FCC 47 CFR PART 15 SUBPART B **TEST REPORT**

Desay Infor Technology Co., Ltd

Smart Bracelet

Model No.: DS-D6

Additional Model No.: Please refer to page 7

Prepared for : Desay Infor Technology Co., Ltd

Address : Desay No.3 Industrial Zone Chengjiang Town, Huizhou, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Address

Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

: webmaster@LCS-cert.com Mail

Date of receipt of test sample : April 24, 2017

Number of tested samples

Serial number : Prototype

Date of Test : April 24, 2017 ~ May 15, 2017

Date of Report : May 15, 2017

FCC TEST REPORT FCC 47 CFR PART 15 SUBPART B

Report Reference No.: LCS170424085AE

Date Of Issue : May 15, 2017

Testing Laboratory Name......: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure......: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: Desay Infor Technology Co., Ltd

Address : Desay No.3 Industrial Zone Chengjiang Town, Huizhou, China

Test Specification

Standard : FCC 47 CFR Part 15 Subpart B, ANSI C63.4 -2014

Test Report Form No. : LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.: : Smart Bracelet

Model/ Type Reference: DS-D6

Trade Mark: DESAY, Lenovo

Ratings : DC 3.7V by battery (90mAh)

Recharge Voltage: 5V=, 100mA

Result: Positive

Compiled by:

Supervised by:

Approved by:

Linda He/ File administrator

Linda He

Glin Lu/ Technique principal

Gavin Liang/ Manager

FCC -- TEST REPORT

May 15, 2017 Test Report No.: LCS170424085AE Date of issue

Type / Model..... : DS-D6 EUT....: Smart Bracelet Applicant.....: : Desay Infor Technology Co., Ltd Address.....: Desay No.3 Industrial Zone Chengjiang Town, Huizhou, China Telephone.....: : / Fax.....: : / Manufacturer.....: : Desay Infor Technology Co., Ltd China Telephone.....: : / Fax.....:: : / Factory.....: Desay Infor Technology Co., Ltd Address.....: Desay No.3 Industrial Zone Chengjiang Town, Huizhou, China Telephone....:: / Fax.....:: : /

Test Result according to the standards on page 5: **Positive**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
00	May 15, 2017	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	6
1.1. Description of Standards and Results	6
1.2. Description of Test Modes	
2. GENERAL INFORMATION	
2.1. Description of Device (EUT)	7
2.2. Description of Test Facility	
2.3. Statement of the measurement uncertainty	
2.4.Measurement Uncertainty	
3. POWER LINE CONDUCTED EMISSION MEASUREMENT	9
3.1. Test Equipment	9
3.2.Block Diagram of Test Setup	
3.3.Test Standard	
3.4.EUT Configuration on Test	
3.5.Operating Condition of EUT	10
3.6.Test Procedure	
3.7.Test Results	10
4. RADIATED EMISSION MEASUREMENT	12
4.1. Test Equipment	12
4.1. Block Diagram of Test Setup	12
4.2. Radiated Emission Limit (Class B)	12
4.3. EUT Configuration on Measurement	13
4.4. Operating Condition of EUT	13
4.5. Test Procedure	
4.6. Radiated Emission Noise Measurement Result	13
5. PHOTOGRAPH	16
6 EXTERNAL AND INTERNAL PHOTOS OF THE FUT	16

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION							
Description of Test Item	Standard	Limits	Results				
Conducted disturbance at mains terminals	FCC 47 CFR Part 15 Subpart B	Class B	PASS				
Radiated disturbance	FCC 47 CFR Part 15 Subpart B	Class B	PASS				
Conducted disturbance at Antenna terminals	FCC 47 CFR Part 15 Subpart B		N/A				
N/A is an abbreviation for Not Applicable.							

1.2. Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/50Hz modes, recorded worst case;

AC conducted emission pre-test at both at power adapter and power from PC modes, recorded worst case;

There was 3 test Modes. TM1 to TM3 were shown below:

TM1: Operate in BT LE mode.

TM2: Exchange data with PC.

TM3: Idle mode

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT : Smart Bracelet

Trade Mark : DESAY, Lenovo

Model Number : DS-D6, DS-D6 Plus, DS-B521 Plus, DS-D8, C5 Plus, B525,

HW01, HW01 Plus, DS-D6XX(XX=0-9)

Model Declaration : PCB board, structure and internal of these model(s) are the sa

me, So no additional models were tested, excluding the model

DS-D8.

The product model (DS-D8) are identical in the same PCB layout, interior structure and electrical circuits with the model DS-D6, The main difference is that the heart rate test is not the

same.

Test Model : DS-D6

Power Supply : DC 3.7V by battery (90mAh)

Recharge Voltage: 5V=, 100mA

2.2. Description of Test Facility

Site Description

EMC Lab. : CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

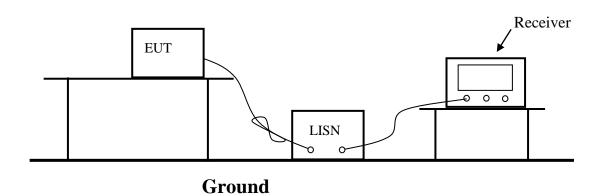
2.3. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.4. Measurement Uncertainty

Test Item	Frequency Range	Expanded uncertainty (Ulab)	Expanded uncertainty (Ucispr)
Radiated Emission	Level accuracy (9kHz to 30MHz)	± 3.68 dB	N/A
Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.2 dB
Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	N/A
Radiated Emission	Level accuracy (9kHz to 30MHz)	± 3.68 dB	N/A

- (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.
- (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.


3. POWER LINE CONDUCTED EMISSION MEASUREMENT

3.1. Test Equipment

The following test equipments are used during the power line conducted measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	ROHDE & SCHWARZ	ESR 7	101181	2016-06-18
2	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-00 32	2016-06-18
3	Artificial Mains	ROHDE & SCHWARZ	ENV216	101288	2016-06-18
4	EMI Test Software	AUDIX	E3	N/A	N/A
5	ISN	SCHWARZBECK	NTFM 8158	NTFM 8158 0120	2016-06-18

3.2.Block Diagram of Test Setup

3.3.Test Standard

Power Line Conducted Emission Limits (Class B)

Frequency			Limit (dBμV)				
(MHz)		Quasi-peak Level	Average Level				
0.15	~	0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *			
0.50	~	5.00	56.0	46.0			
5.00	~	30.00	60.0	50.0			

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.4.EUT Configuration on Test

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

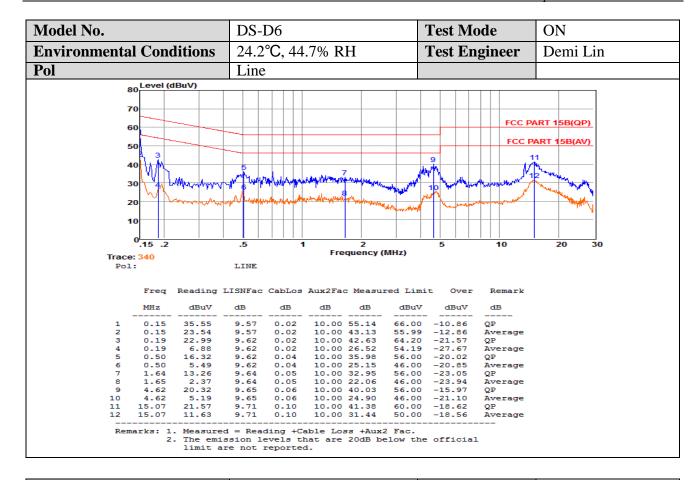
Report No.: LCS170424085AE

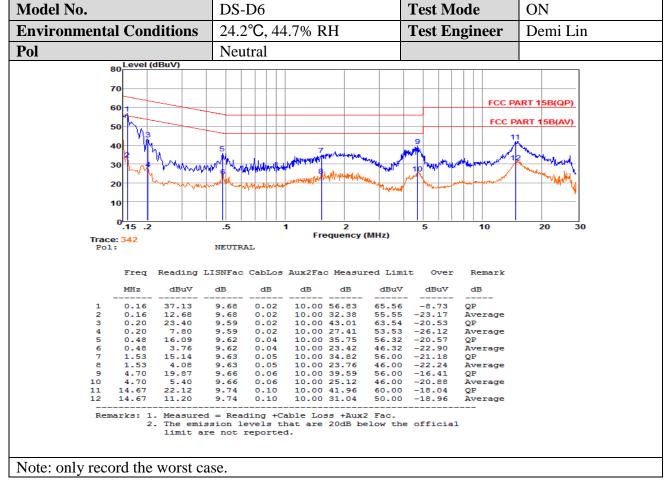
3.5. Operating Condition of EUT

- 3.5.1. Setup the EUT as shown on Section 3.2
- 3.5.2. Turn on the power of all equipments.
- 3.5.3.Let the EUT work in measuring mode (ON) and measure it.

3.6.Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.

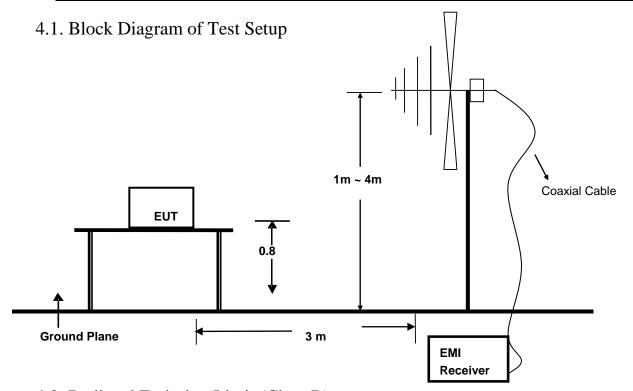

The bandwidth of the test receiver is set at 9kHz.


The frequency range from 150kHz to 30MHz is investigated

3.7.Test Results

PASS.

The test result please refer to the next page.



4. RADIATED EMISSION MEASUREMENT

4.1. Test Equipment

The following test equipments are used during the radiated emission measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03СН03-НҮ	2016-06-18
2	EMI Test Receiver	ROHDE & SCHWARZ	ESR 7	101181	2016-06-18
3	Log per Antenna	SCHWARZBECK	VULB9163	9163-470	2017-04-18
4	EMI Test Software	AUDIX	E3	N/A	2016-06-18
5	Positioning Controller	MF	MF-7082	/	2016-06-18

4.2. Radiated Emission Limit (Class B)

Limits for radiated disturbance Blow 1GHz

FREQUENCY	DISTANCE	FIELD STREN	IGTHS LIMIT		
MHz	Meters	μV/m	$dB(\mu V)/m$		
30 ~ 88	3	100	40		
88 ~ 216	3	150	43.5		
216 ~ 960	3	200	46		
960 ~ 1000	3	500	54		

Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

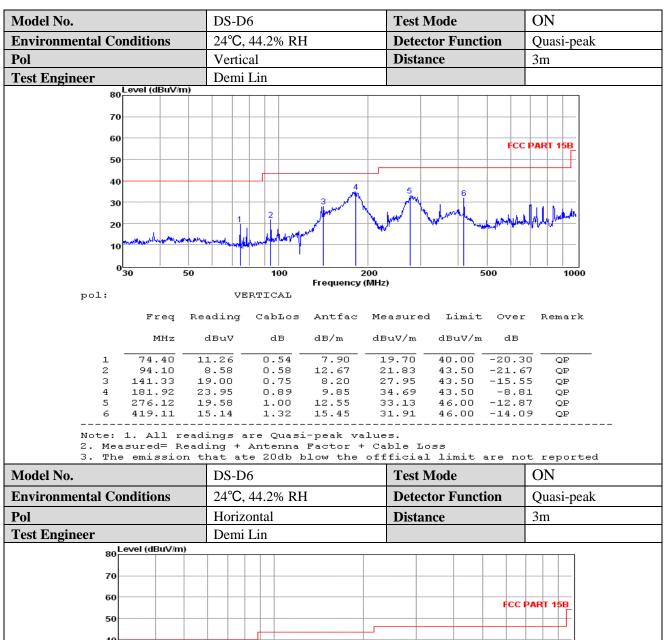
4.3. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT as shown in Section 4.2.
- 4.4.2.Let the EUT work in test mode (on) and measure it.

4.5. Test Procedure


EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.

The bandwidth of the EMI test receiver is set at 120kHz, 1000kHz.

The frequency range from 30MHz to 1000MHz is checked.

4.6. Radiated Emission Noise Measurement Result PASS.

The scanning waveforms please refer to the next page.

Environmental Co	onditions	24°C	tal Conditions 24°C, 44.2% RH			tor Funct	ion	Quasi-peak		
Pol		Horizontal			Distar	ıce	3m			
Test Engineer		Demi	i Lin							
80	Level (dBuV/m)									
70										
60										
50							FCC P	ART 15B		
40										
30						6				
20		1	2		Jan. 1944	home phillips	Marketon	Pallalla A		
10	A STATE OF THE STA		Jan	74						
o	30 50)	100	2 Frequency (00 MHz)	50	00	1000		
pol:		но	RIZONTAL							
	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark		
	MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dB			
1	59.23	3.93	0.49	12.74	17.16	40.00	-22.84	QP QP		
2	94.10	5.00	0.58	12.67	18.25	43.50	-25.25			
3	143.33	24.27	0.71	8.21	33.19	43.50	-10.31	QP		
4	180.02	25.39	0.89	9.68	35.96	43.50	-7.54	QP		
5	280.02	21.86	1.01	12.67	35.54	46.00	-10.46	QP		
6	441.74	13.73	1.25	15.56	30.54	46.00	-15.46	QP		

The emission that ate 20db blow the offficial limit are not reported

Note: 1. All readings are Quasi-peak values.
2. Measured= Reading + Antenna Factor + Cable Loss

Note: only record the worst case.

Model No.	DS-D6	Test Mode	ON
Environmental Conditions	24℃, 56% RH	Distance	3m
Test Engineer	Demi Lin	Test date:	May 08, 2017

Frequency		Emission Level dBµV/m		Limits dBµV/m		rgin V/m	Polarization
MHz	Peak	AV	Peak	AV	Peak	AV	
1325.16	48.72	37.55	74.00	54.00	-25.28	-16.45	Н
1962.31	51.61	39.69	74.00	54.00	-22.39	-14.31	Н
2257.34	47.96	39.01	74.00	54.00	-26.04	-14.99	Н
3252.23	56.18	45.64	74.00	54.00	-17.82	-8.36	Н
4851.50	58.23	42.86	74.00	54.00	-15.77	-11.14	Н
5261.24	53.79	42.19	74.00	54.00	-20.21	-11.81	Н
1420.58	49.10	36.14	74.00	54.00	-24.90	-17.86	V
1828.80	51.17	39.67	74.00	54.00	-22.83	-14.33	V
2964.23	46.89	39.78	74.00	54.00	-27.11	-14.22	V
3562.33	56.13	45.94	74.00	54.00	-17.87	-8.06	V
4479.62	56.30	46.48	74.00	54.00	-17.70	-7.52	V
5943.38	55.17	42.99	74.00	54.00	-18.83	-11.01	V

Notes:

1. Measuring frequencies from 9 KHz~5th harmonic of working frequency, No emission found between lowest internal used/generated frequency to 30MHz.

_	D.	TT	\cap		\sim	α 1	\mathbf{n}	A 1	D.	TT	۰
5.	r	н	U	' '	W	lτl	K	A I	М	Н	

Please refer to separated files for Test Setup Photos of the EUT.

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Please refer to separated files for Test Setup Photos of the EUT.

----- THE END OF TEST REPORT -----