MPE TEST REPORT

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

Fast Wireless Charger

ISSUED TO DESAY INFOR TECHNOLOGY CO., LTD

DESAY 3rd Industry Zone, chenjiang Town Huizhou, Guangdong, P.R.China

EUT Name: Model Name: Brand Name: Test Standard:

Report No.: BL-SZ1870029-702 Fast Wireless Charger P8C(refer section 2.4) DESAY 47 CFR Part 1.1307

47 CFR Part 1.1310

FCC ID: 2AEMN-P8

Test Conclusion: Pass

Test Date: Date of Issue:

Aug. 04, 2018 ~ Sep. 03, 2018

Sep. 05, 2018

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory, Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Revision History

VersionIssue DateRevisions ContentRev. 01Aug. 20, 2018Initial Issue

Rev. 02 Sep. 05, 2018

Revised frequency range on section 2.6
Revised test setup procedure on section
4.

Added E-filed test results on section 5.2

TABLE OF CONTENTS

1	GENEF	RAL INFORMATION	.4
	1.1	Identification of the Testing Laboratory	.4
	1.2	Identification of the Responsible Testing Location	.4
	1.3	Test Environment Condition	.4
	1.4	Announce	.5
2	PRODU	JCT INFORMATION	.6
	2.1	Applicant Information	.6
	2.2	Manufacturer Information	.6
	2.3	Factory Information	.6
	2.4	General Description for Equipment under Test (EUT)	.6
	2.5	Ancillary Equipment	.6
	2.6	Technical Information	.7
3	STAND	ARD INFORMATION	.8
	3.1	Test Standard	.8
	3.2	Radiofrequency Radiation Exposure Limit	.8
4	TEST S	SETUP	.9
	4.1	Test Setup Photo	.9
	4.2	Measurement procedure	.9
	4.3	Mobile Condition	.9
	4.4	Test Equipment	10
	4.5	Test Configuration	10
5	TEST F	RESULT	11
	5.1	H-field	11
	5.2	E-field	11

Report No.: BL-SZ1870029-702

6	Test Conclusion	12
	6.1 H-field	12
	6.2 F-field	12

1 GENERAL INFORMATION

1.1 Identification of the Testing Laboratory

Company Name Shenzhen BALUN Technology Co., Ltd.		
	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi	
Address	Road, Nanshan District, Shenzhen, Guangdong Province, P. R.	
	China.	
Phone Number	+86 755 6685 0100	
Fax Number +86 755 6182 4271		

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.		
	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi		
Address	Road, Nanshan District, Shenzhen, Guangdong Province, P. R.		
	China.		
	The laboratory has been listed by Industry Canada to perform		
	electromagnetic emission measurements. The recognition numbers		
	of test site are 11524A-1.		
Agaraditation	The laboratory has been listed by US Federal Communications		
Accreditation	Commission to perform electromagnetic emission measurements.		
Certificate	The recognition numbers of test site are 832625.		
	The laboratory is a testing organization accredited by China National		
	Accreditation Service for Conformity Assessment (CNAS) according		
	to ISO/IEC 17025. The accreditation certificate number is L6791.		
	All measurement facilities used to collect the measurement data are		
Description	located at Block B, FL 1, Baisha Science and Technology Park,		
Description	Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province,		
	P. R. China 518055		

1.3 Test Environment Condition

Ambient Temperature	21 to 23 °C
Ambient Relative Humidity	40 to 50%
Ambient Pressure	100 to 102 KPa

1.4 Announce

- (1) The test report reference to the report template version v1.2.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant DESAY INFOR TECHNOLOGY CO., LTD	
Addross	DESAY 3rd Industry Zone, chenjiang Town Huizhou, Guangdong,
Address	P.R.China

2.2 Manufacturer Information

	Manufacturer DESAY INFOR TECHNOLOGY CO., LTD		
Add	A alalma a a	DESAY 3rd Industry Zone, chenjiang Town Huizhou, Guangdong,	
	Address	P.R.China	

2.3 Factory Information

Factory	DESAY INFOR TECHNOLOGY CO., LTD		
Addross	DESAY 3rd Industry Zone, chenjiang Town Huizhou, Guangdong,		
Address	P.R.China		

2.4 General Description for Equipment under Test (EUT)

EUT Name	Fast Wireless Charger
Model Name Under	P8C
Test	
Series Model Name	P8XX-XX(X=0~9 or A~Z)
Description of Model	All models are same with electrical parameters and internal circuit
Name Differentiation	structure, but only different on model name and appearance color.
Hardware Version	V2.0
Software Version	V1.0
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.5 Ancillary Equipment

Ancillary Equipment	USB Cable	
Andiliary Equipment	Length (Approx.)	1.0 m

2.6 Technical Information

Network and Wireless	OL
connectivity	QI

The requirement for the following technical information of the EUT was tested in this report:

Operating Mode	110kHz~205kHz	
Antenna Type	Coil Antenna	
About Product	The EUT only support the QI technology.	
Exposure Category	General Population/Uncontrolled exposure	
EUT Stage	Mobile Device	
Draduat	Туре	
Product	☑ Production unit	☐ Identical prototype

3 STANDARD INFORMATION

3.1 Test Standard

No.	Identity	Document Title
1	47 CFR Part 1	Practice and Procedure
2	KDB 680106 D01	RF Exposure Considerations for Low Power Consumer
	KDD 000100 D01	Wireless Power Transfer Applications

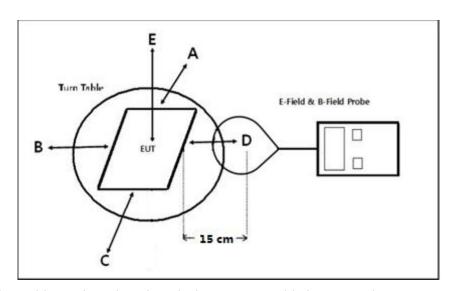
3.2 Radiofrequency Radiation Exposure Limit

Frequency	Electric field	Magnetic field	Power	Averaging				
range	strength	strength	density	time				
(MHz)	(V/m)	(A/m)	(mW / cm ²)	(minutes)				
	(A) Limits for Occupational/Controlled Exposure							
0.3-3.0	614	1.63	*100	6				
3.0-30	1842/f	4.89/f	*900/f ²	6				
30-300	61.4	0.163	1.0	6				
300-1,500			f/300	6				
1,500-100,000			5	6				
	(B) Limits for Genera	l Population/Uncontrolle	d Exposure					
0.3-1.34	614	1.63	*100	30				
1.34-30	824/f	2.19/f	*180/f ²	30				
30-300	27.5	0.073	0.2	30				
300-1,500			f/1500	30				
1,500-100,000			1.0	30				
f = frequency in M	Hz * = Plane-wave equi	valent power density						

NOTE:

Limits: According KDB 680106 D01, emissions between 100 kHz to 300 kHz should be assessed versus the limits at 300 kHz in Table 1 of Section 1.1310: 614 V/m and 1.63 A/m.

General Population/Uncontrolled Exposure: Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.


Occupational/Controlled Exposure: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure. In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

4 TEST SETUP

4.1 Test Setup Photo

Maximum H-field and E-filed measurements were made on each of five sides of the EUT that could come in contact with a user. The five sides are defined as follows: Top (A), Left (B), Bottom (C), Right (D), and Front (E). Refer to the test position diagram below.

Note: Under normal use this product placed on desktop, so rear side is not require test.

4.2 Measurement procedure

- 1. The RF exposure test was performed in anechoic chamber.
- The measurement probe was placed at test distance (15 cm) which is between the edge of the charger and the geometric center of probe. For top edge used test distance 15mm instead of test distance 20cm to measurement more conservation H-Filed and E-Filed values.
- 3. The highest emission level was recorded and compared with limit as soon as measurement of each points (A, B, C, D, E) were completed.
- 4. The EUT was measured according the dictates of KDB 680106 D01v03.

4.3 Mobile Condition

Probe	Condition	Test Distance (cm) A/B/C/D	Test Distance (cm) E
H-field	Mobile	15	20
E-field	Mobile	15	20

4.4 Test Equipment

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
H-field Probe	Schaffner	EMC-20	1324.11	2018.06.15	2019.06.14
E-filed-Probe	Narda	EP601	511WX51129	2018.06.14	2019.06.13
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2017.02.21	2019.02.20
Mobile Phone	Apple	A1863	FD6W61MMJCLM	N/A	N/A

4.5 Test Configuration

To check all kinds of possible modes, the EUT was evaluated with appropriate client and under each charging condition as the below table:

Test Mode NO.		Description
1	Charging Mode	The EUT was charging the client device which has Less than
•	Orlanging Wode	1 % of battery.
2	Charging Mode	The EUT was charging the client device which has Less than
2	Charging Mode	50 % of battery.
2	Charging Mode	The EUT was charging the client device which has 100 % of
3		battery.

5 TEST RESULT

5.1 H-field

			EUT Edges				
Distance	Test	Α	В	С	D	Е	Limit
(cm)	Mode	(A/m)	(A/m)	(A/m)	(A/m)	(A/m)	(A/m)
	1	0.0026	0.0028	0.0031	0.0032	0.0033	
15	2	0.0019	0.0021	0.0023	0.0024	0.0021	1.63
	3	0.0023	0.0024	0.0026	0.0029	0.0027	

5.2 E-field

			EUT Edges				
Distance	Test	Α	В	С	D	Е	Limit
(cm)	Mode	(V/m)	(V/m)	(V/m)	(V/m)	(V/m)	(V/m)
	1	5.38	5.28	6.09	5.73	5.41	
15	2	4.92	5.03	5.45	4.27	4.19	614
	3	5.19	5.06	6.03	5.48	5.36	

6 Test Conclusion

6.1 H-field

Distance	Worst-case	EUT Edge E	Limit	50% Limit	Verdict
(cm)	Test Mode	(A/m)	(A/m)	(A/m)	verdict
15	1	0.0033	1.63	0.82	Pass

6.2 E-field

Distance	Worst-case	EUT Edge C	Limit	50% Limit	Vardiet
(cm)	Test Mode	(V/m)	(V/m)	(V/m)	Verdict
15	1	6.09	614.0	307.0	Pass

According KDB 680106 D01v03, the EUT is compliant with the 50% of the MPE limits.

--END OF REPORT--