

FCC SAR REPORT

Applicant: Automotive Data Solutions Inc.

Address of Applicant: 8400 Bougainville Montreal Quebec Canada H4P 2G1

Equipment Under Test (EUT)

Product Name: CAR ALARM

Model No.: TR3450ATL, TR3450AETL

FCC ID: 2AEPJ-TR3450ATL

Applicable standards: FCC 47 CFR Part 2.1093

Date of Test: 23 Mar., 2022~25 Mar., 2022

Test Result: Maximum Reported 1-g SAR (W/kg)
Body: 0.532

Authorized Signature:

Bruce Zhang
Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	25 Apr., 2022	Original

Tested by:

Vieta Zhang

Date:

25 Apr., 2022

Test Engineer**Reviewed by:**

Wiby Zhang

Date:

25 Apr., 2022

Project Engineer

3 Contents

1	COVER PAGE.....	1
2	VERSION.....	2
3	CONTENTS.....	3
4	SAR RESULTS SUMMARY.....	4
5	GENERAL INFORMATION.....	5
5.1	CLIENT INFORMATION.....	5
5.2	GENERAL DESCRIPTION OF EUT.....	5
5.3	MAXIMUM RF OUTPUT POWER.....	6
5.4	ENVIRONMENT OF TEST SITE	7
5.5	TEST SAMPLE PLAN.....	7
5.6	TEST LOCATION	7
6	INTRODUCTION.....	8
6.1	INTRODUCTION	8
6.2	SAR DEFINITION.....	8
7	RF EXPOSURE LIMITS	9
7.1	UNCONTROLLED ENVIRONMENT.....	9
7.2	CONTROLLED ENVIRONMENT	9
7.3	RF EXPOSURE LIMITS.....	9
8	SAR MEASUREMENT SYSTEM.....	10
8.1	E-FIELD PROBE.....	11
8.2	ROBOT	12
8.3	PHANTOM.....	13
8.4	DEVICE HOLDER.....	13
8.5	TEST EQUIPMENT LIST	14
9	TISSUE SIMULATING LIQUIDS	15
10	SAR SYSTEM VERIFICATION.....	17
11	EUT TESTING POSITION.....	19
11.1	BODY CONFIGURATIONS	19
12	MEASUREMENT PROCEDURES	20
12.1	Spatial Peak SAR Evaluation.....	20
12.2	POWER REFERENCE MEASUREMENT.....	21
12.3	AREA & ZOOM SCAN PROCEDURES.....	21
12.4	VOLUME SCAN PROCEDURES.....	22
12.5	SAR AVERAGED METHODS	22
12.6	POWER DRIFT MONITORING	22
13	CONDUCTED RF OUTPUT POWER.....	23
13.1	LoRA BAND CONDUCTED POWER	23
14	EXPOSURE POSITIONS CONSIDERATION	24
14.1	EUT ANTENNA LOCATIONS.....	24
15	SAR TEST RESULTS SUMMARY.....	25
15.1	STANDALONE BODY SAR	25
15.2	REPEATED SAR MEASUREMENT	26
15.3	MULTI-BAND SIMULTANEOUS TRANSMISSION CONSIDERATIONS.....	27
15.4	MEASUREMENT UNCERTAINTY.....	28
16	REFERENCE.....	29
	APPENDIX A: PLOTS OF SAR SYSTEM CHECK	30
	APPENDIX B: PLOTS OF SAR TEST DATA	33
	APPENDIX C: SYSTEM CALIBRATION CERTIFICATE.....	36

4 SAR Results Summary

The maximum results of Specific Absorption Rate (SAR) found during test as bellows:

<Highest Reported standalone SAR Summary>

Exposure Position	Frequency Band	Reported 1-g SAR (W/kg)	Equipment Class	Highest Reported 1-g SAR (W/kg)
Body (0 mm Gap)	LoRa (TR3450ATL)	0.532	DTS	0.532
	LoRa (TR3450AETL)	0.521		

Note:

1. This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

5 General Information

5.1 Client Information

Applicant:	Automotive Data Solutions Inc.
Address of Applicant:	8400 Bougainville Montreal Quebec Canada H4P 2G1
Manufacturer:	DONGGUAN PORTMAN ELECTRONIC SCIENCE AND TECHNOLOGY CO.,LTD.
Address of Manufacturer:	NO.10,LUYI 2 ROAD,TANGXIA TOWN,DONGGUAN CITY GUANGDONG PROVINCE

5.2 General Description of EUT

Product Name:	CAR ALARM
Model No.:	TR3450ATL
Category of device	Portable device
Operation Frequency:	915 MHz
Modulation technology:	LoRa
Antenna Type:	Helix antenna
Antenna Gain:	Lora: -1.25dBi
Dimensions (L*W*H)	61mm (L)× 33mm (W)× 12mm (H)
Power Supply:	DC3.0V (CR2450)
Remark:	Model No.:TR3450ATL, TR3450AETL were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

5.3 Maximum RF Output Power

Band	Average Power (dBm)	Target Power and Tolerance(dBm)
LoRa	17.18	17.5

5.4 Environment of Test Site

Temperature:	18°C ~25°C
Humidity:	35%~75% RH
Atmospheric Pressure:	1010 mbar

5.5 Test Sample Plan

Sample Number of TR3450ATL	Used for Test Items
1#	SAR
Sample Number Sample Number of TR3450AETL	Used for Test Items
1#	SAR

Remark: JianYan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.

5.6 Test Location

JianYan Testing Group Shenzhen Co., Ltd.
No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street,
Bao'an District, Shenzhen, Guangdong, People's Republic of China.
Tel: +86-755-23118282, Fax: +86-755-23116366
Email: info-JYFee@lets.com, Website: <http://jyt.lets.com>

6 Introduction

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \left(\frac{\delta T}{\delta t} \right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 RF Exposure Limits

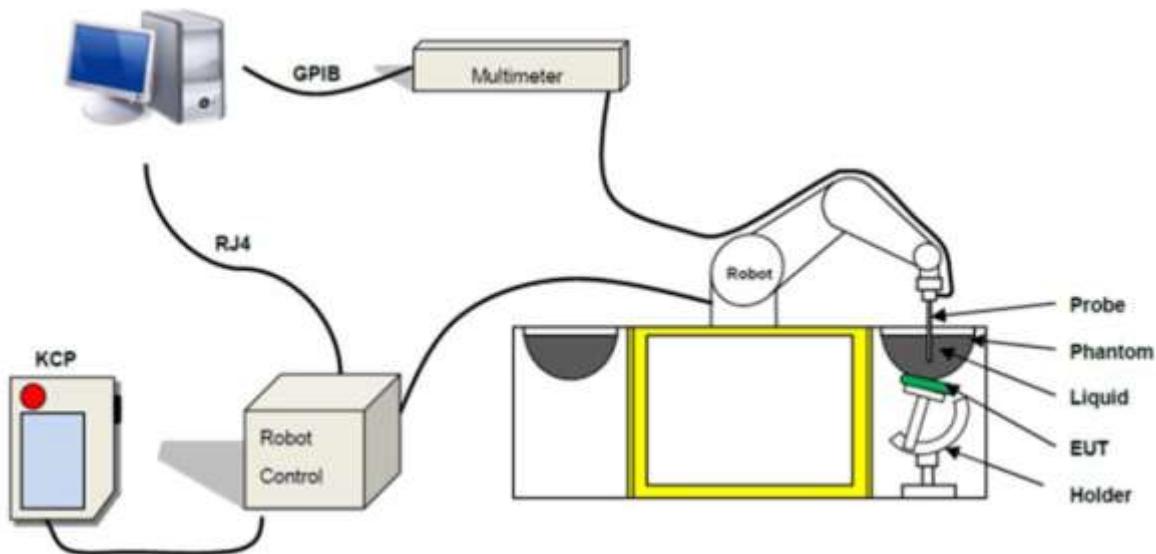
7.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

7.3 RF Exposure Limits


SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS		
	UNCONTROLLED ENVIRONMENT <i>General Population</i> (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT <i>Occupational</i> (W/kg) or (mW/g)
SPATIAL PEAK SAR Brain	1.6	8.0
SPATIAL AVERAGE SAR Whole Body	0.08	0.4
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20

Note:

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
2. The Spatial Average value of the SAR averaged over the whole body.
3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

8 SAR Measurement System

Fig.8.1 MVGCOMOSAR System Configurations

These measurements were performed with the automated near-field scanning system COMOSAR from MVG. The system is based on a high precision robot (working range: 850 mm), which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit.

The SAR measurements were conducted with dosimetric probe (manufactured by MVG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in SAR standard with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure described in SAR standard and found to be better than ± 0.25 dB. The phantom used was the SAM Phantom as described in FCC supplement C, IEEE P1528.

The MVGCOMOSAR system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

8.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by MVG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

➤ E-Field Probe Specification

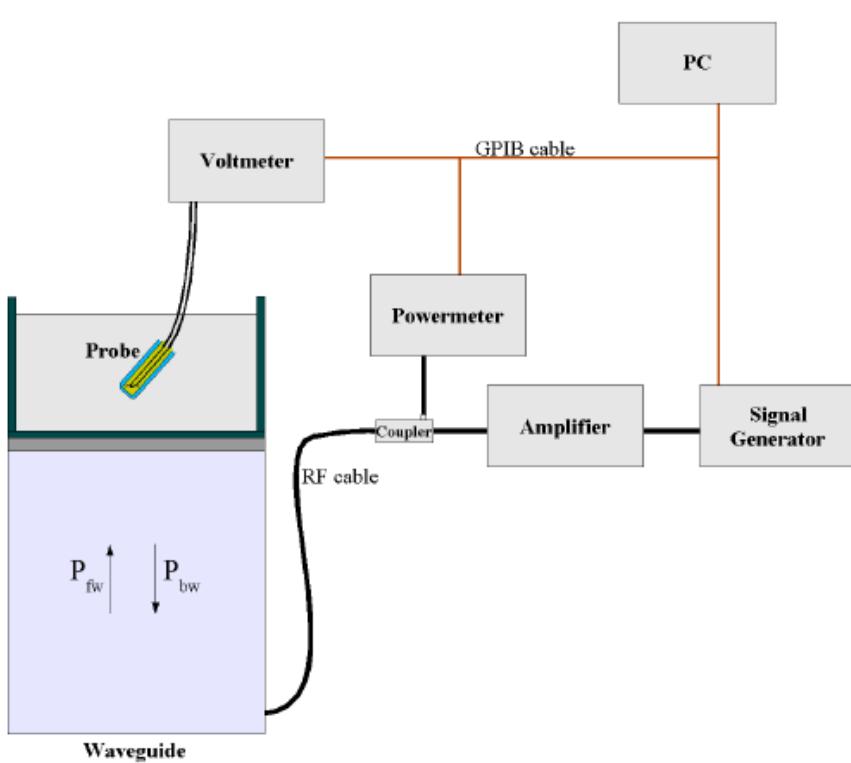

Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Model	SSE2
Frequency Range	150 MHz to 6 GHz
Dynamic Range	0.01W/kg to 100W/kg
Probe linearity	<0.25dB
Dimensions	Overall length: 330 mm Tip diameter: 2.5 mm Distance between dipoles / probe extremity: 1 mm

Fig. 8.2 Photo of E-Field Probe

➤ E-Field Probe Calibration

Probe calibration is realized, in compliance with EN/IEC 62209-1/-2 and IEEE 1528 std, with CALISAR, MVG proprietary calibration system. The calibration is performed with the technique using reference waveguide.

$$SAR = \frac{4(P_{fw} - P_{bw})}{ab\sigma} \cos^2\left(\pi \frac{y}{a}\right) e^{(2\pi/\sigma)}$$

Where :

- P_{fw} = Forward Power
- P_{bw} = Backward Power
- a and b = Waveguide Dimensions
- i = Skin Depth

Keithley configuration

Rate=Medium; Filter=ON; RDGS=10; FILTER TYPE=MOVING AVERAGE; RANGE AUTO

After each calibration, a SAR measurement performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The Calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/V_{lin}(N) \quad (N=1,2,3)$$

The linearized output voltage $V_{lin}(N)$ is obtained from the displayed output voltage $V(N)$ using

$$V_{lin}(N)=V(N)*(1+V(N)/DCP(N)) \quad N=1,2,3$$

Where the DCP is the dipole compression point in mV

8.2 Robot

The COMOSAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA-KRC2sr) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; nobelt drives)
- Jerk-free straight movements
- Low ELF interference (motor control fields shielded via the closed metallic constructionshields)

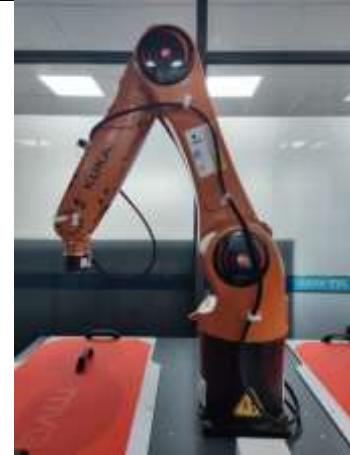


Fig. 8.4 Photo of Robot

8.3 Phantom

<SAM Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume Dimensions	Approx. 27 liters Length: 1000mm; Width: 500mm; Height: 200mm	
Material	Fiberglass based	
Relative permittivity	3-4	
Loss tangent	0.02	
Measurement Areas	Left Head, Right Head, Flat phantom	

Fig. 8.7 Photo of SAM Phantom

The phantom developed by MVG is produced in accordance with the specified in the standards. It has been designed to fit the COMOSAR phantom tables and is delivered with a plastic cover to prevent liquid evaporation.

8.4 Device Holder

The positioning system is made of an extremely stable material, which ensures easy handling and reproducible positioning. It also allows correct positioning of the dipoles referenced by the IEEE, ANSI and IEC.

<Device Holder for SAM Phantom>

Model	Handset Positioning System	
Material properties	The positioning system is made of PETP. This material offers a low permittivity of 3.2 and low loss, with a loss tangent of 0.005 to minimize the influence of the DUT on measurement results.	
Mechanical properties	The positioning system developed by MVG allows a positioning resolution better than 1 mm. The system is fixed on a bottom rail "x axis" so that the positioning system can be quickly moved from the right to the left part of the phantom. In addition, it can be moved on a perpendicular "y axis" and the height can be adapted. The system is also composed of three rotation points for accurate positioning of the device's acoustical output.	
Accuracy and precision	A curved rail on the top part allows the fast switch from the cheek to the tilt position. The required 15° angle for the tilt position can be easily checked thanks to a printed scale on the curved rail with a tolerance of ± 1°	

Fig. 8.9 Photo of Device Holder

8.5 Test Equipment List

Manufacturer	Equipment Description	Model	Management Number	Cal. Information	
				Last Cal.	Due Date
MVG	COMOSAR DOSIMETRIC E FIELD PROBE	SSE2	WXJ076	05.20.2021	05.19.2022
MVG	COMOSAR 900 MHz REFERENCE DIPOLE	SID900	WXJ076-6	01.14.2021	01.13.2024
KEITHLEY	DIGIT MULTIMETER	DMM6500	WXJ076-1	12.17.2019	12.16.2022
MVG	MVG Measurement Software	OpenSAR	Version: V5_01_09	N.C.R	N.C.R
MVG	COMOSAR IEEE SAM PHANTOM	N/A	WXG009-2	N.C.R	N.C.R
MVG	COMOSAR IEEE SAM PHANTOM	N/A	WXG009-3	N.C.R	N.C.R
MVG	MOBILE PHONE POSITIONNING SYSTEM	N/A	WXG009-4	N.C.R	N.C.R
KUKA	Robot	KR 6 R900 sixx	WXG009-1	N.C.R	N.C.R
KEYSIGHT	Network Analyzer	E5071C	WXJ091	07.02.2021	07.01.2022
KEYSIGHT	EPM Series Power Meter	N1914A	WXJ075	08.29.2021	08.28.2022
KEYSIGHT	E-Series Power Sensor	E9300H	WXJ075-1	08.29.2021	08.28.2022
KEYSIGHT	E-Series Power Sensor	E9300H	WXJ075-2	08.29.2021	08.28.2022
KEYSIGHT	Signal Generator	N5173B	WXJ006-7	03.25.2021	03.24.2022
Huber Suhner	RF Cable	SUCOFLEX	WXG008-13	See Note 3	
Huber Suhner	RF Cable	SUCOFLEX	WXG008-14	See Note 3	
Huber Suhner	RF Cable	SUCOFLEX	WXG008-15	See Note 3	
Weinschel	Attenuator	23-3-34	WXG008-16	See Note 3	
Anritsu	Directional Coupler	MP654A	WXG008-17	See Note 3	
MVG	LIMESAR DIELECTRIC PROBE	SCLMP	WXG009-5	See Note 4	
TXC	Broadband Amplifier	BBA018000	WXG008-11	See Note 5	

Note:

1. The calibration certificate of MVG can be referred to appendix C of this report.
2. Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in purewater) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by MVG.
5. In system check we need to monitor the level on the spectrum analyzer, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the spectrum analyzer is critical and we do have calibration for it.
6. Attenuator insertion loss is calibrated by the network Analyzer, which the calibration is valid, before system check.
7. N.C.R means No Calibration Requirement.

9 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 9.1, for body SAR testing, the liquid height from the center of the flat phantom to liquid top surface is larger than 15 cm, which is shown in Fig. 9.2.

Fig. 9.1 Photo of Liquid Height for Head SAR
(depth>15cm)

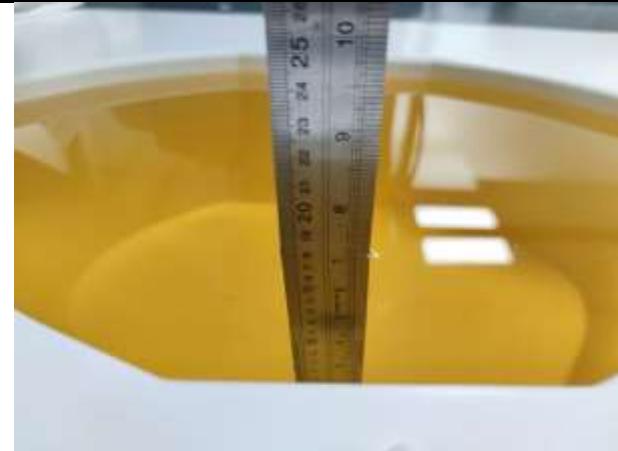


Fig. 9.2 Photo of Liquid Height for Body SAR
(depth>15cm)

The relative permittivity and conductivity of the tissue material should be within $\pm 5\%$ of the values given in the table below recommended by the FCC OET 65supplement C and RSS 102 Issue 5.

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000$ kg/m³)

The dielectric parameters of liquids were verified prior to the SAR evaluation using a MVG Liquid measurement Kit and an Agilent Network Analyzer.

The following table shows the measuring results for simulating liquid.

Frequency (MHz)	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (εr)	Conductivity Target(σ)	Permittivity Target(εr)	Delta (σ)%	Delta (εr)%	Limit (%)	Date (mm/dd/yy)
900	22.4	0.95	42.00	0.97	41.50	-2.06	1.20	±5	03.23.2022
900	22.9	0.96	41.70	0.97	41.50	-1.03	0.48	±5	03.25.2022

10 SAR System Verification

Each ComoSARsystem is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the OpenSAR software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

➤ Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

➤ System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

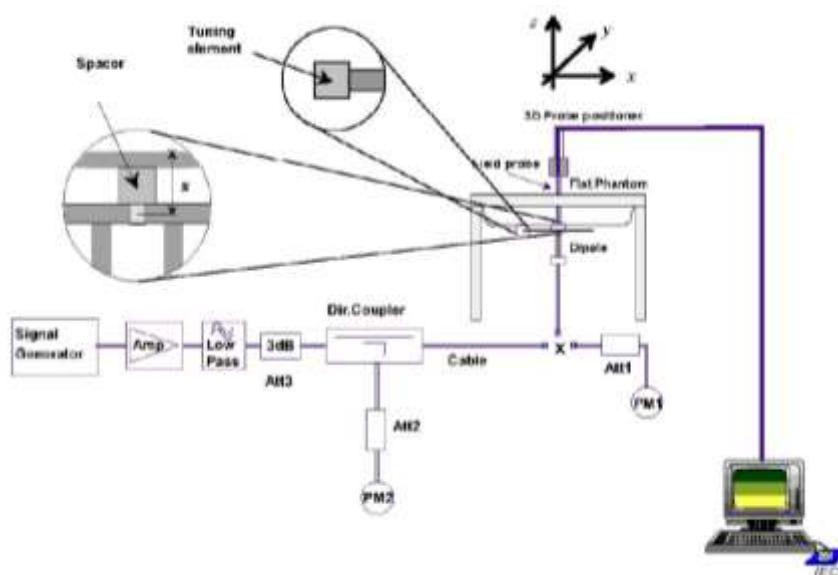


Fig.10.1 System Verification Setup Diagram

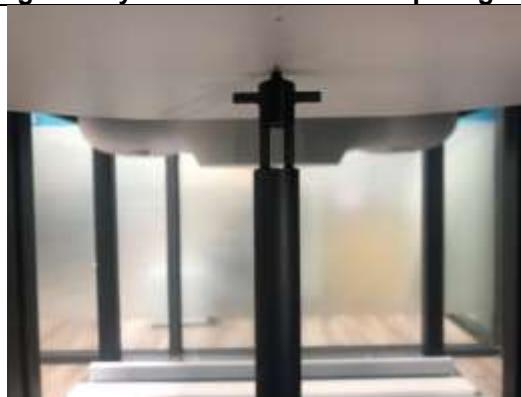
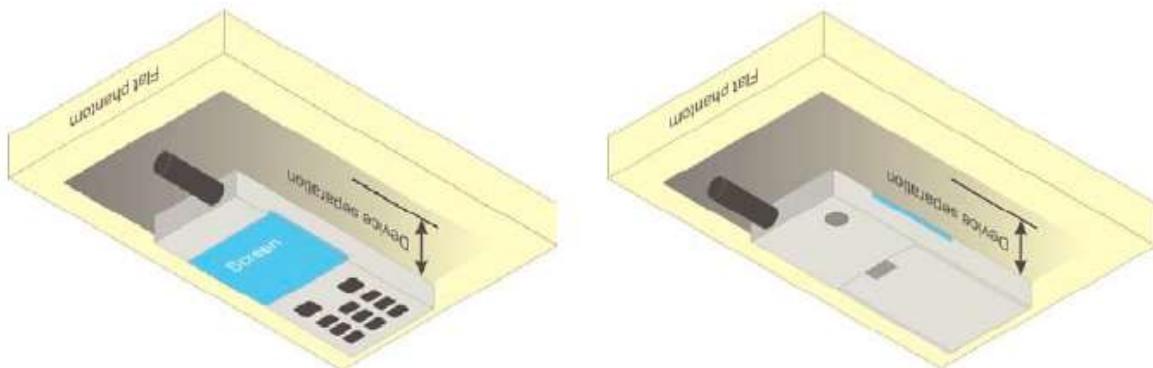


Fig.10.2 Photo of Dipole setup

➤ System Verification Results

Comparing to the original SAR value provided by MVG, the verification data should be within its specification of 10%. The table as below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix C of this report.


Date (mm/dd/yy)	Frequency (MHz)	Power fed onto dipole (mW)	Measured 1g SAR (W/kg)	Normalized to1W 1g SAR (W/kg)	1W Target 1g SAR (W/kg)	Deviation (%)
03.23.2022	900	100	0.700	7.00	6.86	2.04
03.25.2022	900	100	0.710	7.10	6.86	3.50

11 EUT Testing Position

This EUT was tested in two different positions. They are Front/Back of the EUT with phantom 0 mm gap, as illustrated below, please refer to Appendix B for the test setup photos.

11.1 Body Configurations

- To position the device parallel to the phantom surface.
- To adjust the device parallel to the flat phantom.
- To adjust the distance between the device surface and the flat phantom to 0 mm.

Fig.11.5 Illustration for Body Position

12 Measurement Procedures

The measurement procedures are as bellows:

<Conducted power measurement>

- For WWAN power measurement, use base station simulator to configure EUT WWAN transition in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- Read the WWAN RF power level from the base station simulator.
- For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band.
- Connect EUT RF port through RF cable to the power meter or spectrum analyzer, and measure WLAN/BT output power.

<Conducted power measurement>

- Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- Place the EUT in positions as Appendix B demonstrates.
- Set scan area, grid size and other setting on the OpenSAR software.
- Measure SAR results for the highest power channel on each testing position.
- Find out the largest SAR result on these testing positions of each band.
- Measure SAR results for other channels in worst SAR testing position if the Reported SAR or highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan
- Power drift measurement

12.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The OpenSAR software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a “cube” measurement. The measured volume must include the 1g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- Extraction of the measured data (grid and values) from the Zoom Scan.
- Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).
- Generation of a high-resolution mesh within the measured volume.
- Interpolation of all measured values from the measurement grid to the high-resolution grid
- Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- Calculation of the averaged SAR within masses of 1g and 10g.

12.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

12.3 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r04 quoted below.

		$\leq 3 \text{ GHz}$	$> 3 \text{ GHz}$
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot 5 \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location		$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
		$\leq 2 \text{ GHz}: \leq 15 \text{ mm}$ $2 - 3 \text{ GHz}: \leq 12 \text{ mm}$	$3 - 4 \text{ GHz}: \leq 12 \text{ mm}$ $4 - 6 \text{ GHz}: \leq 10 \text{ mm}$
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}}$		$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ $2 - 3 \text{ GHz}: \leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz}: \leq 5 \text{ mm}^*$ $4 - 6 \text{ GHz}: \leq 4 \text{ mm}^*$
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$	$\leq 5 \text{ mm}$	$3 - 4 \text{ GHz}: \leq 4 \text{ mm}$ $4 - 5 \text{ GHz}: \leq 3 \text{ mm}$ $5 - 6 \text{ GHz}: \leq 2 \text{ mm}$
	graded grid	$\Delta z_{\text{Zoom}}(1): \text{between 1}^{\text{st}} \text{ two points closest to phantom surface}$ $\Delta z_{\text{Zoom}}(n>1): \text{between subsequent points}$	$\leq 4 \text{ mm}$ $\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1)$
Minimum zoom scan volume	x, y, z	$\geq 30 \text{ mm}$	$3 - 4 \text{ GHz}: \geq 28 \text{ mm}$ $4 - 5 \text{ GHz}: \geq 25 \text{ mm}$ $5 - 6 \text{ GHz}: \geq 22 \text{ mm}$

Note: 5 is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the reported SAR from the *area scan based 1-g SAR estimation* procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.4 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software can combine and subsequently superpose these measurement data to calculating the multiband SAR.

12.5 SAR Averaged Methods

In COMOSAR system, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1g and 10g cubes, the extrapolation distance should not be larger than 5 mm.

12.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. If the power drifts more than 5%, the SAR will be retested.

13 Conducted RF Output Power

13.1 LoRa Band Conducted Power

Average Power (dBm)		
Channel	Frequency (MHz)	LoRa
CH 12	915	17.18

14 Exposure Positions Consideration

14.1 EUT Antenna Locations

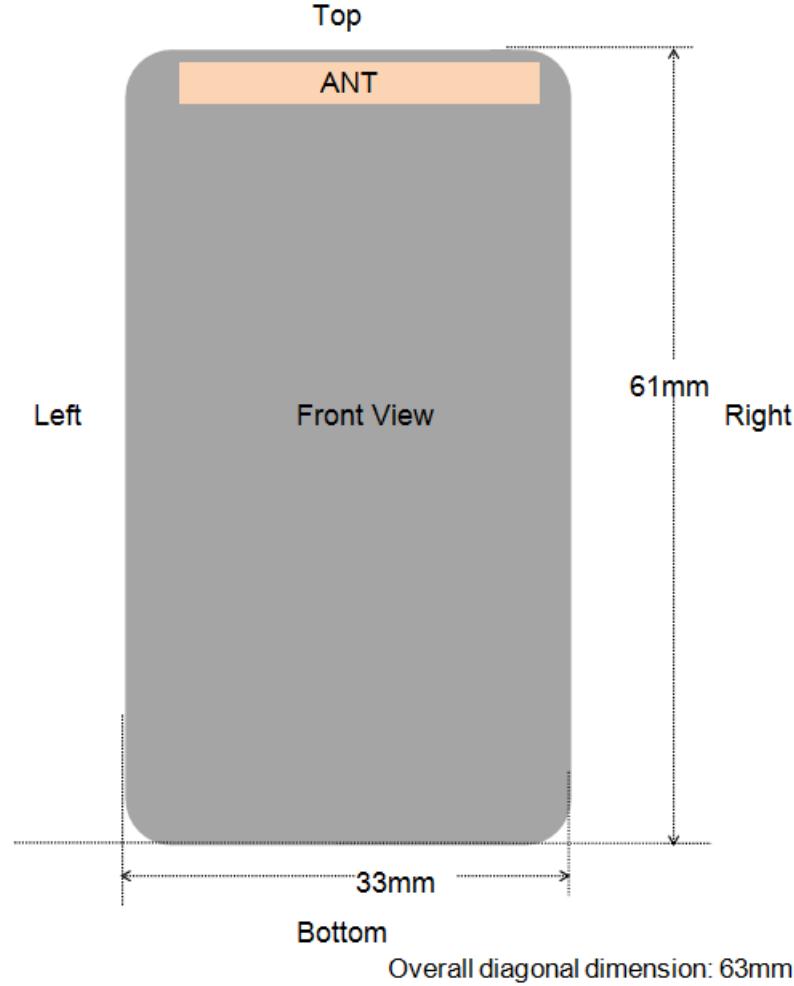


Fig.14.1 EUT Antenna Locations

Note: This antenna diagram is only used as a reference for the distance from the antenna to each edge. For the specific shape of the antenna, please refer to the physical photo.

15 SAR Test Results Summary

15.1 Standalone Body SAR

➤ LoRa Body SAR With TR3450ATL

Plot No.	Band/Mode	Test Position	CH.	Freq. (MHz)	Ave. Power (dBm)	Variation (%)	Tune-Up Limit (dBm)	Meas. SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)
	LoRa	Front	12	915	17.18	1.99	17.5	0.401	1.076	0.431
1	LoRa	Back	12	915	17.18	-2.68	17.5	0.494	1.076	0.532
ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population					1.6 W/kg (mW/g) Averaged over 1g					

➤ LoRa Body SAR With TR3450AETL

Plot No.	Band/Mode	Test Position	CH.	Freq. (MHz)	Ave. Power (dBm)	Variation (%)	Tune-Up Limit (dBm)	Meas. SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)
	Lora	Front	12	915	17.18	-0.46	17.5	0.402	1.076	0.433
2	Lora	Back	12	915	17.18	-1.38	17.5	0.484	1.076	0.521
ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population					1.6 W/kg (mW/g) Averaged over 1g					

Note:

1. Per KDB 447498 D01v06, for each exposure position, if the highest output channel Reported SAR \leq 0.8W/kg, otherchannels SAR testing is not necessary.
2. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required when the measuredSAR is \geq 0.8W/kg.
3. According to KDB 865664 D02v01r02, SAR plot is required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination.
4. Highlight part of test data means repeated test.

15.2 Repeated SAR measurement

Repeated SAR measurement is not required due to the measured SAR is <0.8W/kg per KDB 865664 D01v01r04.

15.3 Multi-Band Simultaneous Transmission Considerations

This device does not contain transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is not required.

15.4 Measurement Uncertainty

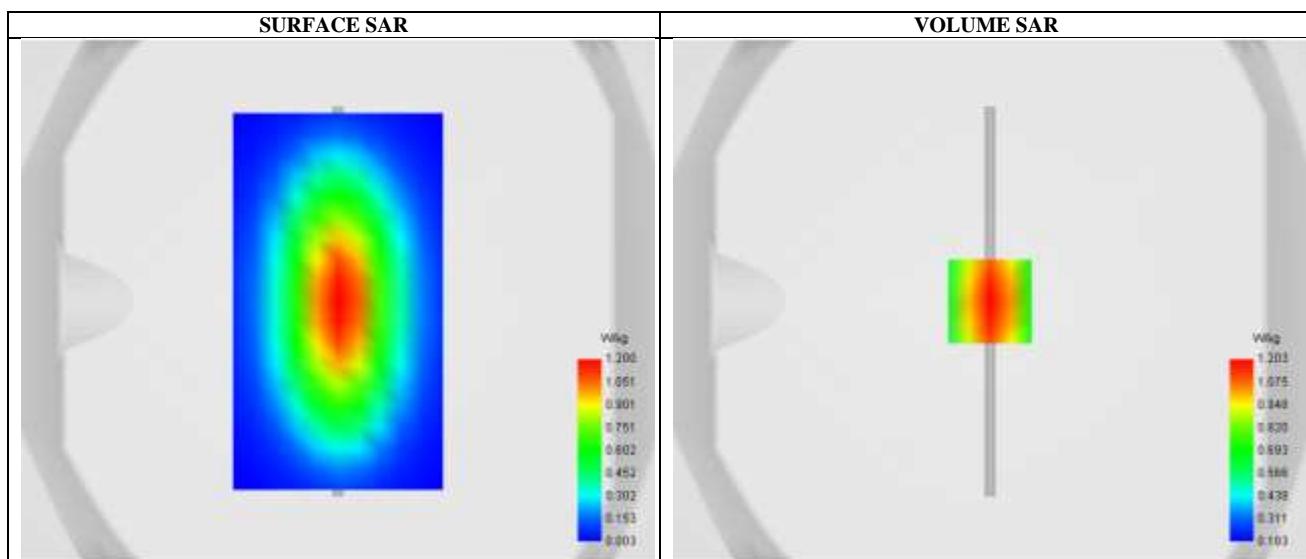
Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHzv01r04, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

16 Reference

- [1]. FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2]. ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3]. IEEE Std. 1528-2013, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", September 2013
- [4]. OpenSAR V5 Software User Manual
- [5]. FCC KDB 447498 D01 v06, "RF EXPOSURE PROCEDURES AND EQUIPMENT AUTHORIZATION POLICIES FOR MOBILE AND PORTABLE DEVICES", October 2015
- [6]. FCC KDB 865664 D01 v01r04, "SAR MEASUREMENT REQUIREMENTS FOR 100 MHz TO 6 GHz", August 2015

Appendix A: Plots of SAR System Check

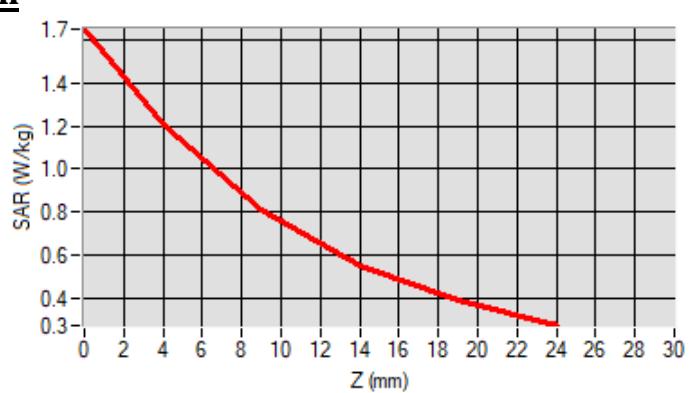
System check at 900 MHz


Date of measurement: 23/3/2022

A. Experimental conditions.

Probe	SN 18/21 EPGO354
ConvF	1.88
Area Scan	surf_sam_plan.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete
Phantom	Validation plane
Device Position	Dipole
Band	CW900
Channels	Middle
Signal	CW (Crest factor: 1.0)

B. Permittivity


Frequency (MHz)	900.000000
Relative permittivity (real part)	42.002624
Conductivity (S/m)	0.952026

C. SAR Surface and Volume

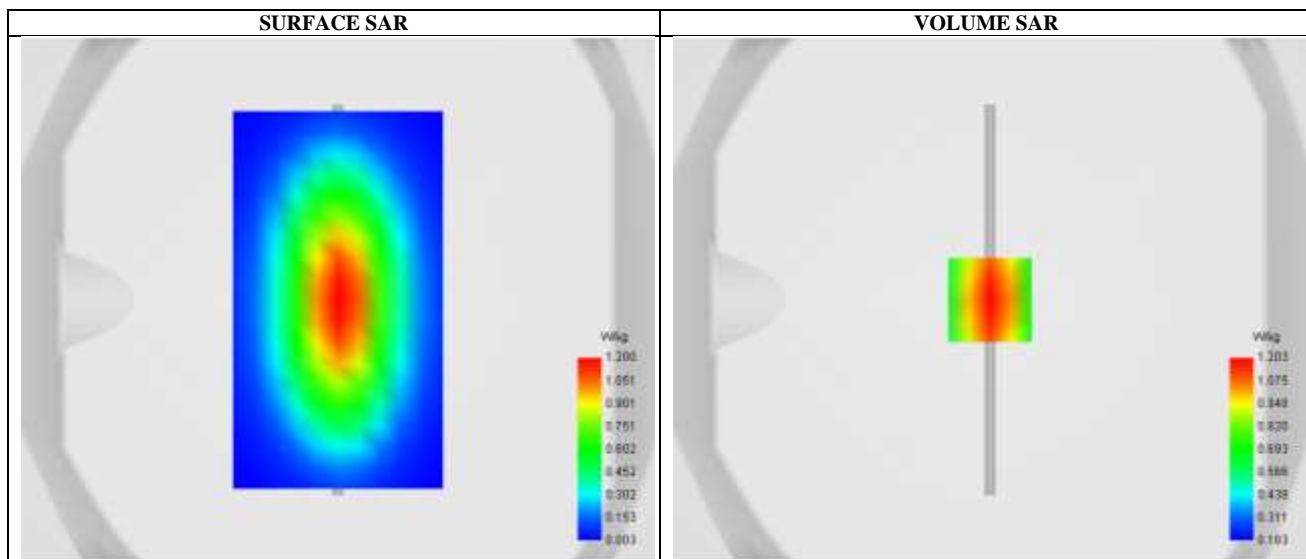
Maximum location: X=0.00, Y=0.00; SAR Peak: 1.69 W/kg

D. SAR 1g & 10g

SAR 10g (W/Kg)	0.700413
SAR 1g (W/Kg)	1.130144
Variation (%)	0.250000

E. Z Axis Scan

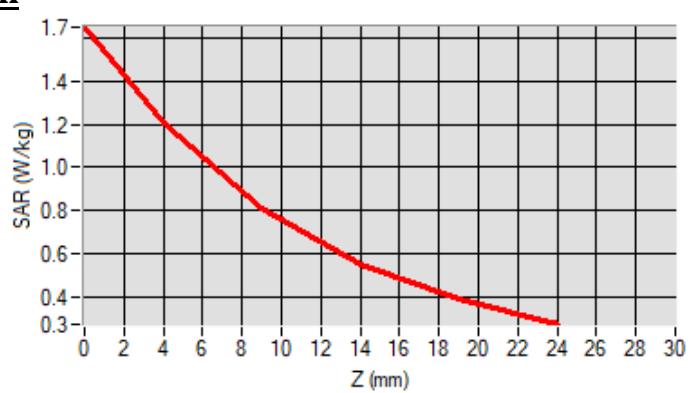
System check at 900 MHz


Date of measurement: 25/3/2022

A. Experimental conditions.

Probe	SN 18/21 EPGO354
ConvF	1.88
Area Scan	surf_sam_plan.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete
Phantom	Validation plane
Device Position	Dipole
Band	CW900
Channels	Middle
Signal	CW (Crest factor: 1.0)

B. Permittivity


Frequency (MHz)	900.000000
Relative permittivity (real part)	41.702624
Conductivity (S/m)	0.960026

C. SAR Surface and Volume

Maximum location: X=0.00, Y=0.00; SAR Peak: 1.69 W/kg

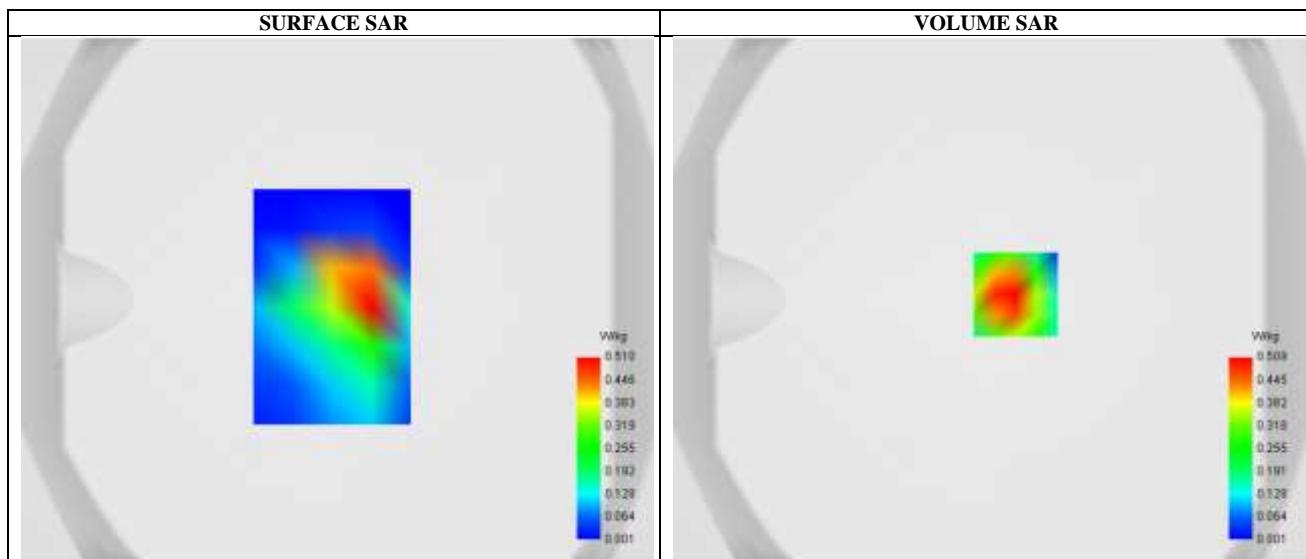
D. SAR 1g & 10g

SAR 10g (W/Kg)	0.710113
SAR 1g (W/Kg)	1.150124
Variation (%)	0.290000

E. Z Axis Scan

Appendix B: Plots of SAR Test Data

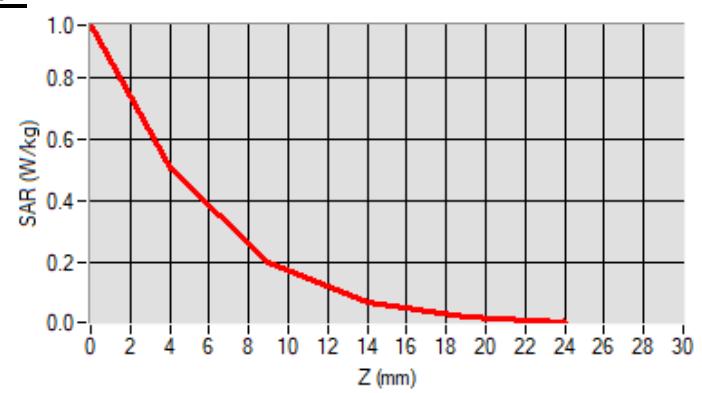
SAR Measurement at CUSTOM (Lora) (Body, Validation Plane)


Date of measurement: 23/3/2022

A. Experimental conditions.

Probe	SN 18/21 EPGO354
ConvF	1.68
Area Scan	dx=15mm dy=15mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body
Band	LoRa
Channels	Middle
Signal	LoRa

B. Permitivity


Frequency (MHz)	915.000000
Relative permittivity (real part)	41.972729
Conductivity (S/m)	0.971928

C. SAR Surface and Volume

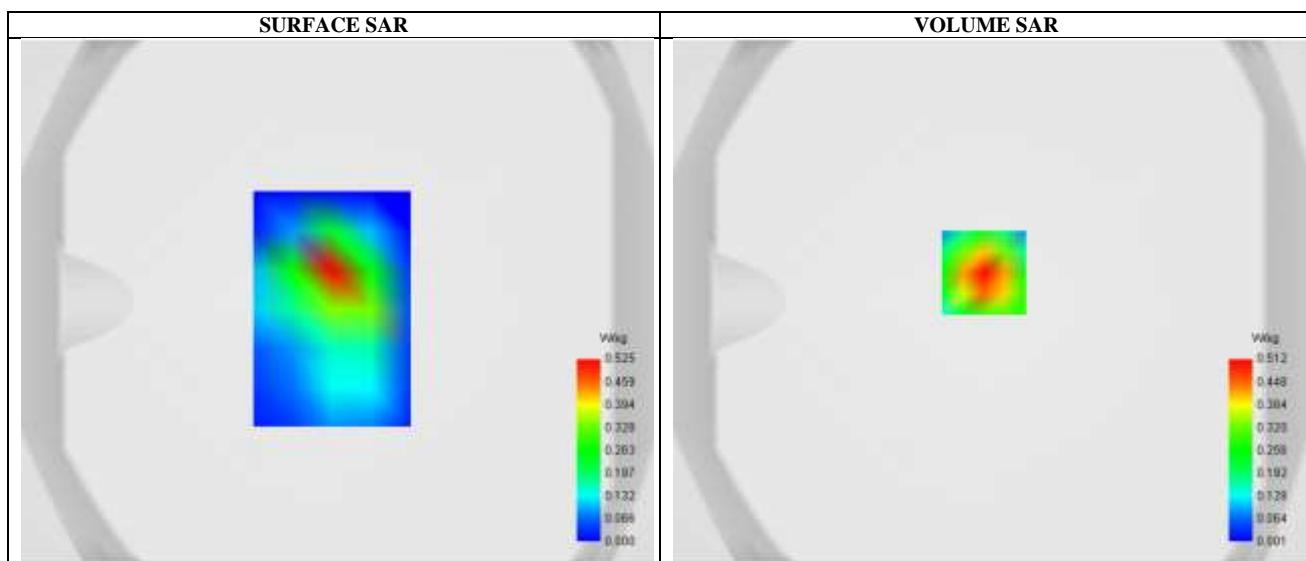
Maximum location: X=10.00, Y=2.00 ; SAR Peak: 0.99 W/kg

D. SAR 1g & 10g

SAR 10g (W/Kg)	0.228800
SAR 1g (W/Kg)	0.493904
Variation (%)	-2.680000

E. Z Axis Scan

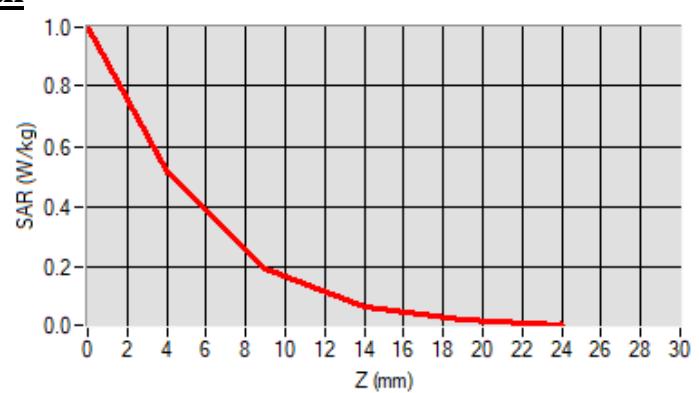
SAR Measurement at CUSTOM (Lora) (Body, Validation Plane)


Date of measurement: 25/3/2022

A. Experimental conditions.

Probe	SN 18/21 EPGO354
ConvF	1.68
Area Scan	dx=15mm dy=15mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body
Band	LoRa
Channels	Middle
Signal	LoRa

B. Permitivity


Frequency (MHz)	915.000000
Relative permitivity (real part)	41.672721
Conductivity (S/m)	0.959928

C. SAR Surface and Volume

Maximum location: X=-2.00, Y=11.00 ; SAR Peak: 0.99 W/kg

D. SAR 1g & 10g

SAR 10g (W/Kg)	0.218829
SAR 1g (W/Kg)	0.483690
Variation (%)	-1.380000

E. Z Axis Scan

Appendix C: System Calibration Certificate

Calibration information for E-field probes

COMOSAR E-Field Probe Calibration Report

Ref: ACR.140.1.21.BES.B

Cancel and replace the report ACR.140.1.21.BES.A

**JIANYAN TESTING GROUP SHENZHEN
CO.,LTD.**

**NO.101, BUILDING 8, INNOVATION WISDOM PORT, NO.155
HONGTIAN ROAD, HUANGPU COMMUNITY, XINQIAO
STREET,
BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA
MVG COMOSAR DOSIMETRIC E-FIELD PROBE
SERIAL NO.: SN 18/21 EPGO354**

Calibrated at MVG**Z.I. de la pointe du diable**

Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 05/20/2021Accreditations #2-6789 and #2-6814
Scope available on www.cofrac.fr**Summary:**

This document presents the method and results from an accredited COMOSAR E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.140.1.21.BES.B

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	5/20/2021	
Checked by :	Jérôme Luc	Technical Manager	5/20/2021	
Approved by :	Yann Toutain	Laboratory Director	5/21/2021	

	Customer Name
Distribution :	JIANYAN TESTING GROUP SHENZHEN CO.,LTD.

Issue	Name	Date	Modifications
A	Jérôme Luc	5/20/2021	Initial release
B	Jérôme Luc	5/21/2021	Change customer address Add picture 1 Add 1450 MHz calibration

Page: 2/10

Template_ACR.DDD.N.YTMVGB.ISSUE_COMOSAR Probe vH

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

TABLE OF CONTENTS

1	Device Under Test	4
2	Product Description	4
2.1	General Information	4
3	Measurement Method	4
3.1	Linearity	4
3.2	Sensitivity	5
3.3	Lower Detection Limit	5
3.4	Isotropy	5
3.1	Boundary Effect	5
4	Measurement Uncertainty	6
5	Calibration Measurement Results	6
5.1	Sensitivity in air	6
5.2	Linearity	7
5.3	Sensitivity in liquid	8
5.4	Isotropy	9
6	List of Equipment	10

Page: 3/10

Template_ACR.DDD.N.YT.MVGB.ISSUE_COMOSAR_Probe vH

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

1 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Manufacturer	MVG
Model	SSE2
Serial Number	SN 18/21 EPGO354
Product Condition (new / used)	New
Frequency Range of Probe	0.15 GHz-6GHz
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.202 MΩ Dipole 2: R2=0.217 MΩ Dipole 3: R3=0.225 MΩ

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, FCC KDB865664 D01, CENELEC EN62209 and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, FCC KDB865664 D01, CENELEC EN62209 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{be} + \Delta_{step}$ along lines that are approximately normal to the surface:

$$\text{SAR}_{\text{uncertainty}} [\%] = \Delta \text{SAR}_{\text{be}} \frac{(\delta_{be} + \delta_{step})^2 (e^{-4\pi(\delta_{be})})}{2\delta_{be} \Delta_{step}} \quad \text{for } (\delta_{be} - \delta_{step}) < 10 \text{ mm}$$

where

$\Delta \text{SAR}_{\text{be}}$	is the uncertainty in percent of the probe boundary effect
δ_{be}	is the distance between the surface and the closest <i>zoom-scan</i> measurement point, in millimetre
Δ_{step}	is the separation distance between the first and second measurement points that are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible
δ	is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;
$\Delta \text{SAR}_{\text{be}}$	in percent of SAR is the deviation between the measured SAR value, at the distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Expanded uncertainty 95 % confidence level $k = 2$					14 %

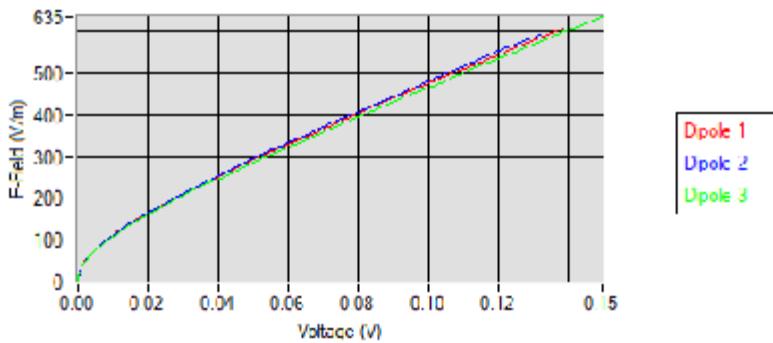
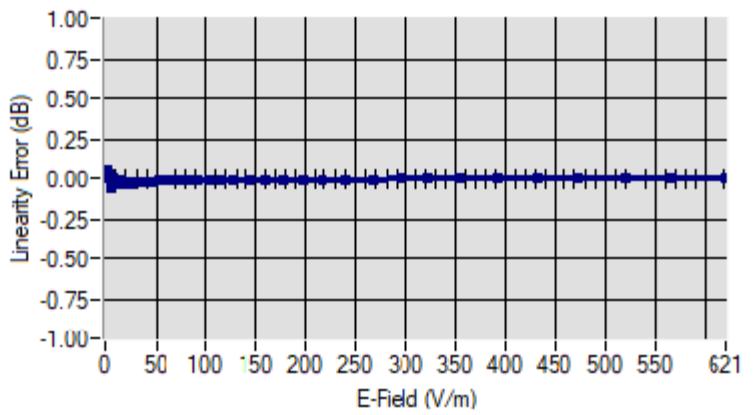
5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters	
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

5.1 SENSITIVITY IN AIR

Normx dipole 1 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normy dipole 2 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normz dipole 3 ($\mu\text{V}/(\text{V}/\text{m})^2$)
0.86	0.87	0.90

DCP dipole 1 (mV)	DCP dipole 2 (mV)	DCP dipole 3 (mV)
107	101	105



Calibration curves $ei=f(V)$ ($i=1,2,3$) allow to obtain E-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Page: 6/10

Template_ACR.DDD.N.YT.MVGB.ISSUE_COMOSAR_Probe vH

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

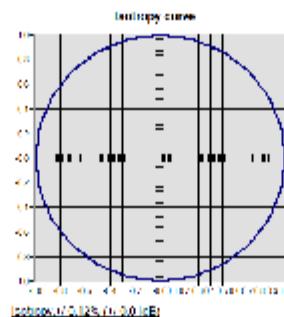
Calibration curves**5.2 LINEARITY****Linearity**

Linearity: +/-1.55% (+/-0.07dB)

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.140.1.21.BES.B

5.3 SENSITIVITY IN LIQUID


<u>Liquid</u>	<u>Frequency (MHz +/- 100MHz)</u>	<u>ConvF</u>
HL450*	450	1.92
BL450*	450	1.87
HL750	750	1.73
BL750	750	1.81
HL850	835	1.68
BL850	835	1.82
HL900	900	1.88
BL900	900	1.92
HL1450	1450	2.25
BL1450	1450	2.54
HL1750	1750	2.07
BL1750	1750	2.20
HL1900	1900	2.14
BL1900	1900	2.23
HL2100	2100	2.09
BL2100	2100	2.27
HL2300	2300	2.23
BL2300	2300	2.48
HL2450	2450	2.23
BL2450	2450	2.58
HL2600	2600	2.15
BL2600	2600	2.38
HL3300	3300	2.02
BL3300	3300	2.19
HL3500	3500	2.11
BL3500	3500	2.29
HL3700	3700	2.13
BL3700	3700	2.28
HL3900	3900	2.26
BL3900	3900	2.48
HL4200	4200	2.58
BL4200	4200	2.63
HL4600	4600	2.44
BL4600	4600	2.60
HL4900	4900	2.34
BL4900	4900	2.32
HL5200	5200	1.86
BL5200	5200	1.75
HL5400	5400	2.07
BL5400	5400	1.94
HL5600	5600	2.20
BL5600	5600	2.11
HL5800	5800	2.07
BL5800	5800	1.99

* Frequency not cover by COFRAC scope, calibration not accredited

LOWER DETECTION LIMIT: 8mW/kg

Page: 8/10

*Template_ACR.DDD.N.YT.MVGB.ISSUE_COMOSAR_Probe vH**This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.*

5.4 ISOTROPY**HL1900 MHz**

Page: 9/10

Template_ACR.DDD.N.YTMVGB.ISSUE_COMOSAR_Probe vH

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

6 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	05/2019	05/2022
Directional Coupler	Narda 4218-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44220687	05/2020	05/2023

Page: 10/10

Template_ACR.DDD.N.YTMVGB.ISSUE_COMOSAR Probe vH

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Calibration information for Dipole

SAR Reference Dipole Calibration Report

Ref : ACR.15.7.21.MVGB.B

Cancel and replace the report ACR.15.7.21.MVGB.A

**JIANYAN TESTING GROUP
SHENZHEN CO.,LTD.****No.110~116, BUILDING B, JINYUAN BUSINESS BUILDING,
XIXIANG ROAD, BAOAN DISTRICT,
SHENZHEN, GUANGDONG, PR CHINA****MVG COMOSAR REFERENCE DIPOLE****FREQUENCY: 900 MHZ****SERIAL NO.: SN 50/20 DIP 0G900-508****Calibrated at MVG****Z.I. de la pointe du diable****Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE****Calibration date: 01/14/2021**Accreditations #2-6789 and #2-6814
Scope available on www.cofrac.fr**Summary:**

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/13

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.15.7.21.MVGB.B

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Technical Manager	1/15/2021	
Checked by :	Jérôme LUC	Technical Manager	1/15/2021	
Approved by :	Yann Toutain	Laboratory Director	2/8/2021	

	Customer Name
Distribution :	JianYan Testing Group Shenzhen Co.,Ltd.

Issue	Name	Date	Modifications
A	Jérôme LUC	1/15/2021	Initial release
B	Jérôme LUC	2/8/2021	Change customer name/address

Page: 2/13

Template_ACR.DDD.N.YT.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

TABLE OF CONTENTS

1	Introduction	4
2	Device Under Test	4
3	Product Description	4
3.1	General Information	4
4	Measurement Method	5
4.1	Return Loss Requirements	5
4.2	Mechanical Requirements	5
5	Measurement Uncertainty	5
5.1	Return Loss	5
5.2	Dimension Measurement	5
5.3	Validation Measurement	5
6	Calibration Measurement Results	6
6.1	Return Loss and Impedance In Head Liquid	6
6.2	Return Loss and Impedance In Body Liquid	6
6.3	Mechanical Dimensions	7
7	Validation measurement	7
7.1	Head Liquid Measurement	8
7.2	SAR Measurement Result With Head Liquid	8
7.3	Body Liquid Measurement	11
7.4	SAR Measurement Result With Body Liquid	12
8	List of Equipment	13

Page: 3/13

Template_ACR.DDD.N.YT.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR.15.7.21.MVGB.B

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 900 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID900
Serial Number	SN 50/20 DIP 0G900-508
Product Condition (new / used)	New

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

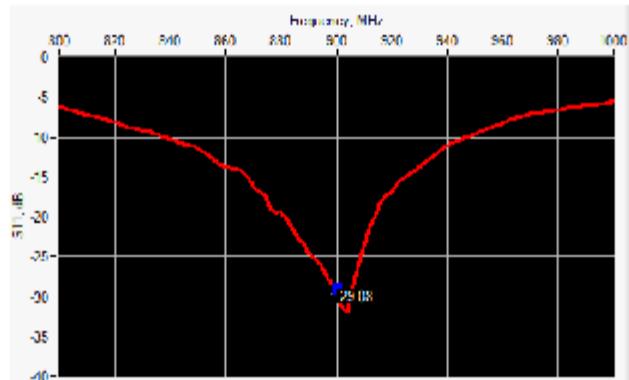
5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

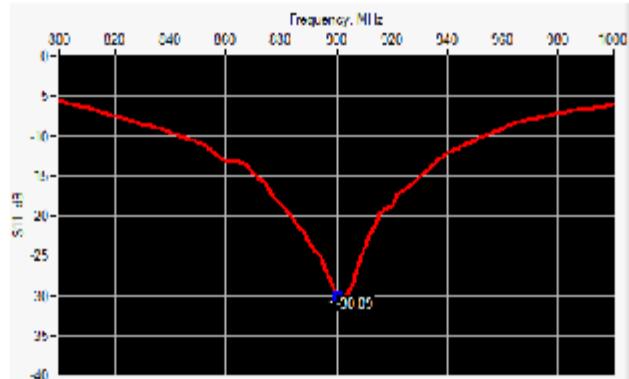
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.15.7.21.MVGB.B

Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
900	-29.08	-20	$46.9 \Omega - 1.7 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
900	-30.09	-20	$49.2 \Omega + 3.0 j\Omega$

Page: 6/13

Template_ACR.DDD.N.YT.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.15.7.21.MVGB.B

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 \pm 1 %.		250.0 \pm 1 %.		6.35 \pm 1 %.	
450	290.0 \pm 1 %.		166.7 \pm 1 %.		6.35 \pm 1 %.	
750	176.0 \pm 1 %.		100.0 \pm 1 %.		6.35 \pm 1 %.	
835	161.0 \pm 1 %.		89.8 \pm 1 %.		3.6 \pm 1 %.	
900	149.0 \pm 1 %.	149.49	83.3 \pm 1 %.	83.01	3.6 \pm 1 %.	3.59
1450	89.1 \pm 1 %.		51.7 \pm 1 %.		3.6 \pm 1 %.	
1500	80.5 \pm 1 %.		50.0 \pm 1 %.		3.6 \pm 1 %.	
1640	79.0 \pm 1 %.		45.7 \pm 1 %.		3.6 \pm 1 %.	
1750	75.2 \pm 1 %.		42.9 \pm 1 %.		3.6 \pm 1 %.	
1800	72.0 \pm 1 %.		41.7 \pm 1 %.		3.6 \pm 1 %.	
1900	68.0 \pm 1 %.		39.5 \pm 1 %.		3.6 \pm 1 %.	
1950	66.3 \pm 1 %.		38.5 \pm 1 %.		3.6 \pm 1 %.	
2000	64.5 \pm 1 %.		37.5 \pm 1 %.		3.6 \pm 1 %.	
2100	61.0 \pm 1 %.		35.7 \pm 1 %.		3.6 \pm 1 %.	
2300	55.5 \pm 1 %.		32.6 \pm 1 %.		3.6 \pm 1 %.	
2450	51.5 \pm 1 %.		30.4 \pm 1 %.		3.6 \pm 1 %.	
2600	48.5 \pm 1 %.		28.8 \pm 1 %.		3.6 \pm 1 %.	
3000	41.5 \pm 1 %.		25.0 \pm 1 %.		3.6 \pm 1 %.	
3300	-		-		-	
3500	37.0 \pm 1 %.		26.4 \pm 1 %.		3.6 \pm 1 %.	
3700	34.7 \pm 1 %.		26.4 \pm 1 %.		3.6 \pm 1 %.	
3900	-		-		-	
4200	-		-		-	
4600	-		-		-	
4900	-		-		-	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Page: 7/13

Template_ACR.DDD.N.YT.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.15.7.21.MVGB.B

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 \pm 10 %		0.87 \pm 10 %	
450	43.5 \pm 10 %		0.87 \pm 10 %	
750	41.9 \pm 10 %		0.89 \pm 10 %	
835	41.5 \pm 10 %		0.90 \pm 10 %	
900	41.5 \pm 10 %	39.8	0.97 \pm 10 %	0.97
1450	40.5 \pm 10 %		1.20 \pm 10 %	
1500	40.4 \pm 10 %		1.23 \pm 10 %	
1640	40.2 \pm 10 %		1.31 \pm 10 %	
1750	40.1 \pm 10 %		1.37 \pm 10 %	
1800	40.0 \pm 10 %		1.40 \pm 10 %	
1900	40.0 \pm 10 %		1.40 \pm 10 %	
1950	40.0 \pm 10 %		1.40 \pm 10 %	
2000	40.0 \pm 10 %		1.40 \pm 10 %	
2100	39.8 \pm 10 %		1.49 \pm 10 %	
2300	39.5 \pm 10 %		1.67 \pm 10 %	
2450	39.2 \pm 10 %		1.80 \pm 10 %	
2600	39.0 \pm 10 %		1.96 \pm 10 %	
3000	38.5 \pm 10 %		2.40 \pm 10 %	
3300	38.2 \pm 10 %		2.71 \pm 10 %	
3500	37.9 \pm 10 %		2.91 \pm 10 %	
3700	37.7 \pm 10 %		3.12 \pm 10 %	
3900	37.5 \pm 10 %		3.32 \pm 10 %	
4200	37.1 \pm 10 %		3.63 \pm 10 %	
4600	36.7 \pm 10 %		4.04 \pm 10 %	
4900	36.3 \pm 10 %		4.35 \pm 10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

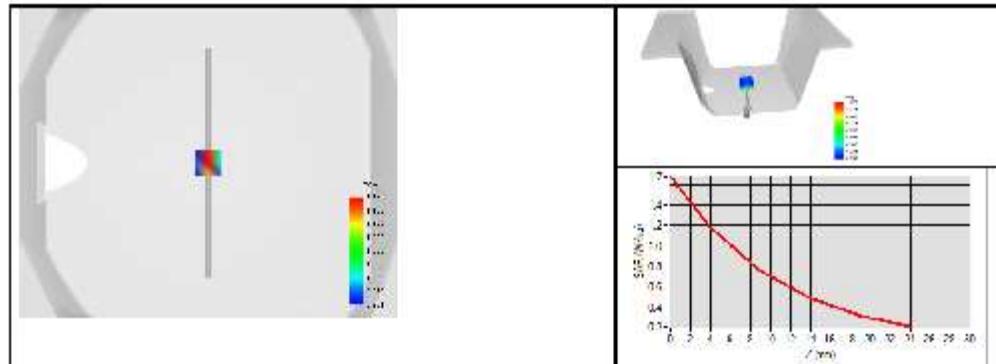
SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.15.7.21.MVGB.B

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPG0333
Liquid	Head Liquid Values: $\epsilon_{\text{ps}}^3 : 39.8$ sigma : 0.97
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	900 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9	11.28 (1.13)	6.99	6.86 (0.69)
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3300	-		-	
3500	67.1		25	
3700	67.4		24.2	
3900	-		-	
4200	-		-	
4600	-		-	
4900	-		-	

Page: 9/13


Template_ACR.DDD.N.YT.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR.15.7.21.MVGB.B

Page: 10/13

Template_ACR.DDD.N.YT.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.15.7.21.MVGB.B

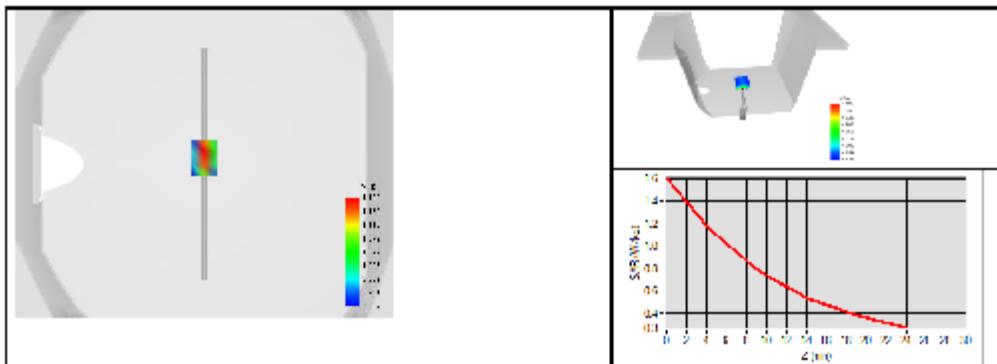
7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 \pm 10 %		0.80 \pm 10 %	
300	58.2 \pm 10 %		0.92 \pm 10 %	
450	56.7 \pm 10 %		0.94 \pm 10 %	
750	55.5 \pm 10 %		0.96 \pm 10 %	
835	55.2 \pm 10 %		0.97 \pm 10 %	
900	55.0 \pm 10 %	51.7	1.05 \pm 10 %	1.01
915	55.0 \pm 10 %		1.06 \pm 10 %	
1450	54.0 \pm 10 %		1.30 \pm 10 %	
1610	53.8 \pm 10 %		1.40 \pm 10 %	
1800	53.3 \pm 10 %		1.52 \pm 10 %	
1900	53.3 \pm 10 %		1.52 \pm 10 %	
2000	53.3 \pm 10 %		1.52 \pm 10 %	
2100	53.2 \pm 10 %		1.62 \pm 10 %	
2300	52.9 \pm 10 %		1.81 \pm 10 %	
2450	52.7 \pm 10 %		1.95 \pm 10 %	
2600	52.5 \pm 10 %		2.16 \pm 10 %	
3000	52.0 \pm 10 %		2.73 \pm 10 %	
3300	51.6 \pm 10 %		3.08 \pm 10 %	
3500	51.3 \pm 10 %		3.31 \pm 10 %	
3700	51.0 \pm 10 %		3.55 \pm 10 %	
3900	50.8 \pm 10 %		3.78 \pm 10 %	
4200	50.4 \pm 10 %		4.13 \pm 10 %	
4600	49.8 \pm 10 %		4.60 \pm 10 %	
4900	49.4 \pm 10 %		4.95 \pm 10 %	
5200	49.0 \pm 10 %		5.30 \pm 10 %	
5300	48.9 \pm 10 %		5.42 \pm 10 %	
5400	48.7 \pm 10 %		5.53 \pm 10 %	
5500	48.6 \pm 10 %		5.65 \pm 10 %	
5600	48.5 \pm 10 %		5.77 \pm 10 %	
5800	48.2 \pm 10 %		6.00 \pm 10 %	

Page: 11/13

Template_ACR.DDD.N.YT.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.15.7.21.MVGB.B

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: ϵ_r : 51.7 sigma : 1.01
Distance between dipole center and liquid	15.0 mm
Area scan resolution	$dx=8\text{mm}/dy=8\text{mm}$
Zoom Scan Resolution	$dx=8\text{mm}/dy=8\text{mm}/dz=5\text{mm}$
Frequency	900 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
900	11.05 (1.11)	7.04 (0.70)

Page: 12/13

Template_ACR.DDD.N.YT.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	05/2019	05/2022
Directional Coupler	Narda 4218-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44220687	05/2020	05/2023

Page: 13/13

Template_ACR.DDD.N.YT.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

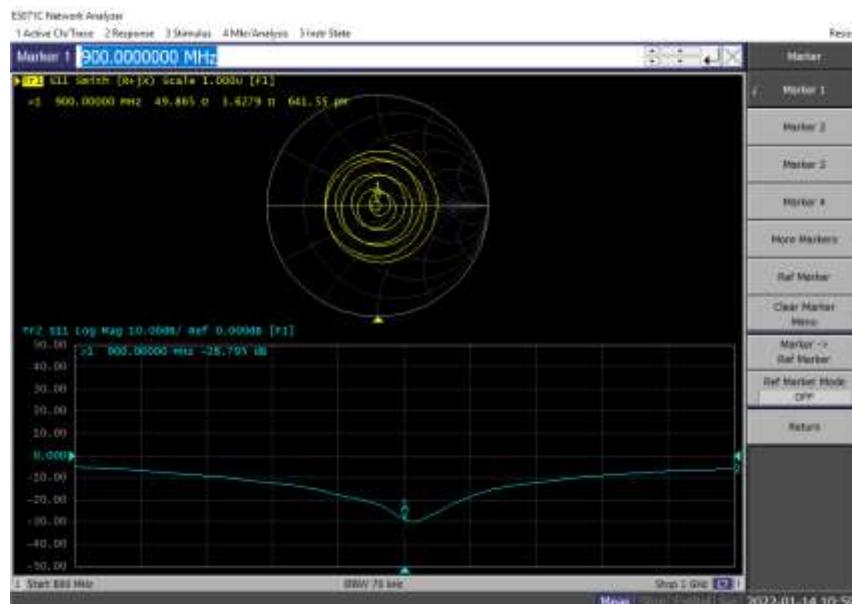
Dipole Impedance and Return Loss calibration Report

Object: SID900 - SN 50/20 DIP 0G900-508

Calibration Date: January 14, 2022

Calibrationreference: IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 D01

Calibrated By: *Janet Wei* (Janet Wei, SAR project engineer)


Reviewed By: *Winner Zhang* (Winner Zhang, Technical manager)

Environment of Test Site

Temperature:	18 ~ 25°C
Humidity:	50~60% RH
Atmospheric Pressure:	1011 mbar

Test Data

Measurement Plot for Head TSL In 2022

Comparison with Original report

Items	Calibrated By MVG	Calibrated By JYT In 2022	Deviation	Limit
Impedance for Head TSL	$46.9\Omega + 1.7j\Omega$	$49.87\Omega + 3.63j\Omega$	$2.97\Omega + 1.93j\Omega$	$\pm 5\Omega$
Return Loss for Head TSL	-29.08dB	-28.80dB	-0.96%	$\pm 20\%$ (No less than 20 dB)

Result

Compliance

-----End of Report-----