

TEST REPORT

Applicant:	Huizhou Desay SV Automotive Co., Ltd.				
Address of Applicant:	103, Hechang 5th Road West, Zhongkai National Hi-tech Industrial Development Zone, Huizhou, Guangdong, China 516006				
Manufacturer/ Factory:	Huizhou Desay SV Automotive Co., Ltd.				
Address of Manufacturer/ Factory:	103, Hechang 5th Road West, Zhongkai National Hi-tech Industrial Development Zone, Huizhou, Guangdong, China 516006				
Equipment Under Test (I	EUT)				
Product Name:	Ford ICA2 AHU				
Model No.:	NV8042/70, NV8052/70, NV8062/70				
FCC ID:	2AEQT-NV806270				
Applicable standards:	FCC CFR Title 47 Part 15 Subpart E Section 15.407				
Date of sample receipt:	November 23, 2021				
Date of Test:	November 24, 2021-December 13, 2021				
Date of report issue:	December 14, 2021				
Test Result :	PASS *				

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 26

2 Version

Version No.	Date	Description
00	December 14, 2021	Original

Prepared By: en Date: December 14, 2021 Project Engineer Apinson (un) Check By: Date: December 14, 2021 Reviewer

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 2 of 26

3 Contents

		Pa	age
1	со	OVER PAGE	1
2	VE	ERSION	2
3	со	ONTENTS	3
4	TE	EST SUMMARY	4
Δ	L.1	MEASUREMENT UNCERTAINTY	
5	1000		
	- 20-		
10 mg	5.1 5.2	GENERAL DESCRIPTION OF EUT TEST MODE	
	5.3	Test Facility	
-	5.4	TEST LOCATION	
5	5.5	DESCRIPTION OF SUPPORT UNITS	
5	5.6	DEVIATION FROM STANDARDS	
5	5.7	Additional Instructions	7
6	TE	EST INSTRUMENTS LIST	8
7	те	EST RESULTS AND MEASUREMENT DATA	10
1	I E		1000
1 may 1 may 1	7.1	ANTENNA REQUIREMENT:	
	.2	EMISSION BANDWIDTH	
	.3	PEAK TRANSMIT POWER	
	′.4 ′.5	Power Spectral Density Band Edge	
	.5 7.6	RADIATED EMISSION	
	.7	FREQUENCY STABILITY	100 C
8	TE	EST SETUP PHOTO	. 26
9	EU	JT CONSTRUCTIONAL DETAILS	. 26

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	FCC part 15.203	PASS
AC Power Line Conducted Emission	FCC part 15.207	N/A
99% Bandwidth	Report only	PASS
Emission Bandwidth	FCC part 15.407(a)	PASS
Peak Transmit Power	FCC part 15.407(a)(1)(2)	PASS
Power Spectral Density	FCC part 15.407(a) (1)(2)	PASS
Undesirable Emission	FCC part 15.407(b), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Frequency Stability	FCC part 15.407(g)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard. N/A:Not applicable

4.1 Measurement Uncertainty

Iz-200MHz3.8039dB(1)1Hz-1GHz3.9679dB(1)					
1Hz-1GHz 3.9679dB (1)					
Iz-18GHz 4.29dB (1)					
Hz-40GHz 3.30dB (1)					
AC Power Line Conducted 0.15MHz ~ 30MHz 3.44dB (
ŀ					

5 General Information

5.1 General Description of EUT

				the second second	_				
Product Name:	Ford ICA2 AHI	Ford ICA2 AHU							
Model No.:	NV8042/70, NV8052/70, NV8062/70								
Test Model No.:	NV8042/70								
Remark:All above models are identical in the same PCB layout, interior structure and electrical circuits.									
The difference is model name for commercial purpose.									
Test sample(s) ID:	GTS202111000218-1								
Sample(s) Status:	Engineer sample								
S/N:	300018062700000012								
Hardware Version:	008								
Software Version:	DCV1								
Operation Frequency:	Band	Mode	Frequency Range(MHz)	Number of channels					
	U-NII Band	IEEE 802.11a	5180-5240	4	1				
		IEEE 802.11n/ac 20MHz	5180-5240	4					
		IEEE 802.11n/ac 40MHz	5190-5230	2					
Modulation technology:	OFDM								
Antenna Type:	Integral Antenr	na							
Antenna gain:	0dBi								
Power supply:	DC 12V								

Channel list for 802.11a/n(HT20)/ac(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz

Channel list for 802.11n(HT40)/ac(HT40)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
38	5190MHz	46	5230MHz					

5.2 Test mode

Transmitting mode	ransmitting mode Keep the EUT in transmitting with modulation								
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:									
Pre-scan all kind of data	Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.								
Mode		Data rate							
802.11a/n/ac(HT20) 6/6.5 Mbps									
802.11n/ac(HT40) 13.5 Mbps									

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing .

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480

Fax: 0755-27798960

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number
GS	Lead–Acid battery	S5D26R-MFZ	9442804454

5.6 Deviation from Standards

None.

5.7 Additional Instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default

6 Test Instruments list

Rad	iated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17 2021	Oct. 16 2022
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17 2021	Oct. 16 2022
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17 2021	Oct. 16 2022
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Con	Conducted Emission										
ltem	Test Equipment	Manufacturer Model No.		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022					
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022					
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022					
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022					
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A					
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022					
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022					
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 24 2021	June. 23 2022					
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022					

RF C	RF Conducted Test:										
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022					
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022					
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022					
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022					
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022					
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022					
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022					
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022					

Gene	General used equipment:									
ltem	Test Equipment	Manufacturer Model No		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Humidity/ Temperature Indicator	КТЈ	TA328	GTS243	June. 24 2021	June. 23 2022				
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022				

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement:	rement: FCC Part15 C Section 15.203							
15.203 requirement:								
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an								
	coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited.							
E.U.T Antenna:								

7.2 Emission Bandwidth

Test Requirement :	FCC Part15 E Section 15.407							
Test Method :	ANSI C63.10:2013 & KDB 789033 D02 v02r01							
Limit:	N/A							
Test setup:	Spectrum Analyzer E-U.T Non-Conducted Table							
	Ground Reference Plane							
Test procedure:	According to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

Measurement Data: The detailed test data see Appendix for 5.2G.

7.3 Peak Transmit Power

Test Requirement	FCC Part15 E Section	15.407						
Test Method :	ANSI C63.10:2013 &	ANSI C63.10:2013 & KDB 789033 D02 v02r01						
FCC Limit:	Frequency band (MHz)	Limit						
	5150-5250	≤1W(30dBm) for master device						
		≤250Mw(23.98dBm) for client device ≤250Mw(23.98dBm) for client device or						
	5250-5350	11dBm+10logB*						
	5470-5725	≤250Mw(23.98dBm) for client device or 11dBm+10logB*						
	the second se	s the 26Db emission bandwidth in MHz.						
		ucted output power must be measured over any						
	terms of an rms-equi	s transmission using instrumentation calibrated in valent voltage.						
IC Limit:		shall not exceed 200 mW or 10 + 10 log10B, dBm,						
		ss. B is the 99% emission bandwidth in megahertz						
Test setup:	Power Meter Non-Conduct							
Tost procedure:	Magguramont using	an PE average power meter						
Test procedure:	(i) Measurement meter with a t	an RF average power meter s may be performed using a wideband RF power hermocouple detector or equivalent if all of the ed below are satisfied						
	a) The EUT is with a constar	s configured to transmit continuously or to transmit nt duty cycle.						
		when the EUT is transmitting, it must be t is maximum power control level.						
		ation period of the power meter exceeds the od of the transmitted signal by at least a factor of						
		ter does not transmit continuously, measure the of the transmitter output signal as described in						
		average power of the transmitter. This is an average over both the on and off periods of r.						
		asurement in dBm by adding 10 log(1/x) where x is (e.g., 10log(1/0.25) if the duty cycle is 25 percent).						
Test Instruments:	Refer to section 6.0 fo	or details						
Test mode:	Refer to section 5.2 fo	or details						
Test results:	Pass							

Measurement Data: The detailed test data see Appendix for 5.2G.

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.4 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.40	07						
Test Method :	ANSI C63.10:2013 & KDB 7	789033 D02 v02r01						
FCC Limit:	Frequency band (MHz)	Limit						
	5150-5250	≤17dBm in 1MHz for master device						
	3130-3230	≤11dBm in 1MHz for client device						
	5250-5350	≤11dBm in 1MHz for client device						
	5470-5725 ≤11dBm in 1MHz for client device							
	Remark: The maximum power spectral density is measured a conducted emission by direct connection of a calibrated test in to the equipment under test.							
IC Limit:	e.i.r.p. spectral density s band.	hall not exceed 10 dBm in any 1.0 MHz						
Test setup:	Spectrum Analyzer							
	Image: Constraint of the second se							
Test procedure:	being tested by following measuring maximum co analyzer or EMI receive SA-2, SA-3, or alternativ including, the step labele	er spectrum for the EUT operating mode g the instructions in section E)2) for inducted output power using a spectrum r: select the appropriate test method (SA-1, ves to each) and apply it up to, but not ed, "Compute power". Inction on the instrument to find the peak of						
	 Make the following adjust applicable: 	stments to the peak value of the spectrum, if						
	a) If Method SA-2 or SA	-2 Alternative was used, add 10 log(1/x), e, to the peak of the spectrum.						
	used in step E)2)g)(viii), for the difference betwe	hative was used and the linear mode was , add 1 dB to the final result to compensate en linear averaging and power averaging.						
Toot Instruments	4) The result is the PSD.	ila						
Test Instruments: Test mode:	Refer to section 6.0 for deta Refer to section 5.2 for deta							
Test results:	Pass	0						
Measurement Data: The detailed		26						

Measurement Data: The detailed test data see Appendix for 5.2G.

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.5 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 5.205									
Test Method:	ANSI C63.10:201	ANSI C63.10:2013								
Test site:	Measurement Dis	stance: 3m (Se	emi-Anecho	ic Chambe	r)					
Receiver setup:										
	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
		AV	1MHz	3MHz	Average Value					
Limit:	Frequen	CV I	_imit (dBuV	/m @3m)	Remark					
	30MHz-88		40.0		Quasi-peak Value					
	88MHz-216		43.5		Quasi-peak Value					
	216MHz-96		46.0		Quasi-peak Value					
	960MHz-1	and the second se	54.0		Quasi-peak Value					
		and a start and a start	54.0		Average Value					
	Above 10	6Hz -	68.2		Peak Value					
			00.		i our vuido					
Toot Dropoduro:	 For transmitters operating in the 5.15-5.25 GHz band: all em outside of the 5.15-5.35 GHz band shall not exceed an EIRP dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: all em outside of the 5.15-5.35 GHz band shall not exceed an EIRP dBm/MHz. Devices operating in the 5.25-5.35 GHz band generate emissions in the 5.15-5.25 GHz band must m applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-out emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band: all em outside of the 5.47-5.725 GHz band shall not exceed an EIRP dBm/MHz. 									
Test Procedure:	 dBm/MHz. a. The EUT was placed on the top of a rotating table 1.5 m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values 									

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	Report No.: GTS202111000218F02						
	have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.						
Test setup:	For radiated emissions above 1GHz						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows: E[dBuV/m] = EIRP[dBm] + 95.2; For example, if EIRP = -27dBm E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

GTS

Report No.: GTS202111000218F02

Measurement Data:

802.11a(HT2	20)	State State	10000	PK			1	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	42.55	32.07	8.99	37.49	46.12	68.2	-22.08	Horizontal
5350.00	44.23	31.75	9.29	37.2	48.07	68.2	-20.13	Horizontal
5150.00	46.65	32.07	8.99	37.49	50.22	68.2	-17.98	Vertical
5350.00	46.7	31.75	9.29	37.2	50.54	68.2	-17.66	Vertical

802.11a(HT2	20)			AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	38.63	32.07	8.99	37.49	42.2	54	-11.8	Horizontal
5350.00	36.79	31.75	9.29	37.2	40.63	54	-13.37	Horizontal
5150.00	38.46	32.07	8.99	37.49	42.03	54	-11.97	Vertical
5350.00	37.51	31.75	9.29	37.2	41.35	54	-12.65	Vertical

802.11n(HT2	20)			PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	44.06	32.07	8.99	37.49	47.63	68.2	-20.57	Horizontal
5350.00	46.67	31.75	9.29	37.2	50.51	68.2	-17.69	Horizontal
5150.00	42.47	32.07	8.99	37.49	46.04	68.2	-22.16	Vertical
5350.00	46.77	31.75	9.29	37.2	50.61	68.2	-17.59	Vertical

802.11n(HT2	20)			AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	35.58	32.07	8.99	37.49	39.15	54	-14.85	Horizontal
5350.00	39.78	31.75	9.29	37.2	43.62	54	-10.38	Horizontal
5150.00	37.26	32.07	8.99	37.49	40.83	54	-13.17	Vertical
5350.00	37.94	31.75	9.29	37.2	41.78	54	-12.22	Vertical

802.11ac(HT	[20]			PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	43.44	32.07	8.99	37.49	47.01	68.2	-21.19	Horizontal
5350.00	46.56	31.75	9.29	37.2	50.4	68.2	-17.8	Horizontal
5150.00	44.21	32.07	8.99	37.49	47.78	68.2	-20.42	Vertical
5350.00	45.79	31.75	9.29	37.2	49.63	68.2	-18.57	Vertical

1 1	802.11ac(HT	20)		AV					
	Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	polarization
	(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

· · · · ·		the second se	and the second	and the second	and the second	the second se			
1		(dBuV)	(dB/m)	(dB)	(dB)			(dB)	
24	5150.00	38.54	32.07	8.99	37.49	42.11	54	-11.89	Horizontal
	5350.00	38.88	31.75	9.29	37.2	42.72	54	-11.28	Horizontal
	5150.00	39.19	32.07	8.99	37.49	42.76	54	-11.24	Vertical
	5350.00	38.26	31.75	9.29	37.2	42.1	54	-11.9	Vertical

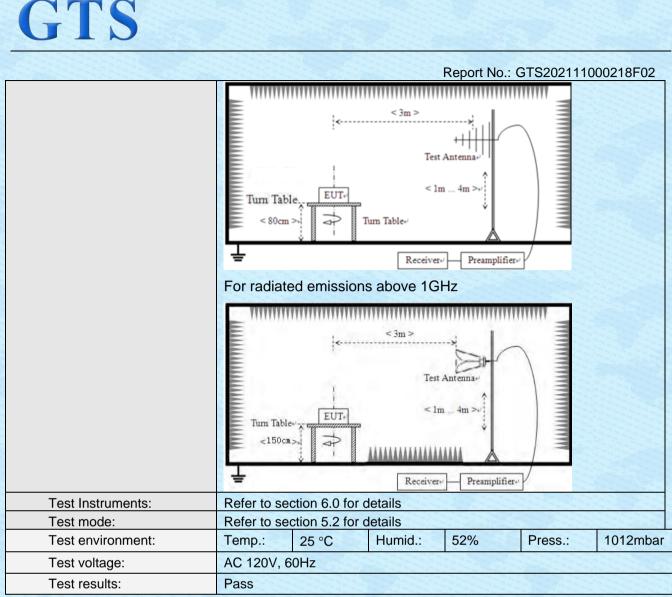
802.11n(HT4	40)			PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	42.96	32.07	8.99	37.49	46.53	68.2	-21.67	Horizontal
5350.00	46.17	31.75	9.29	37.2	50.01	68.2	-18.19	Horizontal
5150.00	45.68	32.07	8.99	37.49	49.25	68.2	-18.95	Vertical
5350.00	46.74	31.75	9.29	37.2	50.58	68.2	-17.62	Vertical

802.11n(HT4	40)			AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	37.6	32.07	8.99	37.49	41.17	54	-12.83	Horizontal
5350.00	39.66	31.75	9.29	37.2	43.5	54	-10.5	Horizontal
5150.00	39.64	32.07	8.99	37.49	43.21	54	-10.79	Vertical
5350.00	39.68	31.75	9.29	37.2	43.52	54	-10.48	Vertical

802.11ac(HT	Г40)			PK			132223	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	45.71	32.07	8.99	37.49	49.28	68.2	-18.92	Horizontal
5350.00	43.8	31.75	9.29	37.2	47.64	68.2	-20.56	Horizontal
5150.00	44.44	32.07	8.99	37.49	48.01	68.2	-20.19	Vertical
5350.00	44.16	31.75	9.29	37.2	48	68.2	-20.2	Vertical

802.11ac(H	Г40)			AV				
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	and the second	Limit	polarization
	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/m)	(dBuV/m)	(dB)	Contraction of the
5150.00	35.46	32.07	8.99	37.49	39.03	54	-14.97	Horizontal
5350.00	35.99	31.75	9.29	37.2	39.83	54	-14.17	Horizontal
5150.00	38.48	32.07	8.99	37.49	42.05	54	-11.95	Vertical
5350.00	35.3	31.75	9.29	37.2	39.14	54	-14.86	Vertical

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



7.6 Radiated Emission

Test Requirement :	FCC Part15 C	Section 15.209 ar	d 15 205						
Test Method :		The second s	10 10.200						
	ANSI C63.10: 2013 9kHz to 40GHz								
Test Frequency Range:		and the second s	ni Anachair	Chambar					
Test site:		Distance: 3m (Ser Detector	RBW	VBW	Value				
Receiver setup:	Frequency 9kHz-150KH		200Hz	1kHz	Quasi-peak Value				
	150kHz-30MH		9kHz	30kHz	Quasi-peak Value				
	30MHz-1GH		120KHz	300KHz	Quasi-peak Value				
	the second second second second	Peak Value							
	Above 1GHz	AV	1MHz	3MHz	Average Value				
FCC Limit:	Frequency (MHz)	Field strength (microvo	lts/meter)	Measuremen	t distance (meters)				
	0.009-0.490 2400/F(kHz)								
	0.490-1.705 24000/F(kHz)								
	1.705-30.0 30-88	30 100**			30				
	30-88 100** 88-216 150**								
	216-960 200**								
	Above 960 500 3								
Tost Procedure:	The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.								
Test Procedure:									

	Report No.: GTS202111000218F02
	 2>.Above 1GHz test procedure: On the test site as test setup graph above, the EUT shall be placed at the 0.8m support on the turntable and in the position closest to normal use as declared by the provider. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. Repeat step 4 for test frequency with the test antenna polarized horizontally. Remove the transmitter and replace it with a substitution antenna Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. Repeat step 7 with both antennas horizontally polarized for each test frequency. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and
Test setup:	For radiated emissions from 9kHz to 30MHz
	For radiated emissions from 30MHz to1GHz

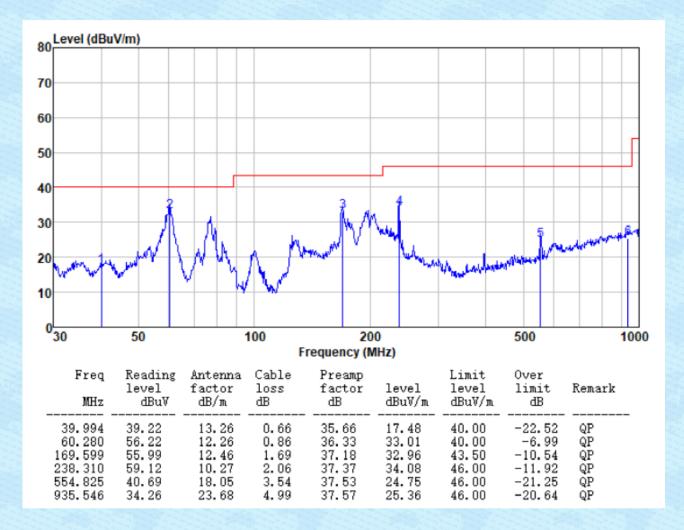
Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

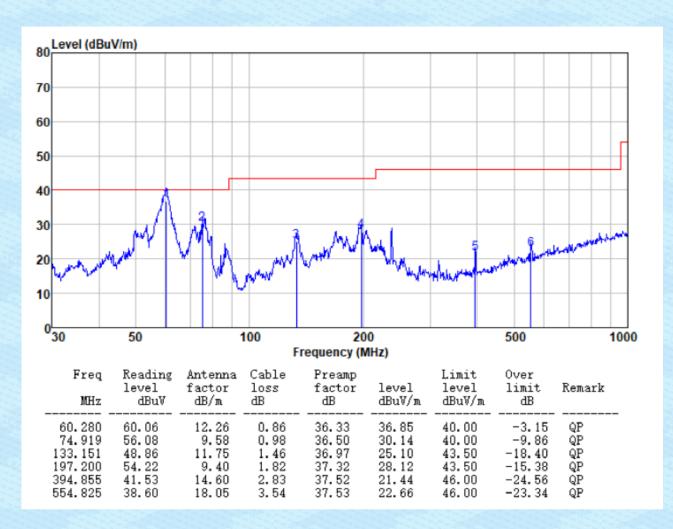
Measurement Data:

9 kHz ~ 30 MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

30MHz~ 1GHz

Pre-scan all test modes, found worst case at 802.11ac(HT20) 5200MHz, so only show the test result of 802.11ac(HT20) 5200MHz,



Horizontal:

Vertical:

Above 1GHz:

802.11ac(HT	Г20)			Test	Frequency :	: 5180MHz		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	34.44	38.96	8.27	35.64	46.03	68.2	-22.17	Vertical
15540	34.1	38.4	10.57	35.35	47.72	68.2	-20.48	Vertical
10360	33.98	38.96	8.27	35.64	45.57	68.2	-22.63	Horizontal
15540	34.03	38.4	10.57	35.35	47.65	68.2	-20.55	Horizontal
10360	28.04	38.96	8.27	35.64	39.63	54	-14.37	Vertical
15540	27.76	38.4	10.57	35.35	41.38	54	-12.62	Vertical
10360	26.23	38.96	8.27	35.64	37.82	54	-16.18	Horizontal
15540	27.16	38.4	10.57	35.35	40.78	54	-13.22	Horizontal

802.11ac(HT	Г20)			Test	Frequency	: 5200MHz		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	36	39.01	8.29	35.67	47.63	68.2	-20.57	Vertical
15600	36.39	38.3	10.62	35.36	49.95	68.2	-18.25	Vertical
10400	33.04	39.01	8.29	35.67	44.67	68.2	-23.53	Horizontal
15600	36.37	38.3	10.62	35.36	49.93	68.2	-18.27	Horizontal
10400	25.97	39.01	8.29	35.67	37.6	54	-16.4	Vertical
15600	27.65	38.3	10.62	35.36	41.21	54	-12.79	Vertical
10400	25.96	39.01	8.29	35.67	37.59	54	-16.41	Horizontal
15600	27.8	38.3	10.62	35.36	41.36	54	-12.64	Horizontal

802.11ac(HT		Test Frequency: 5240MHz						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	35.85	39.15	8.32	35.78	47.54	68.2	-20.66	Vertical
15720	33.38	38	10.72	35.37	46.73	68.2	-21.47	Vertical
10480	33.9	39.15	8.32	35.78	45.59	68.2	-22.61	Horizontal
15720	35.45	38	10.72	35.37	48.8	68.2	-19.4	Horizontal
10480	27.78	39.15	8.32	35.78	39.47	54	-14.53	Vertical
15720	27.65	38	10.72	35.37	41	54	-13	Vertical
10480	27.64	39.15	8.32	35.78	39.33	54	-14.67	Horizontal
15720	29.16	38	10.72	35.37	42.51	54	-11.49	Horizontal

802.11ac(HT	lac(HT40) Test Frequency: 5190MHz							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380	32.93	39.01	8.28	35.67	44.55	68.2	-23.65	Vertical
15570	33.13	38.3	10.6	35.36	46.67	68.2	-21.53	Vertical
10380	33.3	39.01	8.28	35.67	44.92	68.2	-23.28	Horizontal
15570	36.32	38.3	10.6	35.36	49.86	68.2	-18.34	Horizontal
10380	28.15	39.01	8.28	35.67	39.77	54	-14.23	Vertical
15570	25.06	38.3	10.6	35.36	38.6	54	-15.4	Vertical
10380	27.41	39.01	8.28	35.67	39.03	54	-14.97	Horizontal
15570	27.07	38.3	10.6	35.36	40.61	54	-13.39	Horizontal

802.11ac(HT	Г40)		Test Frequency: 5230MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460	36.61	39.11	8.31	35.75	48.28	68.2	-19.92	Vertical
15690	34.1	38.1	10.7	35.37	47.53	68.2	-20.67	Vertical
10460	35.67	39.11	8.31	35.75	47.34	68.2	-20.86	Horizontal
15690	33.3	38.1	10.7	35.37	46.73	68.2	-21.47	Horizontal
10460	29.18	39.11	8.31	35.75	40.85	54	-13.15	Vertical
15690	25.78	38.1	10.7	35.37	39.21	54	-14.79	Vertical
10460	27.19	39.11	8.31	35.75	38.86	54	-15.14	Horizontal
15690	28.4	38.1	10.7	35.37	41.83	54	-12.17	Horizontal

Notes:

1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.

2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.

3. all were test, only the worst result recorded in the report.

7.7 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)				
Test Method:	ANSI C63.10:2013, FCC Part 2.1055,				
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified				
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.				
Test setup:	Spectrum analyzer Image: Constraint of the sector of th	Temperature Chamber			
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement data: The detailed test data see Appendix for 5.2G.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---END----