FCC Test Report

Report No.: AGC00653161201FE04

FCC ID	:	2AEM6TT-748
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Tablet
BRAND NAME	:	TIGERS
MODEL NAME	:	TT-748
CLIENT	:	MOVEON TECHNOLOGY (HK) CO., LTD.
DATE OF ISSUE	:	Jan. 05, 2017
STANDARD(S) TEST PROCEDURE(S)	:	FCC Part 15.247 KDB 558074 v03r02
REPORT VERSION	:	V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

Ishenzhen

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jan. 05, 2017	Valid	Original Report

TABLE OF CONTENTS

1. VEF	RIFICATION OF CONFORMITY	5
2. GE	NERAL INFORMATION	3
2.1	. PRODUCT DESCRIPTION	6
2.2	. TABLE OF CARRIER FREQUENCYS	6
2.3	. IEEE 802.11N MODULATION SCHEME	7
2.4	. RELATED SUBMITTAL(S) / GRANT (S)	7
2.5	. TEST METHODOLOGY	7
2.6	. SPECIAL ACCESSORIES	7
2.7	. EQUIPMENT MODIFICATIONS	8
3. ME	ASUREMENT UNCERTAINTY)
4. DE\$	SCRIPTION OF TEST MODES)
5. SYS	STEM TEST CONFIGURATION 10)
5.1	. CONFIGURATION OF EUT SYSTEM 1	0
5.2	. EQUIPMENT USED IN EUT SYSTEM 1	0
5.3	. SUMMARY OF TEST RESULTS 1	0
6. TES	ST FACILITY	I
7. OU	TPUT POWER	3
7.1	. MEASUREMENT PROCEDURE 1	3
7.2	. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 1	4
7.3	. LIMITS AND MEASUREMENT RESULT 1	5
8. 6DE	3 BANDWIDTH 17	7
8.1	. MEASUREMENT PROCEDURE 1	7
8.2	. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 1	7
8.3	. LIMITS AND MEASUREMENT RESULTS 1	7
9. CO	NDUCTED SPURIOUS EMISSION)
	. MEASUREMENT PROCEDURE	
	. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 2	
9.3	. MEASUREMENT EQUIPMENT USED 2	0
9.4	. LIMITS AND MEASUREMENT RESULT 2	:0
10. M/	AXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY 27	7
10.	1 MEASUREMENT PROCEDURE	27
10.	2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 2	27
10.	3 MEASUREMENT EQUIPMENT USED 2	27
10.	4 LIMITS AND MEASUREMENT RESULT 2	7

Report No.: AGC00653161201FE04 Page 4 of 52

11. RADIATED EMISSION	30
11.1. MEASUREMENT PROCEDURE	30
11.2. TEST SETUP	31
11.3. LIMITS AND MEASUREMENT RESULT	32
11.4. TEST RESULT	32
12. BAND EDGE EMISSION	36
12.1. MEASUREMENT PROCEDURE	36
12.2. TEST SET-UP	
12.3. Radiated Test Result	
12.4. Conducted Test Result	38
13. FCC LINE CONDUCTED EMISSION TEST	40
13.1. LIMITS OF LINE CONDUCTED EMISSION TEST	40
13.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	40
13.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	41
13.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	41
13.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	42
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	44
APPENDIX B: PHOTOGRAPHS OF EUT	46

MOVEON TECHNOLOGY (HK) CO., LTD.	
Room 3201, Building A, World Trading Plaza Block, Futian Rd., Futian Distric, Shenzhen, China	
MOVEON TECHNOLOGY LIMITED	
World Trade Plaza-A Block #3201-3202 Fuhong Road, Futian	
Tablet	
TIGERS	
TT-748	
Dec. 20, 2016~Dec. 30, 2016	
None	
Normal	
AGCRT-US-BGN/RF	

1. VERIFICATION OF CONFORMITY

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with requirement of FCC Part 15 Rules requirement.

Tested By	demare itmoorg	
	Donjon Huang(Huang Dongyang)	Dec. 30, 2016
Reviewed By	Bore xie	
	Bart Xie(Xie Xiaobin)	Jan. 05, 2017
Approved By	Solya shang	
	Solger Zhang(Zhang Hongyi) Authorized Officer	Jan. 05, 2017
Approved By	Solger Zhang(Zhang Hongyi)	

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "Tablet ". It is designed by way of utilizing the DSSS and OFDM technology to achieve the system operation.

A major technical description	of LOT is described as following	
Operation Frequency	2.412 GHz~2.462GHz	
Output Bower	IEEE 802.11b: 13.38 dBm, IEEE 802.11g: 10.97 dBm;	
Output Power	IEEE 802.11n(20): 10.89 dBm, IEEE 802.11n(40): 9.76 dBm;	
Modulation	DSSS(DBPSK/DQPSK/CCK);OFDM(BPSK/QPSK/16-QAM/64-QAM)	
Number of channels	11	
Hardware Version	H5L X0409099A	
Software Version	ALPS.KK1.MP7.V1.44	
Antenna Designation	Integrated Antenna	
Antenna Gain	3.28dBi	
Power Supply	DC3.7V by Built-in Li-ion Battery	

A major technical description of EUT is described as following

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	1	2412 MHZ
	2	2417 MHZ
	3	2422 MHZ
	4	2427 MHZ
	5	2432 MHZ
2400~2483.5MHZ	6	2437 MHZ
-	7	2442 MHZ
	8	2447 MHZ
	9	2452 MHZ
	10	2457 MHZ
	11	2462 MHZ

Note: For 20MHZ bandwidth system use Channel 1 to Channel 11 For 40MHZ bandwidth system use Channel 3 to Channel 9

MCS Index	Nss	Modulation	R	NCBPS NDBPS		NBPSC					BPS		ata Abps) nsGl
					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz			
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5			
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0			
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5			
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0			
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0			
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0			
6	1	64-QAM	3/4	6	312	648	234	489	58.5	121.5			
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0			

2.3. IEEE 802.11N MODULATION SCHEME

Symbol	Explanation
NSS	Number of spatial streams
R	Code rate
NBPSC	Number of coded bits per single carrier
NCBPS	Number of coded bits per symbol
NDBPS	Number of data bits per symbol
GI	Guard interval

2.4. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AEM6TT-748** filing to comply with the FCC Part 15 requirements.

2.5. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters. Others testing (listed at item 5.3) was performed according to the procedures in FCC Part 15.247 rules KDB

Others testing (listed at item 5.3) was performed according to the procedures in FCC Part 15.247 rules KDB 558074 D01 DTS Meas Guidance v03r02.

2.6. SPECIAL ACCESSORIES

Refer to section 5.2.

2.7. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. MEASUREMENT UNCERTAINTY

Conducted measurement: +/- 2.75dB Radiated measurement: +/- 3.2dB

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION			
1	Low channel TX			
2	Middle channel TX			
3	High channel TX			
4	Normal operating			
Transm	it by 802.11b with Date rate (1/2/5.5/11) it by 802.11g with Date rate (6/9/12/18/24/36/48/54) it by 802.11n (20MHz) with Date rate (6.5/13/19.5/26/39/52/58.5/65)			

Transmit by 802.11n (20MHz) with Date rate (6.5/13/19.5/26/39/52/58.5/65)

Transmit by 802.11n (40MHz) with Date rate (13.5/27/40.5/54/81/108/121.5/135)

Note:

1. The EUT has been set to operate continuously on the lowest, middle and highest operation frequency Individually, and the eut is operating at its maximum duty cycle>or equal 98%

- 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data.
- 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Configure:

EUT	Accessory
-----	-----------

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Note
1	Tablet	TT-748	2AEM6TT-748	EUT
2	Adapter	TT-748	DC5V /2000mA	Accessory
3	Battery	357090	DC3.7V/3000mAh	Accessory
4	Earphone	TT-748	N/A	Accessory
5	USB Cable	TT-748	N/A	Accessory

Note: All the accessories have been used during the test in conduction emission test.

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Output Power	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247	Conducted Spurious Emission	Compliant
§15.247	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Line Conduction Emission	Compliant

Note: The EUT received power from DC3.8V lithium battery.

6. TEST FACILITY

Site Dongguan Precise Testing Service Co., Ltd.	
Location Building D,Baoding Technology Park,Guangming Road2,Dongcheng District Dongguan, Guangdong, China,	
FCC Registration No.	371540
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.10:2013.

ALL TEST EQUIPMENT LIST

FOR RADIATED EMISSION TEST (BELOW 1GHZ)

Radiated Emission Test Site					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2017
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017
RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016	July 2, 2017
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 5, 2016	June 4, 2017
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 5, 2016	June 4, 2017
Spectrum analyzer	Agilent	E4407B	MY46185649	June 5, 2016	June 4, 2017
Power Probe	R&S	NRP-Z23	100323	July 24,2016	July 23,2017
RF attenuator	N/A	RFA20db	68	N/A	N/A

FOR RADIATED EMISSION TEST (1GHZ ABOVE)

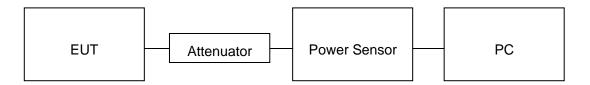
Radiated Emission Test Site					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	July 10, 2016	July 9, 2017
Spectrum Analyzer	Agilent	E4411B	MY4511453	July 3, 2016	July 2, 2017
Signal Amplifier	SCHWARZBECK	BBV 9718	9718-269	July 6, 2016	July 5, 2017
RF Cable	SCHWARZBECK	AK9515H	96220	July 7, 2016	July 6, 2017
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 5, 2016	June 4, 2017
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A

Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 5, 2016	June 4, 2017
Power Probe	R&S	NRP-Z23	100323	July 24,2016	July 23,2017
RF attenuator	N/A	RFA20db	68	N/A	N/A

Conducted Emission Test Site					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017
Artificial Mains Network	Narda	L2-16B	000WX31025	July 7, 2016	July 6, 2017
Artificial Mains Network (AUX)	Narda	L2-16B	000WX31026	July 7, 2016	July 6, 2017
RF Cable	SCHWARZBECK	AK9515E	96222	July 3, 2016	July 2, 2017
Shielded Room	CHENGYU	843	PTS-002	June 5,2016	June 4,2017

7. OUTPUT POWER

7.1. MEASUREMENT PROCEDURE


For max average conducted output power test:

- 1. Connect EUT RF output port to power probe through an RF attenuator.
- 2. Connect the power probe to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.

Note : The EUT was tested according to KDB 558074v03r02 for compliance to FCC 47CFR 15.247 requirements.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

AVERAGE POWER SETUP

7.3. LIMITS AND MEASUREMENT RESULT

TEST ITEM	OUTPUT POWER
TEST MODE	802.11b with data rate 1

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	13.38	30	Pass
2.437	13.27	30	Pass
2.462	13.11	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11g with data rate 6

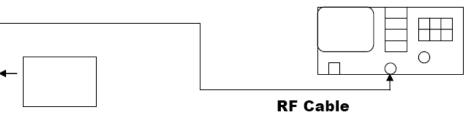
Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	10.97	30	Pass
2.437	10.81	30	Pass
2.462	10.67	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11n 20 with data rate 6.5

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	10.89	30	Pass
2.437	10.75	30	Pass
2.462	10.34	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11n 40 with data rate 13.5

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.422	9.67	30	Pass
2.437	9.54	30	Pass
2.452	9.76	30	Pass

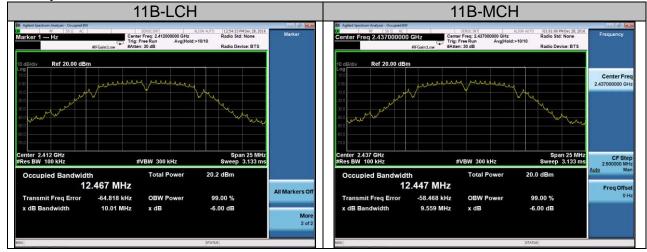

8. 6DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

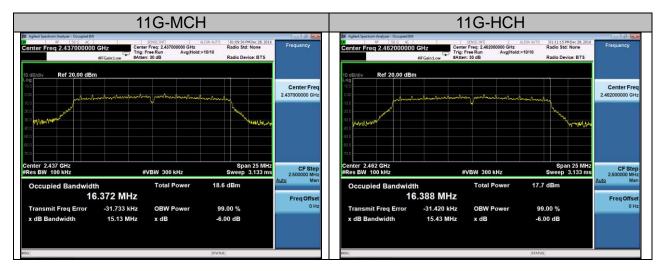
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW \ge 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

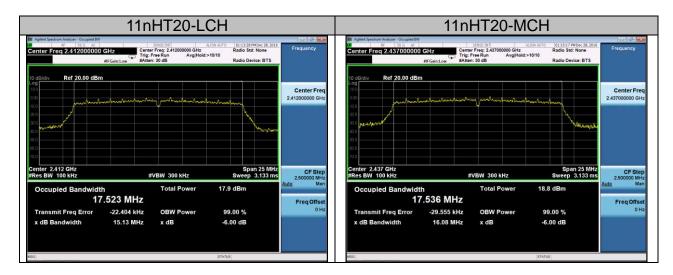
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

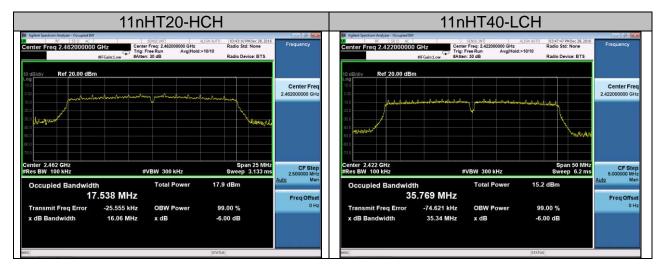

EUT

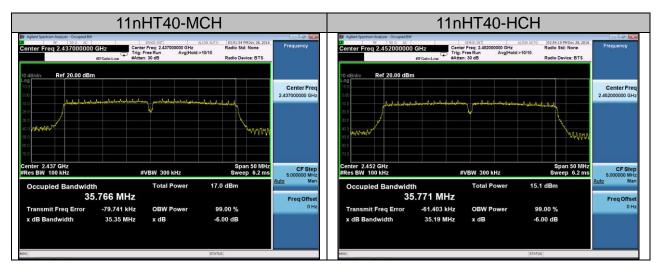
8.3. LIMITS AND MEASUREMENT RESULTS


Mode	Channel	6dB Bandwidth [MHz]	Verdict
	LCH	10.01	PASS
11B	MCH	9.559	PASS
	НСН	10.02	PASS
	LCH	15.32	PASS
11G	MCH	15.13	PASS
	НСН	15.43	PASS
	LCH	15.13	PASS
11nHT20	MCH	16.08	PASS
	НСН	16.06	PASS
	LCH	35.34	PASS
11nHT40	MCH	35.35	PASS
	HCH	35.19	PASS

Spectrum Analyzer


Test Graph





Report No.: AGC00653161201FE04 Page 19 of 52

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.
- Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW > RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW > RBW) are conform to the requirement.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

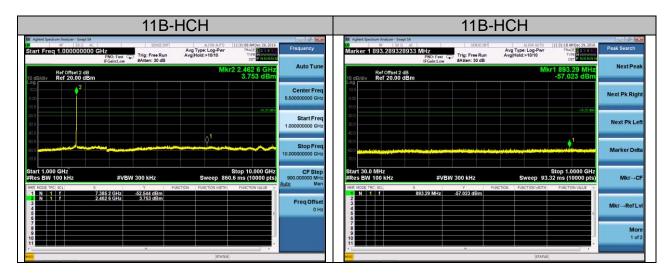
The same as described in section 8.2.

9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.

9.4. LIMITS AND MEASUREMENT RESULT

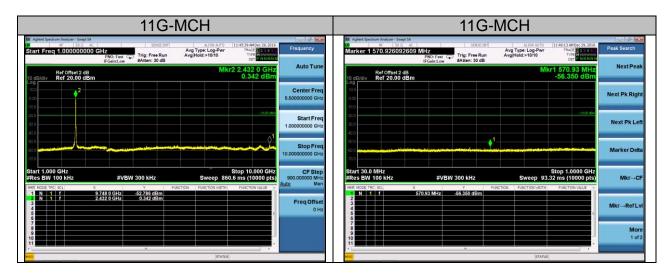
LIMITS AND MEASUREMENT RESULT				
Applieghte Limite	Measurement Result			
Applicable Limits	Test Data	Criteria		
In any 100 KHz Bandwidth Outside the	At least -20dBc than the limit			
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS		
intentional radiator is operating, the radio frequency	Channel			
power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS		


Test Graph

11B-LCH		11B-LCH	
Start Fred 1 00000000 GHz Avg Type: Log-Pwr TRA	And Dec 29, 2016 Frequency	Marker 1 430.650065007 MHz SDIG MC Aug Proc. Log-Port Trock B2 a 3: Arg Type: Log-Port Trock B2 a 3: Trock B2 a 3: Arg Type: Log-Port Trock B2 a 3: Trock B2 a 3	
Ref Offset 2 dB Mkr2 2,41 10 dB/div Ref 20.00 dBm 3.8	Auto Tune 373 dBm	Ref Offset2 dB Mkr1 430.65 MHz 10 dBidiv Ref 20.00 dBm -56.282 dBm	
	Center Freq 5.50000000 GHz	egy has been been been been been been been bee	
420	∴10.32.60* Start Freq 1.000000000 GHz	220	
	Stop Freq 10.000000000 GHz	00 00 10 10 10 10 10 10 10 10 10 10 10 1	
#Res BW 100 kHz #VBW 300 kHz Sweep 860.6 ms (1	Auto Man	Start 30.0 MHz Stop 1.0000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 93.32 ms (10000 pts)	
MR MO2 FR: SL, X, Y Perchos PacTos MOTH Funct 1 N 1 f 96451GHz 4400550Bm 1 N 1 f 24131GHz 3873dBm 6 6	FreqOffset 0 Hz	MM RUDE TRC: X Y Function Funct	
		7 9 10 11	
STATUS STATUS		NEC STATUS	

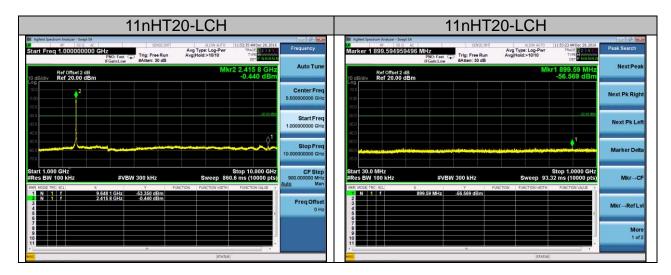
11B-LCH		11B-MCH
Ref Offset 2 dB Ref Offset 2 dB Ref Offset 2 dB Ref Offset 2 dB Mint 2 dB M	Peak Search Next Peak	Image: State Spectra Regions Regions - State State State Spectra Regions - State Frequency State Frequency Frequency Frequency Trig: Frequency Avg Type: Log-Perv Trig: Frequency Frequency Ref Offset2 dB Mkr2 2.436 5 GHz Auto Tune 10 dB/dm 2.714 4 Bm Auto Tune
	Next Pk Right	Center Freq 000 100
40	Next Pk Left	300 300 Start Freq 400 A1
	Marker Delta	400 000 000 000 000 000 000 000
Start 10.000 CHz Stop 25.000 CHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.434 s (10000 pts) wew toog #rc sci v parcton _ parcton worth _ parcton worth	Mkr→CF	Start 1.000 CHz Stop 10.000 CHz CF Step 9700 Start 1.000 CHz Sweep 860.6 ms (1000 pts) Man #Res BW 100 kHz #VEW 300 kHz Sweep 860.6 ms (1000 pts) Auto Man Mon Mod First Exit x Factors with Factors with Restorements Factors with Factors with Fa
N 1 7 24.878 s.GHz -45.587 dBm 2 -	Mkr⊸RefLvl More 1 of2	1 N 1 7 9748 GHz -61337 dBm 7 2498 6Hz 2714 dBm 6 0 Hz 0Hz 0Hz 0Hz 0Hz 0Hz 0Hz 0Hz 0Hz 0H
111		

11B-MCH		11B-MCH
Aglent Spectrum Analyser - Singst SA So AC Sector All Solo AC Sector Marker 1 830,233023302 MHz PNO: Fast Free IFGsin:Low #Atten: 30	Aug Type: Log-Pwr TRACE TO 19 Construction C	Image: Search Image: Search Image: Search Statute of the sear
Ref Offset 2 dB 10 dB/div Ref 20.00 dBm	Mkr1 830.23 MHz -56.257 dBm	lextPeak Ref Offset 2 dB Nkr1 24.896 5 GHz 10 dB/dev Ref 20.00 dBm -45.733 dBm
0.00	Next	Pk Right 000 Next Pk Right
-00	str 26 dim	kt PK Left 2010
-400 	Mar	ker Deta
Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz		Storp 25.000 GHz Storp 25.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.434 s (10000 pts)
MAR MODE TRC: ScL X Y 1 N 1 F 830,23 MHz -56,257 dBr 3 4 - 5 - 6 -		INF NOC TRC SLI X Y P JICTON Function watching F
7 8 9 9 10		More 9 1 of 2 11
MIQ	STATUS	4

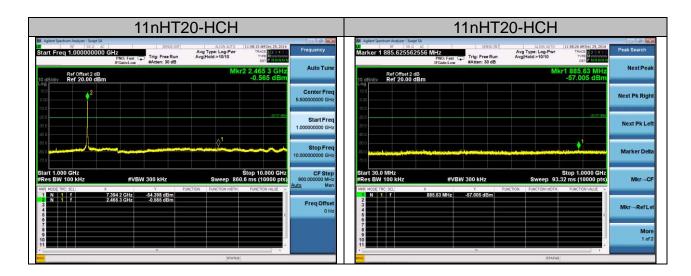

Report No.: AGC00653161201FE04 Page 22 of 52

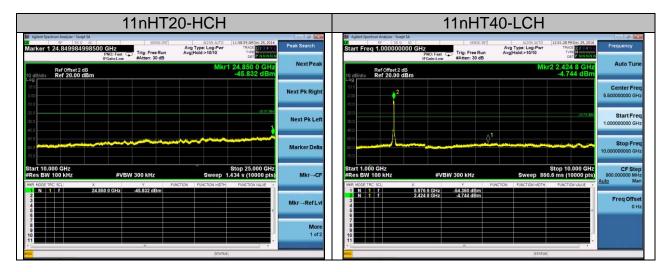
11B-HCH					11G-LCH
Agilent Spectrum Analyzer - Swept SA RF S0 © AC Marker 1 24.7839783978 AC AC AC		ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>10/10	11:31:44 AMDec 29, 2016 TRACE 12:24 BM TYPE MANNAN DET PRANNING	Peak Search	Start Sector Regress Suppl Sa Store Dark Align auto 1106-29 Address Store Store Same Start Freq 1.000000000 GHz Pro: Fast (Foldmit.com) Trig: Free Run Arrg Holds-19/10 Arrg Type: Log-Pur Trig: Free Run Arrg Type: Log-Pur Arrg Holds-19/10 Trig: Free Run Com) Arrg Type: Log-Pur Trig: Free Run Arrg Type: Log-Pur Arrg Holds-19/10 Trig: Free Run Com) Arrg Type: Log-Pur Trig: Free Run Com)
Ref Offset 2 dB 10 dB/div Ref 20.00 dBm		Mkr	24.784 0 GHz -45.754 dBm	Next Peak	Ref Offset2 dB Mkr2 2.413 1 GHz Auto Tune 10 dBldiv Ref 20.00 dBm 0.463 dBm Auto Tune
10.0 0.00				Next Pk Right	105 02 Center Freq 000 650000000 GHz
-20.0			-1628.094	Next Pk Left	300
-50.0 -80.0 -70.0				Marker Delta	000 000
Start 10.000 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 1	Stop 25.000 GHz .434 s (10000 pts)	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz CF Step #Res BW 100 kHz #VBW 300 kHz Sweep 860.6 ms (10000 pts)
MRR MODE TRC: SCL X	4.784 0 GHz -45.754 dBm	FUNCTION	FUNCTION VALUE •	Mkr→RefLvl	New Mode The Sol. X Parentos Parentos Parentos valos Auto Man 1 N 3 7 2.5413 (GHz -50504 dBm/ Function valos Function valos Function valos Function valos Freq Offset 3 4 4 2.4131 (GHz -0.655 (Gbm) Function valos Freq Offset 0 Hz
9 9 10				More 1 of 2	

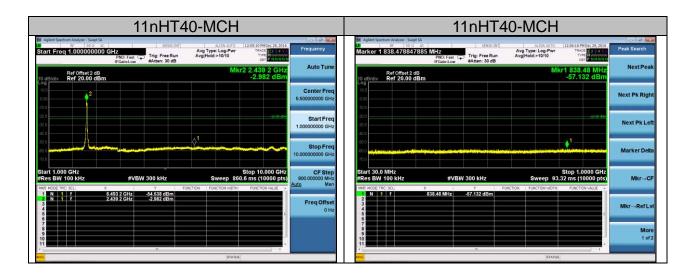
11G-LCH		11G-LCH
Marker 4 811.025102510 Marker 5 800 Marker 4 811.025102510 Marker 5 800 Acr Structure Arg Type: Log-Per Structure Arg Type: Log-Per Structure Trig: Free Run Structure Arg Type: Log-Per Structure Trig: Structure	Peak Search	B Agent Spectrum Review - Stage 3A Struct Dark Image: Specific Dark Pack Specific Dark
Mkr1 811.03 MHz Mkr1 811.03 MHz Log BM -57.189 dBm Log -57.189 dBm		Ref Offset 2 dB Mkr1 24,787 0 GHz Next Peak 10 dB/ddv Ref 20.00 dBm -46.098 dBm
9.00	Next Pk Right	000 Next Pk Right
300 450 650 650	Next Pk Left Marker Delta	300 Next Pk Left Marker Delta
TO Stop 1,0000 GHz #Res BW 100 kHz #VBW 300 kHz Stop 1,0000 GHz #Res FBW 100 kHz #VBW 300 kHz Sweep 93.32 ms (10000 pts 10000 pts 10000 pts 10000 pts 10000 pts 10000 pts 10000 pts 100000 pts 100000 pts 100000 pts 100000 pts 100000 pts 100000 pts 10000 pts 10000 pts 100000 pts 10000 pts 100000000 pts 1000000 pts 1000000000000000000000000000000000000	Mkr→CF	Start 10.000 GHz Stop 25.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.134 s (10000 pts) MM MOST (SL) x Y Factors with " Factors with" Factors with " Factors with" Factors with " Factors with" Factors with " Factor
N 1 f 811.03 MHz -57,169 dBm 3 -	Mkr→RefLvl	1 N 1 f 24.787.0 GHz 46.098 dBm 2 - - - - - 3 - - - - - 4 - - - - - 5 - - - - -
	More 1 of 2	More 10 10
ISS STATUS		teg status

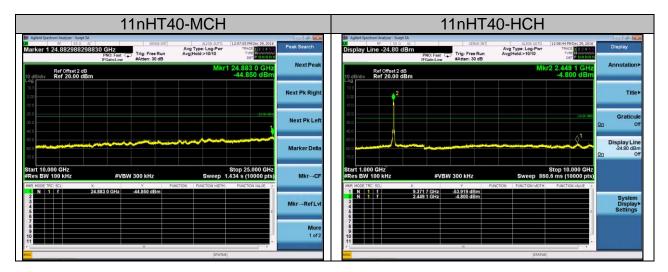

Report No.: AGC00653161201FE04 Page 23 of 52

11G-MCH		11G-HCH	
If Aglent Spectrum Analyses: Spectrum 1 No Status No St	Peak Search	Bit Agenet Spectrum Analyser: Swep 5A. Control Spectrum Analyser: Swep 5A. Control Spectrum Analyser: Spectr	
Ref Offset 2 dB Mkr1 24.778 0 GHz 10 dB/div Ref 20.00 dBm -45.011 dBm	Next Peak	Ref Offset 2 dB Mkr2 2.457 2 GHz	
	Next Pk Right	Center Freq 8 00 5 50000000 GHz	
40.000	Next Pk Left	200	
	Marker Delta	600 009 Stop Freq 10.000000000 GH2	
Start 10.000 GHz Stop 25.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.434 s (10000 pts)	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz CF Step 900 000000 MHz Sweep 860.6 ms (10000 pts) #Res BW 100 kHz #VBW 300 kHz Sweep 860.6 ms (10000 pts) Man	
Investion Tr Y Patricine Patrice Patricine Patricine	Mkr→RefLvl	Men Process Part on the sector work Part on work	
	More 1 of 2		


11G-HCH		11G-HCH	
Marker 1 351.684168417 MHz Free Run PNO: Fast Free Run File Free Run	Avg Type: Log-Pwr Avg Hold:>10/10 TYPE MWWWWW DET P NNNNN	Marker 1 24.74347435 GHz SENSENT Marker 1 24.74347435 GHz PNO: Fest FGsint.cov #Atten: 30 dB	ALLOW AUTO 11:49:26 MIGe 29,2016 Avg Type: Log-Pwr Avg[Hold:>10/10 Trice Internet cer Internet
Ref Offset 2 dB 10 dB/div Ref 20.00 dBm	Mkr1 351.68 MHz -56.178 dBm	ak Ref Offset 2 dB 10 dB/div Ref 20.00 dBm	Mkr1 24.743 5 GHz -45.383 dBm
0.00	Next Pk	10.0	Next Pk Right
	Next Pi		Next Pk Left
200 200 200 200 200	Marker	400 600 700	Marker Detta
Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz	Stop 1.0000 GHz Sweep 93.32 ms (10000 pts)		Stop 25.000 GHz Sweep 1.434 s (10000 pts) Mkr⊸CF
MAR MODE TRC: SCLI X. Y 1 N 1 F 2 1 State Stat		1 N 1 f 24.743 5 GHz 45.383 dBm	PURCTON PURCTOR WOTH PURCTOR VALUE - MKrRefLvi
7 8 9 10 11		7 9 9 10 11	More 1 of 2
and a	STATUS	MOG	STATUS


Report No.: AGC00653161201FE04 Page 24 of 52


11nHT	20-LCH	11nHT20-MCH	
Image: Spectram Analysis - Spectral Street Spectram Analysis - Spectram Image: Spectram Analysis - Spectram Street Spectram Image: Spectram Analysis - Spectram Stree Spectram Image: Sp	ALGN ALTO 11:53:56 AMORC 29, 2016 Avg Type: Log-Pwr TRACE TO 10 Avg[Hold:>10/10 DET P MEDITI	Peak Search	B Aglet Spectrum Andyrer - Steep SA Strate Spectrum Andyrer - Steep SA Strate Spectrum Andyrer - Steep SA Strate Spectrum Andyrer - Steep SA Strate Freq 1.000000000 GHz Frequency Frequency Frequency Frequency Frequency Angl Frequency Frequency Frequency Frequency Angl Frequency Frequency
Ref Offset 2 dB 10 dB/div Ref 20.00 dBm	Mkr1 24.854 5 GHz -45.456 dBm	Next Peak	Ref Offset 2 dB Mkr2 2.437 4 GHz Auto Tune 10 dBidity Ref 20.00 dBm -1.193 dBm
		Next Pk Right	105 Center Freq 000 5.50000000 GHz
200		Next Pk Left	000
400 400 400 400 400		Marker Delta	4.00 400 400 400 400 400 400 400
Start 10.000 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 25.000 GHz Sweep 1.434 s (10000 pts)	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 860.6 ms (10000 pts) Auto Mar
MeR MODE TRC: SCL X Y 1 N 1 f 24.854 5 GHz 45.456 dBm 3 - - - - 45.456 dBm 3 - - - - - 6 - - - - -	PUNCTION PUNCTION WOTH PUNCTION VALUE •	Mkr→RefLvi	Impunde Trc St. 72 Praction Planction Plancton Pl
7 8 9 10 11		More 1 of 2	
uss	STATUS		HIC STATUS


	11nHT2	0-MCH		11nHT20-MCH			
Agilent Spectrum Analyzer - Swept SA BF S0 02 AC Marker 1 865.6415641561	MHZ PNO: Fast Trig: Free Run #Atten: 30 dB	ALION AUTO 11:56:48 AMDec 29, 2016 Avg Type: Log-Pwr TRACE 2017 Avg/Hold:>10/10 TYPE DET P. NIN NN	Peak Search	# Agilet Spectrum Rodym: - Sing XA. SPIGE INT ALIGN AUTO 11572 SMIDer, 29, 2016 Warker 1 24,891989198920 GHz Free Run Avg Type: Log-Port Trice Tr	Peak Search		
Ref Offset 2 dB 10 dB/div Ref 20.00 dBm		Mkr1 865.64 MHz -56.489 dBm	Next Peak	Ref Offset 2 dB Mkr1 24.892 0 GHz 10 dB/div Ref 20.00 dBm - 44.969 dBm	Next Peak		
10.0			Next Pk Right		Next Pk Right		
-00			Next Pk Left	300	Next Pk Left		
-200 -500 -600 <mark>- Margaria - 2000 - 100 - </mark>	hang de ging hand an de kompten ser ste bied de gener		Marker Delta		Marker Delta		
Start 30.0 MHz #Res BW 100 kHz	#VBW 300 kHz	Stop 1.0000 GHz Sweep 93.32 ms (10000 pts)	Mkr→CF	Start 10.000 GHz Stop 25.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.434 s (10000 pts)	Mkr→CF		
MARR MODEL TRC SCL X 1 N 1 F 88 3 4 5 6	65.64 MHz -56.489 dBm	INCTION FUNCTION WIDTH FUNCTION VALUE .	Mkr→RefLvl	MM RUGE TRC: X Y FURCTION FURCTION WORTH FURCTION FURCTION WORTH FURCTION WORTH<	Mkr→RefLvl		
7 8 9 10 11			More 1 of 2		More 1 of 2		
iia		STATUS		MIG STATUS			

	11nHT₄	40-LCH		11nHT40-LCH	
Agilent Spectrum Analyzer - Swept SA RF 50 G AC Marker 1 790.944094409		ALTON AUTO 12:01:41 PMOec 29, 2016 Avg Type: Log-Pwr TRACE 12:01:41 FMOec 29, 2016 Avg Hold:>10/10 Trace 12:01:41 FMOec 29, 2016 Der Photosom	Peak Search	Applier Spectrum Andrer Swegt XA SENC.Int1 ALION.810 122214 Reform Markor 1 24,7638976897690 CH / 2 SENC.Int1 Avg Truck Child Truck Tree Run Avg Truck Child Truck Child<	2 3 4 5 7 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
Ref Offset 2 dB		Mkr1 790.94 MHz -56.366 dBm	Next Peak	Ref Offset 2 dB Mkr1 24,769 0 10 dB/div Ref 20.00 dBm -44.320 -44.320	GHz NextPeak dBm
0.00			Next Pk Right	10.0 0.00 	Next Pk Right
200		-3374 (Br)	Next Pk Left	20	Next Pk Left
50 0 60 0 70 0			Marker Delta		Marker Delta
start 30.0 MHz Res BW 100 kHz	#VBW 300 kHz	Stop 1.0000 GHz Sweep 93.32 ms (10000 pts)	Mkr→CF	Start 10.000 GHz Stop 25.00 #Res BW 100 kHz #VBW 300 kHz Sweep 1.434 s (1000	0 GHz 00 pts) MkrCF
MKPR MODE TRC SCL X	Y R 790.94 MHz56,366 dBm	INCTION FUNCTION VIDTH FUNCTION VALUE	Mkr→RefLvl	Iwp Mode TRC 32L X Y Function Function with Function with 1 N 1 f 21/29.0 GHz <44.520 dBm	RUE Mkr→RefLvi
7 8 9 10			More 1 of 2		More 1 of 2
IQ		STATUS		AND STATUS	

	11nHT4	D-HCH		11	nHT40-HCH	
Agilent Spectrum Analyzer - Swept SA Agilent Spectrum Analyzer - Swept SA Marker 1 892.804280428		ALCON AUTO 12:09:44 PMOrec 29, 2016 Avg Type: Log-Pwr TRACE Avg[Hold:>10/10 TYPE Der Printente	Peak Search	M Agtert Spectrum Analyzer - Swept SA 00 00 AC Marker 1 24.834983498350 GHz PNO: Fast T If Fosin: Low #	SENSE.Intl ALIGN ALTO 12:10:09 PM Dec 29, 2016 frig: Free Run Avg Type: Log-Pwr TRACE Type: Log-Pwr frig: Free Run Avg[Hold:>10/10 Trace Type: Log-Pwr Atten: 30 dB Core Type: Log-Pwr Trace Type: Log-Pwr	Peak Search
Ref Offset 2 dB 10 dB/div Ref 20.00 dBm	1	Mkr1 892.80 MHz -57.320 dBm	Next Peak	Ref Offset 2 dB 10 dB/div Ref 20.00 dBm	Mkr1 24.835 0 GHz -45.799 dBm	Next Peak
0.00			Next Pk Right	0.00		Next Pk Right
-200		.05006	Next Pk Left	-100 200 300	.3150.000	Next Pk Left
50.0 50.0 	Neigh agus ann an thaith an thu an an ann an th		Marker Delta	80 0 80 0 70 0		Marker Delta
Start 30.0 MHz #Res BW 100 kHz	#VBW 300 kHz	Stop 1.0000 GHz Sweep 93.32 ms (10000 pts)	Mkr→CF	Start 10.000 GHz #Res BW 100 kHz #VBW 30	Stop 25.000 GHz 00 kHz Sweep 1.434 s (10000 pts)	Mkr→CF
	X Y FUNC 892.80 MHz -57.320 dBm	NON FUNCTION WIDTH FUNCTION VALUE >	Mkr→RefLvl	MRR MODE THC SCL X 1 N 1 f 24.835 0 GHz 45 2 3 4 5 6		Mkr→RefLvl
7 8 9 10 11			More 1 of 2	7 8 9 10		More 1 of 2
alg		STATUS		MEC	STATUS	

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

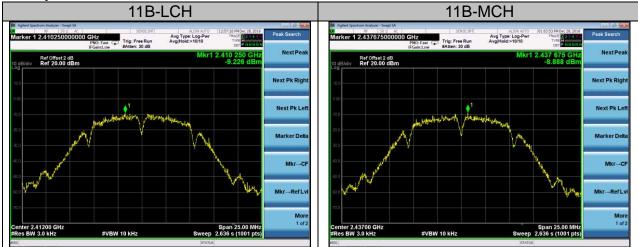
10.1 MEASUREMENT PROCEDURE

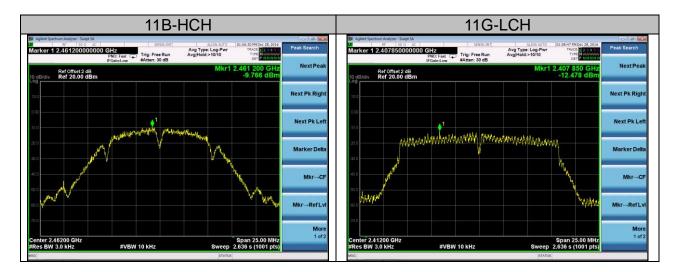
- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

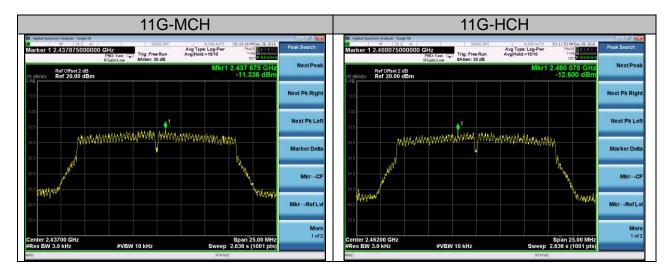
Note: The method of AVGPSD in the KDB 558074 item 10.3 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

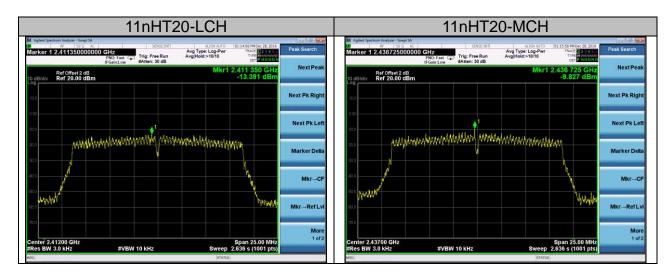
Refer To Section 8.2.

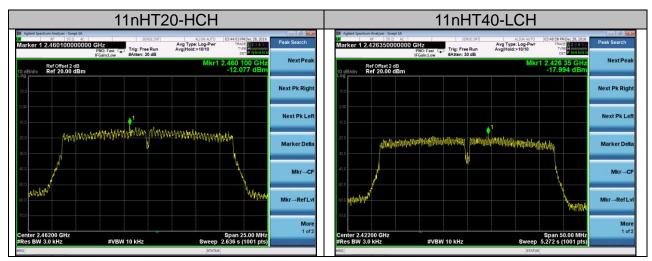

10.3 MEASUREMENT EQUIPMENT USED

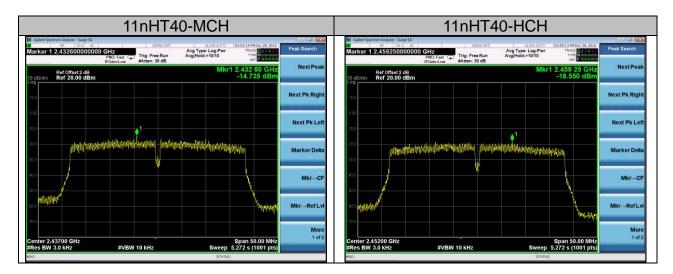

Refer To Section 6.


10.4 LIMITS AND MEASUREMENT RESULT

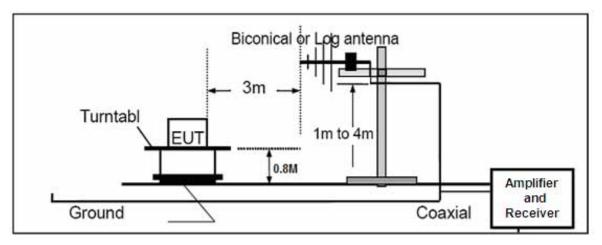
Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
11B	LCH	-9.226	8	PASS
	MCH	-8.888	8	PASS
	НСН	-9.766	8	PASS
	LCH	-12.478	8	PASS
11G	MCH	-11.336	8	PASS
	HCH	-12.600	8	PASS
	LCH	-13.391	8	PASS
11nHT20	MCH	-9.827	8	PASS
	HCH	-12.077	8	PASS
	LCH	-17.994	8	PASS
11nHT40	MCH	-14.735	8	PASS
	HCH	-18.550	8	PASS





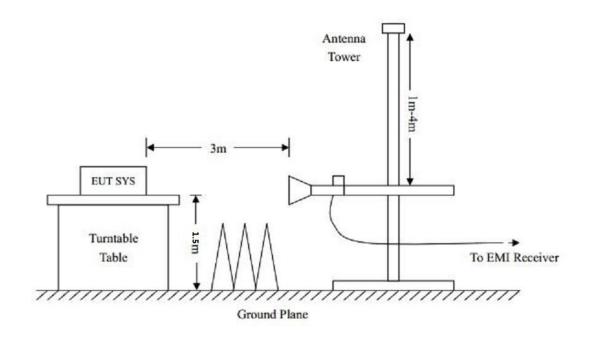


Report No.: AGC00653161201FE04 Page 29 of 52



11. RADIATED EMISSION

11.1. MEASUREMENT PROCEDURE


- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

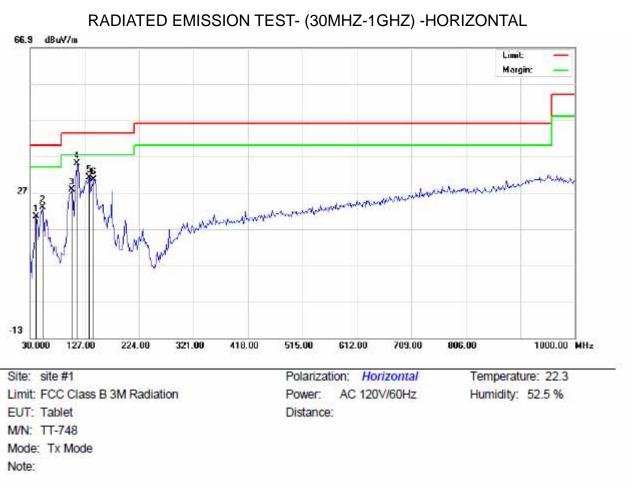
11.2. TEST SETUP

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

11.3. LIMITS AND MEASUREMENT RESULT

15.209(a) Limit in the below table has to be followed

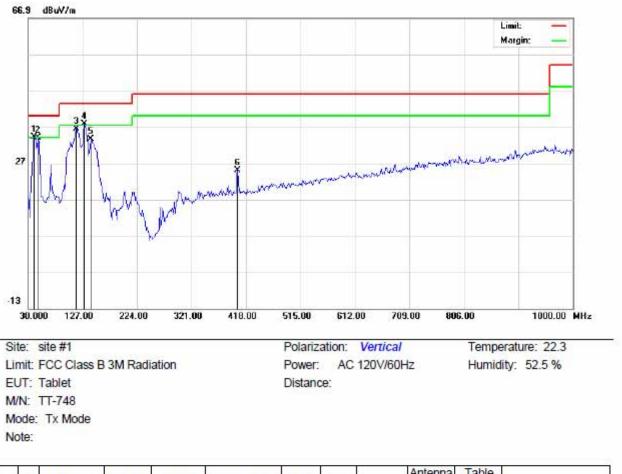
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3


Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ


No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ

NO.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	. MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		41.3166	8.61	11.81	20.42	40.00	-19.58	peak			
2		52.6332	14.65	8.41	23.06	40.00	-16.94	peak			
3		104.3666	18.40	9.47	27.87	43.50	-15.63	peak			
4	*	114.0666	27.76	7.23	34.99	43.50	-8.51	peak			
5		135.0833	18.35	12.90	31.25	43.50	-12.25	peak			
6		143.1666	16.18	14.43	30.61	43.50	-12.89	peak			

RESULT: PASS

RADIATED EMISSION TEST- (30MHZ-1GHZ) -VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	1	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	1	41.3167	22.30	11.81	34.11	40.00	-5.89	peak			
2		47.7833	22.61	11.39	34.00	40.00	-6.00	peak			
3		115.6833	29.64	6.86	36.50	43.50	-7.00	peak			
4	*	130.2332	27.13	10.64	37.77	43.50	-5.73	peak			
5		141.5500	18.71	14.82	33.53	43.50	-9.97	peak			
6		403.4500	5.82	19.17	24.99	46.00	-21.01	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin= Result -Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

3. All test modes had been pre-tested. The 802.11b at low channel is the worst case and recorded in the report.

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Common
			TX 11b 2412M	Hz			
4824	45.22	10.44	55.66	74	-18.34	Pk	Horizontal
4824	30.69	10.44	41.13	54	-12.87	AV	Horizontal
7236	45.82	10.39	56.21	74	-17.79	pk	Horizontal
7236	32.11	10.39	42.5	54	-11.5	AV	Horizontal
4824	37.77	10.39	48.16	74	-25.84	Pk	Vertical
4824	29.05	10.39	39.44	54	-14.56	AV	Vertical
7236	43.6	10.68	54.28	74	-19.72	Pk	Vertical
7236	30.72	10.68	41.4	54	-12.6	AV	Vertical
			TX 11b 2437M	Hz			
4874	41.72	10.39	52.11	74	-21.89	Pk	Horizontal
4874	32.01	10.39	42.4	54	-11.6	AV	Horizontal
7311	40.75	12.68	53.43	74	-20.57	Pk	Horizontal
7311	27.55	12.68	40.23	54	-13.77	AV	Horizontal
4874	43.71	10.39	54.1	74	-19.9	Pk	Vertical
4874	30.68	10.39	41.07	54	-12.93	AV	Vertical
7311	42.83	12.68	55.51	74	-18.49	Pk	Vertical
7311	28.79	12.68	41.47	54	-12.53	AV	Vertical
			TX 11b 2462M	Hz			
4924	42.66	10.39	53.05	74	-20.95	pk	Horizontal
4924	28.77	10.39	39.16	54	-14.84	AV	Horizontal
7386	43.02	12.68	55.7	74	-18.3	pk	Horizontal
7386	29.79	12.68	42.47	54	-11.53	AV	Horizontal
4924	43.06	10.39	53.45	74	-20.55	pk	Vertical
4924	32.05	10.39	42.44	54	-11.56	AV	Vertical
7386	42.69	12.68	55.37	74	-18.63	pk	Vertical
7386	30.31	12.68	42.99	54	-11.01	AV	Vertical

RESULT: PASS

Note:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Emission Level = Meter Reading + Factor

3. Margin = Emission Leve - Limit

4. All test modes had been pre-tested. The 802.11b mode is the worst case and recorded in the report.

No recording in the test report at least have 20dB margin.

12. BAND EDGE EMISSION

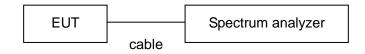
12.1. MEASUREMENT PROCEDURE

1)Radiated restricted band edge measurements

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting

2)Conducted Emissions at the bang edge

a)The transmitter output was connected to the spectrum analyzer


b)Set RBW=100kHz,VBW=300kHz

c)Suitable frequency span including 100kHz bandwidth from band edge

12.2. TEST SET-UP

Radiated same as 11.2

Conducted set up

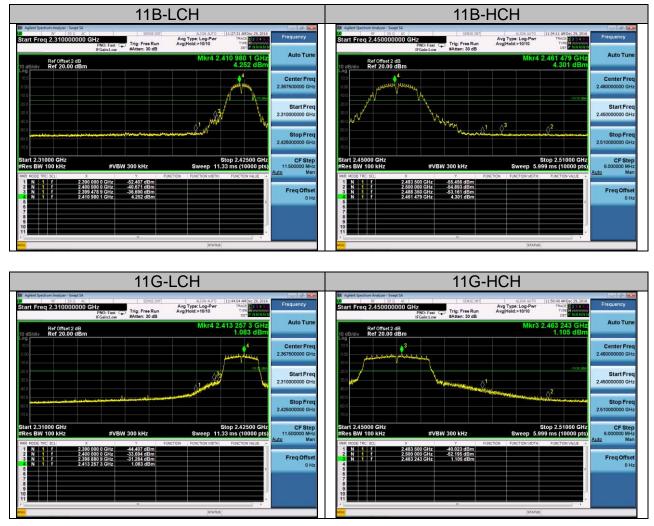
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре				
TX 11b 2412MHz										
2399.9	68.88	-13	55.88	74	-18.12	pk	Horizontal			
2399.9	56.68	-13	43.68	54	-10.32	AV	Horizontal			
2400	66.92	-12.99	53.93	74	-20.07	pk	Horizontal			
2400	53.68	-12.99	40.69	54	-13.31	AV	Horizontal			
2399.9	68.39	-12.97	55.42	74	-18.58	pk	Vertical			
2399.9	54.87	-12.97	41.9	54	-12.1	AV	Vertical			
2400	65.73	-12.94	52.79	74	-21.21	pk	Vertical			
2400	55.24	-12.94	42.3	54	-11.7	AV	Vertical			
TX 11b 2462MHz										
2483.5	66.08	-12.78	53.3	74	-20.7	pk	Horizontal			
2483.5	55.33	-12.78	42.55	54	-11.45	AV	Horizontal			
2483.6	67.04	-12.77	54.27	74	-19.73	pk	Horizontal			
2483.6	51.03	-12.77	38.26	54	-15.74	AV	Horizontal			
2483.5	67.33	-12.76	54.57	74	-19.43	pk	Vertical			
2483.5	50.84	-12.76	38.08	54	-15.92	AV	Vertical			
2483.6	67.23	-12.72	54.51	74	-19.49	pk	Vertical			
2483.6	53.57	-12.72	40.85	54	-13.15	AV	Vertical			

12.3. Radiated Test Result

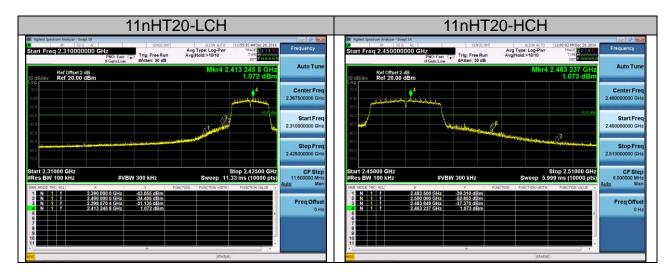
RESULT: PASS

Note: Scan with 11b,11g,11n, the worst casw is 11b Mode

Factor=Antenna Factor + Cable loss - Amplifier gain,


Emission Level = Meter Reading + Factor

Margin= Emission Level -Limit.


The "Factor" value can be calculated automatically by software of measurement system.

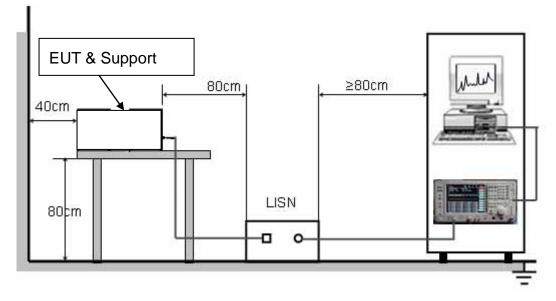
12.4. Conducted Test Result

Test Graph

Report No.: AGC00653161201FE04 Page 39 of 52

13. FCC LINE CONDUCTED EMISSION TEST

13.1. LIMITS OF LINE CONDUCTED EMISSION TEST


Frequency	Maximum RF Line Voltage				
Frequency	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

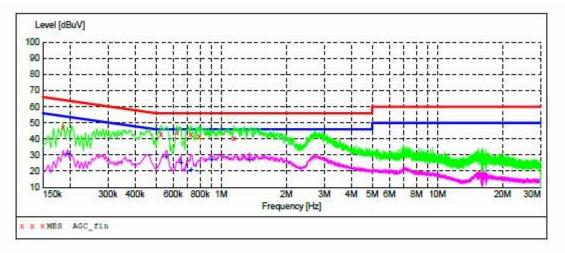
Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

13.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

13.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST


- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received charging voltage by adapter which received 120V/60Hzpower by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

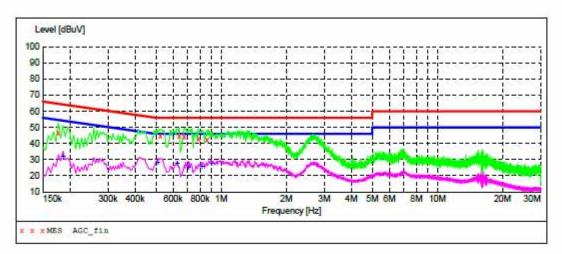
Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

13.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

13.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

LINE CONDUCTED EMISSION TEST LINE 1-L


MEASUREMENT RESULT: "AGC fin"

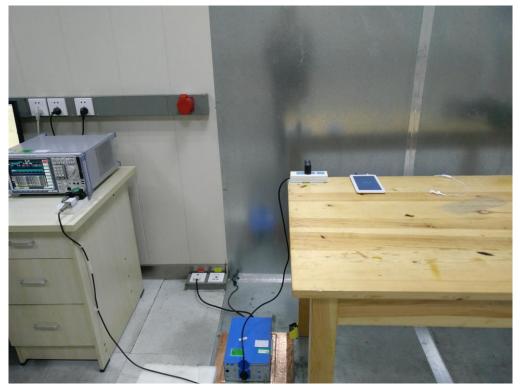
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
								STATE
MHz	dBuV	dB	dBuV	dB				
0.186000	47.10	10.3	64	17.1	QP	L1	FLC	ON
0.528000	43.20	10.3	56	12.8	QP	Ll	FLC	ON
0.627000	44.10	10.3	56	11.9	QP	L1	FLC	ON
0.726000	43.10	10.3	56	12.9	QP	Ll	FLC	ON
0.793500	41.60	10.3	5.6	14.4	QP	Ll	FLC	ON
1.144500	40.50	10.4	56	15.5	QP	Ll	FLC	ON

MEASUREMENT RESULT: "AGC fin2"

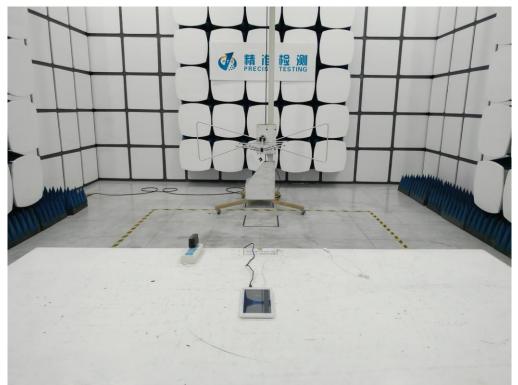
2016/12/31 10:06

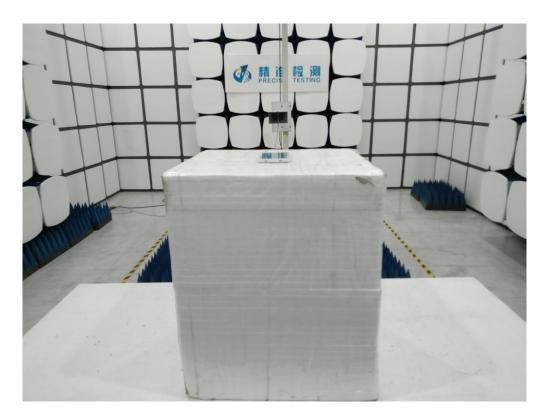
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX STATE
MHz	dBuV	dB	dBuV	dB				
0.195000	31.40	10.3	54	22.4	AV	L1	FLC	ON
0.559500	29.40	10.3	46	16.6	AV	Ll	FLO	ON
0.654000	25.40	10.3	46	20.6	AV	L1	FLC	ON
0.726000	21.00	10.3	46	25.0	VA	Ll	FLC	ON
0.906000	27.10	10.4	46	18.9	AV	L1	FLC	ON
1.351500	27.50	10.4	46	18.5	VA	Ll	FLC	ON

Line Conducted Emission Test Line 2-N


MEASUREMENT RESULT: "AGC_fin"

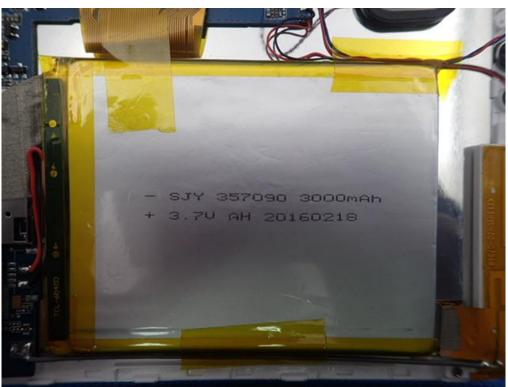
2016/12/31 10	:02							
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
5.1.218	12 - 53	100		100				STATE
MHz	dBuV	dB	dBuV	dB				
0.177000	46.90	10.3	65	17.7	QP	N	FLC	ON
0.11//000	40.20	10.5	00	4/-/	V.F	- 14	270	UN
0.523500	44.70	10.3	56	11.3	QP	N	FLC	ON
0.640500	44.70	10.3	56	11.3	QP	N	FLO	ON
0.676500	44.40	10.3	56	11.6	QP	N	FLC	ON
0.784500	43.20	10.3	56	12.8	QP	N	FLC	ON
0.861000	42.20	10.4	56	13.8	QP	N	FLC	ON


MEASUREMENT RESULT: "AGC fin2"


Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
MHz	dBuV	dB	dBuV	dB				
0.186000	32,10	10.3	54	22.1	AV	N	FLC	ON
0.510000	28.70	10.3	46	17.3	AV	N	FLC	ON
0.627000	28.20	10.3	46	17.8	AV	N	FLC	ON
0.708000	25.80	10.3	46	20.2	AV	N	FLC	ON
0.816000	26.00	10.3	46	20.0	AV	N	FLC	ON
0.901500	28.00	10.4	46	18.0	AV	N	FLC	ON

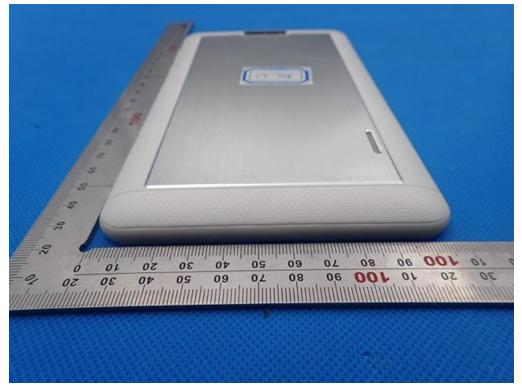
APPENDIX A: PHOTOGRAPHS OF TEST SETUP FCC LINE CONDUCTED EMISSION TEST SETUP

FCC RADIATED EMISSION TEST SETUP



APPENDIX B: PHOTOGRAPHS OF EUT TOTAL VIEW OF EUT

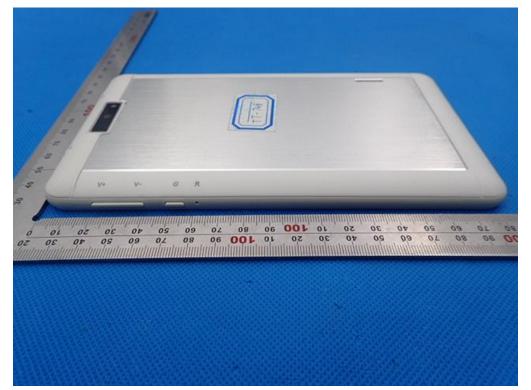
THE LABEL OF ADAPTER

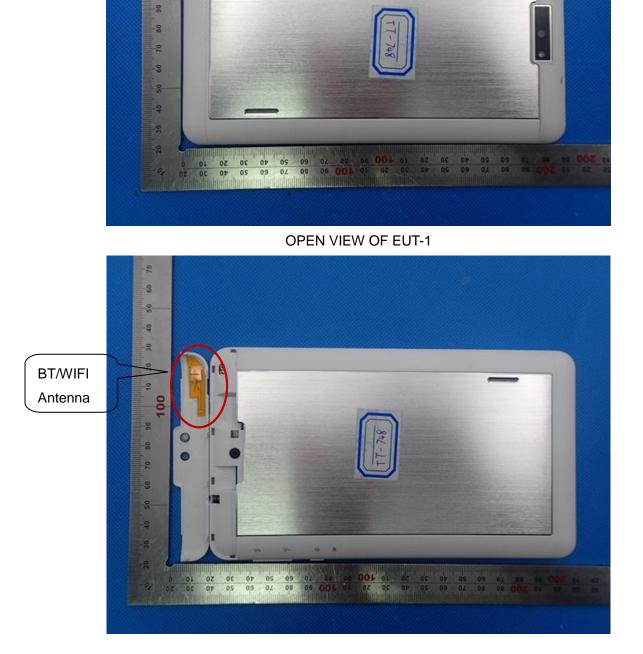


THE LABEL OF BATTERY

TOP VIEW OF EUT

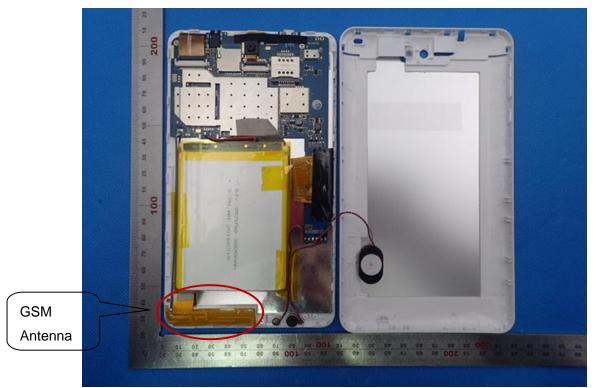
BOTTOM VIEW OF EUT


FRONT VIEW OF EUT



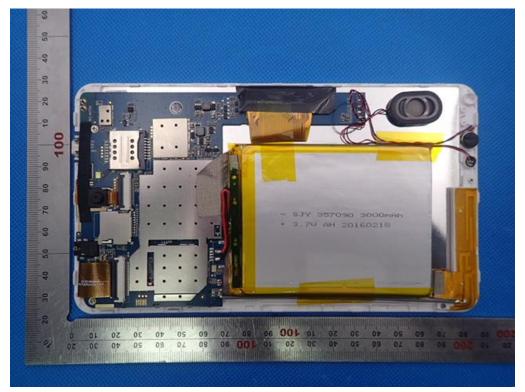
BACK VIEW OF EUT

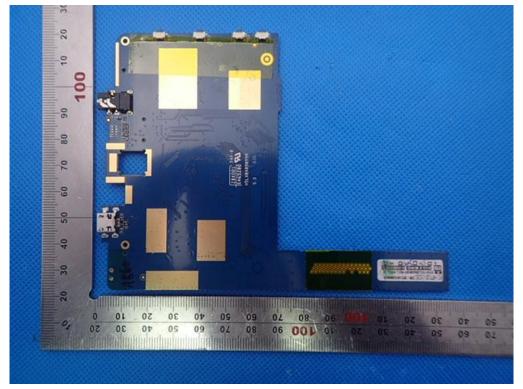
LEFT VIEW OF EUT


RIGHT VIEW OF EUT

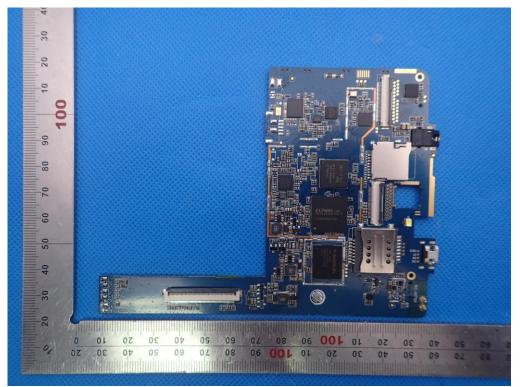
N 0

-8.


10


100

OPEN VIEW OF EUT-2


OPEN VIEW OF EUT-3

INTERNAL VIEW OF EUT-1

INTERNAL VIEW OF EUT-2

----END OF REPORT----