/4-DQPSK Mode

A. Test Verdict:

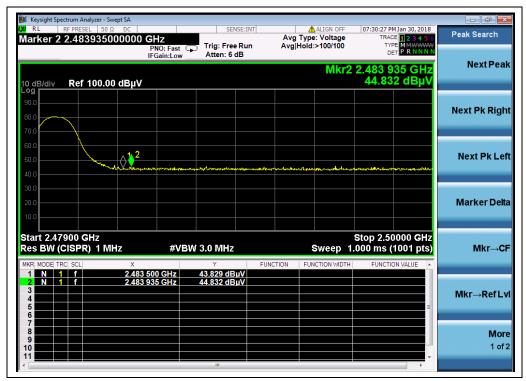
Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict	
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)		
0	2377.87	PK	44.95	-33.63	32.56	43.88	74	Pass	
0	2382.30	AV	33.84	-33.63	32.56	32.77	54	Pass	
78	2483.94	PK	44.83	-33.18	32.5	44.15	74	Pass	
78	2485.66	AV	32.79	-33.18	32.5	32.11	54	Pass	


B. Test Plots:

RL REP larker 1 2.	RESEL 50 Ω 1 377868000		Trig: Free Ru Atten: 6 dB	Avg	ALIGN OFF Type: Voltage Hold:>100/100	06:46:52 PM Jan 30, 2018 TRACE 12345 TYPE MWWWW DET P P N N N	6 Peak Search
0 dB/div R	ef 100.00 d	ΒµV			Mkr1	2.377 868 GHz 44.954 dBµ\	Next Pea
90.0						(Next Pk Rig
50.0 50.0 40.0	an and the stand sectors	yrt flysgyrfyryd rifyr ys mehaffere			1	2	Next Pk Le
20.0 10.0							Marker Del
	PR) 1 MHz	#VB	W 3.0 MHz			Stop 2.40300 GH: .000 ms (1001 pts	
N 1 1 2 N 1 2 2 1 2 2 2 3 2 3 2 3 2 3 3	f	X 2.377 868 GHz 2.390 000 GHz	Y 44.954 dBµV 44.037 dBµV	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Mkr→RefL
5 6 7 8 9							Mo
							1 of

(Channel = 0, PEAK, π /4-DQPSK)

MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	ctrum Analyzer - S									
	RF PRESEL 50 2.3822970	000000	GHz PNO: Fast				ALIGN OFF pe: Voltage Id:>100/100	TRAC	M Jan 30, 2018 DE 1 2 3 4 5 PE M M W W W ET R R N N N	Peak Searcl
dB/div	Ref 100.0		IFGain:Low_	Attent			Mkr1	2.382 2 33.84	97 GHz 1 dBµV	Next P
9 .0										Next Pk R
									\int	
o								1 .2		Next Pk
.0								¹ 2		
0 0										Marker D
	000 GHz CISPR) 1 M	IHz	#VB	W 3.0 MHz*			#Sweep	Stop 2.4 50.00 s (0300 GHz 1001 pts	Mkr-
MODE TR			297 GHz 000 GHz	Y 33.841 dBJ 32.995 dBJ	JV	CTION F	UNCTION WIDTH	FUNCTI	ON VALUE	
		2.000		52.555 db)					_	Mkr→Ref
										N
										1

(Channel = 0, AVERAGE, $\pi/4$ -DQPSK)

(Channel = 78, PEAK, π /4-DQPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Mickysight Spectrum Analyzer - Swept SA Mick RL RF PRESEL 50 Ω DC Sweep Time 50	PNO: Fast G	SENSE:INT Trig: Free Run Atten: 6 dB	Avg Typ	ALIGN OFF e: Voltage l:>100/100	07:33:13 PM TRACE TYPE DET	Jan 30, 2018 1 2 3 4 5 6 M MWWWW R R N N N N	units
10 dB/div Ref 100.00 dBµV				Mkr2	2.485 6 32.78	57 GHz 3 dBμV	ks
90.0							S
60.0 50.0 40.0	²						ms
30.0							μs
Start 2.47900 GHz Res BW (CISPR) 1 MHz	#VBV	/ 3.0 MHz*		Sweep	Stop 2.50 27.62 s (1	000 GHz 001 pts)	ns
	3 500 GHz 5 657 GHz	Y 32.984 dBµV 32.788 dBµV	FUNCTION FU	NCTION WIDTH	FUNCTIO	N VALUE	

(Channel = 78, AVERAGE, $\pi/4$ -DQPSK)

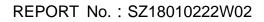
2.8.4.3 8-DPSK Mode

A. Test Verdict:

Channel	Channel		Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
onanner	(MHz)	(MHz) PK/ AV	U _R (dBuV)	. ,	(dB@3m)	E (dBµV/m)	(dBµV/m)	Verdiet
0	2388.17	PK	45.13	-33.63	32.56	44.06	74	Pass
0	2382.61	AV	32.89	-33.63	32.56	31.82	54	Pass
78	2485.87	PK	44.62	-33.18	32.5	43.94	74	Pass
78	2484.19	AV	32.88	-33.18	32.5	32.20	54	Pass

B. Test Plots:

📕 Keysight Spectrum Analyzer - Swept S ALIGN OFF Avg Type: Voltage Avg|Hold:>100/100 07:02:08 PM Jan 30, 2018 TRACE 12 3 4 5 TYPE MWWWW DET P NNNN D Peak Search Marker 1 2.388168000000 GHz Trig: Free Run Atten: 6 dB PNO: Fast IFGain:Low **Next Peak** Mkr1 2.388 168 GHz 45.133 dBµV Ref 100.00 dBµV 10 dB/div Log **r** Next Pk Right <mark>≬1</mark>2 Next Pk Left Marker Delta Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.40300 GHz Sweep 1.000 ms (1001 pts) Mkr→CF #VBW 3.0 MHz FUNCTION EUI 2.388 168 GHz 2.390 000 GHz 45.133 dBµV 43.176 dBµV Mkr→RefLvl More 1 of 2


(Channel = 0, PEAK, 8-DPSK)

(Channel = 0, AVERAGE, 8-DPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyzer - Swept SA RL RF PRESEL 50 \Omega DC Irker 2 2.485867000000	PNO: Fast 🖵 Tri	SENSE:INT g: Free Run ten: 6 dB	ALIGN OFF Avg Type: Voltage Avg Hold:>100/100	07:37:46 PM Jan 30, 2018 TRACE 123456 TYPE MWWWWWW DET P P NNNN	Peak Search
dΒ/div Ref 100.00 dBμV	IFGain:Low At		Mkr2	2.485 867 GHz 44.616 dBµV	Next Pea
					Next Pk Rigl
0 0 0 0	2	Laborer from a start base	Minempiperadomation	to this play, i, Joy Part Stellar, Norfast, or	Next Pk Le
0 0 0					Marker De
art 2.47900 GHz s BW (CISPR) 1 MHz	#VBW 3.0	MHz Y FUNCTIN	-	Stop 2.50000 GHz .000 ms (1001 pts)	Mkr→C
		52 dBµV 16 dBµV		E	Mkr→RefL
					М а 1 о

(Channel = 78, PEAK, 8-DPSK)

(Channel = 78, AVERAGE, 8-DPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

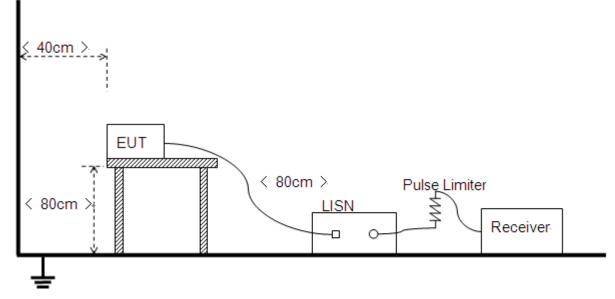
E-mail: service@morlab.cn

2.9. Conducted Emission

2.9.1. Requirement

According to RSS-GEN section 8.8, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)		
(MHz)	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
5- 30	60	50	


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.9.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

The factors of the site are calibrated to correct the reading. During the measurement, the Bluetooth

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

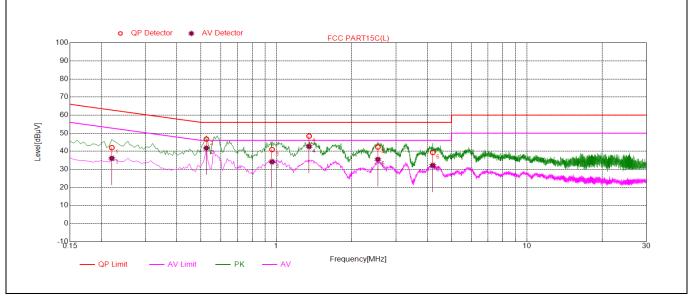
EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

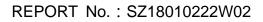
Please reference ANNEX A(1.5).

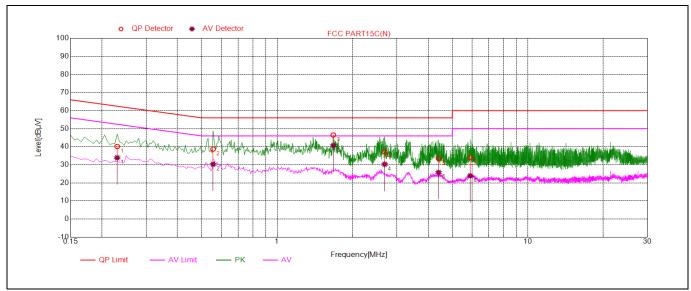
2.9.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.


A. Test setup:

The EUT configuration of the emission tests is $\underline{\text{EUT} + \text{Link.}}$ **Note:** The test voltage is AC 120V/60Hz.


B. Test Plots:


⁽Plot A: L Phase)

NO.	Fre.Emission Level (dBµV)(MHz)Quai-peakAverage		Limit (dBµV)		Power-line	Verdict	
			Average	Quai-peak Average			
1	0.20	42.01	36.10	62.82	52.82		PASS
2	0.52	46.74	41.75	56.00	46.00		PASS
3	0.96	40.93	34.17	56.00	46.00		PASS
4	1.34	48.39	42.63	56.00	46.00	Line	PASS
5	2.55	42.32	35.48	56.00	46.00		PASS
6	4.20	39.34	32.21	56.00	46.00		PASS

(Plot B: N Phase)

NO. Fre.				Limit (dBµV)		Power-line	Verdict		
	(MHz)			Average	Quai-peak	Average			
1	0.20	40.13	33.91	62.45	52.45	-	PASS		
2	0.50	38.70	30.34	56.00	46.00		PASS		
3	1.68	46.51	40.71	56.00	46.00		PASS		
4	2.68	37.20	30.31	56.00	46.00	Neutral	PASS		
5	4.00	33.59	25.75	56.00	46.00		PASS		
6	5.89	34.11	23.93	60.00	50.00		PASS		

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

2.10. Radiated Emission

2.10.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

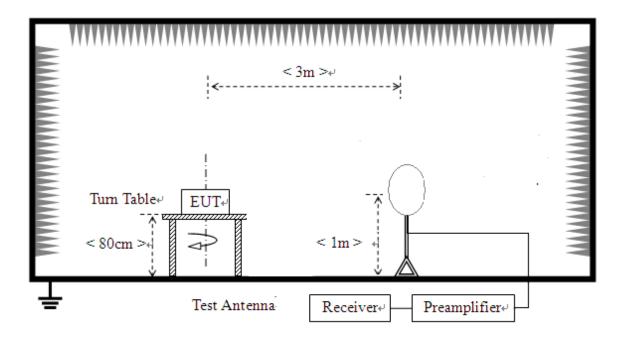
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

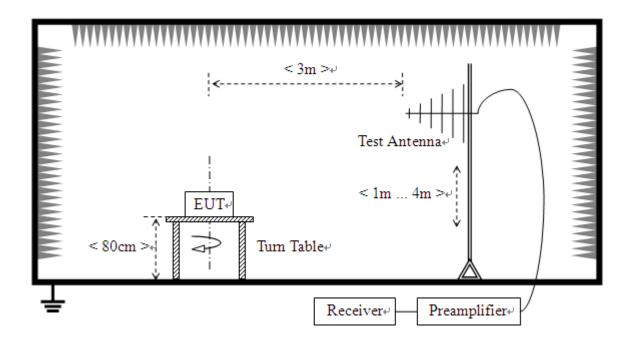
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- 1. For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

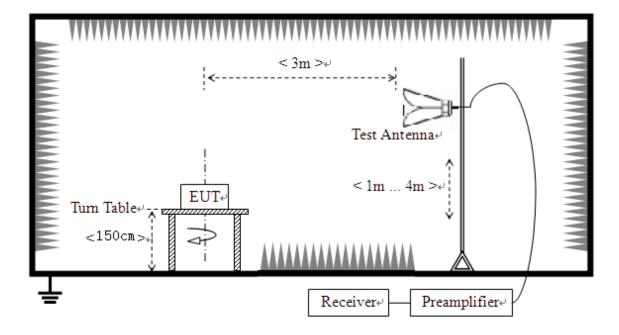



2.10.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, the EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Please reference ANNEX A(1.5).

2.10.3. Test Procedure

Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

2.10.4. Test Result

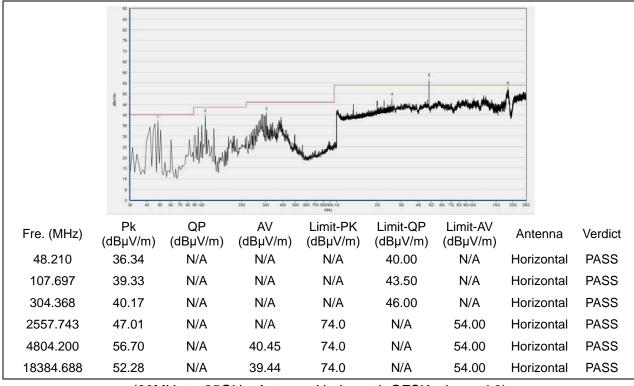
According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

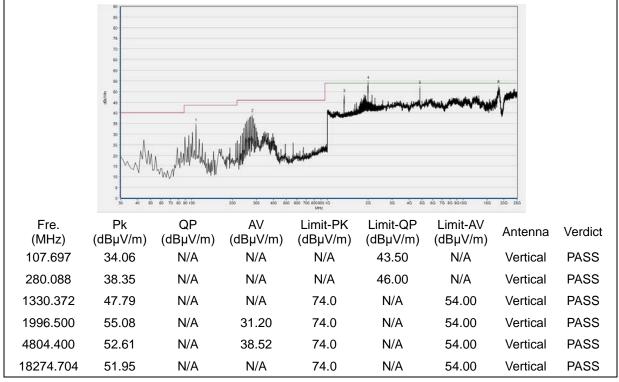
The measurement results are obtained as below:

 $\begin{array}{l} \mathsf{E} \; [\mathsf{dB} \mu \mathsf{V}/\mathsf{m}] = \mathsf{U}_\mathsf{R} + \mathsf{A}_\mathsf{T} + \mathsf{A}_\mathsf{Factor} \; [\mathsf{dB}]; \; \mathsf{A}_\mathsf{T} = \mathsf{L}_\mathsf{Cable \; loss} \; [\mathsf{dB}] \text{-} \mathsf{G}_\mathsf{preamp} \; [\mathsf{dB}] \\ \mathsf{A}_\mathsf{T} \text{: Total correction Factor except Antenna} \\ \mathsf{U}_\mathsf{R} \text{: Receiver Reading} \\ \mathsf{G}_\mathsf{preamp} \text{: Preamplifier Gain} \\ \mathsf{A}_\mathsf{Factor} \text{: Antenna Factor at 3m} \end{array}$

During the test, the total correction Factor AT and A_{Factor} were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

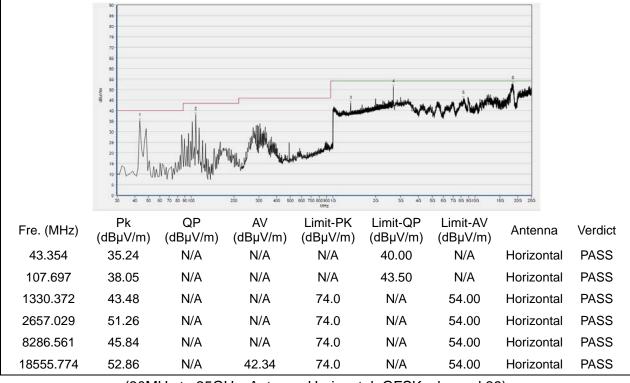

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

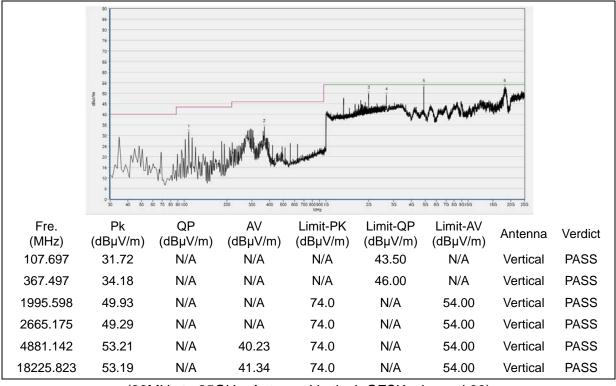


2.10.4.1 GFSK Mode:

Plots for Channel = 0

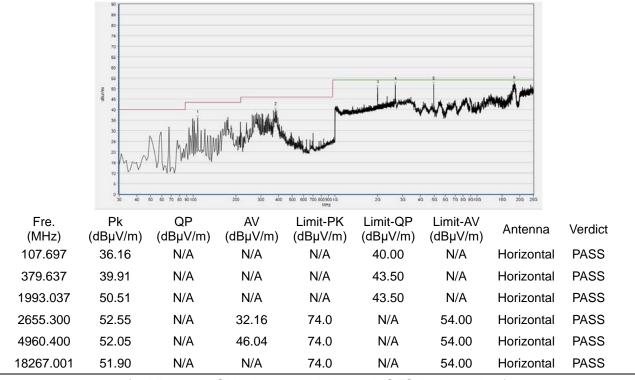
(30MHz to 25GHz, Antenna Horizontal, GFSK, channel 0)

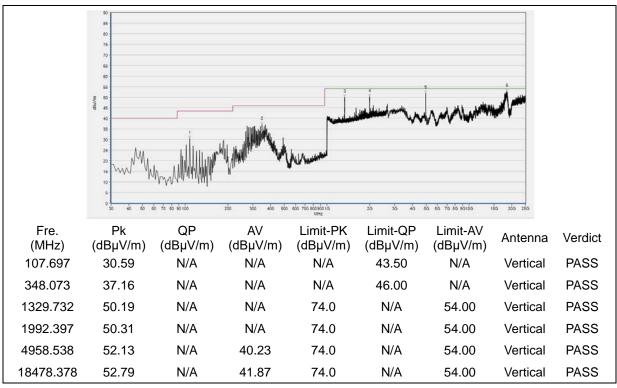

(30MHz to 25GHz, Antenna Vertical, GFSK, channel 0)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal, GFSK, channel 39)


(30MHz to 25GHz, Antenna Vertical, GFSK, channel 39)

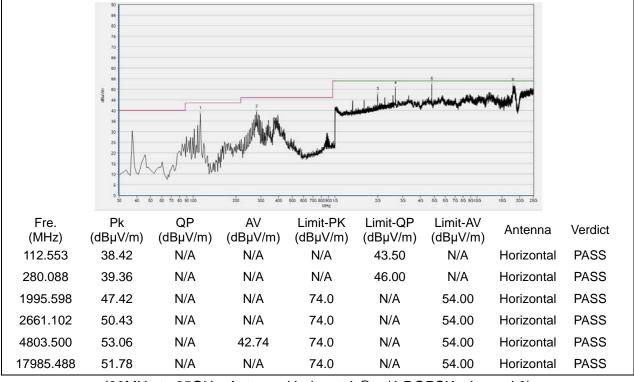

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 78

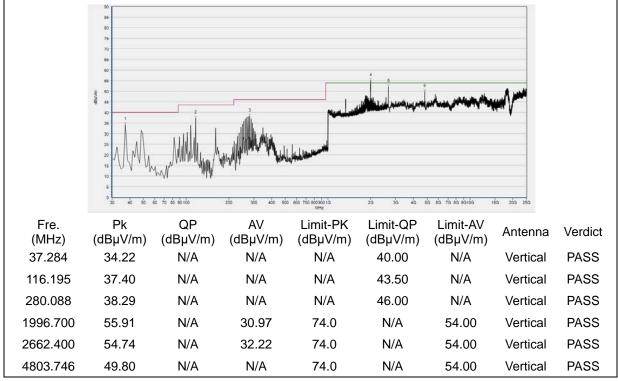
(30MHz to 25GHz, Antenna Horizontal, GFSK, channel 78)

(30MHz to 25GHz, Antenna Vertical, GFSK, channel 78)

MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

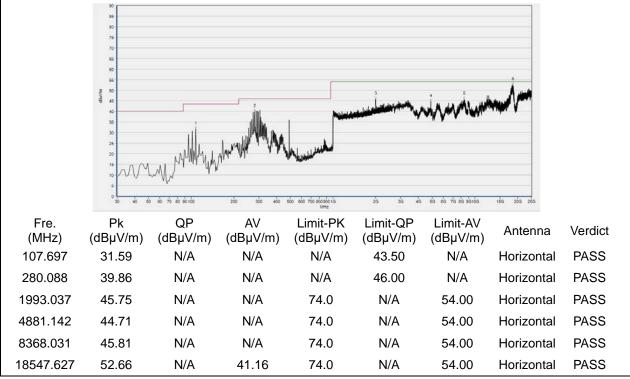
Tel: 86-755-36698555 Http://www.morlab.cn

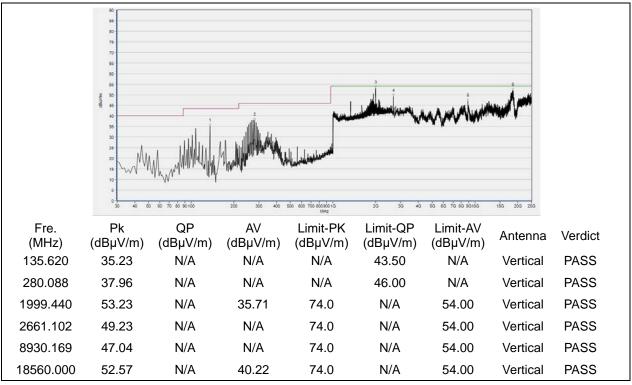


2.10.4.2 π/4-DQPSK Mode:

Plots for Channel = 0

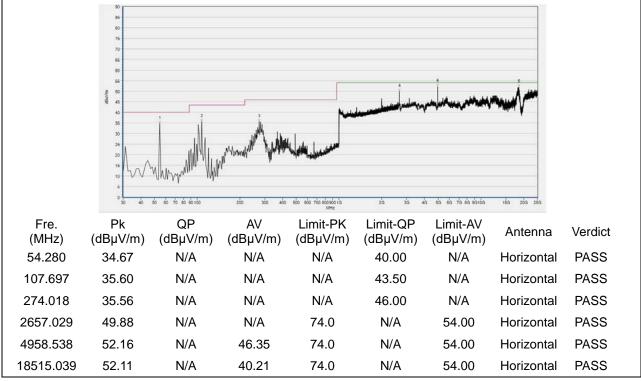
(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 0)

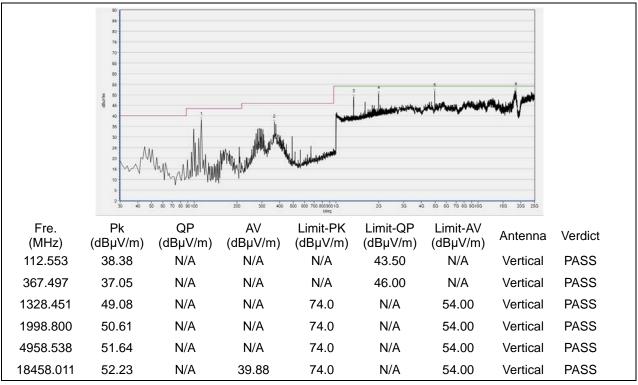

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 0)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 39)

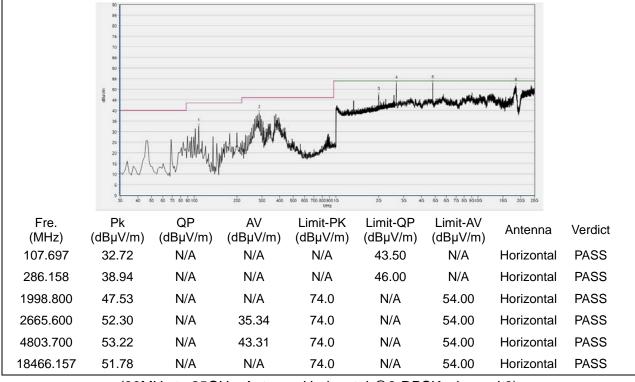

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 39)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

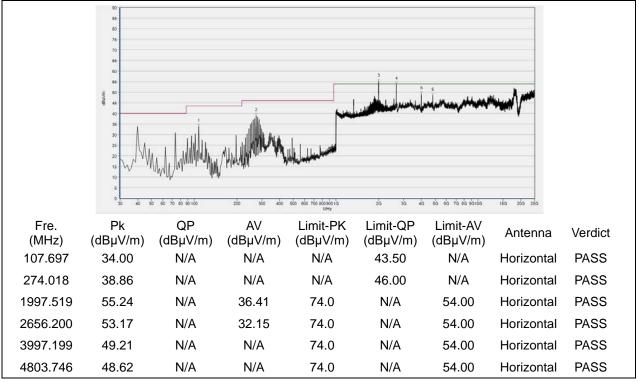
Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @ π /4-DQPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 78)



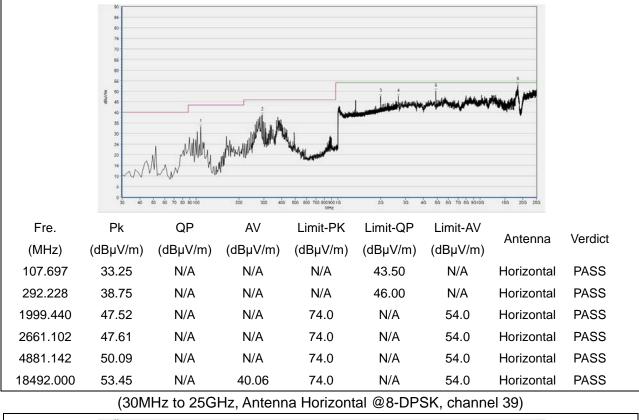
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

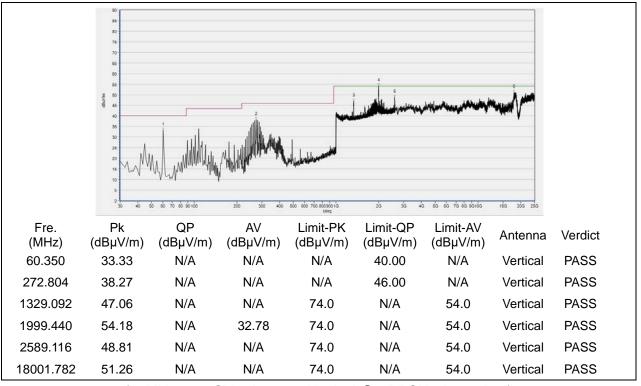


2.10.4.3 8-DPSK Mode:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 0)

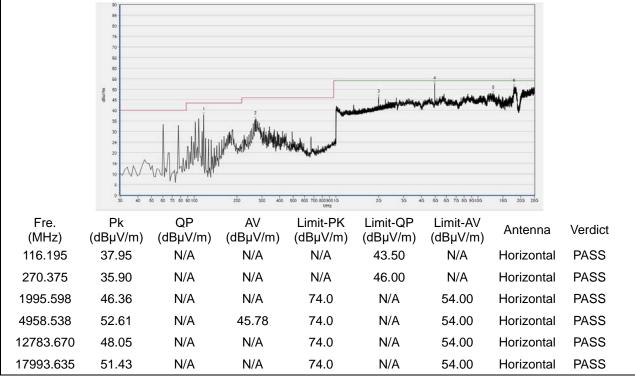

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 0)


MORLAB

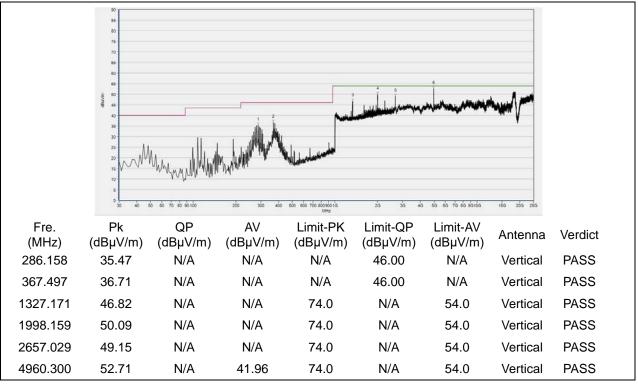
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 39

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 39)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn


D. ... **77** 0(

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 78)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 E-mail: service@morlab.cn Http://www.morlab.cn

Fax: 86-755-36698525

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Number of Hopping Frequency	±5%
Peak Output Power	±2.22dB
20dB Bandwidth	±5%
Carrier Frequency Separation	±5%
Time of Occupancy (Dwell time)	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.					
Department:	Morlab Laboratory					
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang					
	Road, Block 67, BaoAn District, ShenZhen, GuangDong					
	Province, P. R. China					
Responsible Test Lab	Mr. Su Feng					
Manager:						
Telephone:	+86 755 36698555					
Facsimile:	+86 755 36698525					

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Bluetooth Base Station	6K00006210	MT8852B	Anritsu	2017.05.24	2018.05.23
Power Splitter	NW521	1506A	Weinschel	2017.05.24	2018.05.23
Attenuator 1	(N/A.)	10dB	Resnet	2017.05.24	2018.05.23
Attenuator 2	(N/A.)	3dB	Resnet	2017.05.24	2018.05.23
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY56400093	N9038A	KEYSIGHT	2017.07.13	2018.07.12
LISN	812744	NSLK 8127	Schwarzbeck	2017.05.17	2018.05.16
Pulse Limiter	0201	VTSD	Colourana a oli	2017.05.17	2018.05.16
(20dB)	9391	9561-D	Schwarzbeck	2017.05.17	2018.05.10
Coaxial cable(BNC)			Marlah	N1/A	NI/A
(30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal. Due
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY54130016	N9038A	Agilent	2017.05.17	2018.05.16
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2017.05.14	2018.05.13
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.09.13	2018.09.12
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2017.03.07	2018.03.06
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2017.09.13	2018.09.12
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT

_

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn