

Emissions Test Report

EUT Name:Home Wi-Fi RouterModel No.:A010001CFR 47 Part 15.407 2015 and RSS 247: 2015

Prepared for:

Clifford Clarke eero inc 933 20th Street San Francisco, CA 94107 Tel: (415) 738-7972 Fax:

Prepared by:

TUV Rheinland of North America, Inc. 1279 Quarry Lane Pleasanton, CA 94566 Tel: (925) 249-9123 Fax: (925) 249-9124 http://www.tuv.com/

 Report/Issue Date:
 December 10, 2015

 Job #
 0000134597

 Report Number:
 31563404.001

Revisions

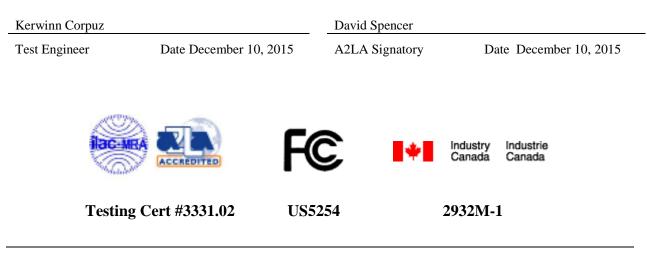
Revision No.	Date MM/DD/YYYY	Reason for Change	Author
0	12/10/2015	Original Document	N/A

Note: Latest revision report will replace all previous reports.

Statement of Compliance

Manufacturer:	eero inc 933 20th Street San Francisco, CA 94107 (415) 738-7972
Requester / Applicant:	Clifford Clarke
Name of Equipment: Model No. Type of Equipment: Application of Regulations: Test Dates:	Home Wi-Fi Router A010001 Intentional Radiator CFR 47 Part 15.407 2015 and RSS 247: 2015 03 Nov 2015 to 09 Dec 2015

Guidance Documents:


Emissions: ANSI C63.10-2013, KDB 789033 D02 General UNII Test Procedures New Rules v01, KDB 662911 D01 Multiple Transmitter Output v02r01

Test Methods:

Emissions: ANSI C63.10-2013, KDB 789033 D02 General UNII Test Procedures New Rules v01, KDB 662911 D01 Multiple Transmitter Output v02r01

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government. This report contains data that are not covered by A2LA accreditation. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

Table of Contents

1 E	Executive Summary	7
1.1	Scope	7
1.2	Purpose	7
1.3	Summary of Test Results	8
1.4	Special Accessories	8
1.5	Equipment Modifications	8
2 L	aboratory Information	9
2. 2. 2.	Accreditations & Endorsements .1.1 US Federal Communications Commission .1.2 NIST / A2LA .1.3 Canada – Industry Canada .1.4 Japan – VCCI .1.5 Acceptance by Mutual Recognition Arrangement	9 9 9 9
	Test Facilities	10
2.	Measurement Uncertainty .3.1 Sample Calculation – radiated & conducted emissions .3.2 Measurement Uncertainty .1.1 Measurement Uncertainty Immunity	11 11
2.4	Calibration Traceability	12
3 P	Product Information	
3.1	Product Description	13
3.2	Equipment Configuration	13
3.3	Operating Mode	13
3.4 3.	Unique Antenna Connector	
4 E	Emissions	15
	Output Power Requirements	15
	Occupied Bandwidth	26
		35 35
		45 45

4.5	Transmitter Spurious Emissions	70
4.5.1		
4.5.2	2 Transmitter Spurious Emission Limit	71
4.5.3	3 Test Results	72
4.6	AC Conducted Emissions	109
4.6.1	Test Methodology	109
4.6.2	2 Test Results	109
4.7	Frequency Stability	114
4.7.1	Test Methodology	114
4.7.2	2 Manufacturer Declaration	114
4.7.3	3 Limit	115
4.7.4	Test results:	115
4.8	Voltage Variation	117
4.8.1		
4.8.2	2 Test results	117
4.9	Maximum Permissible Exposure	119
4.9.1	Test Methodology	119
4.9.2	2 RF Exposure Limit	119
4.9.3	3 EUT Operating Condition	120
4.9.4		120
4.9.	5 Test Results	120
4.9.6	5 Sample Calculation	120
5 Tes	t Equipment List	121
5.1	Equipment List	121
6 EM	C Test Plan	122
6.1	Introduction	
6.2		
	Customer	
6.3	Equipment Under Test (EUT)	
6.4	Test Specifications	127

Index of Tables

Table 1: Summary of Test Results	8
Table 2: RF Output Power at the Antenna Port – Test Results	16
Table 3: RF Output Power at the Antenna Port – Test Results	17
Table 4: RF Output Power at the Antenna Port – Test Results Continues	
Table 5: RF Output Power at the Antenna Port – Test Results Continues	19
Table 6: Occupied Bandwidth – Test Results	
Table 7: Occupied Bandwidth – Test Results Continues	
Table 8: Peak Power Spectral Density – Test Results	
Table 9: Peak Power Spectral Density – Test Results Continues	
Table 10: Peak Power Spectral Density – Test Results Continues	
Table 11: Emissions at the Band-Edge – Test Results	46
Table 12: Emissions at the Band-Edge – Test Results Continues	47
Table 13: Transmit Spurious Emission at Band-Edge Requirements	73
Table 14: Transmit Spurious Emission at Band-Edge Requirements Continues	74
Table 15: Transmit Spurious Emission at Band-Edge Requirements Continues	75
Table 15: Transmit Spurious Emission at Band-Edge Requirements Continues Table 16: AC Conducted Emissions – Test Results	
Table 16: AC Conducted Emissions – Test Results	
Table 16: AC Conducted Emissions – Test Results Table 17: Frequency Stability – Test Results	
Table 16: AC Conducted Emissions – Test Results Table 17: Frequency Stability – Test Results Table 18: Voltage Variation – Test Results	
Table 16: AC Conducted Emissions – Test Results	
Table 16: AC Conducted Emissions – Test Results	
Table 16: AC Conducted Emissions – Test Results	
Table 16: AC Conducted Emissions – Test Results Table 17: Frequency Stability – Test Results Table 18: Voltage Variation – Test Results Table 19: Customer Information Table 20: Technical Contact Information Table 21: EUT Specifications Table 22: Antenna Information	
Table 16: AC Conducted Emissions – Test Results Table 17: Frequency Stability – Test Results Table 18: Voltage Variation – Test Results Table 19: Customer Information Table 20: Technical Contact Information Table 21: EUT Specifications Table 22: Antenna Information Table 23: EUT Channel Power Specifications	
Table 16: AC Conducted Emissions – Test Results Table 17: Frequency Stability – Test Results Table 18: Voltage Variation – Test Results Table 19: Customer Information Table 20: Technical Contact Information Table 21: EUT Specifications Table 23: EUT Channel Power Specifications Table 24: Interface Specifications	
Table 16: AC Conducted Emissions – Test Results. Table 17: Frequency Stability – Test Results Table 18: Voltage Variation – Test Results Table 19: Customer Information Table 20: Technical Contact Information Table 21: EUT Specifications Table 22: Antenna Information Table 23: EUT Channel Power Specifications. Table 24: Interface Specifications Table 25: Supported Equipment	

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.407 2015 and RSS 247: 2015 based on the results of testing performed on 03 Nov 2015 to 09 Dec 2015 on the Home Wi-Fi Router Model A010001 manufactured by eero inc This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report. The 5745 MHz to 5825 MHz frequency band is covered in this document.

1.3 Summary of Test Results

 Table 1: Summary of Test Results

Test	Test Method ANSI C63.4	Test Parameters (Measured)	Result
Spurious Emission in Transmitted Mode	CFR47 15.209, CFR47 15.407 (b) RSS-GEN Sect.7.2.3, RSS 247 Sect. 6.2.4.2	Class B	Complied
Restricted Bands of Operation	CFR47 15.205, RSS GEN Sect.8.10	Class B	Complied
AC Power Conducted Emission	CFR47 15.207, RSS-GEN Sect.8.8	Class B	Complied
Occupied Bandwidth	CFR47 15.407 (e), RSS GEN Sect.6.6	See plots	Complied
Maximum Output Power	CFR47 15.407 (a), RSS 247 Sect. 6.2.4.1	25.35 dBm (11a mode) 25.46 dBm (HT 20) 25.17 dBm (VHT 20) 18.27 dBm (HT 40) 18.26 dBm (VHT 40) 14.62 dBm (VHT80)	Complied
Peak Power Spectral Density	CFR47 15.407 (a), RSS 247 Sect. 6.2.4.1	< 30 dBm/500kHz	Complied
Conducted Emission – Antenna Port	CFR47 15.407 (b), RSS 247 Sect.6.2.4.2	30 MHz - 40 GHz < 27 dBm/MHz	Complied
Frequency Stability	CFR47 15.407 (g), RSS GEN Sect. 6.11	±20 ppm	Complied
RF Exposure	CFR47 15.407 (f), 2.1091, RSS-102 Issue 5	General Population	Complied

Note: This test report covers 5725 MHz to 5850 MHz band.

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 **US Federal Communications Commission**

TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 is recognized by the commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (US5254). The laboratory scope of accreditation includes: Title 47 CFR Parts 15, 18, and 90. The accreditation is updated every 3 years.

2.1.2 NIST / A2LA

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:1999 and ISO 9002 (Lab Code

Testing Cert #3331.02). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Canada – Industry Canada

Industry Canada Industrie Canada

TUV Rheinland of North America at the 1279 Quarry Ln, Pleasanton, CA 94566 address is accredited by Industry Canada for performing testing services for the general public on a fee basis. This laboratory test

facilities have been fully described in reports submitted to and accepted by Industry Canada (File Number 2932M). This reference number is the indication to the Industry Canada Certification Officers that the site meets the requirements of RSS 212, Issue 1 (Provisional). The accreditation is updated every 3 years.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from

Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 has been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0031

VCCI Registration No. for Santa Clara: A-0032

2.1.5 Acceptance by Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland at 1279 Quarry Ln, Pleasanton, CA 94566 test results and test reports within the scope of the laboratory NIST / A2LA accreditation will be accepted by each member

country.

2.2 Test Facilities

All of the test facilities are located at 1279 Quarry Lane, Pleasanton, California 94566, USA. The 2305 Mission College, Santa Clara, 95054, USA location is considered a Pleasanton annex.

2.2.1 Emission Test Facility

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 and 5 meters. The site is listed with the FCC and accredited by A2LA (Lab Code Testing Cert #3331.02). The 3/5-meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meters. The site is listed with the FCC and accredited by A2LA (Lab Code Testing Cert #3331.02). The 3/5-meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meter and 5 meters. A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 4.8 m x 3.175 mm thick aluminum floor connected to PE ground.

For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50 cm x 50 cm x 3.175 mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors.

For EFT, Surge, PQF, the HCP and VCP are removed.

RF Field Immunity testing is performed in a 7.3m x 4.3m x 4.1m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.8m x 3.7m x 3.175mm thick aluminum ground plane.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term *standard uncertainty* is the result of a measurement expressed as a standard deviation.

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = RAW - AMP + CBL + ACF$

Where: RAW = Measured level before correction ($dB\mu V$)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$V/m = 10^{\frac{dB\mu V/m}{20}}$$

Sample radiated emissions calculation @ 30 MHz

μ

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m

2.3.2 Measurement Uncertainty

Per CISPR 16-4-2	Ulab	Ucispr				
Radiated Disturbance @ 10 meters						
30 – 1,000 MHz	2.25 dB	4.51 dB				
Radiated Disturbance @ 3	³ meters					
30 – 1,000 MHz	2.26 dB	4.52 dB				
1 – 6 GHz	2.12 dB	4.25 dB				
6 – 18 GHz	2.47 dB 4.93 dB					
Conducted Disturbance @ Mains Terminals						
150 kHz – 30 MHz	1.09 dB	2.18 dB				
Disturbance Power						
30 MHz – 300 MHz	3.92 dB	4.3 dB				

Voltech PM6000A

The estimated combined standard uncertainty for harmonic current and flicker measurements is \pm 5.0%.	Per CISPR 16-4-2 Methods
--	-----------------------------

1.1.1 Measurement Uncertainty Immunity

The estimated combined standard uncertainty for ESD immunity measurements is \pm 8.2%.	Per IEC 61000-4-2
The estimated combined standard uncertainty for radiated immunity measurements is ± 4.10 dB.	Per IEC 61000-4-3
The estimated combined standard uncertainty for conducted immunity measurements with CDN is \pm 3.66 dB	Per IEC 61000-4-6
The estimated combined standard uncertainty for power frequency magnetic field immunity is $\pm 2.9\%$.	Per IEC 61000-4-8

Thermo KeyTek EMC Pro

The estimated combined standard uncertainty for EFT fast transient immunity measurements is $\pm 2.6\%$.
The estimated combined standard uncertainty for surge immunity measurements is $\pm 2.6\%$.
The estimated combined standard uncertainty for voltage variation and interruption measurements is $\pm 1.74\%$.

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

3 Product Information

3.1 Product Description

The Model A010001, Home Wi-Fi Router, is a Wi-Fi router for the home capable of operating in the 2.4 GHz and 5 GHz frequency bands over 20 MHz, 40 MHz and 80 MHz channels.

3.2 Equipment Configuration

A description of the equipment configuration is given in the Test Plan Section. The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of an EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.3 Operating Mode

A description of the operation mode is given in the Test Plan Section. In the case of an EUT that can operate in more than one state, preliminary testing was performed to determine the operating mode that produced maximum radiation.

The final operating mode was selected to produce the worst case radiation for emissions testing and to place the EUT in the most susceptible state for immunity testing.

3.4 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of CFR47 Parts 15.211, 15.213, 15.217, 15.219, or 15.221.

3.4.1 Results

The Home Wi-Fi Router has seven custom integrated antennas. The 5.8GHz band uses custom integrated antennas, Antenna 7 and Antenna 8, and has maximum gain + 2.24 dBi. There are no beam forming and no additional antenna available.

Refer to Table 13 for additional antenna information.

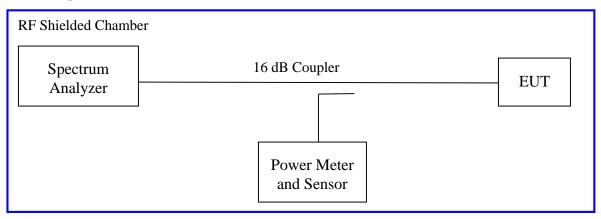
4 **Emissions**

Testing was performed in accordance with CFR 47 Part 15.407: 2015 and RSS 247 Sect.6: 2015. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Procedures described in section 8 of the standard were used.

4.1 Output Power Requirements

The maximum output power requirement is the maximum equivalent isotropic radiated power delivering at the transmitting antenna under specified conditions of measurements in the presence of modulation.

The maximum output power and harmonics shall not exceed CFR47 Part 15.407 (a):2015 and RSS 247 Sect.6.2.4.1: 2015.


The maximum transmitted power is

Band 5725-5850 MHz: 1 W.

4.1.1 Test Method

The ANSI C63.10-2013 Section 6.10.3.1 conducted method was used to measure the channel power output. The preliminary investigation was performed at different data rate/ chain to determine the highest power output for each mode. The worst findings were conducted on 3 channels in each operating range per CFR47 Part 15.407(a): 2015 and RSS 247 Sect.6.2.4.1; 5725 MHz to 5825 MHz. The worst mode results indicated below.

Test Setup:

Method SA-1 of "Guidelines for Complance Testing of Unlicensed National Information Infrastructure (U-NII) Devices" applies since the EUT continuously transmit; where duty cycle is greater than 98%. Sample detector was used.

Each chain was measured individually and applied the measure-and-sum approach per KDB662911.

4.1.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Test Conditions: Conducted Measurement, Normal Temperature						
Antenna Type: Custom IntegratedPower Setting: See test plan						
Max. Directional Gain: + 2.24 dBi						
Signal State:	: Modulated	at 100%.				
Ambient Ter	mp.: 23° C		R	elative Humidity:3	36%	
			802.11a			
Operating Channel (MHz)	Channel Limit Ch0 [dBm] Ch1 [dBm] I otal Power Margin					
5745.00	30.00	18.09	19.76	22.02	-7.98	
5765.00	30.00	23.45	24.26	26.88	-3.12	
5785.00	30.00	<mark>25.35</mark>	<mark>25.20</mark>	28.29	-1.71	
5805.00	30.00	22.41	23.36	25.92	-4.08	
5825.00 30.00 16.41 17.62 20.07 -9.93						
 Note: 1.The highest output power was observed at 802.11a, 6.0 Mbps, 1 Data Stream. 2. The sum of Ch0 and Ch1 = Total Power. 3. Plots for all the measurements stated above were taken, to reduce complexity and bulkiness of the report Highlighted Plots are placed in the report. 						

Table 2: RF Output Power at the Antenna Port – Test Results

Table 3: RF Output Power at the Antenna Port – Test Results						
Test Conditions: Conducted Measurement, Normal Temperature						
Antenna Ty	Antenna Type: Custom IntegratedPower Setting: See test plan					
Max. Direct	ional Gain:	+ 2.24 dBi				
Signal State	: Modulated	at 100%.				
Ambient Te	mp.: 23° C		R	elative Humidity	:36%	
			802.11n			
Operating Channel (MHz)	Limit [dBm]	Ch0[dRm] Ch1[dRm] Com 2000000 Ch1[dRm]				
5745.00	30.00	18.43	19.88	22.23	-7.77	
5765.00	30.00	23.47	24.22	26.87	-3.13	
5785.00 30.00 25.16 25.46 28.32 -1.68						
5805.00	30.00	22.36	23.21	25.82	-4.18	
5825.00 30.00 16.23 17.64 20.00 -10.00						
 Note: 1. The highest output power was observed at HT20 MCS0, 1 Data Streams. 2. The sum of Ch0 and Ch1 = Total Power. 3. Plots for all the measurements stated above were taken, to reduce complexity and bulkiness of the report Highlighted Plots are placed in the report. 						

Table 4: RF Output Power at the Antenna Port – Test Results Continues
--

	<u>.</u>		nt, Normal Tempe		
Antenna Ty	pe: Custom	Integrated		Power Settir	ng: See test plan
Max. Direct	ional Gain:	+ 2.24 dBi			
Signal State	: Modulated	at 100%.			
Ambient Te	mp.: 23° C		R	elative Humidity	:36%
			802.11ac		
Operating Channel (MHz)	Limit [dBm]	Ch0 [dBm]	Ch1 [dBm]	Total Power [dBm]	Margin [dB]
5745.00	30.00	18.22	19.66	22.01	-7.99
5765.00	30.00	23.16	24.09	26.66	-3.34
5785.00	30.00	<mark>25.15</mark>	<mark>25.17</mark>	28.17	-1.83
5805.00	30.00	22.38	23.14	25.79	-4.21
5825.00	30.00	15.27	16.55	18.97	-11.03
2. The 3. Plo	e sum of Ch(ts for all the) and Ch1 = Tota measurements st	l Power.) MCS0, 1 Data St aken, to reduce co in the report.	
			802.11n		
Operating Channel (MHz)	Limit [dBm]	Ch0 [dBm]	Ch1 [dBm]	Total Power [dBm]	Margin [dB]
5755.00	30.00	16.40	18.02	20.30	-9.70

Note: 1. The highest output power was observed at HT40 MCS0, 1 Data Streams.

2. The sum of Ch0 and Ch1 = Total Power.

16.58

30.00

3. Plots for all the measurements stated above were taken, to reduce complexity and bulkiness of the report Highlighted Plots are placed in the report.

18.27

20.52

5795.00

-9.48

Test Conditi	ions: Condu	cted Measurement	nt, Normal Tempe	erature	
Antenna Ty	pe: Custom	Integrated		Power Settir	ng: See test plan
Max. Direct	ional Gain:	+ 2.24 dBi			
Signal State	: Modulated	at 100%.			
Ambient Temp.: 23° CRelative Humidity:36%					
			802.11ac		
Operating Channel (MHz)	Limit [dBm]	Ch0 [dBm]	Ch1 [dBm]	Total Power [dBm]	Margin [dB]
5755.00	30.00	16.40	18.04	20.31	-9.69
5795.00	30.00	<mark>16.61</mark>	<mark>18.26</mark>	20.52	-9.48
2. The 3. Plo	e sum of Ch(ts for all the) and Ch1 = Tota measurements st	l Power.) MCS0, 1 Data St aken, to reduce co in the report.	
			802.11ac		
Operating Channel (MHz)	Limit [dBm]	Ch0 [dBm]	Ch1 [dBm]	Total Power [dBm]	Margin [dB]
5775.00	30.00	<mark>12.85</mark>	<mark>14.62</mark>	16.83	-13.17
2. The 3. Plo	e sum of Ch(ts for all the) and Ch1 = Tota measurements st	l Power.	MCS0, 1 Data St aken, to reduce co in the report.	

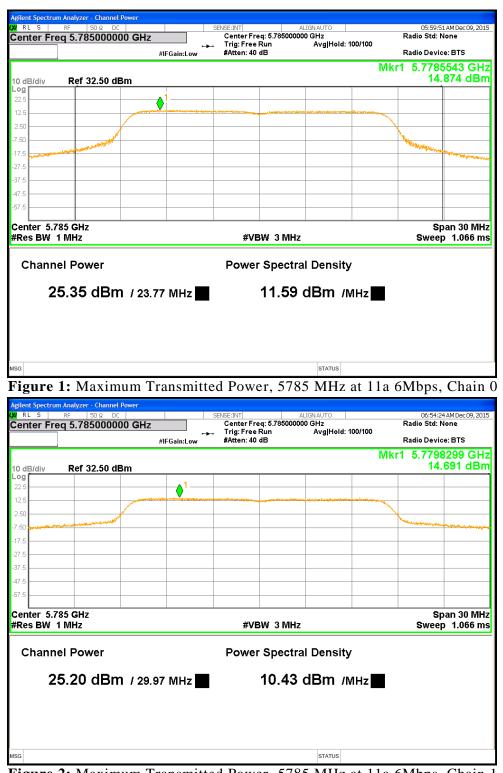


Figure 2: Maximum Transmitted Power, 5785 MHz at 11a 6Mbps, Chain 1

Figure 4: Maximum Transmitted Power, 5785 MHz at HT20 MCS0, Chain 1

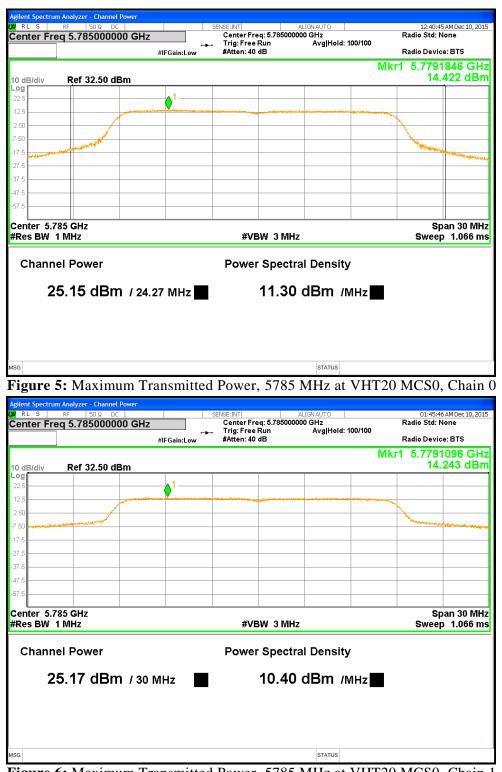


Figure 6: Maximum Transmitted Power, 5785 MHz at VHT20 MCS0, Chain 1

Report Number: 31563404.001 EUT: Home Wi-Fi Router Model: A010001 EMC / Rev 1.0

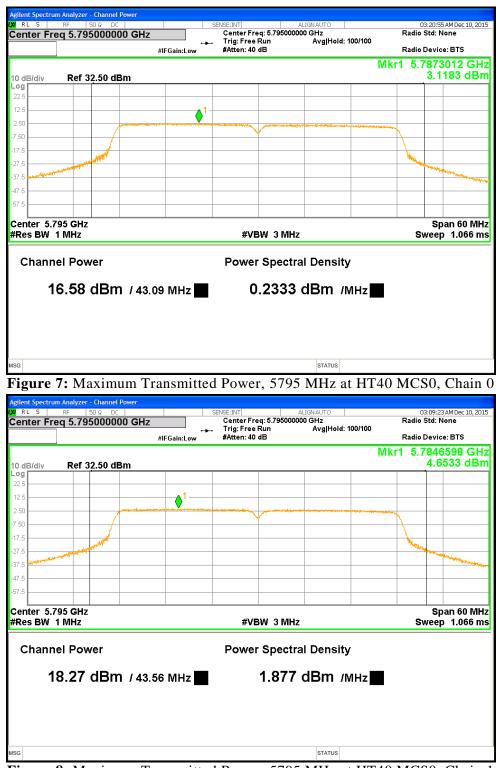


Figure 8: Maximum Transmitted Power, 5795 MHz at HT40 MCS0, Chain 1

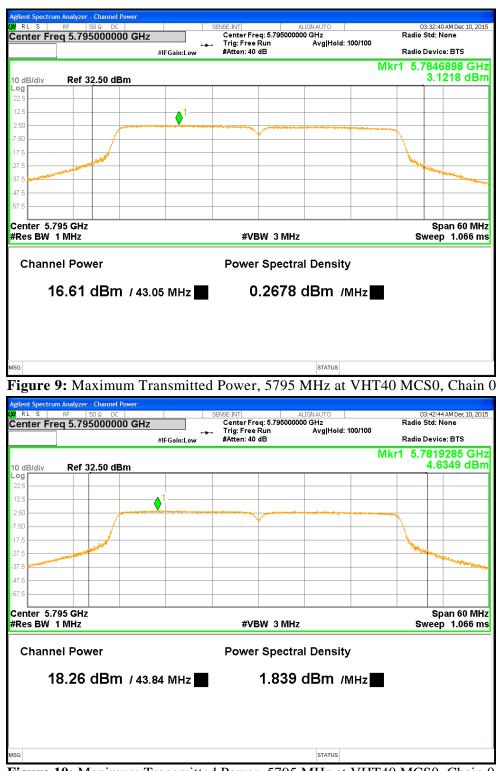


Figure 10: Maximum Transmitted Power, 5795 MHz at VHT40 MCS0, Chain 0

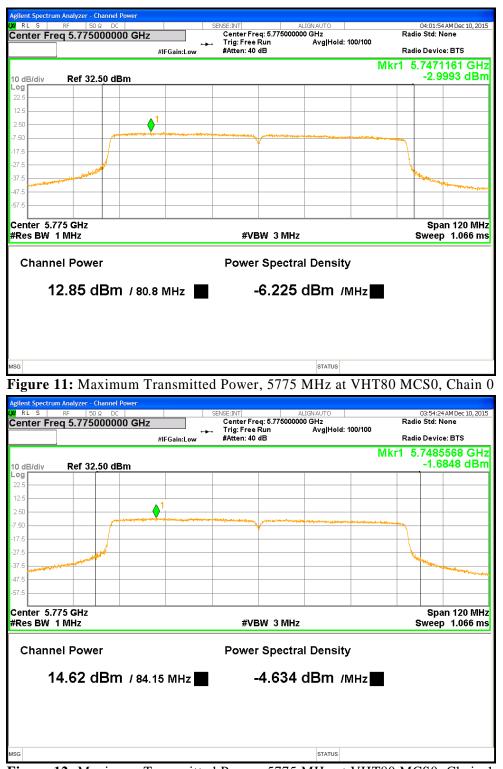
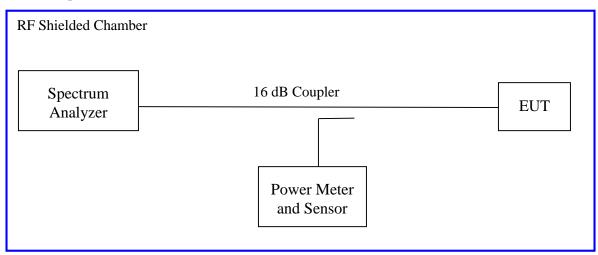


Figure 12: Maximum Transmitted Power, 5775 MHz at VHT80 MCS0, Chain 1

4.2 Occupied Bandwidth

The occupied bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.

The 99% bandwidth is the bandwidth in which 99% of the transmitted power occupied.


The 6 or 26 dB bandwidth is defined the bandwidth of 6 or 26 dBr from highest transmitted level of the fundamental frequency.

Within the 5.725 – 5.850 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz per CFR47 Part 15.407(e).

4.2.1 Test Method

The conducted method was used to measure the occupied bandwidth. The measurement was performed with modulation per CFR47 15.407(e) 2015 and RSS Gen Sect. 4.4.1:2010. The preliminary investigation was performed to find the narrowest 26 dB bandwidth for each operational mode at different data rates. This worst finding was performed on 3 channels in each operating frequency range; 5725 to 5850 MHz band, a 6 dB bandwidth was used. The worst results indicated below.

Test Setup:

4.2.2 Results

These occupied bandwidth measurements were taken for references only.

Table 6: Occupied Band	width – Test Results
------------------------	----------------------

Test Conditions: Conducted Measurement, Normal Temperature	
--	--

Antenna Type: Custom Integrated

Power Setting: See test plan

Max. Directional Gain: + 2.24 dBi

Signal State: Modulated at 100%.

Ambient Temp.: 23° C

Relative Humidity:36%

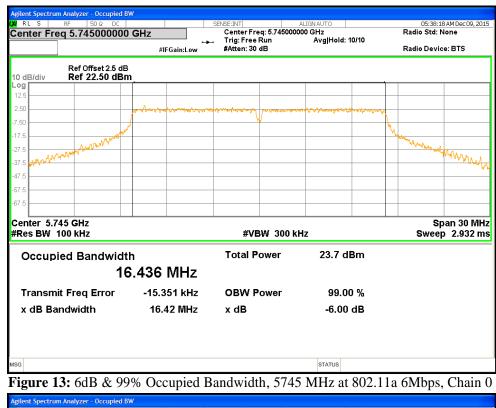
	Bandwidth (MHz) for 802.11a							
Freq.					6dB Bandwidth (MHz)		6dB Bandwidth (MHz) 99% Bandwid	
(MHz)	Ch0	Ch1	Ch0	Ch1				
5745	<mark>16.42</mark>	16.31	<mark>16.44</mark>	16.46				
5785	16.35	<mark>16.34</mark>	16.48	<mark>20.08</mark>				
5825	16.33	16.28	16.46	16.46				

Note: 1. The bandwidth was measured at 6.0 Mbps.

2. Plots for all the measurements stated above were taken, to reduce complexity and bulkiness of the report Highlighted Plots are placed in the report.

	Bandwidth (MHz) for 802.11n				
Freq.	6dB Bandwidth (MHz)99% Bandwidth (MHz)				
(MHz)	Ch0	Ch1	Ch0	Ch1	
5745	16.97	17.21	17.66	17.65	
5785	17.14	<mark>16.55</mark>	17.67	21.31	
5825	<mark>17.60</mark>	17.57	<mark>17.66</mark>	17.66	

Note: 1. The bandwidth was measured at HT20 MCS0, 1 Data Streams


2. Plots for all the measurements stated above were taken, to reduce complexity and bulkiness of the report Highlighted Plots are placed in the report.

		Bandwidth (MHz) f	for 802.11ac	
Freq.	6dB Bandwidth (MHz) 99% Bandwidth (MHz)			
(MHz)	Ch0	Ch1	Ch0	Ch1
5745	16.92	17.68	17.64	17.66
5785	17.57	17.53	<mark>17.68</mark>	<mark>21.09</mark>
5825	17.54	17.58	17.64	17.66
Note: 1	The bandwidth was me	asured at VHT20 MCS	0 1 Data Streams	

Note: 1. The bandwidth was measured at VHT20 MCS0, 1 Data Streams

2. Plots for all the measurements stated above were taken, to reduce complexity and bulkiness of the report Highlighted Plots are placed in the report.

Table 7: C	Jeeupieu Builu Main			
Test Cor	nditions: Conducted M	leasurement, Normal Te	mperature	
Antenna	Type: Custom Integra	nted	Power Settin	ng: See test plan
Max. Di	rectional Gain: + 2.24	dBi		
Signal St	tate: Modulated at 100	%.		
Ambient	t Temp.: 23° C		Relative Humidity	:36%
		Bandwidth (MHz) f	for 802.11n	
Freq.	6dB Bandy	vidth (MHz)	99% Band	lwidth (MHz)
(MHz)	Ch0	Ch1	Ch0	Ch1
5755	35.70	35.07	36.13	36.15
5795	<mark>35.70</mark>	<mark>35.95</mark>	<mark>36.14</mark>	<mark>36.15</mark>
2.1	Plots for all the measur	easured at HT40 MCS0, rements stated above we Plots are placed in the re	re taken, to reduce con	mplexity and bulkiness
2. 1 of t	Plots for all the measur the report Highlighted h	ements stated above we Plots are placed in the re Bandwidth (MHz) f	re taken, to reduce comport. or 802.11ac	
2.] of t Freq.	Plots for all the measur the report Highlighted b 6dB Bandy	rements stated above we Plots are placed in the re Bandwidth (MHz) f ridth (MHz)	re taken, to reduce con eport. for 802.11ac 99% Band	lwidth (MHz)
2. 1 of t	Plots for all the measur the report Highlighted h	ements stated above we Plots are placed in the re Bandwidth (MHz) f	re taken, to reduce comport. or 802.11ac	
2.] of t Freq. (MHz)	Plots for all the measur the report Highlighted 1 6dB Bandw Ch0	ements stated above we Plots are placed in the re Bandwidth (MHz) f vidth (MHz) Ch1	re taken, to reduce comport. or 802.11ac 99% Band Ch0	lwidth (MHz) Ch1
2. 1 of t Freq. (MIHz) 5755 5795 Note: 1. 7 2. 1	Plots for all the measur the report Highlighted 1 6dB Bandw Ch0 35.72 35.73 The bandwidth was me Plots for all the measur	ements stated above we Plots are placed in the re Bandwidth (MHz) f vidth (MHz) Ch1 35.91	re taken, to reduce con eport. for 802.11ac 99% Band Ch0 36.12 36.12 0, 1 Data Streams re taken, to reduce con	lwidth (MHz) Ch1 36.15 36.17
2.1 of t Freq. (MHz) 5755 5795 S795 Note: 1.7 2.1 of t	Plots for all the measur the report Highlighted 1 6dB Bandw Ch0 35.72 35.73 The bandwidth was me Plots for all the measur the report Highlighted 1	ements stated above we Plots are placed in the re Bandwidth (MHz) f vidth (MHz) Ch1 35.91 36.09 easured at VHT40 MCS rements stated above we Plots are placed in the re Bandwidth (MHz) f	re taken, to reduce comport. or 802.11ac 99% Band Ch0 36.12 36.17 0, 1 Data Streams re taken, to reduce comport. or 802.11ac	Iwidth (MHz) Ch1 36.15 36.17 mplexity and bulkiness
2.1 of t Freq. (MHz) 5755 5795 Note: 1.7 2.1 of t Freq.	Plots for all the measur the report Highlighted 1 6dB Bandw Ch0 35.72 35.73 The bandwidth was me Plots for all the measur the report Highlighted 1 6dB Bandw	ements stated above we Plots are placed in the re Bandwidth (MHz) f vidth (MHz) Ch1 35.91 36.09 easured at VHT40 MCS rements stated above we Plots are placed in the re Bandwidth (MHz) f vidth (MHz)	re taken, to reduce comport. or 802.11ac 99% Band Ch0 36.12 36.12 0, 1 Data Streams re taken, to reduce comport. or 802.11ac 99% Band	Iwidth (MHz) Ch1 36.15 36.17 mplexity and bulkiness
2.1 of t Freq. (MIHz) 5755 5795 Note: 1.7 2.1 of t Freq. (MIHz)	Plots for all the measur the report Highlighted 1 6dB Bandw Ch0 35.72 35.73 The bandwidth was me Plots for all the measur the report Highlighted 1 6dB Bandw Ch0	ements stated above we Plots are placed in the re Bandwidth (MHz) f vidth (MHz) Ch1 35.91 36.09 easured at VHT40 MCS rements stated above we Plots are placed in the re Bandwidth (MHz) f vidth (MHz) Ch1	re taken, to reduce comport. or 802.11ac 99% Band Ch0 36.12 36.17 0, 1 Data Streams re taken, to reduce comport. or 802.11ac 99% Band Ch0	Iwidth (MHz) Ch1 36.15 36.17 mplexity and bulkiness
2.1 of t (MIHz) 5755 5795 Note: 1.7 2.1 of t 5775	Plots for all the measur the report Highlighted 1 6dB Bandw Ch0 35.72 35.73 The bandwidth was me Plots for all the measur the report Highlighted 1 6dB Bandw Ch0 66.61	ements stated above we Plots are placed in the re Bandwidth (MHz) f vidth (MHz) Ch1 35.91 36.09 easured at VHT40 MCS rements stated above we Plots are placed in the re Bandwidth (MHz) f vidth (MHz)	re taken, to reduce con eport. or 802.11ac 99% Band Ch0 36.12 36.17 0, 1 Data Streams re taken, to reduce con eport. or 802.11ac 99% Band Ch0 75.47	Iwidth (MHz) Ch1 36.15 36.17 mplexity and bulkiness

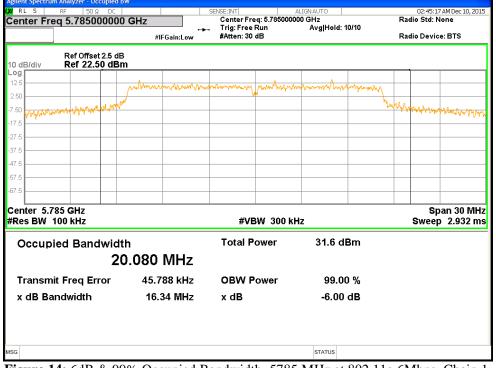


Figure 14: 6dB & 99% Occupied Bandwidth, 5785 MHz at 802.11a 6Mbps, Chain 1

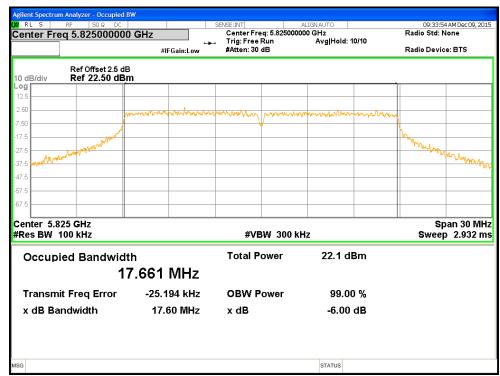


Figure 15: 6dB & 99% Occupied Bandwidth, 5825 MHz at HT20 MCS0, Chain 0

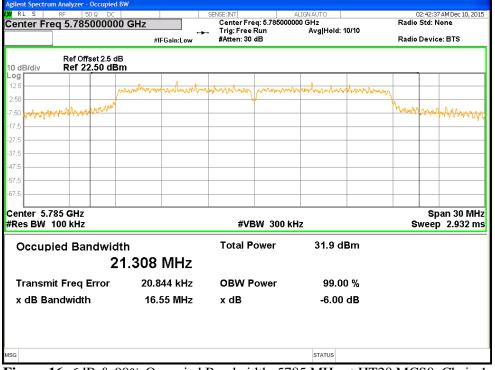


Figure 16: 6dB & 99% Occupied Bandwidth, 5785 MHz at HT20 MCS0, Chain 1

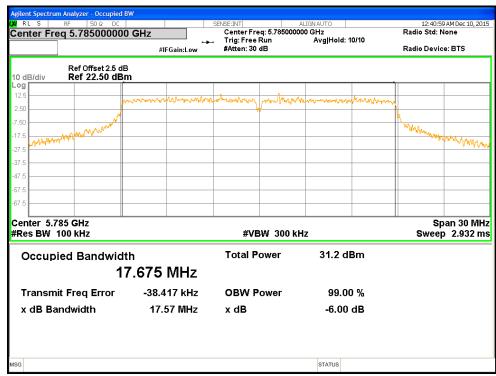


Figure 17: 6dB & 99% Occupied Bandwidth, 5785 MHz at VHT20 MCS0, Chain 0

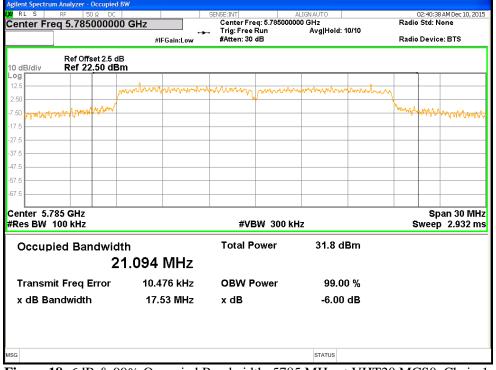


Figure 18: 6dB & 99% Occupied Bandwidth, 5785 MHz at VHT20 MCS0, Chain 1



Figure 19: 6dB & 99% Occupied Bandwidth, 5795 MHz at HT40 MCS0, Chain 0

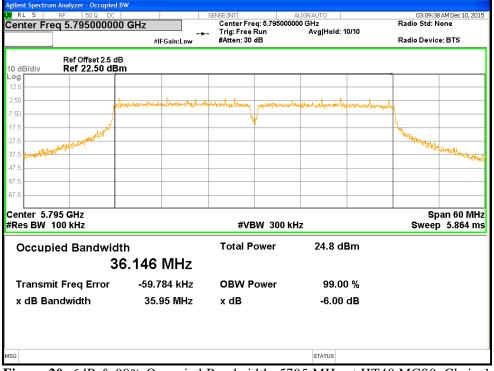


Figure 20: 6dB & 99% Occupied Bandwidth, 5795 MHz at HT40 MCS0, Chain 1

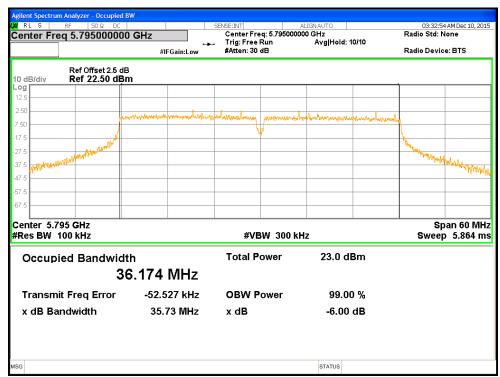


Figure 21: 6dB & 99% Occupied Bandwidth, 5795 MHz at VHT40 MCS0, Chain 0

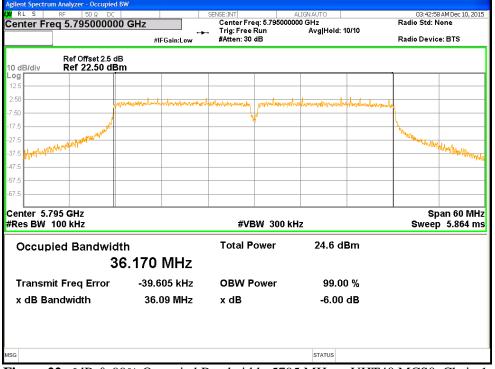
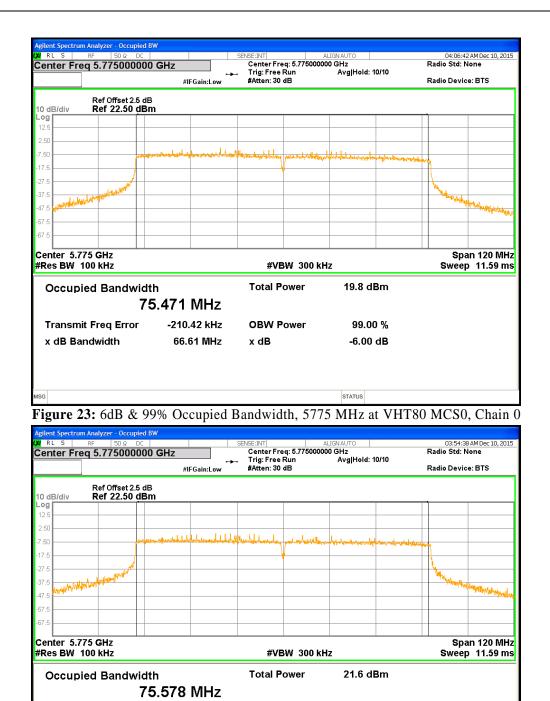


Figure 22: 6dB & 99% Occupied Bandwidth, 5795 MHz at VHT40 MCS0, Chain 1

Transmit Freq Error

x dB Bandwidth

Report Number: 31563404.001


EUT: Home Wi-Fi Router

Model: A010001 EMC / Rev 1.0

MSG

-148.88 kHz

71.71 MHz

FCC ID: 2AEM4-A010001, IC: 20631-33ROI52C001

OBW Power

Figure 24: 6dB & 99% Occupied Bandwidth, 5775 MHz at VHT80 MCS0, Chain 1

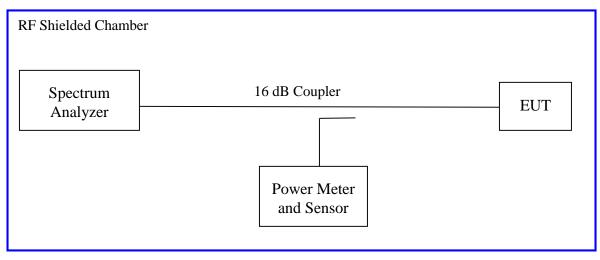
x dB

99.00 %

-6.00 dB

STATUS

Page 34 of 127

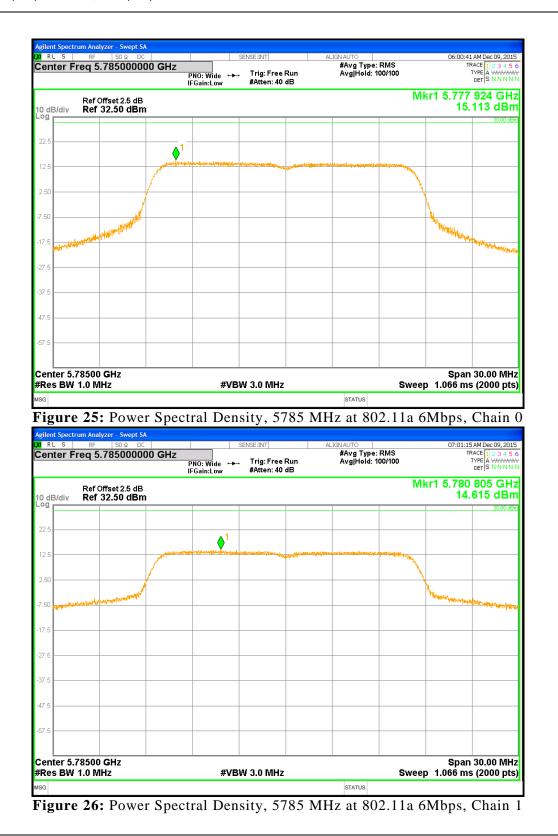

4.3 Peak Power Spectral Density

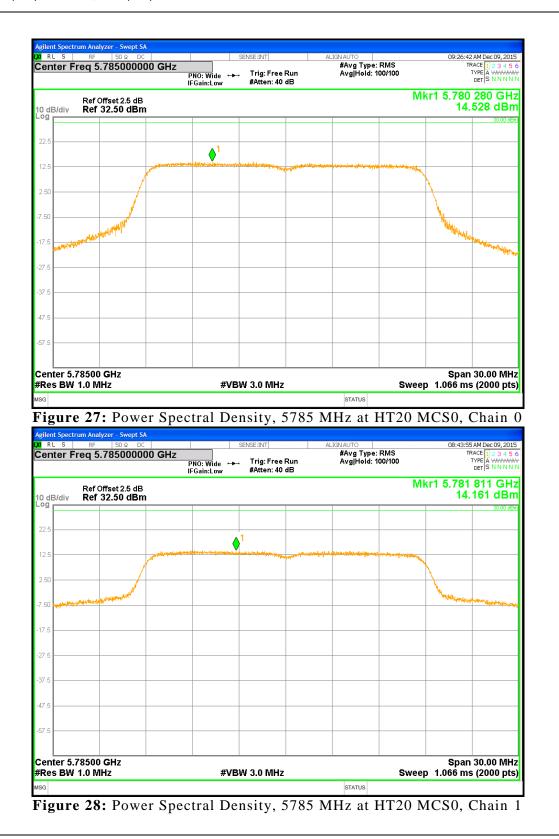
According to the CFR47 Part 15.407 (a) and RSS 247 Sect.6.2.4.1, in the 5.725 - 5.85 GHz band, the maximum power spectral density shall not exceed 30 dBm in any 500kHz band.during any time interval of continuous transmission.

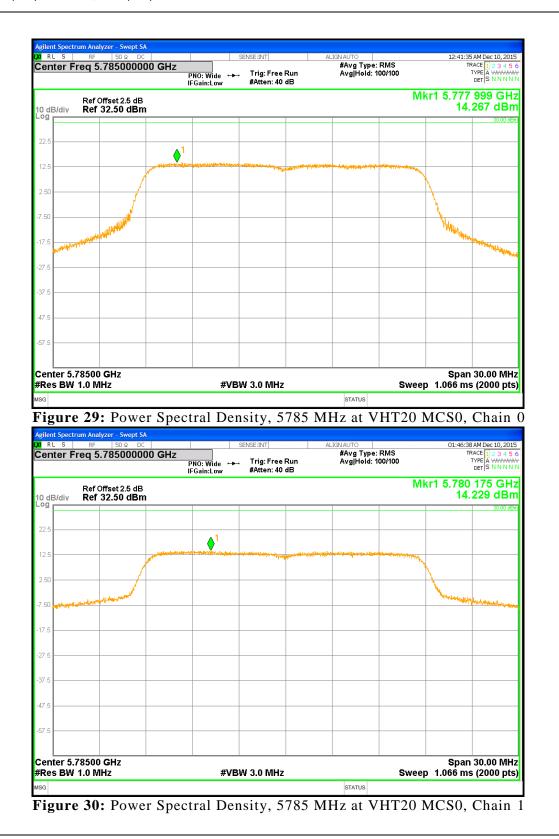
4.3.1 Test Method

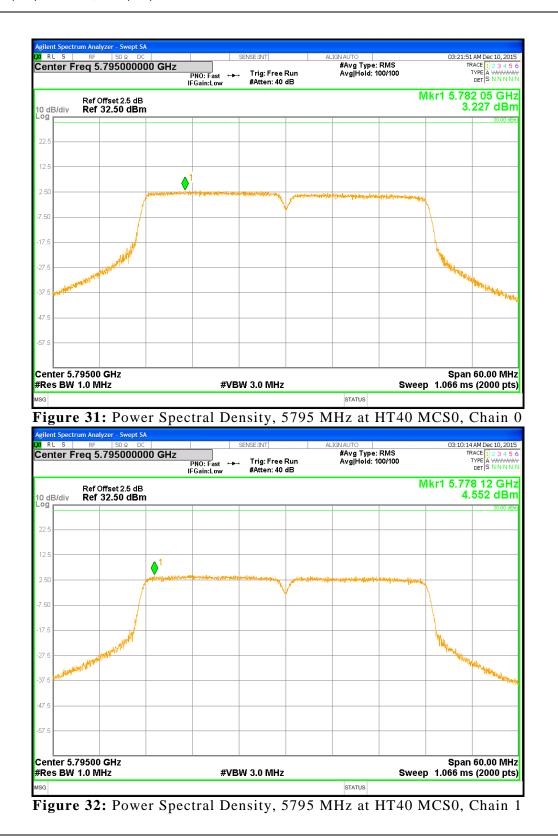
The conducted method was used to measure the channel power output per ANSI C63.10-2013 Section 6.11.2. The measurement was performed with modulation per CFR47 Part 15.407 (a) and RSS 247 Sect.6.2.4.1. The pre-evaluation was performed to find the worst modes. The worst findings were conducted on 3 channels in each operating frequency range of 5725 MHz to 5850 MHz. The worst sample result indicated below.

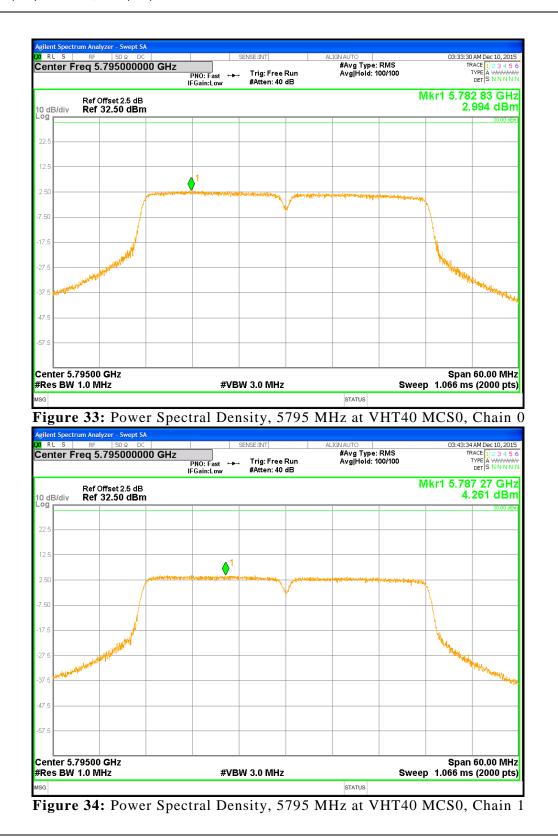
Test Setup:

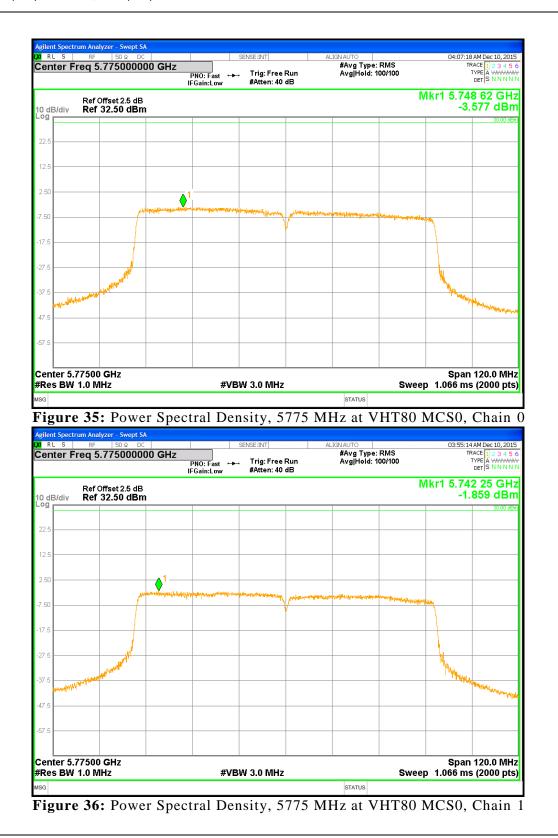

4.3.2 Results


As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).


Test Conditi	ons: Conducted	Measurement, 1	Normal Temperat	ure	
Antenna Tyj	be: Custom Inte	grated	Power Setting: See test plan		
Max. Directi	onal Gain: +2.	24 dBi			
Signal State:	Modulated at 1	00%.			
Ambient Ter	np.: 23° C		Rela	tive Humidity:36	5%
		Peak Pow	er Spectral Dens	ity	
			802.11a		
Freq. (MHz)	Ch0 [dBm]	Ch1 [dBm]	Total PSD [dBm]	Limit [dBm]	Margin [dB]
5745	7.75	9.01	11.44	30.00	-18.56
5785	<mark>15.11</mark>	<mark>14.62</mark>	17.88	30.00	-12.12
5825	5.00	6.88	9.05	30.00	-20.95
2. The	sum of Ch0 and	ower spectral der d Ch1 = Total P f plots are placed		d at 11a 6Mbps	per data stream
Freq. (MHz)	Ch0 [dBm]	Ch1 [dBm]	Total PSD [dBm]	Limit [dBm]	Margin [dB]
(11112)	7.78	8.75	11.30	30.00	-18.70
5745					
. ,	14.53	<mark>14.16</mark>	17.36	30.00	-12.64


Table 9: Peak I	Power Spectral	Density – Test F	Results Continues								
Test Conditio	ons: Conducted	Measurement, N	Normal Temperatu	re							
Antenna Typ	e: Custom Integ	grated		Power Setting:	See test plan						
Max. Directio	onal Gain: + 2.	24 dBi									
Signal State:	Modulated at 1	00%.									
Ambient Temp.: 23° CRelative Humidity:36%											
Peak Power Spectral Density											
802.11ac											
Freq. (MHz)	Ch0 [dBm]	Ch1 [dBm]	Total PSD [dBm]	Limit [dBm]	Margin [dB]						
5745	7.54	8.91	11.29	30.00	-18.71						
5785	<mark>14.27</mark>	<mark>14.23</mark>	17.26	30.00	-12.74						
5825	4.58	5.68	8.18	30.00	-21.82						
2. The	sum of Ch0 and	wer spectral der l Ch1 = Total PS plots are placed	SD.	at VHT20 MCS	S0 per data stream.						
			802.11n								
Freq. (MHz)	Ch0 [dBm]	Ch1 [dBm]	Total PSD [dBm]	Limit [dBm]	Margin [dB]						
5755	2.76	4.09	6.49	30.00	-23.51						
5795	<mark>3.23</mark>	<mark>4.55</mark>	6.95	30.00	-23.05						
2. The	sum of Ch0 and	wer spectral der l Ch1 = Total PS plots are placed		at HT40 MCS0) per data stream.						


Fable 10: Peak	Power Spectra	l Density – Test	Results Continues								
Test Condition	ons: Conducted	Measurement, N	Jormal Temperatur	re							
Antenna Typ	e: Custom Integ	grated		Power Setting: S	See test plan						
Max. Direction	onal Gain: + 2.	24 dBi									
Signal State:	Modulated at 1	00%.									
Ambient Ten	пр.: 23° С		Relati	ve Humidity:36%	%						
		Peak Pow	er Spectral Densi	ty							
802.11ac											
Freq. (MHz)	Ch0 [dBm]	Ch1 [dBm]	Total PSD [dBm]	Limit [dBm]	Margin [dB]						
5755	2.65	4.18	6.49	30.00	-23.51						
5795	<mark>2.99</mark>	<mark>4.26</mark>	6.68	30.00	-23.32						
2. The	sum of Ch0 and	wer spectral den l Ch1 = Total PS plots are placed	SD.	at VHT40 MCS	0 per data stream.						
			802.11ac								
Freq. (MHz)	Ch0 [dBm]	Ch1 [dBm]	Total PSD [dBm]	Limit [dBm]	Margin [dB]						
5775	<mark>-3.58</mark>	<mark>-1.86</mark>	0.37	30.00	-29.63						
2. The	sum of Ch0 and	wer spectral den l Ch1 = Total PS plots are placed	SD.	at VHT80 MCS	0 per data stream.						

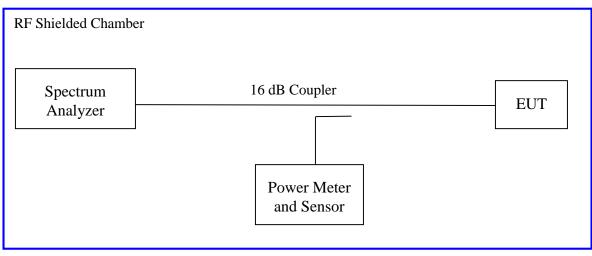


4.4 Undesirable Emission Limits

CFR47 15.407 (*b*) and *RSS* 247 Sect.6.2.4.2: The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

4.4.1 Test Method


The conducted method was used to measure the undesirable emission requirement. The measurement was performed with modulation. This test was conducted on 3 channels of Sample in each mode on Sample.

Pre Scan - 802.11a, 802.11n (HT20) and 802.11ac (VHT20): Channel 149, 153, 157, 161 and 165.

The 20 MHz channel bandwidth power setting varies for each channel, therefore each channel were investigated for bandedge and undesireable emissions.

The worst sample result indicated below.

Test Setup:

Measurement Procedure AVG2 of KDB 662911

4.4.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 11: E	missions at the Band-E	dge – Test	Results			
Test Cond	itions: Conducted Mea	isurement,	Normal Tempe	rature		
Antenna T	ype: Custom Integrate	d		Power	Setting: See tes	st plan
Max. Dire	ctional Gain: + 2.24 d	Bi				
Signal Sta	te: Modulated at 100%					
Ambient 7	Г етр.: 23° С		R	elative Hun	nidity:36%	
	No	n-Restrict	ed Frequency	Band Emiss	ion	
Freq. (MHz)	Mode	Chain	Measured (dBm)	Limit (dBm)	Plots	Comment
39108	802.11a 6Mbps	0	-32.08	-27.00	Fig. 37, 38	Below edge
5714.6	802.11a 6Mbps	1	-31.09	-27.00	Fig. 39, 40	Below edge
39175	802.11a 6Mbps	0	-32.28	-27.00	Fig. 41, 42	Above edge
38315	802.11a 6Mbps	1	-31.11	-27.00	Fig. 43, 44	Above edge
39700	HT20-MCS0	0	-31.88	-27.00	Fig. 45, 46	Below edge
39964	HT20-MCS0	1	-31.71	-27.00	Fig. 47, 48	Below edge
38830	HT20-MCS0	0	-32.09	-27.00	Fig. 49, 50	Above edge
38819	HT20-MCS0	1	-32.25	-27.00	Fig. 51, 52	Above edge
39945	VHT20 MCS0	0	-32.00	-27.00	Fig. 53, 54	Below edge
5713.2	VHT20 MCS0	1	-28.29	-27.00	Fig. 55, 56	Below edge
39961	VHT20 MCS0	0	-31.48	-27.00	Fig. 57, 58	Above edge
5860.8	VHT20 MCS0	1	-31.44	-27.00	Fig. 59, 60	Above edge

Note: 1. All out of band emissions are lower than the 17dBr level (10 MHz below or above the band edge) and 27dBr level (10 MHz greater than below or above the band edge).

Table 12: Emissions at the Band-Edge – Tes	t Results Continues
--	---------------------

Test Conditions: Conducted Measurement, Normal Temper	rature
Antenna Type: Custom Integrated	Power Setting: See test plan

Max. Directional Gain: + 2.24 dBi

Signal State: Modulated at 100%.

Ambient Temp.: 23° C **Relative Humidity:36% Non-Restricted Frequency Band Emission** Freq. Measured Limit Mode Chain **Plots** Comment (MHz) (dBm) (dBm) HT40 MCS0 0 -32.23 -27.00Fig. 61, 62 Below edge 39988 HT40 MCS0 1 -31.92 -27.00 Fig. 63, 64 Below edge 39917 HT40 MCS0 0 -31.49 -27.00 Fig. 65, 66 Above edge 38489 HT40 MCS0 1 -31.47 -27.00 Fig. 67, 68 Above edge 39667 VHT40-MCS0 0 -31.33 -27.00 Fig. 69, 70 Below edge 39998 VHT40-MCS0 1 -32.15 -27.00 Fig. 71, 72 Below edge 38510 0 VHT40-MCS0 -31.14 -27.00 Fig. 73, 74 Above edge 38822 VHT40-MCS0 1 -31.13 -27.00 Fig. 75, 76 Above edge 39122 0 VHT80 MCS0 -31.38 -27.00 Fig. 77, 78 Below edge 39665 1 Fig. 79, 80 VHT80 MCS0 -30.58 -27.00 Below edge 5714.3 VHT80 MCS0 0 -41.81 -27.00Fig. 77, 78 Above edge 5860 VHT80 MCS0 1 -40.94 -27.00 Fig. 79, 80 Above edge 5860 Note: 1. All out of band emissions are lower than the 17dBr level (10 MHz below or above the band

edge) and 27dBr level (10 MHz greater than below or above the band edge).

	LS ker	15	.7150	50 Ω DC 000000000 GHz		rig: Free Run tten: 36 dB		NAUTO #Avg Type: Avg Hold: '	100/100	т	8 AM Dec 09, 201 RACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
I0 dl	B/div			set 2.5 dB '.50 dBm					N	/kr1 5.71 -34.	5 00 GH .595 dBr
.og 17.5						Min Jania					
7.50											
-2.50											
12.5											
22.5						//					
32.5				_ 1				hiller .	A3 A4		-27.00 dt
			ALC: NO.	فالمعتدة ويتجاره والمرجع لاعتمادهم ومقتراته				A MANAGER		decide marks	and the second second
42.5 52.5											
62.5											
₽Re	s B	W 1	850 GH .0 MH2		#VBW 3	.0 MHz			· ·	1.333 ms	300.0 MH (10000 pt
MKR 1	MODE N	TRC	SCL f	× 5.715 00 GH	z -34.595 dBn	FUNCTION	FUNCTIO	N WIDTH	F	UNCTION VALUE	
	N		f	5.725 00 GH	z -32.573 dBn	1					
2	Ν		f f	5.850 00 GH 5.860 00 GH							
	Ν										
2 3 4 5	Ν										
2 3 4 5 6 7	N										
2 3 4 5 6 7 8 9	N										
2 3 4 5 6 7 8 9	N										
2 3 4 5 6 7 8	N										

Figure 37: Measured Below Edge for 802.11a-6Mbps at 5785 MHz, Chain 0

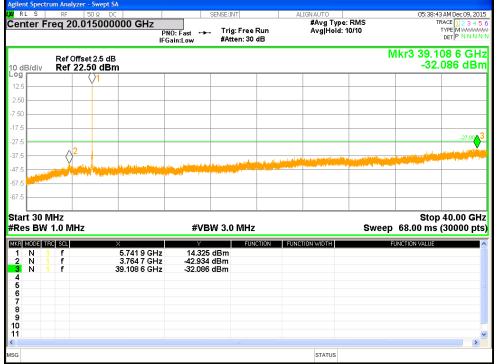


Figure 38: Undesirable Emission for 802.11a-6Mbps at 5745 MHz, Chain 0

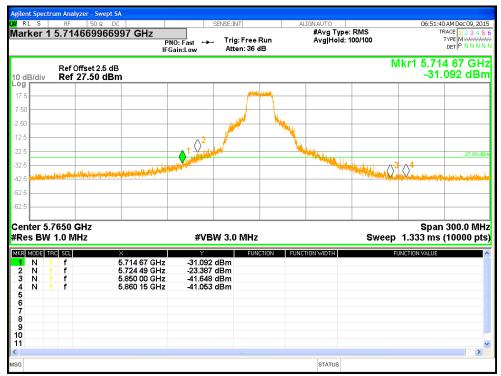


Figure 39: Measured Below Edge for 802.11a-6Mbps at 5765 MHz, Chain 1

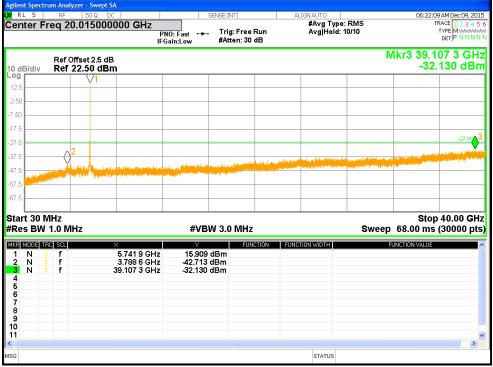


Figure 40: Undesirable Emission for 802.11a-6Mbps at 5745 MHz, Chain 1

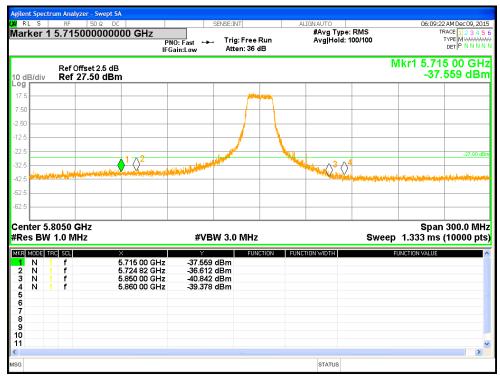


Figure 41: Measured Above Edge for 802.11a-6Mbps at 5805 MHz, Chain 0

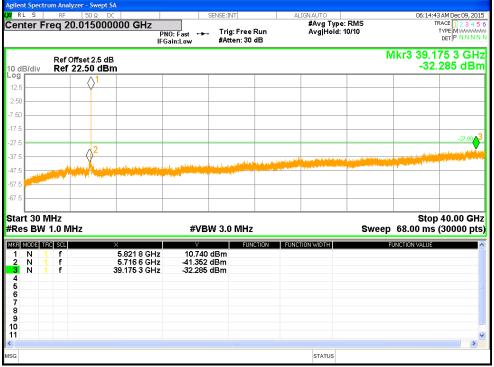


Figure 42: Undesirable Emission for 802.11a-6Mbps at 5825 MHz, Chain 0

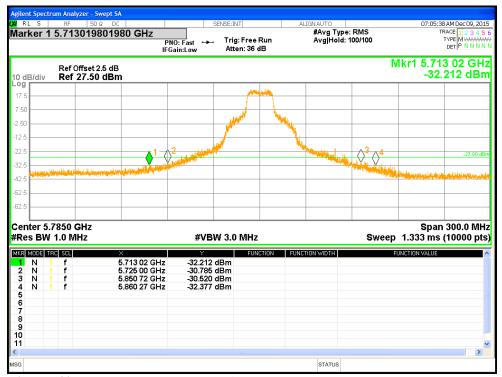


Figure 43: Measured Above Edge for 802.11a-6Mbps at 5785 MHz, Chain 1

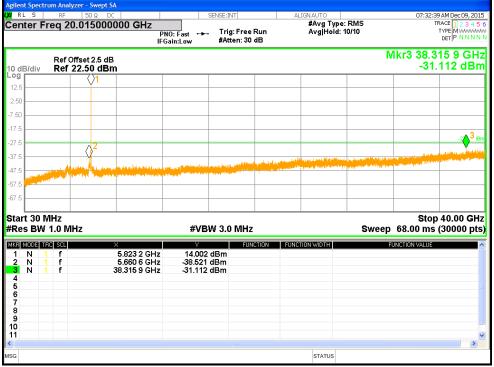
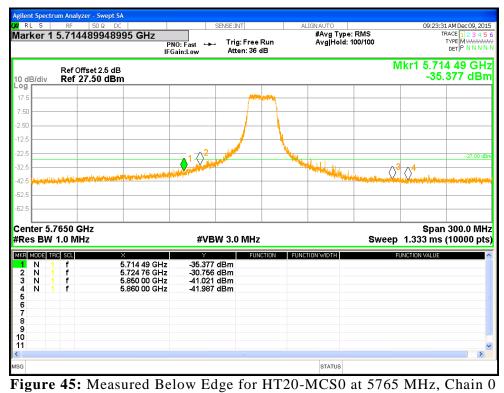



Figure 44: Undesirable Emission for 802.11a-6Mbps at 5825 MHz, Chain 1

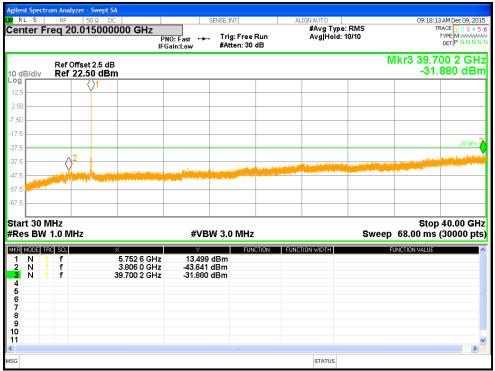
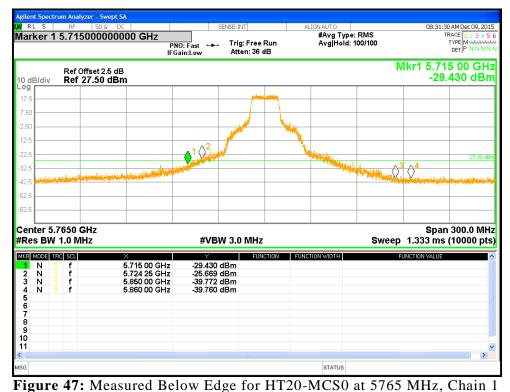
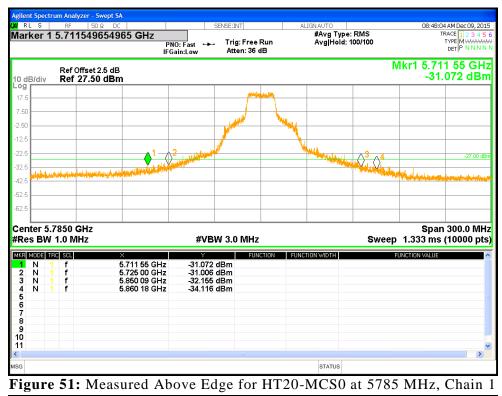



Figure 46: Undesirable Emission for HT20-MCS0 at 5745 MHz, Chain 0


ilent Spectrum Analyzer - Swept SA RL S 36 AM Dec 09, 2019 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N Center Freq 20.015000000 GHz #Avg Type: RMS Avg|Hold: 10/10 PNO: Fast IFGain:Low Tria: Free Run #Atten: 30 dB Mkr3 39.964 0 GHz Ref Offset 2.5 dB Ref 22.50 dBm -31.710 dBm 10 dB/div Log 12.5 2.50 7.50 17.5 37. ð 47 .57 .67 F Start 30 MHz Stop 40.00 GHz #Res BW 1.0 MHz Sweep 68.00 ms (30000 pts) #VBW 3.0 MHz MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE 5.748 6 GHz 3.767 3 GHz 39.964 0 GHz 15.684 dBm -42.828 dBm -31.710 dBm N N N 1 2 3 4 5 6 7 8 9 10 11 f STATUS Figure 48: Undesirable Emission for HT20-MCS0 at 5745 MHz, Chain 1

		ctru		ılyzer - Swept S/								
	L S	4 4	RF	50 Ω DC 48199819			SENSE:INT)	ALIGNAUTO #Avg Type	DMS		1 AM Dec 09, 2015 RACE 1 2 3 4 5 6
war	ker	1 3). 71	40199019	F	PNO: Fast 🔸	Trig: Free Atten: 36		Avg Hold:	100/100		
	B/div			Offset 2.5 dB 27.50 dBn						N		4 82 GHz .557 dBm
Log 17.5												
7.50							Millio					
-2.50												
-12.5												
-22.5				1 - 2					4			-27.00 dBm
-32.5	La da	الماعاد			المتلاقين وتسمالي	- Standards on all description	hull -					
-42.5	al tage	a de la comercia de l Comercia de la comercia de la comerci	k jandali	a ana da Milan and Alan Arthuranda	a na shi ka	frindlig de statue : a sur thânh				alanı, fotosi di dinki dara	and the state of the second second second	
-52.5	\vdash											
-62.5	\vdash											
Cer	L	5 8	250	GHz							Snar	300.0 MHz
#Re						#VB	W 3.0 MHz			Sweep		(10000 pts)
MKR	MODE	TRC	SCL		×	Y	FUN	CTION FUN	CTION WIDTH	F	UNCTION VALUE	~
1	N N	1	f		5.714 82 GHz	-38.557 -39.169						
2 3	N		f		5.724 97 GHz 5.850 00 GHz	-40.194	dBm					
4 5	Ν		f		5.862 04 GHz	-32.318	dBm					
6 7												
7 8 9												
9 10												
11												~
<												>
MSG									STATUS			

Figure 49: Measured Above Edge for HT20-MCS0 at 5825 MHz, Chain 0

Figure 50: Undesirable Emission for HT20-MCS0 at 5825 MHz, Chain 0

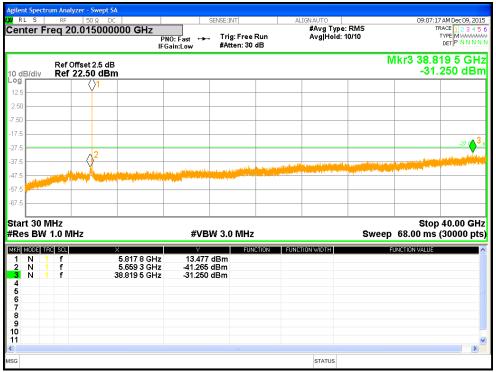
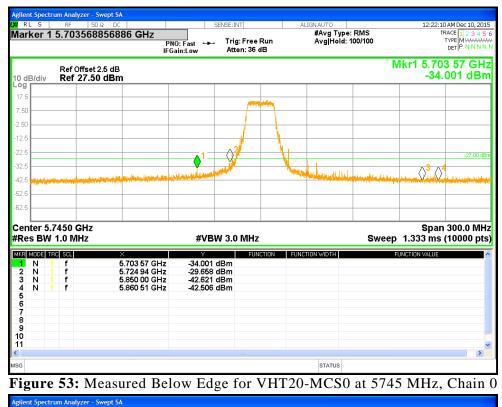



Figure 52: Undesirable Emission for HT20-MCS0 at 5825 MHz, Chain 1

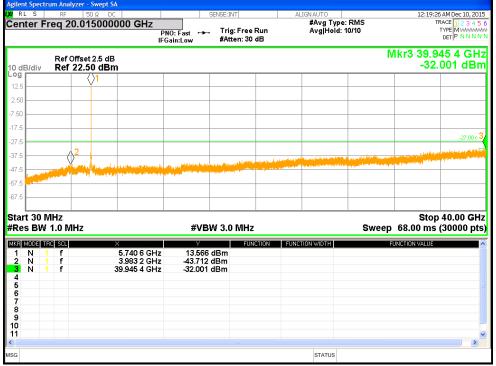


Figure 54: Undesirable Emission for VHT20-MCS0 at 5745 MHz, Chain 0

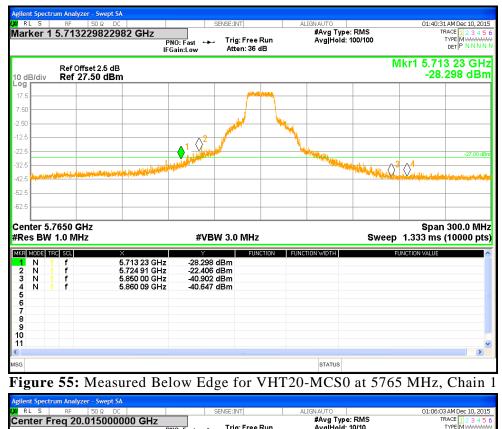
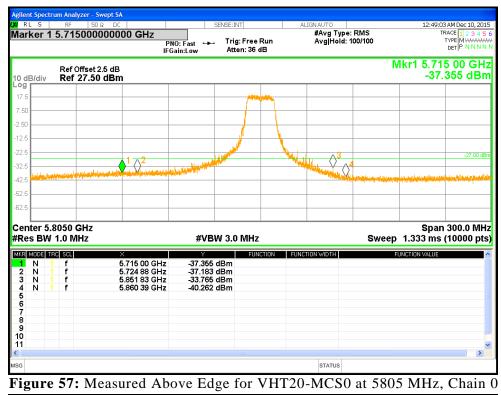



Figure 56: Undesirable Emission for VHT20-MCS0 at 5745 MHz, Chain 1

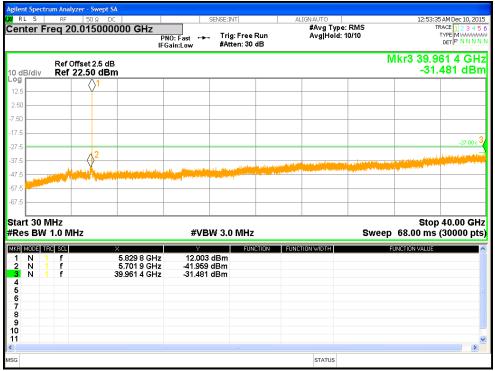
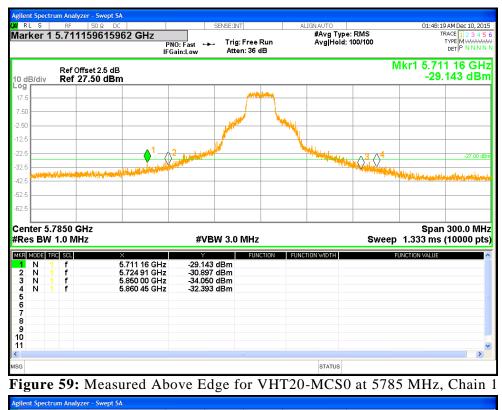



Figure 58: Undesirable Emission for VHT20-MCS0 at 5825 MHz, Chain 0

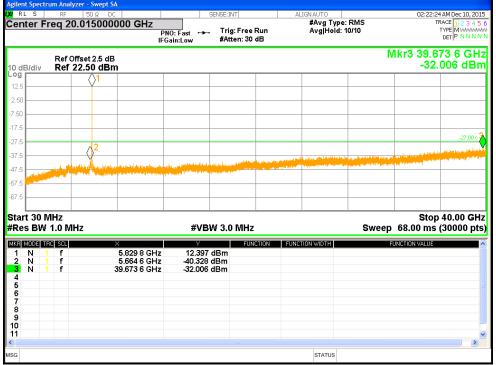


Figure 60: Undesirable Emission for VHT20-MCS0 at 5825 MHz, Chain 1

LUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 95466 Tel: (925) 249-9123, Fax: (925) 249-9124

RLS RF 50 arker 1 5.715000		SENSE:INT	ALIGNAUTO #Avg Type: RMS	03:18:57 AM Dec 10, 20 TRACE 1 2 3 4
arker 1 5.715000	PNC): Fast ↔→ Trig: Free Ru in:Low Atten: 36 dB		TYPE MWWW DET PNNN
Ref Offset: dB/div Ref 27.50				Mkr1 5.715 00 GF -36.701 dB
7.5				
.50				
50				
2.5				
2.5				-27.00 c
2.5				<mark>3 ∧</mark> 4
2.5 Japanes Handson and Internet Inter	والمتلك ومعالية والمحالية المحافظ والمحافظ والمحاف		New Mitchester	ilaisinan katika kanya manana ataun sanka s
2.5				
2.5				
enter 5.7550 GHz				Span 300.0 M
		#VBW 3.0 MHz	Swe	Span 300.0 Mi eep 1.333 ms (10000 pt
Res BW 1.0 MHz G MODE TRO SCL	X 5745 00 0U-	Y FUNCTIO		
Res BW 1.0 MHz	5.715 00 GHz 5.725 00 GHz	Y FUNCTIO -36.701 dBm -30.009 dBm		ep 1.333 ms (10000 pt
Res BW 1.0 MHz IF MODE TEC SCL I N 1 f 2 N 1 f 3 N 1 f 4 N 1 f	5.715 00 GHz	Y FUNCTIO -36.701 dBm		ep 1.333 ms (10000 pt
Res BW 1.0 MHz Image: Solution of the state of the	5.715 00 GHz 5.725 00 GHz 5.850 21 GHz	Y FUNCTIO -36.701 dBm -30.009 dBm -42.656 dBm		ep 1.333 ms (10000 pt
2 N 1 f 3 N 1 f 4 N 1 f 5 6 7	5.715 00 GHz 5.725 00 GHz 5.850 21 GHz	Y FUNCTIO -36.701 dBm -30.009 dBm -42.656 dBm		ep 1.333 ms (10000 pt
Res BW 1.0 MHz IM002 TEC SCL I N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 6 7 6 7 8 9 9	5.715 00 GHz 5.725 00 GHz 5.850 21 GHz	Y FUNCTIO -36.701 dBm -30.009 dBm -42.656 dBm		ep 1.333 ms (10000 pt
Res BW 1.0 MHz Gr MODE TRC SCL I N 2 N 3 N 4 N 5 6 7	5.715 00 GHz 5.725 00 GHz 5.850 21 GHz	Y FUNCTIO -36.701 dBm -30.009 dBm -42.656 dBm		ep 1.333 ms (10000 pt

Figure 61: Measured Below Edge for HT40-MCS0 at 5755 MHz, Chain 0

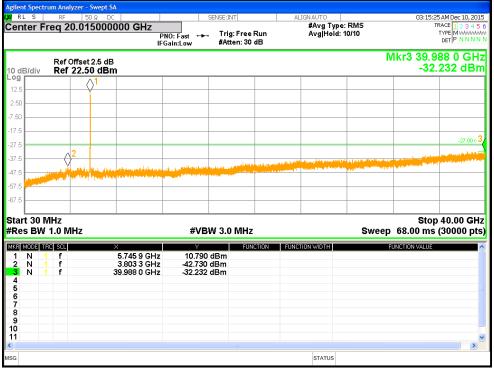


Figure 62: Undesirable Emission for HT40-MCS0 at 5755 MHz, Chain 0

50 Ω DC	SENSE:INT			03:06:32 AM Dec 10, 201 TRACE 1 2 3 4 5
	A rast r		Id: 100/100	DET P N N N
set 2.5 dB 7.50 dBm			M	kr1 5.715 00 GH -32.669 dBr
	and the second s	the Plant Andrea		
				-27.00 dE
the second s		Multiple	ومراديها والاول والمتحافظ فللم	$\Diamond \Diamond$
Hz				Span 300.0 MH
z	#VBW 3.0 MH	z	Sweep	1.333 ms (10000 pt
×		NCTION FUNCTION WIDTH	FUN	NCTION VALUE
5.850 00 GHz	-40.370 dBm			
5.860 00 GHz	-41.120 dBm			
				>
	PRG IFGa set 2.5 dB 7.50 dBm 1000000000000000000000000000000000000	PN0: Fast → Trig: Fre. IFGain:Low → Atten: 36 Set 2.5 dB 7.50 dBm 12 2 #VBW 3.0 MH 5.715 00 GHz -32.669 dBm 5.724 82 GHz -42.6398 dBm 5.724 82 GHz -42.6398 dBm	PNO: Fast IF Gain:Low Trig: Free Run Atten: 36 dB AvgiHo set 2.5 dB 7.50 dBm	PN0:: Fast → Trig: Free Run Atten: 36 dB Avg Hold: 100/100 set 2.5 dB MI 7.50 dBm Image: Set 2.5 dB MI 1000000000000000000000000000000000000

measured Below Ed 101 нı 40 -MCSU at 5755 MHZ, Chain I

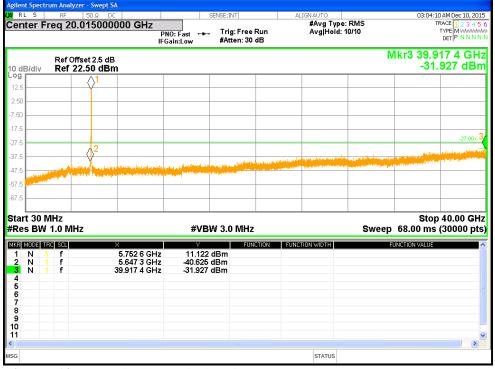


Figure 64: Undesirable Emission for HT40-MCS0 at 5755 MHz, Chain 1

	um Analyzer -							
RLS arker 1		ο Ω DC 9972997 GHz	SENSE:IN	TI	ALIGNAUTO #Avg Type	: RMS		M Dec 10, 201
	0.1 1472.	P		j:FreeRun en:36 dB	Avg Hold:	100/100	T	PE N N N N
		IFC	Same Cow Fice				lkr1 5.714	72 CH
dB/div	Ref Offset Ref 27.5							49 dBr
g	Kei Zi.J	o ubili						
7.5								
50			/	And the second states				
50								
.5								
2.5					\			-27.00 dB
2.5		1				3 _4		
2.5	والالتجا للمتالج للا	and the second					فالماري فراجيه والم	ور مناون و بود ا
2.5								
	7950 GHz 1.0 MHz		#VBW 3.0	MILI-		Swoon	Span : 1.333 ms (*	300.0 MH
							,	10000 pt:
R MODE TR	f SCL	× 5.714 73 GHz	-39.249 dBm	FUNCTION	FUNCTION WIDTH	FI	UNCTION VALUE	_
2 N 1 3 N 1	f	5.724 82 GHz 5.850 00 GHz	-38.757 dBm -42.490 dBm					
4 N 1	f	5.860 00 GHz	-42.544 dBm					
5								
7								
3								
0 1								
•								>
3					STATUS			
sg	(5. N	feeenad Ah	ana Edaa	for UTA		-4.5705		71

Figure 65: Measured Above Edge for HT40-MCS0 at 5795 MHz, Chain 0

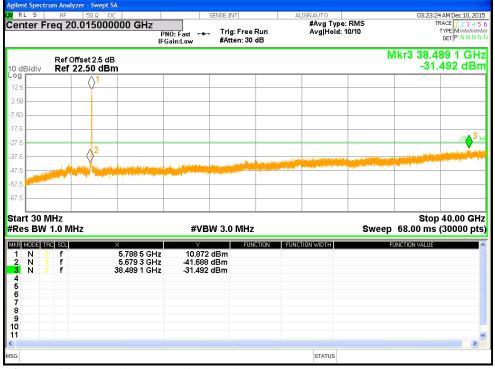


Figure 66: Undesirable Emission for HT40-MCS0 at 5795 MHz, Chain 0

		yzer - Swept S									
RL S	RF	50Ω DO			SENSE:INT		ALIO	GNAUTO #Avg Type:	DMS	03:12	14 AM Dec 10, 201
arker i	5.714	10/990/5		PNO: Fast		ree Run		Avg Hold:	100/100		TYPE MWAAMA DET P N N N N
				IFGain:Low	Atten:	36 dB					
dB/div)ffset 2.5 dB 27.50 dBr									14 88 GH 9.078 dBr
	KCI /	27.30 001									
7.5											
50						area production	┥──┼				
50											
.5											_
											-27.00 dE
2.5				A State of the second sec				$ \land$	4		
5 1000			and the second	the state of the second	·				Million and the state	and the second	and the second second
									· · ·		
.5											
enter 5.									0		n 300.0 MH
tes BW				#	VBW 3.0 M				-		s (10000 pt
R MODE T	RC SCL		× 5.714 88 GH		7 078 dBm	FUNCTION	FUNCTI	ION WIDTH		FUNCTION VALUE	
2 N 1	f		5.724 85 GH	z -38.	825 dBm						
3 N 1	f f		5.850 30 GH 5.861 14 GH		124 dBm 331 dBm						
5 5 7											
3											
3))											
3											>
))								STATUS			>

Figure 67: Measured Above Edge for HT40-MCS0 at 5795 MHz, Chain 1

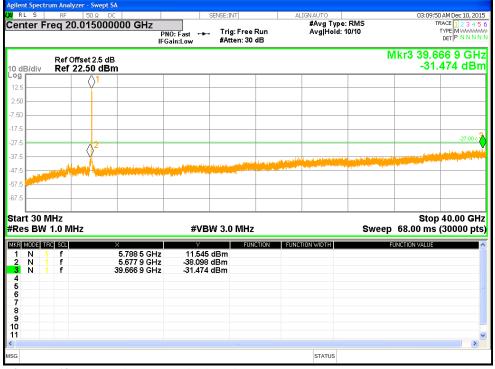


Figure 68: Undesirable Emission for HT40-MCS0 at 5795 MHz, Chain 1

		Ω DC	SENSE:INT	ALIGN AUTO			9 AM Dec 10, 2
arker 1	5.715000): Fast ↔ Trig: Free F in:Low Atten: 36 d	Run Avg H	Гуре: RMS old: 100/100		RACE 1 2 3 4 TYPE MWWW DET P N N N
) dB/div	Ref Offset 2 Ref 27.50					Vkr1 5.71 -36.	5 00 GI 855 dB
7.5							
.50							
.50							
2.5							
2.5			(2) ²	<u> </u>			-27.00
2.5					1		
2.5 ministrat	engen dette giftel et sjite	an fi na parte ang ang sa talan ng parte i na sa talang sa talang sa talang sa talang sa talang sa talang sa t			Heriolan and a second and a second as	at a lind a firm and i	and the line of
2.5							
2.5							
	7550 GHz						300.0 M
Res BW	1.0 MHz		#VBW 3.0 MHz		Sweep	1.333 ms	(10000 p
kr mode tr 1 N 1	f SCL	× 5.715 00 GHz	-36.855 dBm	CTION FUNCTION WIDTH		FUNCTION VALUE	
	f	5.724 91 GHz	-28.565 dBm				
2 N 1			-43.610 dBm				
2 N 1 3 N 1	f	5.850 00 GHz 5.860 15 GHz					
2 N 1 3 N 1 4 N 1 5		5.850 00 GHz 5.860 15 GHz	-42.161 dBm				
2 N 1 3 N 1 4 N 1 5 6 7							
2 N 1 3 N 1 4 N 1 5 6 7 8							
2 N 1 3 N 1 4 N 1 5 6 7 8 9 9							
2 N 1 3 N 1 4 N 1 5 6 7 8 9							
2 N 1 3 N 1 4 N 1 5 6 7 8 9 9				STATU	IS		<u>)</u>

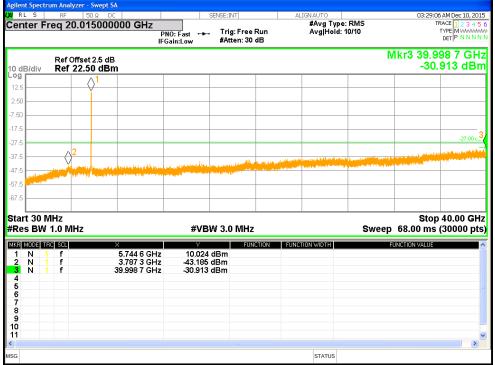


Figure 70: Undesirable Emission for VHT40-MCS0 at 5755 MHz, Chain 0

RLS RF	50 Ω DC	SENSE:INT	ALIGN AUTO	03:41:02 AM Dec 10, 201
arker 1 5.7146		D: Fast 🛻 Trig: Free Ru	#Avg Type: RMS In Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE MWWWW
		0: Fast ↔→ Trig: Free Ru ain:Low Atten: 36 dB		DET PNNN
dB/div Ref 27	et 2.5 dB .50 dBm			Mkr1 5.714 61 GH -33.435 dBi
pg				
7.5		antide in the second second		
.50				
.50				
2.5		2		
2.5				-27.00 d
	and a state of the second bill state of the		No. of the Art of the	
2.5				
2.5				
enter 5.7550 GH			_	Span 300.0 MH
Res BW 1.0 MHz	•	#VBW 3.0 MHz		weep 1.333 ms (10000 pt
	×	-33,435 dBm	ON FUNCTION WIDTH	FUNCTION VALUE
	5 714 61 GHz			
1 N 1 f 2 N 1 f	5.714 61 GHz 5.724 85 GHz	-27.558 dBm		
1 N 1 F 2 N 1 F 3 N 1 F				
I N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 5 5 5	5.724 85 GHz 5.850 12 GHz	-27.558 dBm -39.492 dBm		
I N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 5 7	5.724 85 GHz 5.850 12 GHz	-27.558 dBm -39.492 dBm		
N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 - - - 6 - - - 7 - - - 8 9 - -	5.724 85 GHz 5.850 12 GHz	-27.558 dBm -39.492 dBm		
2 N 1 f 3 N 1 f 4 N 1 f 6 7 8 9 9	5.724 85 GHz 5.850 12 GHz	-27.558 dBm -39.492 dBm		
N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 - - - 6 - - - 7 - - - 8 9 - -	5.724 85 GHz 5.850 12 GHz	-27.558 dBm -39.492 dBm		>
1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 6 7 8 9 0	5.724 85 GHz 5.850 12 GHz	-27.558 dBm -39.492 dBm	STATUS	

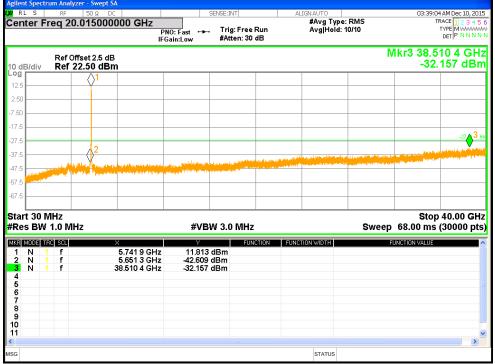


Figure 72: Undesirable Emission for VHT40-MCS0 at 5755 MHz, Chain 1

	rum Anal	yzer - Swept	5A									
RLS	RF	50Ω C			SENSE:INT		AL]	IGNAUTO #Avg Type	DMC			M Dec 10, 20 CE <mark>1 2 3 4</mark>
arker 1	1 5.71:	5000000	JUU GHZ	PNO: Fast ↔ IFGain:Low	⊢ Trig:Fr Atten:	ee Run 36 dB		Avg Hold:			TY	PE MWAAA ET P N N N
dB/div) 115 offset 2.5 di 127.50 dB								Mkr1		00 GI 90 dB
	Rei	27.30 UB										
7.5												
.50					/***	States and the states of						
50												
2.5							1					
2.5							N					-27.00
2.5			$+$ \uparrow \uparrow \uparrow \uparrow		<u> </u>		- 1	<u> </u>	4			
2.5 (444)	n na selen de la compación de l	والعفال فترالحماني	New York Contract of Contra					- Aleman and a second	-	and a straight of the	nili an sin an an	alan dina di
2.5												
2.5												
enter 5. Res BW				#VI	BW 3.0 M	Hz			Swe	ep 1.33	Span 3 3 ms (1	
R MODE 1	iric scl		x	Y		FUNCTION	FUNCT	ION WIDTH		FUNCTION	VALUE	
1 N 2 N	1 f 1 f		5.715 00 GH 5.725 00 GH		0 dBm 2 dBm							
3 N	1 f		5.850 00 GH	lz -40.99	5 dBm							
4 N	1 f		5.860 27 GH	lz -41.65	3 dBm							
5 7												
3												
9												
1												
à								STATUS				
igure	e 73:	Meas	ured A	bove E	dge fo	r VHT	40-	-MCS0	at 57	'95 M	Hz, (Chai
		yzer - Swept			<u> </u>							_
RL S	RF	50 Ω C			SENSE:INT		ALI	IGNAUTO			03:33:06 A	M Dec 10, 2
enter F	req 2		0000 GHz		Tria: E-	a Dun		#Avg Type Avg Hold:				CE 1 2 3 4 PE M WWW
				PNO: Fast ↔ IFGain:Low	#Atten:	ee Run 30 dB		Avgluoid:	10/10		D	ET P N N N
										Mkr3	38.82	2.2 GI
	Ref C	Offset 2.5 dl	3							WINIO		44 40

Figure 74: Undesirable Emission for VHT40-MCS0 at 5795 MHz, Chain 0

RLS RF arker 1 5.715	50 Ω DC 0000000000	PNO	D: Fast +++	Trig: Free Rur Atten: 36 dB	1	IAUTO #Avg Type: Avg Hold: 10		03.13	24 AM Dec 10, 20 TRACE 1 2 3 4 1 TYPE MWWWW DET P N N N
dB/div Ref 2	ffset 2.5 dB 2 7.50 dB m							Mkr1 5.7 -38	15 00 GH 3.737 dB
7.5									
50									
2.5				/					
2.5		1.0							-27.00 0
2.5 2.5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	Manaling Internet Lange La		And Street of Ballin		\		S.		and a second state and
2.5									
2.5									
tes BW 1.0 MH	łz		#VBW	/ 3.0 MHz			Swee	p 1.333 m	s (10000 p
N 1 f		5 00 GHz	Y -38.737 d		N FUNCTION	I WIDTH		FUNCTION VALUE	
N 1 f N 1 f N 1 f N 1 f	5.725 5.850	5 00 GHz 5 00 GHz 0 00 GHz 0 18 GHz	-38.737 d -38.971 d -37.698 d -39.972 d	Bm Bm Bm	N FUNCTION	I WIDTH		FUNCTION VALUE	
N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5	5.725 5.850	5 00 GHz 0 00 GHz	-38.971 d -37.698 d	Bm Bm Bm	N FUNCTION	I WIDTH		FUNCTION VALUE	
N 1 f 2 N 1 f 3 N 1 f 5 7 5 3 3	5.725 5.850	5 00 GHz 0 00 GHz	-38.971 d -37.698 d	Bm Bm Bm	N FUNCTION	IWIDTH		FUNCTION VALUE	
N 1 f N 1 f N 1 f J N 1 f J N 1 f J N 1 f J J J J J J J J J J J J J J J J J J J	5.725 5.850	5 00 GHz 0 00 GHz	-38.971 d -37.698 d	Bm Bm Bm		I WIDTH		FUNCTION VALUE	
N 1 f 2 N 1 f 4 N 1 f 5 7 3	5.725 5.850	5 00 GHz 0 00 GHz	-38.971 d -37.698 d	Bm Bm Bm		STATUS		FUNCTION VALUE	
N 1 F 2 N 1 F 4 N 1 F 5 7 7 8 8 9 9 9	6.724 5.86(5.86(5 00 GHz 0 00 GHz 0 18 GHz	-38.971 d -37.698 d -39.972 d	Bm Bm Bm Bm		STATUS	at 579		>
N 1 f N 1 f N 1 f A N 1 f a s a s a s a s a s a s a s a s a s a	5.72 5.850 5.860 Measure zer - Swept SA	5 00 GHz 0 00 GHz 0 18 GHz	38.971 d 37.698 d 39.972 d	Bm Bm Bm ge for V	HT40-N	status MCS0	at 579	95 MHz	z, Chair
N 1 f N 1 f N 1 f A N 1 f S S S S S S S S S S S S S S S S S S S	5.72 5.850 5.860 2010 2011 50 2 DC	ed Abo	38.971 d 37.698 d 39.972 d	Bm Bm Bm Bm	HT40-N	STATUS	RMS	95 MHz	2, Chair
N 1 f N 1 f N 1 f A N 1 f S S S S S S S S S S S S S S S S S S S	5.72 5.850 5.860 2010 2010 2010 2010 2010 2010 2010 20	ed Abo	38.971 d 37.698 d 39.972 d	Bm Bm Bm ge for V]	HT40-N	STATUS MCSO HAUTO KAvg Type:	RMS	95 MHz 03:43 Mkr3 39.	2, Chair 109AM Dec 10, 20 TRACE 12.3.4 00F P N NN 122.0 GF
2 N 1 f 3 N 1 f 4 N 1 f 5 6 7 8 9 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.72 5.850 5.860 <u>5.860</u> <u>5.860</u> <u>5.860</u> <u>5.860</u> <u>5.90</u> <u>50Ω</u> <u>DC</u> <u>50Ω</u> <u>DC</u>	ed Abo	38.971 d 37.698 d 39.972 d	Bm Bm Bm ge for V]	HT40-N	STATUS MCSO HAUTO KAvg Type:	RMS	95 MHz 03:43 Mkr3 39.	2, Chair COSAMDec 10,20 TRACE 1234 TYPE MWWWW DET P NNN

#VBW 3.0 MHz

11.409 dBm -40.433 dBm -31.134 dBm

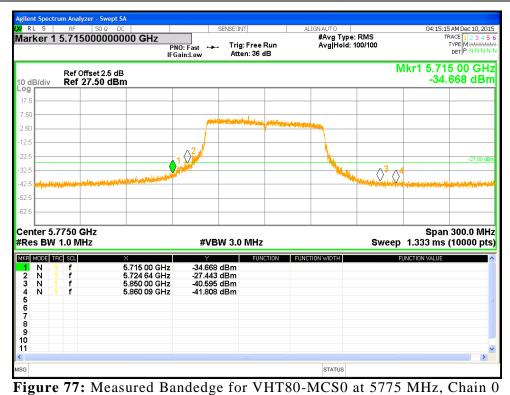
5.805 9 GHz 5.666 0 GHz 39.122 0 GHz

FUNCTION FUNCTION WIDTH

-37.5 -47.5 .67 E

ISG

Start 30 MHz #Res BW 1.0 MHz


f

MKR MODE TRC SCL

N N N

Stop 40.00 GHz Sweep 68.00 ms (30000 pts)

FUNCTION VALUE

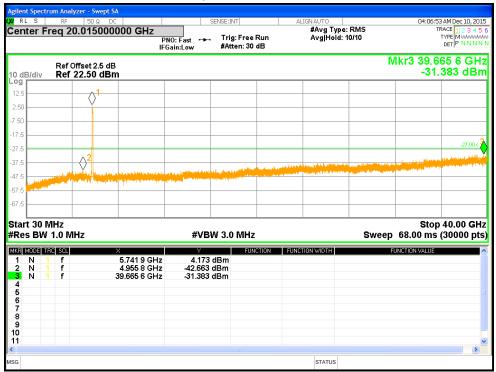
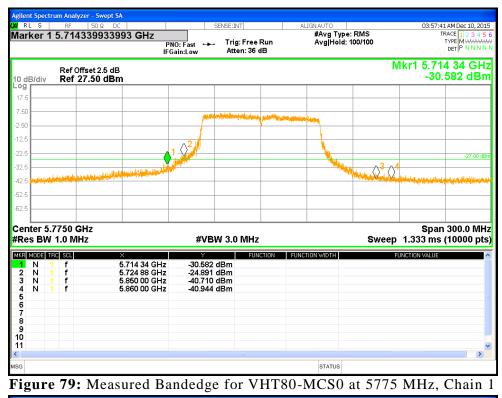



Figure 78: Undesirable Emission for VHT80-MCS0 at 5775 MHz, Chain 0

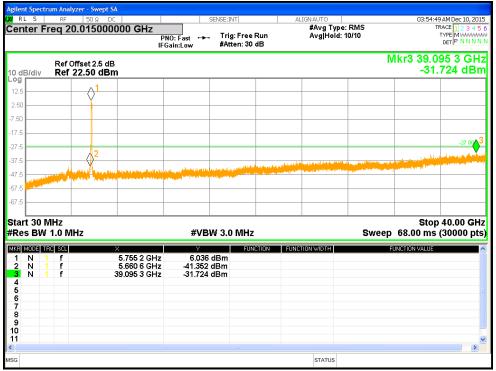


Figure 80: Undesirable Emission for VHT80-MCS0 at 5775 MHz, Chain 1

4.5 Transmitter Spurious Emissions

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmit mode; per requirement of CFR47 15.205, 15.209, 15.407(b), RSS 247 Sect. 6.2.4.2

4.5.1 Test Methodology

4.5.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

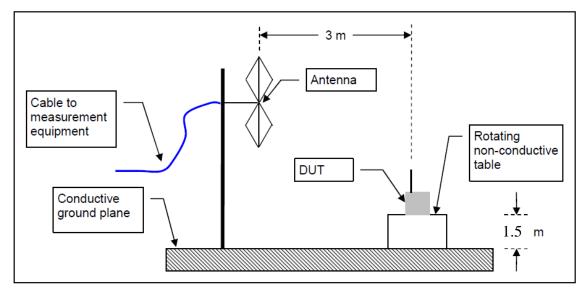
Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm (<1 GHz) and 150cm (>1 GHz) above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

Pres-scans were performed to determine the worst data rate / chains for 802.11a, 802.11n (HT20 and HT40), 802.11ac (VHT20, VHT40 and VHT80).

4.5.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm (<1 GHz) and 150cm (>1 GHz) above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.


Final results are:

- 1. 802.11a at 6Mbps with 2 Chains (covering HT20 & VHT20)
- 2. HT40 at MCS0 with 2 Chains (covering VHT40)
- 3. VHT80 at MCS0 with 2 Chains

4.5.1.3 Deviations

None.

Test Setup:

4.5.2 Transmitter Spurious Emission Limit

The spurious emissions of the transmitter shall not exceed the values in CFR47 Part 15.205, 15.209: 2015 and RSS 247 Sect. 6.2.4.2 2015.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490 0.490-1.705 1.705-30.0	2400/F(kHz) 24000/F(kHz) 30	300 30 30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

In the 5725 MHz – 5850 MHz band, all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz. The -17 dBm is equivalent to 78.2 dBuV/m and for -27 dBm is equivalent to 68.2 dBuV/m at 3 meter distance.

4.5.3 Test Results

The final measurement data was taken under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and test plan.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Power Setting: See test plan

Table 13: Transmit Spurious Emission at Band-Edge Requirements

Test Conditions: Radiated Measurement

Antenna Type: Custom Integrated

Max. Directional Gain: + 2.24 dBi

Signal State: Modulated at 100%.

Ambient	Temp.:	25	°C	
---------	--------	----	----	--

Ambient	Temp.: 25 °C	2			Relat)		
				Band-	Edge R	lesults		
Freq. (MHz)	Level (dBuV/m)	Pol. (H/V)	Limit (dBuV/m)	Margin (dB)	Det.	Table Deg.	Tower (cm)	Note
5713.90	67.98	V	68.20	-0.22	РК	282	192	PLOT 81: 11a-6Mbps-5745MHz-TP18- Ch0 & Ch1
5713.24	66.37	Н	68.20	-1.83	PK	77	158	PLOT 82: 11a-6Mbps-5745MHz-TP18- Ch0 & Ch1
5713.32	67.72	V	68.20	-0.48	РК	275	162	PLOT 83: 11a-6Mbps-5765MHz-TP23- Ch0 & Ch1
5713.56	66.64	Н	68.20	-1.56	PK	78	145	PLOT 84: 11a-6Mbps-5765MHz-TP23- Ch0 & Ch1
5861.60	67.57	V	68.20	-0.63	PK	351	140	PLOT 85: 11a-6Mbps-5785MHz-TP25- Ch0 & Ch1
5860.00	67.76	Н	68.20	-0.44	РК	81	138	PLOT 86: 11a-6Mbps-5785MHz-TP25- Ch0 & Ch1
5862.28	66.97	Н	68.20	-1.23	РК	106	146	PLOT 87: 11a-6Mbps-5805MHz-TP22- Ch0 & Ch1
5860.00	66.44	V	68.20	-1.76	РК	278	145	PLOT 88: 11a-6Mbps-5805MHz-TP22- Ch0 & Ch1
5860.24	68.01	V	68.20	-0.19	РК	279	166	PLOT 89: 11a-6Mbps-5825MHz-TP14- Ch0 & Ch1
5861.20	67.57	Н	68.20	-0.63	РК	84	150	PLOT 90: 11a-6Mbps-5825MHz-TP14- Ch0 & Ch1
5715.00	67.66	V	68.20	-0.54	PK	283	198	PLOT 91: HT20-MCS0-5745MHz-TP18- Ch0 & Ch1
5713.90	67.63	Н	68.20	-0.57	PK	102	191	PLOT 92: HT20-MCS0-5745MHz-T P18- Ch0 & Ch1
5715.00	66.65	V	68.20	-1.55	PK	306	200	PLOT 93: HT20-MCS0-5765MHz-TP23- Ch0 & Ch1
5713.56	66.74	Н	68.20	-1.46	РК	291	148	PLOT 94: HT20-MCS0-5765MHz-TP23- Ch0 & Ch1
5861.28	68.11	V	68.20	-0.09	РК	308	200	PLOT 95: HT20-MCS0-5785MHz-TP25- Ch0 & Ch1
5860.64	67.62	Н	68.20	-0.58	РК	83	170	PLOT 96: HT20-MCS0-5785MHz-TP25- Ch0 & Ch1

Note: 1. Band-edge frequencies for UNII Band 3 are not a restricted band.

2. All out of band emissions are lower than the 17dBr level (10 MHz below or above the band edge) and 27dBr level (10 MHz greater than below or above the band edge).

Power Setting: See test plan

Table 14: Transmit Spurious Emission at Band-Edge Requirements Continues

Test Conditions: Radiated Measurement

Antenna Type: Custom Integrated

Max. Directional Gain: + 2.24 dBi

Signal State: Modulated at 100%.

Ambient	Temp.:	25	°C	
---------	--------	----	----	--

Ambient	Temp.: 25 °C	C			Relative Humidity: 31%						
				Band	-Edge	Results					
Freq. (MHz)	Level (dBuV/m)	Pol. (H/V)	Limit (dBuV/m)	Margin (dB)	Det.	Table Deg.	Tower (cm)	Note			
5864.95	66.39	V	68.20	-1.81	РК	308	200	PLOT 97: HT20-MCS0-5805MHz-TP22- Ch0 & Ch1			
5862.28	67.82	Н	68.20	-0.38	PK	79	170	PLOT 98: HT20-MCS0-5805MHz-TP22- Ch0 & Ch1			
5860.96	67.43	V	68.20	-0.77	PK	305	199	PLOT 99: HT20-MCS0-5825MHz-TP14- Ch0 & Ch1			
5862.40	67.75	Н	68.20	-0.45	РК	104	173	PLOT 100: HT20-MCS0-5825MHz-TP14- Ch0 & Ch1			
5712.35	68.00	V	68.20	-0.20	РК	310	165	PLOT 101: VHT20-MCS0-5745MHz-TP18- Ch0 & Ch1			
5714.34	66.20	Н	68.20	-2.00	РК	80	164	PLOT 102: VHT20-MCS0-5745MHz-TP18- Ch0 & Ch1			
5714.04	67.94	V	68.20	-0.26	РК	292	184	PLOT 103: VHT20-MCS0-5765MHz-TP23- Ch0 & Ch1			
5714.04	66.87	Н	68.20	-1.33	РК	80	140	PLOT 104: VHT20-MCS0-5765MHz-TP23- Ch0 & Ch1			
5861.60	67.99	V	68.20	-0.21	PK	311	143	PLOT 105: VHT20-MCS0-5785MHz-TP25- Ch0 & Ch1			
5862.24	68.01	Н	68.20	-0.19	РК	80	151	PLOT 106: VHT20-MCS0-5785MHz-TP25- Ch0 & Ch1			
5896.93	67.47	V	68.20	-0.73	РК	312	140	PLOT 107: VHT20-MCS0-5805MHz-TP22- Ch0 & Ch1			
5863.43	66.70	Н	68.20	-1.50	РК	82	173	PLOT 108: VHT20-MCS0-5805MHz-TP22- Ch0 & Ch1			
5861.20	66.62	V	68.20	-1.58	РК	309	148	PLOT 109: VHT20-MCS0-5825MHz-TP14- Ch0 & Ch1			
5862.40	66.42	Н	68.20	-1.78	РК	82	148	PLOT 110: VHT20-MCS0-5825MHz-TP14- Ch0 & Ch1			
5713.80	66.37	V	68.20	-1.83	PK	308	192	PLOT 111: HT40-MCS0-5755MHz-TP16- Ch0 & Ch1			
5715.00	67.20	Н	68.20	-1.00	PK	81	170	PLOT 112: HT40-MCS0-5755MHz-TP16- Ch0 & Ch1			

Note: 1. Band-edge frequencies for UNII Band 3 are not a restricted band.

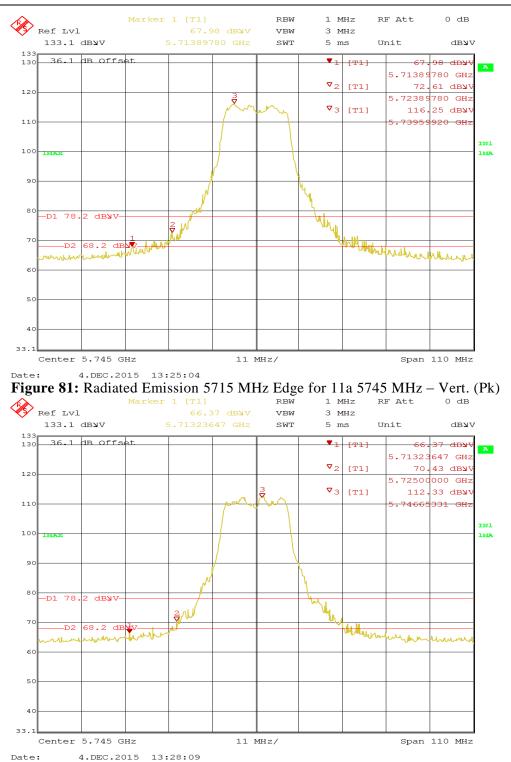
2. All out of band emissions are lower than the 17dBr level (10 MHz below or above the band edge) and 27dBr level (10 MHz greater than below or above the band edge).

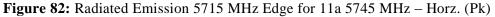
Table 15: Transmit Spurious Emission at Band-Edge Requirements Continues

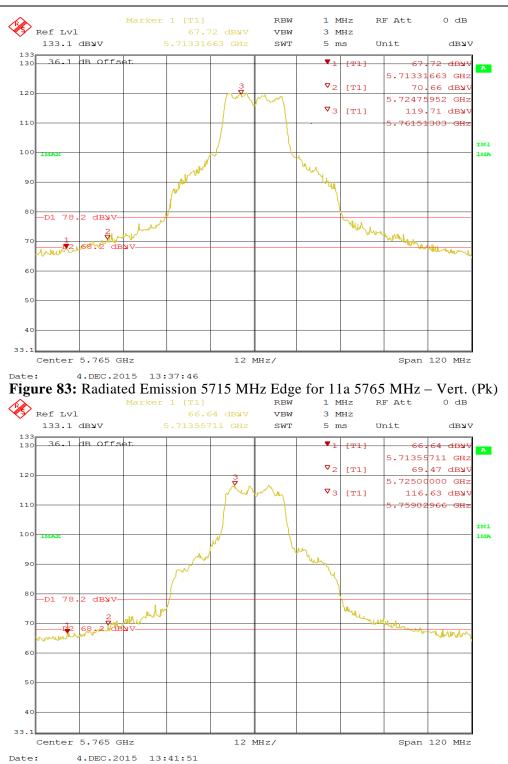
Test Conditions: Radiated Measurement

Antenna Type: Custom Integrated

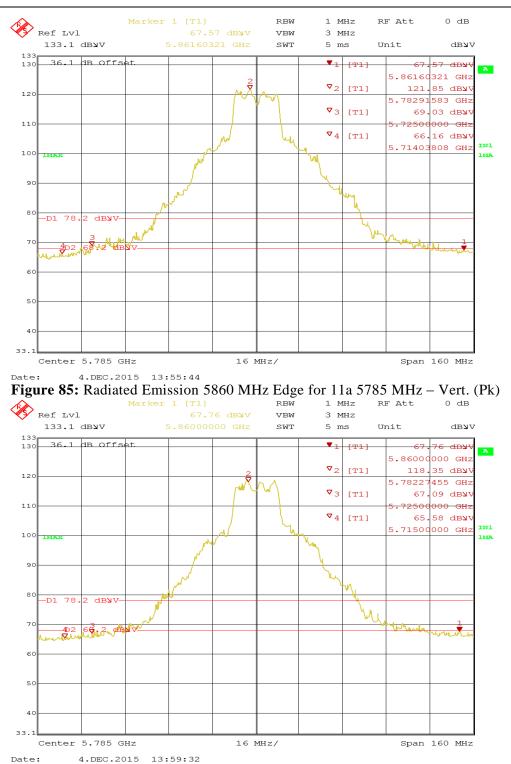
Power Setting: See test plan

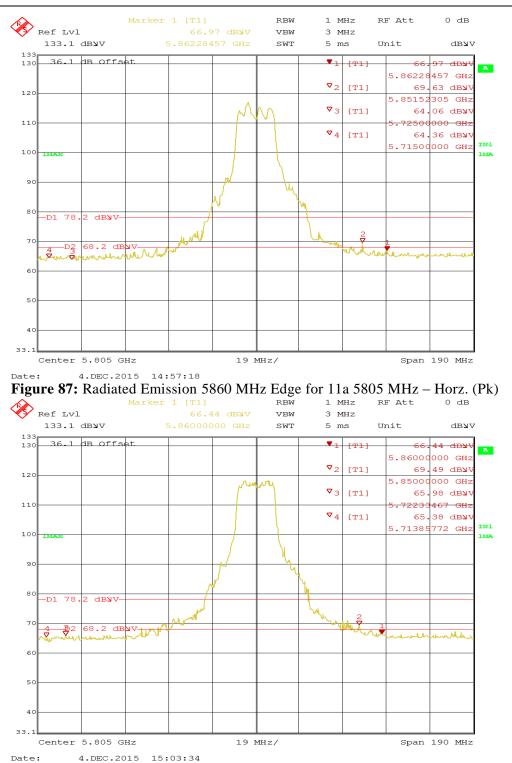

Max. Directional Gain: + 2.24 dBi

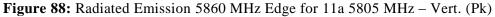

Signal State: Modulated at 100%.

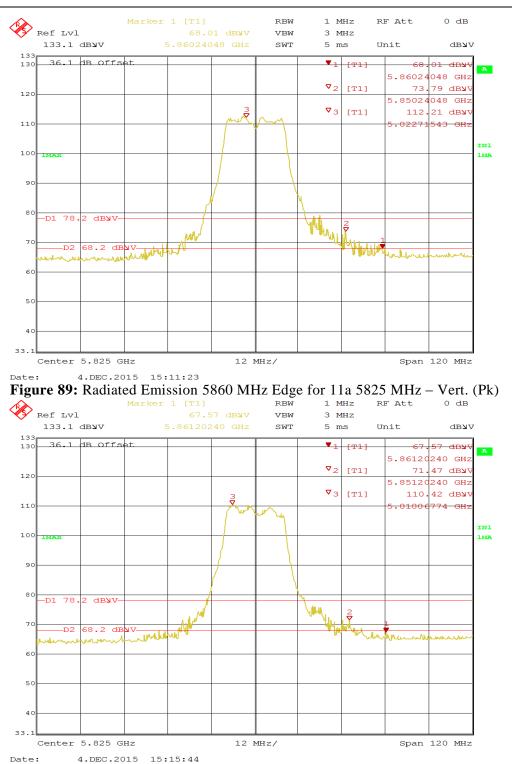

Signal St	ale: Mouulate	at 100	/0.					
Ambient	Temp.: 25 °C				Rela	tive Hur	nidity:319	%
				Band	-Edge	Results		
Freq. (MHz)	Level (dBuV/m)	Pol. (H/V)	Limit (dBuV/m)	Margin (dB)	Det.	Table Deg.	Tower (cm)	Note
5862.53	66.99	V	68.20	-1.21	РК	302	211	PLOT 113: HT40-MCS0-5795MHz-TP16- Ch0 & Ch1
5865.77	66.85	Н	68.20	-1.35	РК	296	134	PLOT 114: HT40-MCS0-5795MHz-TP16- Ch0 & Ch1
5710.99	67.14	V	68.20	-1.06	РК	284	160	PLOT 115: VHT40-MCS0-5755MHz-TP16- Ch0 & Ch1
5711.79	66.46	Н	68.20	-1.74	РК	82	130	PLOT 116: VHT40-MCS0-5755MHz-TP16- Ch0 & Ch1
5862.89	66.16	Н	68.20	-2.04	РК	295	141	PLOT 117: VHT40-MCS0-5795MHz-TP16- Ch0 & Ch1
5868.30	66.68	V	68.20	-1.52	PK	278	158	PLOT 118: VHT40-MCS0-5795MHz-TP16- Ch0 & Ch1
5701.77	67.95	V	68.20	-0.25	РК	310	195	PLOT 119: VHT80-MCS0-5775MHz-TP14- Ch0 & Ch1
5702.21	67.39	Н	68.20	-0.82	PK	102	152	PLOT 120: VHT80-MCS0-5775MHz-TP14- Ch0 & Ch1
				1.0			1	

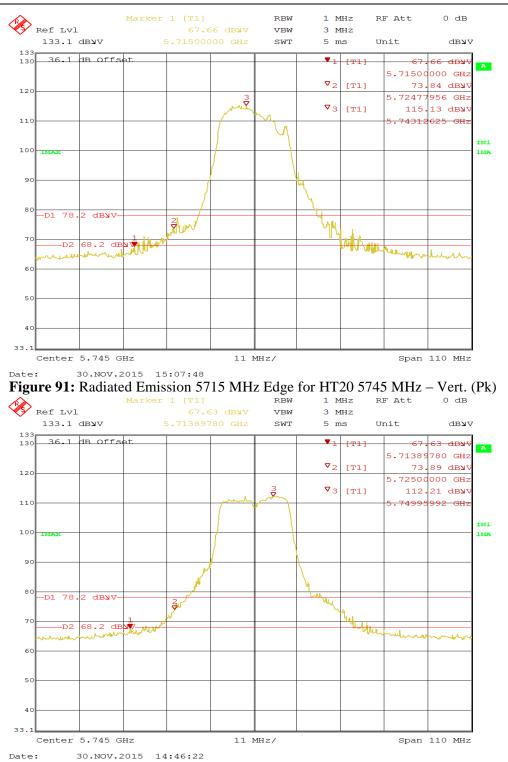
Note: 1. Band-edge frequencies for UNII Band 3 are not a restricted band.

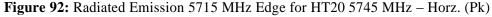

2. All out of band emissions are lower than the 17dBr level (10 MHz below or above the band edge) and 27dBr level (10 MHz greater than below or above the band edge).

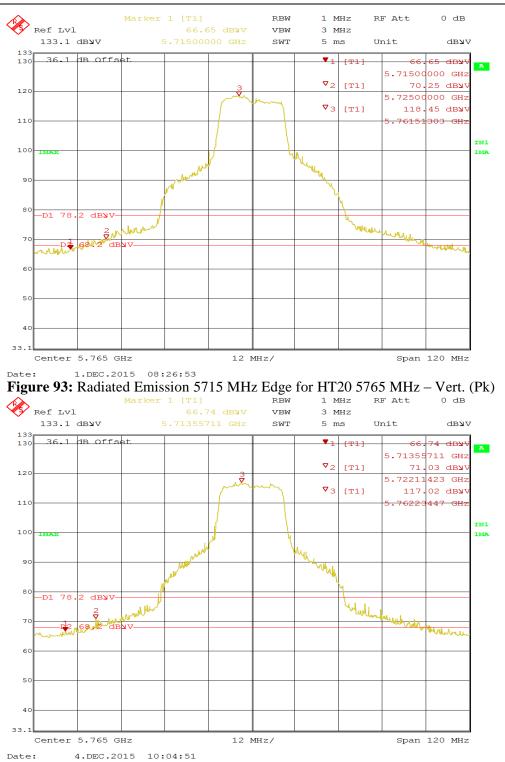


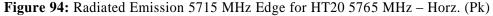


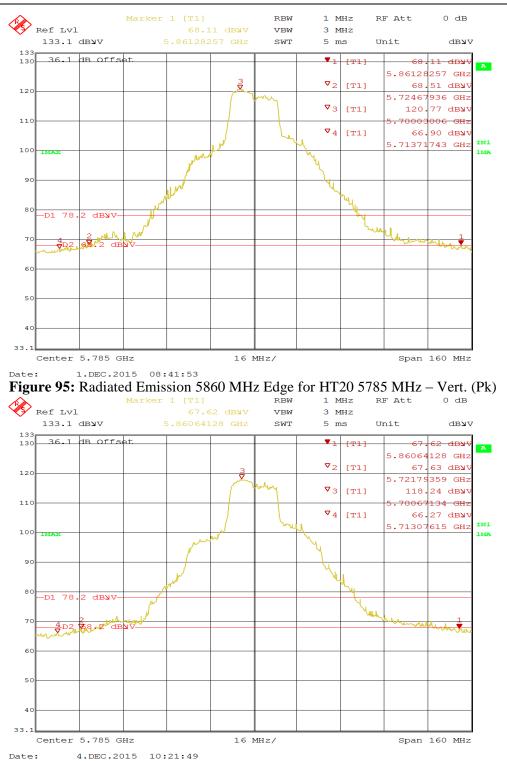


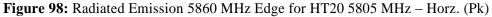


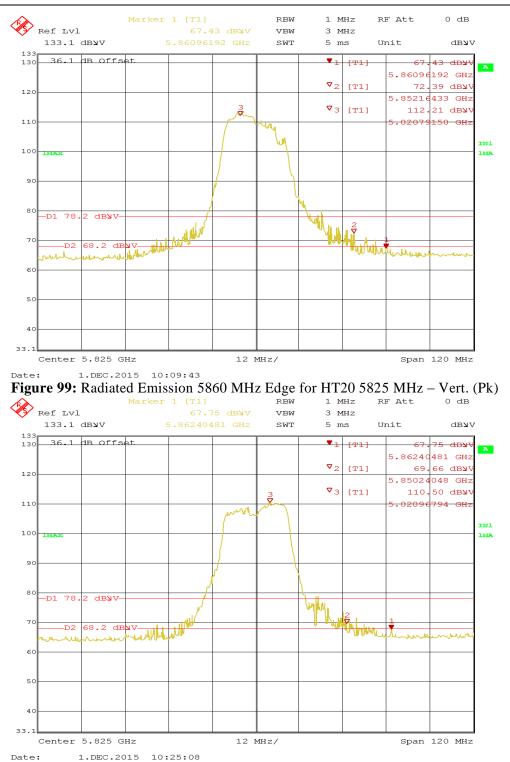


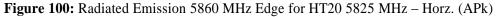


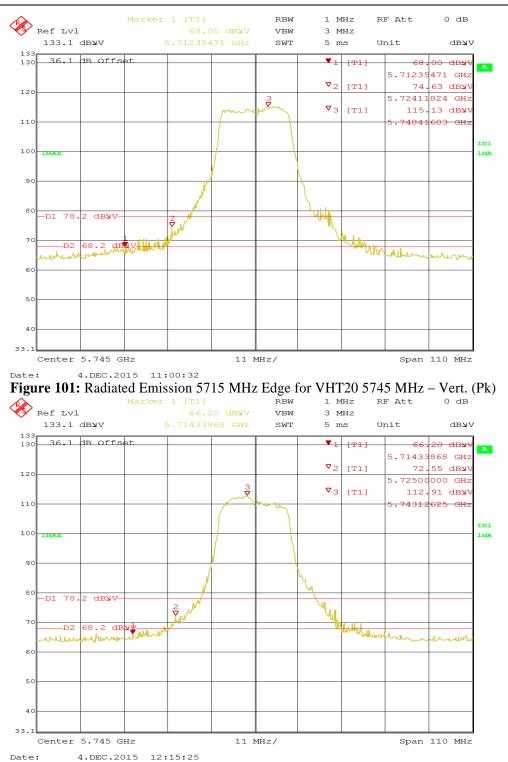


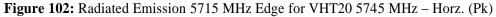


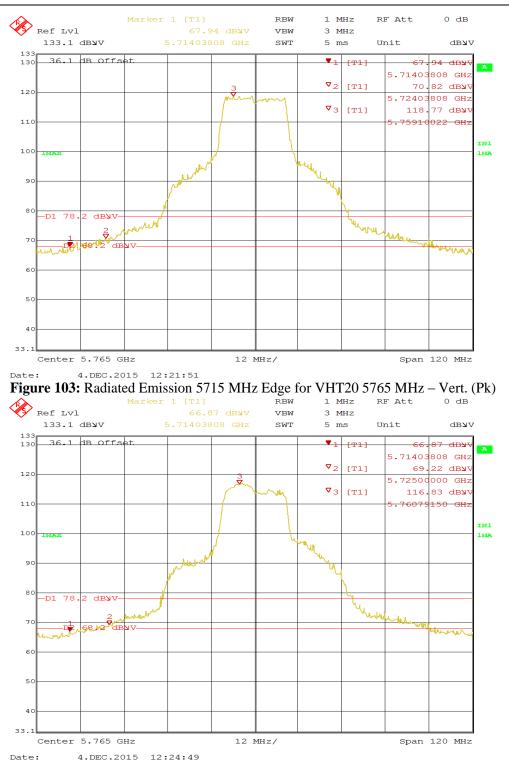


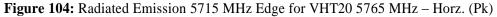


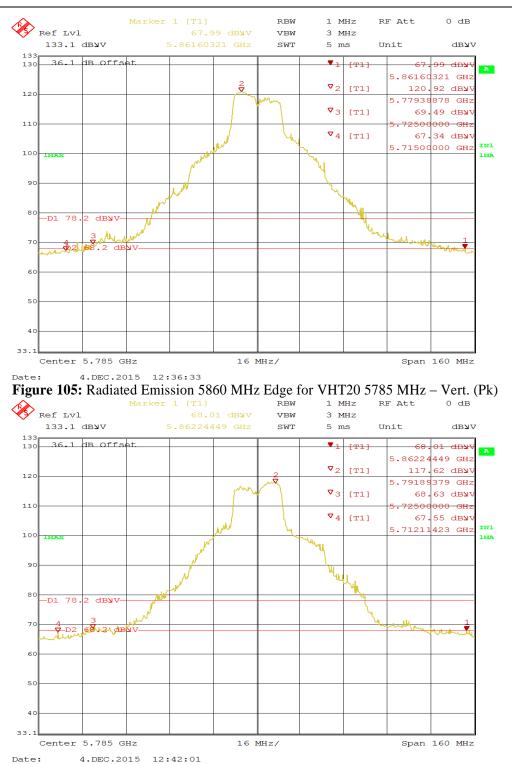


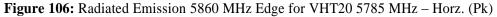


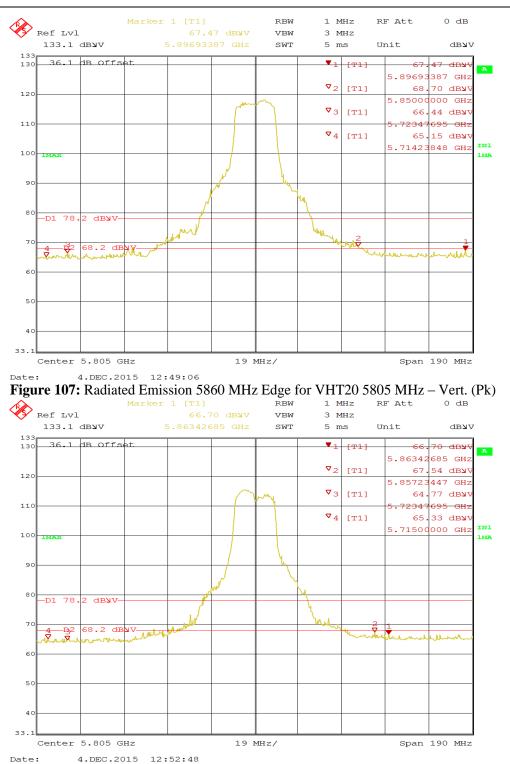


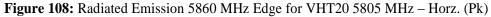


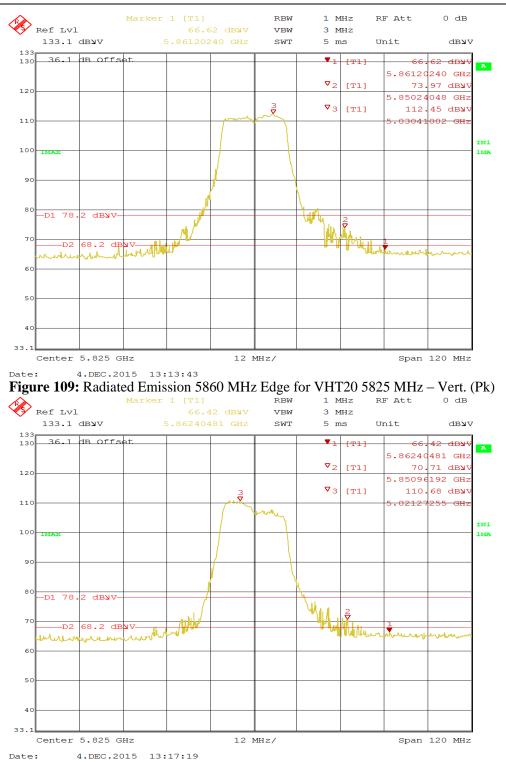


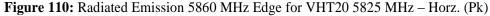


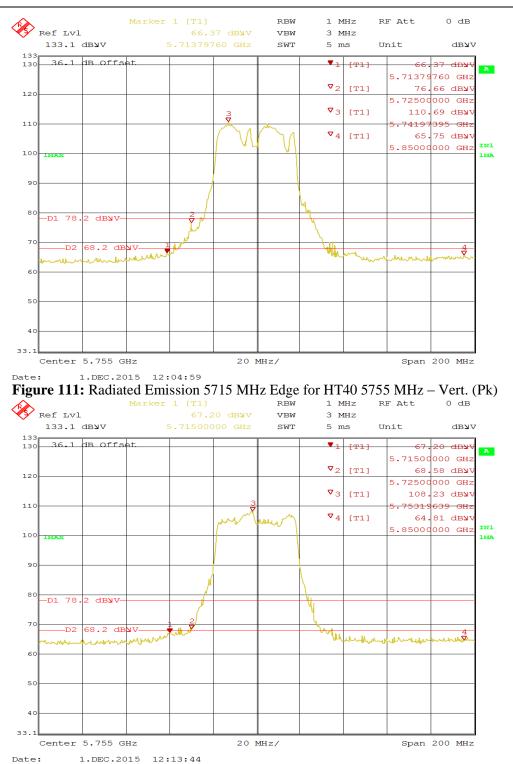


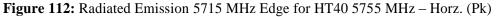


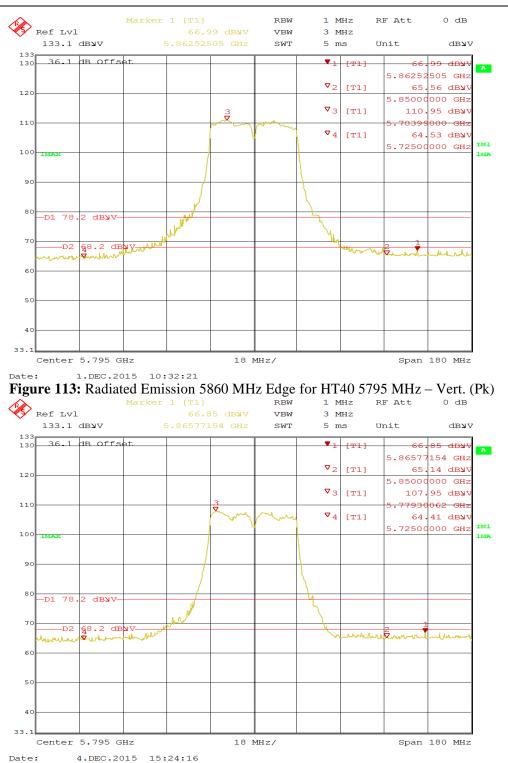


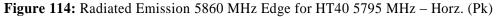


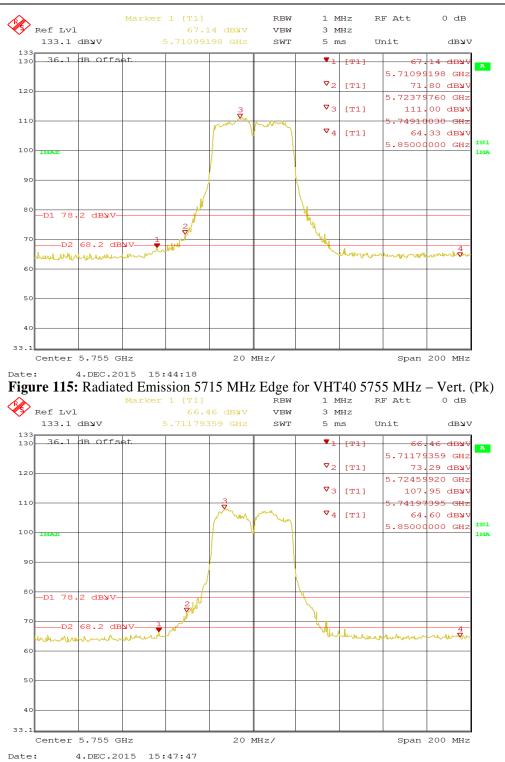


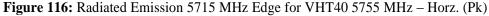


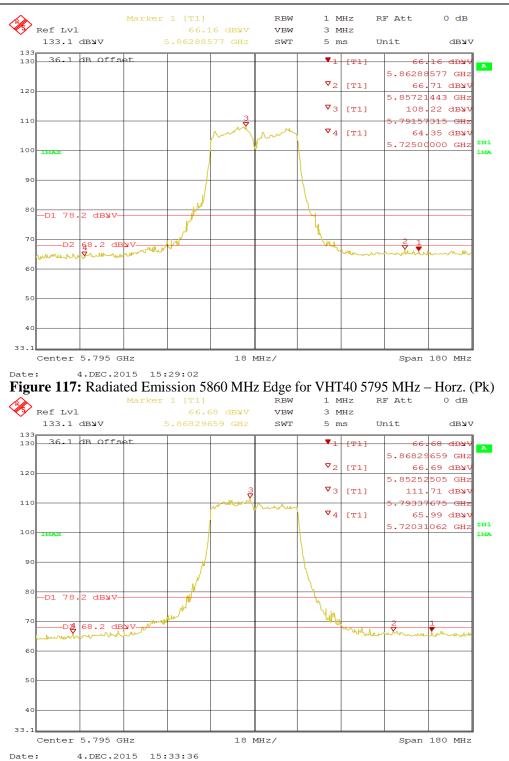


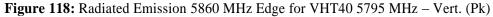


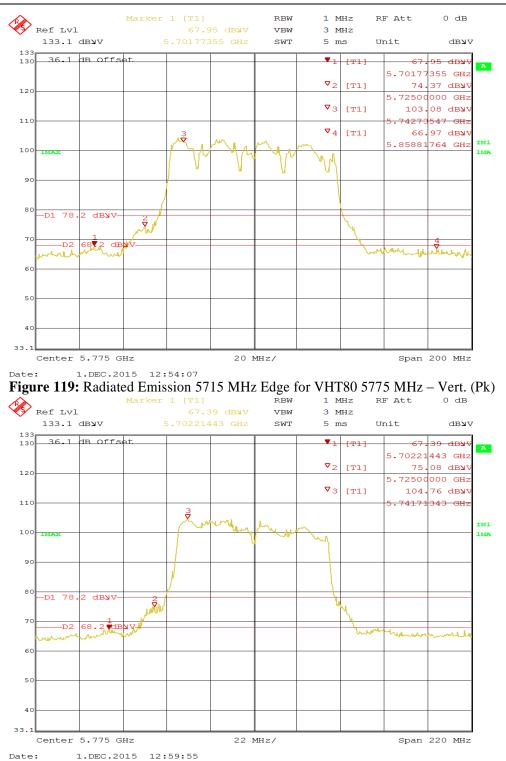


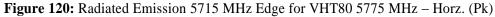












SOP 1 Ra	diated F	missions				Т	rac	king #	315634	04.0	01 Page 1	of 13
EUT Name		e Wi-Fi Route	ər				Da	0			06, 2015	
EUT Model	_							emp / Hu	ım in	-	C / 34%rh	
EUT Serial		-0053-5XKS	-EP43					emp / Hu				
EUT Config		11a at 6Mbps		0&1				ne AC /		-	Vac / 60 H	Z
Standard	CFR	47 Part 15 Su	ubpart E	, RSS-24	7, RSS-G	SEN	RE	3W / VB	w	120	kHz/ 300 k	Hz
Dist/Ant Us	ed 3m /	JB3					Pe	erforme	d by	Ker	winn Corpu	Z
			30 MF	lz – 1 Gł	lz Transr	nit at 5	578	5 MHz				
Frequency	Raw	Cable Loss	AF	Level	Detector	Pola	rity	Height	Azimu	uth	Limit	Margin
MHz	dBuV/m	dB	dB	dBuV/m		H/\	/	cm	deg		dBuV/m	dB
960.01	43.21	5.86	-7.37	41.70	QP	Н		160	112		54.00	-12.30
70.44	31.34	2.93	-23.85	10.43	QP	V		211	2		40.00	-29.57
79.09	53.47	2.99	-24.19	32.27	QP	V		111	312		40.00	-7.73
84.39	45.73	3.02	-24.68	24.08	QP	V		171	312		40.00	-15.92
dBuV/m			TUV F	Rheinla	and of I	North	h A	meric	а		06 Nov 1	5 16:14
80.0			1911	arenne		1910	1	anone			1 — m	Horizont:
70.0											<u> </u>	Vertical
											- Qp + Fo	rmal
60.0	_						-				- · · ·	
50.0											Qp	
											1	
40.0	_									Ť		
30.0 11												
20.0	M.M.		A L	.		العيب	بلي		المنصيلي	د اريل م	2	
2000	J.A	Mary Mary	Colory,				Ē				Meas D	
10.0	AMALE .										Spec D	
0.0											Frequenc	y: MHz
30.0	130.0	230.0 330.					30.0	830.	0 930	1.0 1	000.0	
eero Filon:	ine, Horr ame: c:\v	e WiFi Rout program files	ter, TX 5 . (x86\\\	5785MHz emisoft -	at 11a 6 vasona	Mbps Vresult	te\2	2015110	6 eero	RE	12 emi	
1 11210		a seguente e tra-	- (nord) u		a success that	an tanah talah	1					
Spec Margin	= E-Field (QP - Limit, E-	Field OP	= FIM OP	+ Total CF	+ Lloc	erta	aintv				
		oss AF= Anten										
		s observed on					(1		h		\	
		e 802.11a, HT plexity and bul										
5								1.0000		- r- #		

SOP	1 Ra	diated E	Emissions				Tra	acking #	31563404.0	001 Page 2	of 13
EUT	Name	Hom	e Wi-Fi Route	er			D	Date	No	v 05, 2015	
EUT	Model	A010	001				т	emp / Hເ	$m in 23^\circ$	°C/38%rh	
	Serial		-0053-5XKS	-EP43					um out N/A		
EUT	Config		11a at 6Mbps		0 & 1			.ine AC /) Vac / 60 H	Z
Stand	-		47 Part 15 Su			7, RSS-G		RBW / VB		/Hz / 3 MHz	
Dist/	Ant Us		EMCO3115			,		Performe	dby Ke	rwinn Corpu	Z
			1 -	- 18 GH	z Transm	nit at 5745			<u>,</u>		
Freq	uency	Raw	Cable Loss	AF	Level	Detector	Polarity	y Height	Azimuth	Limit	Margin
M	Hz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB
1467	78.76	39.27	4.42	-6.50	37.19	Average	Н	145	58	54.00	-16.81
1799	98.24	36.73	5.05	2.44	44.22	Average	Н	131	90	54.00	-9.78
599	0.10	43.29	3.07	-14.98	31.38	Average	V	153	256	54.00	-22.62
dBu					heinla	and of N	Jorth.	Americ	a	05 Nov 1	5 21:55 -
90.0)				arronne		101011			m	Horizont:
80.0										— Ż	Vertical
out	' 									1 — <u>A</u> i	i Lmt
70.0										+ Fo	rmal
70.0	' <u> </u>									-	
60.0											
										Im	
50.0)					<u> </u>	+			₩	
						I II.	سالهم رار			' ∔	
40.0					. Adam		Sec			-	
	لمال		~ Mum	and the second		a an			+		
aut		and the second				- T				Мере Г	Dist 3m
20.0										Spec D	
20.0	' <u> </u>									Frequenc	
10.0											y. MI 12.
	1000.0							10000.	0	18000.0	
	eero	inc, Hon	ie WiFi Rout	er, TX 5	745MHz	at 11a 6	Mbps	10045440		-0	
	- nen	ame. c.v	program files	(xou)/e	sinisoni -	vasona	results	2010110	N_CELO_R	Latenii	
			AVG - Limit, E				al CF \pm U	Incertainty			
			oss AF= Anten)					
			s observed on		mode.						
			l are HT20 and plexity and bul		the report	t Worst coa	Plote	are placed	l in the repor	t	
			e the Spurious						пп пе терог	ι.	

						-					6.40
SOP 1 Ra		Emissions				Т	rackin	ng #	31563404	.001 Page 3	of 13
EUT Name		e Wi-Fi Route	er				Date			ov 06, 2015	
EUT Model							Temp			4° C / 34%rh	
EUT Serial		A-0053-5XKS							um out <u>N</u>		
EUT Config		11a at 6Mbps			7 000 0		Line			20 Vac / 60 H	
Standard		47 Part 15 Su			7, RSS-G		RBW			MHz / 3 MHz	
Dist/Ant Us	sea 3m –	EMCO3115					Perfo		2	erwinn Corpu	Z
	_				nit at 5745		<u>`</u>			1	
Frequency		Cable Loss	AF	Level	Detector						Margin
MHz	dBuV/m	dB	dB	dBuV/m		H/\		cm	deg	dBuV/m	dB
38188.10	45.65	7.52	-12.00	41.17	Average	H	1	166	-2	54.00	-12.83
39836.08	47.32	7.65	-13.54	41.43	Average	Н	1	145	198	54.00	-12.57
33914.96	43.13	6.94	-12.54	37.53	Average	V	1	165	224	54.00	-16.47
dBuV/m			TING	NI						06 Nov 1	5 12:04
100.0			TUVE	<u>kneinia</u>	and of N	νοπη	n Am	ieric	a		
90.0										\pm	Horizonta Vertical
50.0										K	Lmt
80.0										— + Fo	rmal
70.0											
60.0											
50.0							أوسفعرن	Mr. A	~~~	- (ží	
40.0				- P40-		a de la d			₩	+	
30.0		,	and the second secon	للهجيد			-	+			
30.0											
20.0										Meas [
10.0										Spec E	
0.0										Frequenc	y: MHz
0.0 18000.0)									39999.999999	9999
eero	ine, Horr	ne WiFi Rout	ier, <u>TX 5</u>	6745M <u>H</u> z	at 11a 6	Mbps					
Filen	ame: c:\j	program files	(X80)%	emisort -	 vasona) 	vresult	SV201	19110	o_eero_H	(E0.emi	
		AVG - Limit, E				al CF ±	Uncer	rtainty			
		oss AF= Anten s observed on)						
		d are HT20 and									
3. To r	educe com	plexity and bul	kiness of	the repor	t Worst cas	se Plot	s are p	blaced	l in the repo	ort.	

SOP 1	Radiated E					Tra	acking #		001 Page 4	of 13
EUT Nar		e Wi-Fi Route	er				Date		v 05, 2015	
EUT Mo							՝emp / Hւ		° C / 38%rh	
EUT Ser		4-0053-5XKS	-					um out N//		
EUT Cor	· ·	11a at 6Mbps					.ine AC /		0 Vac / 60 H	
Standar		47 Part 15 Su			7, RSS-G		RBW / VB		/Hz / 3 MHz	
Dist/Ant	Used 3m -	EMCO3115	/ 1m – A	AHA-840		P	Performe	dby Ke	rwinn Corpu	Z
		1	– 18 GF	Iz Transm	nit at 5785	5 MHz (I	Mid Char	inel)		
Frequen	cy Raw	Cable Loss	AF	Level	Detector	Polarity	y Height	Azimuth	Limit	Margin
MHz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB
14560.8	39 39.65	4.42	-7.13	36.93	Average	V	225	40	54.00	-17.07
17982.2	27 37.50	5.03	2.04	44.57	Average	V	172	74	54.00	-9.43
dBuV 90.0	·		TUV F	Rheinla	and of N	Vorth.	Americ	a	05 Nov 1	5 22:23 -
80.0									1 2 2 	Horizont: Vertical / Lmt ormal
70.0 60.0										
50.0 40.0					h	بلللعله	استنجنيه	~~~	/#0 +	
30.0	And Mar	and for some	الميعجب	معالمما	\sim r			+		
20.0										Dist 3m Dist 3m
10.0									Frequence	sy: MHz
10.0	1.0						10000.	0	18000.0	
ee	ro inc, Horr	ne WiFi Rout	er, TX 8	5785MHz	at 11a 6	Mbps		_		
Fi	lename: c:\j	program files	(X80)/	emisoft -	vasona)	results	2015110	lo_eero_R	E10.emi	
		AVG - Limit, E				al CF ± U	Incertainty			
		oss AF= Anten s observed on								
		d are HT20 and								
		plexity and bul	kiness of	f the report	t Worst cas	se Plots	are placed	I in the repor	t.	

SOP 1 Radiated Emissions Tracking # 31563404.001 Page 5 of 13												
						1		U			Ŭ	of 13
EUT Name		e Wi-Fi Route	er				Date	-			06, 2015	
EUT Mode			FD 40					np / Hu	-		C / 34%rh	
EUT Serial EUT Config		A-0053-5XKS 11a at 6Mbps		0 8 1				пр/ні e AC/	Im out		Vac / 60 H	7
Standard		47 Part 15 Su			7 RSS-C			V/VB			Hz / 3 MHz	
		- EMCO3115			7, 100-0			forme	_		winn Corpu	
DISTANCO.					nit at 5785					Ren		۲
Frequency	Raw	Cable Loss	AF	Level	Detector		<u>`</u>		Azimu	th	Limit	Margin
MHz	dBuV/m	dB	dB	dBuV/m	1	H/V	-	cm	deg		dBuV/m	dB
34369.94	43.86	7.01	-12.44	38.43	Average	н		134	126		54.00	-15.57
39925.49	47.42	7.63	-13.52	41.53	Average	н		131	108		54.00	-12.47
38239.33	45.42	7.53	-11.98	40.97	Average			166	351		54.00	-13.03
dBuV/m				Dhainle	and of N	Jorth	An	noric	-		06 Nov 1	5 12:23 -
100.0			TOVE	viieniie	and of t	VOLU	I AU	nenc	<i>.</i> a		l nar	
90.0											ż	Horizonta Vertical
80.0												Lmt
00.0											+ -0	rmal
70.0												
60.0												
50.0								m.	ألمر	~~	êN 🛛	
40.0				- Mar	م <mark>ر. الدر بال</mark>	and a start of the second	~~~	* T	، اسا	. .	+	
30.0	annt a	and a first state of the second	where a	أجحي				+				
20.0											Meas D	Sec. 4
											Spec D	
10.0											Frequenc	y: MHz
0.0 18000.0)									3	9999 999999	9999
eero	inc, Hom	ne WiFi Rout	er, TX 5	5785MHz	at 11a 6	Mbps				_	_	
Filen	ame: c:\j	program files	; (X86));	emisoft -	· vasona)	vresult	s\20	115110	o_eero_	_RE	/.emi	
Spec Margin	= E-Field /	AVG - Limit, E oss AF= Anten	-Field A	/G = FIM /	AVG+ Tota	al CF ±	Unce	ertainty				
		s observed on			,							
2. Moc	les covered	d are HT20 and	VHT20.									
3. To r	educe com	plexity and bul	kiness of	the repor	t Worst cas	se Plots	s are	placed	l in the re	port.		

SOP '	1 Ra	diated E	missions				Trac	cking #	31563404.0	01 Page 6	of 13
EUT N	ame	Hom	e Wi-Fi Route	er			Da	ate	Νο	/ 05, 2015	
EUT M	odel	A010	0001				Те	emp / Hu	um in 23°	C / 38%rh	
EUT Se	erial	E59A	-0053-5XKS	-EP43			Те	emp / Hu	um out N/A	١	
EUT C	onfig	. 802.1	11a at 6Mbps	/ chain	0&1		Li	ne AC /	Freq 120) Vac / 60 H	Z
Standa	ard	CFR	47 Part 15 Su	ubpart E	, RSS-24	7, RSS-G	EN RE	BW / VB	W 1 M	IHz / 3 MHz	
Dist/Ar	nt Us	ed 3m -	EMCO3115	/ 1m – A	AHA-840		Pe	erforme	d by Ker	winn Corpu	Z
			1 -	- 18 GH	z Transm	nit at 5825	MHz (H	igh Chai	nnel)	-	
Freque	ency	Raw	Cable Loss	AF	Level	Detector	Polarity	Height	Azimuth	Limit	Margin
MH	z	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB
6060	.61	46.45	3.09	-14.58	34.96	Average	203	294	54.00	-19.04	203
14677	7.22	39.24	4.42	-6.51	37.15	Average	194	54	54.00	-16.85	194
17982	2.91	37.48	5.03	2.06	44.57	Average	143	-2	54.00	-9.43	143
dBuV	(TUV F	Rheinla	and of N	North A	merio	a	05 Nov 1	5 22:40
90.0										— [1]	Horizonta
80.0										_ — (2)	
											/ Lmt vrmal
70.0										- + ···	u na
60.0											
50.0										N)	
10.0						A	وو الموجود	المعجبيها	and the second sec	÷	
40.0					متعالملي	~ U^`			+	1	
30.0	-1-	haven	and a standard and	- -	·						
20.0	-	Ť								Meas D Spec D	Dist 3m Dist 3m
										Frequenc	y: MHz
10.0	0.00							10000.	0 .	18000.0	
	eero	inc, Hom	ie WiFi Rout	ter, TX §	5825MHz	at 11a 6	Mbps		-		
	Filen	ame: c:\p	program files	i (x86)∖	emisoft -	 vasona) 	results\;	2015110)5_eero_RE	11.emi	
			AVG - Limit, E				I CF ± Ur	ncertainty			
			oss AF= Anten)					
			s observed on								
			l are HT20 and plexity and bul			t Worst cas	se Plots a	re placed	l in the report		
										-	

SOP 1 Radiated Emissions Tracking # 31563404.001 Page 7 of 13											
EUT Name	Hom	e Wi-Fi Route	er				Date		No	/ 06, 2015	
EUT Model	A010	001						Hum in		C / 34%rh	
EUT Serial		-0053-5XKS	-					Hum ou			
EUT Config		11a at 6Mbps						C / Freq) Vac / 60 H	
Standard		47 Part 15 Sι			7, RSS-G		RBW /			IHz / 3 MHz	
Dist/Ant Us	ed 3m –	EMCO3115						ned by	Ker	winn Corpu	Z
			- 40 GH		it at 5825		` ĭ				
Frequency	Raw	Cable Loss	AF		Detector			ght Azin	nuth	Limit	Margin
MHz	dBuV/m	dB	dB	dBuV/m		H/V			eg	dBuV/m	dB
34402.04	43.73	7.01	-12.44	38.31	Average	Н	16	3 13	34	54.00	-15.69
39927.45	47.42	7.63	-13.52	41.53	Average	Н	15	4 16	60	54.00	-12.47
38130.78	45.78	7.52	-12.02	41.28	Average	V	16	4 15	52	54.00	-12.72
dBuV/m 100.0			TUV F	Rheinla	and of N	North	n Ame	rica		06 Nov 1	5 12:47
] — [1]	Horizonta
90.0										[2]	
80.0											/ Lmt mai
70.0] * ``	
										1	
60.0											
50.0				Α.			فمحصلين	V. 1		倒	
40.0				- * ~	ليه حمد مي		•		+	÷	
30.0	et and the second s		ut an	لغيغيهم				r			
20.0										Mana F	Dist 1m
										Spec D	
10.0										Frequenc	y: MHz
0.0 18000.0									2	39999.9999999	9999
eero	ine. Hom	ie WiFi Rout	ter, TX 5	5825MHz	at 11a 6	Mbps					
Filen	ame: c:∖j	program files	s (x86)\e	emisoft -	 vasona) 	\result	s\2015	1106_ee	ro_RE	8.emi	
		AVG - Limit, E				al CF \pm	Uncerta	inty			
-		oss AF= Anten)						
		s observed on are HT20 and									
		plexity and bul			t Worst cas	se Plots	s are pla	ced in the	report		

SOP	1 Ra	diated E	missions				Tra	acking #	31563404	1.001 Page 8	of 13
EUT N	lame	Hom	e Wi-Fi Route	ər			0	Date	N	lov 05, 2015	
EUT M	lodel	A010	0001				1	Temp / Hu	umin 23	3° C / 38%rh	
EUT S	erial	E59A	-0053-5XKS	-EP43			٦ ا	Γemp / Hι	um out N	/A	
EUT C	onfig	. 802.1	11n at HT40 I	MCS0/	chain 0 &	.1	L	_ine AC /	Freq 12	20 Vac / 60 H	Z
Standa	ard	CFR	47 Part 15 Sι	ubpart E	, RSS-24	7, RSS-G	EN F	RBW / VB	W 1	MHz / 3 MHz	
Dist/A	nt Us	ed 3m -	EMCO3115	/ 1m – A	AHA-840		F	Performe	dby K	erwinn Corpu	Z
			1 -	– 18 GH	z Transm	nit at 5755	5 MHz (Low Char	nnel)		
Frequ	ency	Raw	Cable Loss	AF	Level	Detector	Polarit	y Height	Azimuth	i Limit	Margin
MH	łz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB
14713	3.51	39.52	4.39	-6.40	37.51	Average	V	133	176	54.00	-16.49
17983	3.62	37.50	5.03	2.08	44.61	Average	V	220	284	54.00	-9.39
dBu\ 90.0	/			TUV F	Rheinla	and of I	Vorth	Americ	a	05 Nov 1	5 22:56
90.0										[1]	Horizonta
80.0											i Lmt
70.0 + Formal											
60.0											
50.0											
40.0											
40.0 +											
20.0	0.									Meas D Spec D	Dist 3m Dist 3m
										Frequenc	y: MHz
1000.0 10000.0 18000.0											
eero inc. Home WiFi Router, TX 5755MHz at HT40 MCS0											
	Filen	ame: c:\p	program files	(x86)\	emisoft -	vasona	results	\2015110)5_eero_F	RE12.emi	
Spec M	largin	= E-Field A	AVG - Limit, E	-Field A	√G = FIM	AVG+ Tota	al CF ± L	Jncertaintv			
			oss AF= Anten								
2	. Mod	e covered	s observed on is VHT40. plexity and bul				se Plots	are placed	l in the repo	ort.	
			e the Sourious								

SOP 1 Radiated EmissionsTracking # 31563404.001 Page 9 of 13													
EUT Name Home Wi-Fi Router Date Nov 06, 2015													
EUT Model A010001 Temp / Hum in 24° C / 34%rh													
EUT Serial E59A-0053-5XKS-EP43 Temp / Hum out N/A													
EUT Config. 802.11n at HT40 MCS0 / chain 0 & 1 Line AC / Freq 120 Vac / 60 Hz Standard CFR47 Part 15 Subpart E, RSS-247, RSS-GEN RBW / VBW 1 MHz / 3 MHz													
Standa							7, RSS-G	EN	RE	3W/VB	W <u>1</u>	MHz / 3 MH	Z
Dist/Ar	nt Us	ed 3m -	- EMCO3115	/ 1m – A	AHA-8	340			Pe	erformed	alby K	erwinn Corp	uz
			18 -	– 40 GH	lz Tra	insm	it at 5755	5 MHz	(Lo	ow Char	inel)		
Freque	ency	Raw	Cable Loss	AF	Le	/el	Detector	Pola	rity	Height	Azimuth	n Limit	Margin
MH	Z	dBuV/m	dB	dB	dBu	V/m		H/\	/	cm	deg	dBuV/m	dB
34127	7.24	43.07	6.97	-12.43	37.	60	Average	15	5	192	54.00	-16.40	155
38162	2.56	45.59	7.52	-12.01	41.	10	Average	138	8	114	54.00	-12.90	138
39863	3.52	47.48	7.64	-13.53	41.	58	Average	153	3	92	54.00	-12.42	153
dBuV	//m				2hoi	inla	and of N	Jort	hΔ	morio	e.	06 Nov	15 13:08 -
100.0 TOV Kitelilland of Notur America													
90.0 — [1] Horizonta [2] Vertical													
— Av Lmt													
80.0 + Formal													
70.0													
60.0													
50.0 AV													
40.0													
30.0 + +													
20.0 Meas Dist 1m Spec Dist 3m													
10.0 Frequency: MHz													
0.0 39999 999999999													
eero inc. Home WiFi Router. TX 5755MHz at HT40 MCS0													
Filename: c:\program files (x88)\emisoft - vasona\results\20151106_eero_RE9.emi													
Spec Margin = E-Field AVG - Limit, E-Field AVG = FIM AVG+ Total CF \pm Uncertainty													
Total CF= AF+ Cable Loss AF= Antenna factor + Preamp													
Note: 1. Worst case was observed on HT40 MCS0 mode.													
	 Mode covered is VHT40. To reduce complexity and bulkiness of the report Worst case Plots are placed in the report. 												
U.												····	

SOP	1 Ra	diated E	missions				Trac	king #	31563404.	001 Page 1	0 of 13	
EUT N	lame	Hom	e Wi-Fi Route	ər			Da	ate		v 05, 2015		
EUT N	EUT Model A010001 Temp / Hum in 23° C / 38%rh											
EUT Serial E59A-0053-5XKS-EP43 Temp / Hum out N/A												
EUT C	EUT Config. 802.11n at HT40 MCS0 / chain 0 & 1 Line AC / Freq 120 Vac / 60 Hz											
Standa	ard	CFR	47 Part 15 Sι	ibpart E	, RSS-24	7, RSS-G	EN RI	3W / VB	SW 1 N	/Hz / 3 MHz		
Dist/A	nt Us	ed 3m -	EMCO3115	/ 1m – /	AHA-840		Pe	erforme	dby Ke	rwinn Corpu	Z	
			1 -	- 18 GH	z Transm	it at 5795	MHz (H	igh Cha	nnel)			
Frequ	ency	Raw	Cable Loss	AF	Level	Detector	Polarity	Height	Azimuth	Limit	Margin	
MH	łz	dBuV/m	dB	dB	dBuV/m		H/V	cm	deg	dBuV/m	dB	
14730	0.64	39.34	4.38	-6.36	37.36	Average	Н	210	-2	54.00	-16.64	
17983	3.54	37.46	5.03	2.08	44.56	Average	Н	171	244	54.00	-9.44	
dBu\ 90.0	/			TUV F	Rheinla	and of N	North A	merio	a	05 Nov 1	15 23:11	
80.0 70.0 												
60.0												
50.0 40.0												
30.0 20.0	<u>a</u> Ar	and a second	La karan	~~~					•		Dist 3m Dist 3m	
20.0										Frequenc		
10.0 1000.0 18000.0												
eero inc. Home WiFi Router. TX 5795MHz at HT40 MCS0												
Filename: c:\program files (x88)\emisoft - vasona\results\20151105_eero_RE13.emi												
				_								
Spec M	largin	= E-Field A	AVG - Limit, E	-Field A	√G = FIM /	AVG+ Tota	al CF ± Ur	certaint	,			
			oss AF= Anten									
			s observed on	HT40 MC	CS0 mode.							
		e covered			•		-					
3	. Io re	educe com	plexity and bul	kiness of	the report	t Worst cas	se Plots a	re placed	i in the repor	t.		

SOP 1 Radiated EmissionsTracking # 31563404.001 Page 11 of 13												
EUT Name Home Wi-Fi Router Date Nov 06, 2015												
EUT Model								mp / Hւ			C / 34%rh	
EUT Serial		-0053-5XKS							um out			
EUT Config	-	11n at HT40 1						ne AC /			Vac / 60 H	
Standard		47 Part 15 St EMCO3115			7, RSS-G	EN		3W / VB erforme			Hz / 3 MHz vinn Corpu	
DISI/AIIL US	seu sm –				nit at 5795					Reiv	winn Corpu	Ζ
Frequency	Raw	Cable Loss	- 40 GH	Level	Detector			r I		th	Limit	Margin
MHz	dBuV/m	dB	dB	dBuV/m		H/		cm	deq		dBuV/m	dB
34209.36	43.62	6.98	-12.43	38.17	Average	H		149	 294		54.00	-15.83
					-							
38593.24	45.85	7.55	-12.05	41.36	Average	V		156	98		54.00	-12.64
39875.66	47.52	7.64	-13.53	41.63	Average	V		157	164		54.00	-12.37
dBuV/m				2hoinl:	and of N	Vorti	hΔ	meric	• - 2		06 Nov 1	5 13:55 -
dBuV/m TUV Rheinland of North America — [1] Horizonta												
90.0											— [ź]	
and Av Lmt												
The second se												
70.0												
60.0												
No. and Annual Providence of the Providence of t												
40.0 + +												
30.0 South and a state of the s												
20.0 Meas Dist 1m												
											Spec D	
10.0 Frequency: MHz												
0.0 39999 9999999999												
eero inc. Home WiFi Router. TX 5795MHz at HT40 MCS0												
Filename: c:\program files (x88)\emisoft - vasona\results\20151108_eero_RE10.emi												
		AVG - Limit, E				al CF ±	Un	certainty				
Total CF= AF+ Cable Loss AF= Antenna factor + Preamp												
Note: 1. Worst case was observed on HT40 MCS0 mode. 2. Mode covered is VHT40.												
 Mode covered is VH140. To reduce complexity and bulkiness of the report Worst case Plots are placed in the report. 												

SOP 1 Radiated Emissions Tracking # 31563404.001 Page 12 of 13 EUT Name Home Wi-Fi Router Date Nov 05, 2015 EUT Model A010001 E590-0053-5XKS-EP43 Temp / Hum out N/A EUT Config. 802.11ac at VHT80 MCS0 / chain 0 & 1 Temp / Hum out N/A Standard CFR47 Part 15 Subpart E, RSS-247, RSS-GEN RBW / VBW 1 MHz / 3 MHz Dist/Ant Used 3m – EMCO3115 / 1m – AHA-840 Performed by Temp / Hum out Marz / 3 MHz Dist/Ant Used 3m – EMCO3115 / 1m – AHA-840 Performed by Kervinn Corpuz 1 MHz / 3 MHz 1 – 18 GHz Transmit at 5775 MHz (Center Channel) Frequency Raw Cable Loss AF Level Detector Polarity Height Azimuth Limit Margin MHz dBuV/m dB dB U/W HV Cond -9.46 14608.85 39.21 4.454 Average V 199 320 54.00 -9.46 0400 0 0 0 0 Numt + Formal Fo												
EUT Model A010001 Temp / Hum in E59A-0053-5XKS-EP43 Temp / Hum out Time AC / Freq 23° C / 38%rh EUT Config. 802.11ac at VHT80 MCS0 / chain 0 & 1 Temp / Hum out Standard N/A N/A Dist/Ant Used GFR47 Part 15 Subpart E, RSS-247, RSS-GEN RBW / VBW 1 MHz / 3 MHz Dist/Ant Used m - EMCO3115 / 1m - AHA-840 Performed by Kervinn Corpuz 1 - 18 GHz Transmit at 5775 MHz (Center Channel) Frequency Raw Cable Loss AF Level Detector Polarity Height Azimuth Limit Margin MHz dBuV/m dB dB dBuV/m HV cm deg dBuV/m dB 14608.85 39.21 4.44 -6.83 36.82 Average V 199 320 54.00 -17.18 dBuV TUV Rheinland of North America 05 Nov 15 23:25	SOP 1 Radiated Emissions Tracking # 31563404.001 Page 12 of 13											
EUT Serial E59A-0053-5XKS-EP43 Temp / Hum out N/A EUT Config. 302.11ac at VHT80 MCS0 / chain 0 & 1 120 Vac / 60 Hz 120 Vac / 60 Hz Standard CFR47 Part 15 Subpart E, RSS-247, RSS-GEN RBW / VBW 1 MHz / 3 MHz Dist/Ant Used 3m - EMC03115 / 1m - AHA-840 Performed by Kerwinn Corpuz 1 - 18 GHz Transmit at 5775 MHz (Center Channel) Frequency Raw Cable Loss AF Level Detector Polarity Height Azimuth Limit Margin MHz dBuV/m dB dBuV/m HV cm deg dBuV/m dB 17984.65 37.40 5.03 2.10 44.54 Average H 113 228 54.00 -9.46 14608.85 39.21 4.44 -6.83 36.82 Average V 199 320 54.00 -17.18 dBuV TUV Rheinland of North America	· · · · · · · · · · · · · · · · · · ·											
EUT Config. 802.11ac at VHT80 MCS0 / chain 0 & 1 CFR47 Part 15 Subpart E, RSS-247, RSS-GEN Dist/Ant Used Line AC / Freq RBW / VBW 120 Vac / 60 Hz Dist/Ant Used 3m - EMC03115 / 1m - AHA-840 Performed by 1 MHz / 3 MHz Frequency Raw Cable Loss AF Level Detector Polarity Height Azimuth Limit Margin MHz dBuV/m dB dB dBuV/m H/V cm deg dBuV/m dB 17984.65 37.40 5.03 2.10 44.54 Average H 113 228 54.00 -9.46 14608.85 39.21 4.44 -6.83 36.82 Average V 199 320 54.00 -17.18 dBuV TUV Rheinland of North America 05 Nov 15 23:25												
Standard CFR47 Part 15 Subpart E, RSS-247, RSS-GEN RBW / VBW 1 MHz / 3 MHz Dist/Ant Used 3m - EMCO3115 / 1m - AHA-840 Performed by 1 mHz / 3 MHz Kerwinn Corpuz 1 - 18 GHz Transmit at 5775 MHz (Center Channel) Kerwinn Corpuz Frequency Raw Cable Loss AF Level Detector Polarity Height Azimuth Limit Margin MHz dBuV/m dB dB dBuV/m H/V cm deg dBuV/m dB 17984.65 37.40 5.03 2.10 44.54 Average H 113 228 54.00 -9.46 14608.85 39.21 4.44 -6.83 36.82 Average V 199 320 54.00 -17.18 dBuV TUV Rheinland of North America 05 Nov 15 23:25												
Dist/Ant Used 3m - EMCO3115 / 1m - AHA-840 Performed by Kerwinn Corpuz 1 - 18 GHz Transmit at 5775 MHz (Center Channel) Frequency Raw Cable Loss AF Level Detector Polarity Height Azimuth Limit Margin MHz dBuV/m dB dB dBuV/m H/V cm deg dBuV/m dB 17984.65 37.40 5.03 2.10 44.54 Average H 113 228 54.00 -9.46 14608.85 39.21 4.44 -6.83 36.82 Average V 199 320 54.00 -17.18 dBuV TUV Rheinland of North America 05 Nov 15 23:25												
1 - 18 GHz Transmit at 5775 MHz (Center Channel) Frequency Raw Cable Loss AF Level Detector Polarity Height Azimuth Limit Margin MHz dBuV/m dB dB dBuV/m H/V cm deg dBuV/m dB 17984.65 37.40 5.03 2.10 44.54 Average H 113 228 54.00 -9.46 14608.85 39.21 4.44 -6.83 36.82 Average V 199 320 54.00 -17.18 dBuV TUV Rheinland of North America 05 Nov 15 23:25						7, RSS-G						
Frequency Raw Cable Loss AF Level Detector Polarity Height Azimuth Limit Margin MHz dBuV/m dB dB dBuV/m H/V cm deg dBuV/m dB 17984.65 37.40 5.03 2.10 44.54 Average H 113 228 54.00 -9.46 14608.85 39.21 4.44 -6.83 36.82 Average V 199 320 54.00 -17.18 dBuV TUV Rheinland of North America 05 Nov 15 23:25	Dist/Ant U	sea 3m –								winn Corpu	Z	
MHz dBuV/m dB dB dB dBUV/m H/V cm deg dBUV/m dB 17984.65 37.40 5.03 2.10 44.54 Average H 113 228 54.00 -9.46 14608.85 39.21 4.44 -6.83 36.82 Average V 199 320 54.00 -17.18 dBuV TUV Rheinland of North America 05 Nov 15 23:25	_						```		/			
17984.65 37.40 5.03 2.10 44.54 Average H 113 228 54.00 -9.46 14608.85 39.21 4.44 -6.83 36.82 Average V 199 320 54.00 -17.18 dBuV TUV Rheinland of North America 05 Nov 15 23.25	•				1							
14608.85 39.21 4.44 -6.83 36.82 Average V 199 320 54.00 -17.18 dBuV TUV Rheinland of North America 05 Nov 15 23:25									¥			
dBuV TUV Rheinland of North America 05 Nov 15 23:25 80.0 Image: State of the	17984.65	37.40	5.03	2.10	44.54	Average	Н	113	228	54.00	-9.46	
900 IOV Rheinland of North America 900 III Horizon 800 III Horizon 700 III Horizon 700 <t< td=""><td>14608.85</td><td>39.21</td><td>4.44</td><td>-6.83</td><td>36.82</td><td>Average</td><td>V</td><td>199</td><td>320</td><td>54.00</td><td>-17.18</td></t<>	14608.85	39.21	4.44	-6.83	36.82	Average	V	199	320	54.00	-17.18	
80.0 70.0 60.0				TUV F	Rheinla	and of N	North A	merio	a	05 Nov 1	15 23:25 -	
50.0 40.0 30.0 20.0 10.0 1000.0 eero inc. Home WiEi Router, TX 5775MHz at VHT80 MCS0	80.0											
40.0 40.0 30.0 20.0 10.0 1000.0 eero inc. Home WiEi Router, TX 5775MHz at VHT80 MCS0 1000.0 10000.0 1	60.0											
20.0 Spec Dist 3m 10.0 Frequency: MHz 1000.0 10000.0 18000.0 18000.0												
10.0 1000.0 10000.0 18000.0 eero inc. Home WiEi Router, TX 5775MHz at VHT80 MCS0	20.0 Spec Dist 3m											
1000.0 10000.0 18000.0 18000.0 18000.0 18000.0	10.0											
eero inc, Home WIFI Router, 1X 5775MHz at VH180 MC50 Filename: c:\program files (x86)\emisoft - vasona\results\20151105_eero_RE14.emi	1000.0 10000.0 18000.0											
	eero inc, Home WiFi Router, TX 5775MHz at VHT80 MCS0 Filename: c:\program files (x86)\emisoft - vasona\results\20151105 eero RE14.emi											
Spec Margin = E-Field AVG - Limit, E-Field AVG = FIM AVG+ Total CF \pm Uncertainty												
Total CF= AF+ Cable Loss AF= Antenna factor + Preamp												
Note: 1. Worst case was observed on VHT80 MCS0 mode. 2. To reduce complexity and bulkiness of the report Worst case Plots are placed in the report. 3. Emission above the Spurious Limit is the Fundamental.												

-												
SOP 1 Ra	diated E	missions				Т	rac	king #	315634	04.0	01 Page 13	3 of 13
EUT Name	Hom	e Wi-Fi Route	er				Da	ate		Nov	/ 06, 2015	
EUT Model	A010	001					Те	emp / Hu	ım in	24°	C / 34%rh	
EUT Serial	E59A	-0053-5XKS	-EP43				Те	mp / Hu	um out	N/A		
EUT Config. 802.11ac at VHT80 MCS0 / chain 0 & 1 Line AC / Freq 120 Vac / 60 Hz												
Standard	CFR	47 Part 15 Su	ubpart E	, RSS-24	7, RSS-G	EN	RB	3W / VB	W	1 M	Hz / 3 MHz	
Dist/Ant Us	sed 3m –	EMCO3115	/ 1m – A	AHA-840			Ре	erforme	d by	Ker	winn Corpu	Z
	L	18 –	40 GHz	Transmit	at 5775	MHz (Cer	nter Cha	annel)			
Frequency	Raw	Cable Loss	AF	Level	Detector	Polar	rity	Height	Azimu	uth	Limit	Margin
MHz	dBuV/m	dB	dB	dBuV/m		H/\	/	cm	deg		dBuV/m	dB
34209.36	43.62	6.98	-12.43	38.17	Average	Н		149	294		54.00	-15.83
38593.24	45.85	7.55	-12.05	41.36	Average	V		156	98		54.00	-12.64
39875.66	47.52	7.64	-13.53	41.63	Average	V		157	164		54.00	-12.37
dBuV/m			TUV F	Rheinla	and of I	Vorth	٦A	merio	a		06 Nov 1	5 13:55
100.0									-		1 — m	l Horizont:
90.0 1 Horizont:												
— Áv Lmt												
80.0 + Formal												
70.0												
60.0												
50.0												
40.0												
30.0 + +												
20.0											Meas D Spec D	
10.0 Frequency: MHz												
0.0 39999 99999999999												
eero inc. Home WiEi Router, TX 5795MHz at HT40 MCS0												
Filename: c:\program files (x88)\emisoft - vasona\results\20151106_eero_RE10.emi												
Spec Margin = E-Field AVG - Limit, E-Field AVG = FIM AVG+ Total CF \pm Uncertainty												
Total CF= AF+ Cable Loss AF= Antenna factor + Preamp												
Note: 1. Worst case was observed on VHT80 MCS0 mode. 2. To reduce complexity and bulkiness of the report Worst case Plots are placed in the report.												
2. Io re	educe com	plexity and bul	kiness of	the repor	t worst cas	se Plot	s ar	re placed	i in the re	eport.		

4.6 AC Conducted Emissions

Testing was performed in accordance with ANSI C63.4: 2014. These test methods are listed under the laboratory's A2LA Scope of Accreditation.

This test measures the levels emanating from the EUT's AC input port, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

The AC conducted emissions of equipment under test shall not exceed the values in CFR47 Part 15.207: 2015 and RSS 247: 2015.

4.6.1 Test Methodology

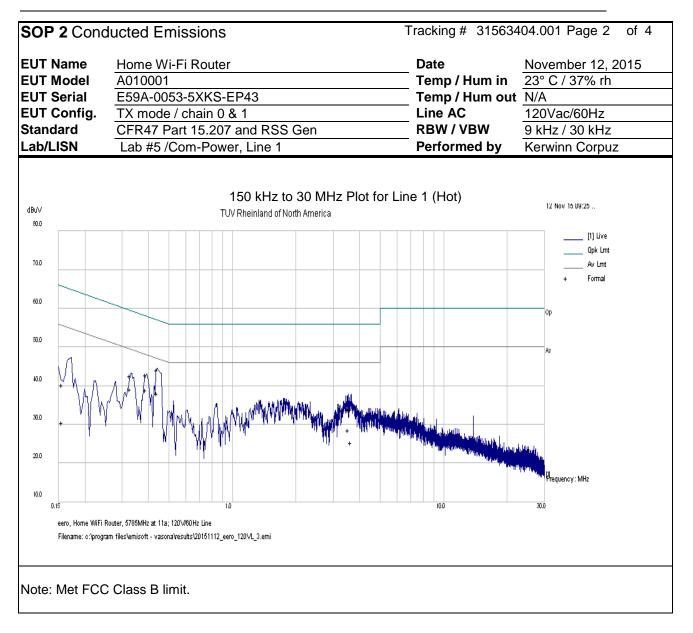
A test program that controls instrumentation and data logging was used to automate the AC Power Line Conducted emission test procedure. The frequency range of interest was divided into sub-ranges such as to yield a frequency resolution of 9 kHz. Each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a set of 50μ H / 50Ω LISNs.

Testing is performed in Lab 5. The setup photographs clearly identify which site was used. The vertical ground plane used in the semi-anechoic chamber is a 2m x 2m solid aluminum frame and panel, and it is bonded to the horizontal ground plane.

In the case of tabletop equipment, the EUT is placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane and 40cm from a vertical ground reference plane. The rear of the EUT was positioned flush with the backside of the table and directly over the LISNs. The power and I/O cables were routed over the edge of the table and bundled approximately 40cm from the ground plane. Support equipment was powered from a separate LISN.

4.6.1.1 Deviations

There were no deviations from this test methodology.


4.6.2 Test Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

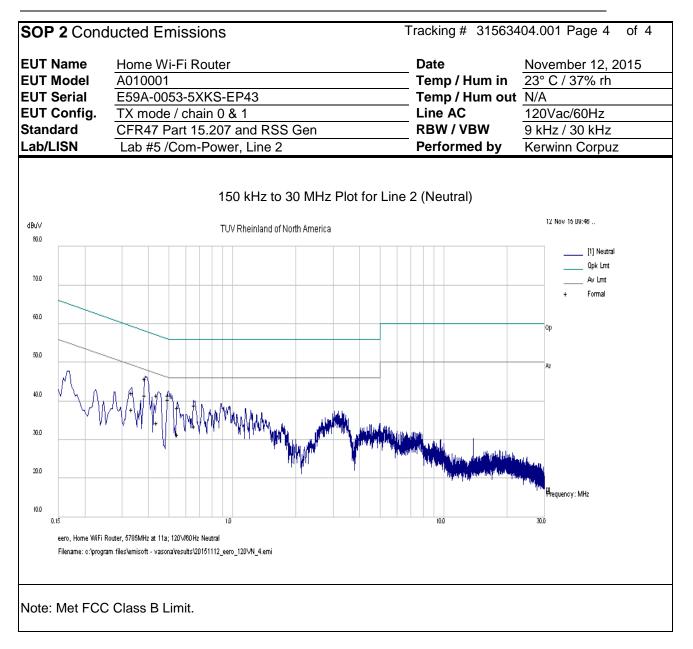

Test Conditions: Conducted Measurement at Normal Conditions only					
Antenna Type: Custom Integrated Power Level: See Test Plan					
AC Power: 120 Vac/60 Hz		Configuration: Tabletop			
Ambient Temperature: 22° C		Relative Humidity: 37% RH			
Configuration Frequ		iency Range	Test Result		
Line 1 (Hot) 0.15		to 30 MHz	Pass		
Line 2 (Neutral) 0.15		to 30 MHz	Pass		

Table 16: AC Conducted Emissions - Test Results

SOP 2 Conducted Emissions				Tra	cking # 315	63404.001	Page 1	of 4	
EUT Name	Home W	/i-Fi Router			Da	Date November 12, 201			15
EUT Model		A010001				emp / Hum i		/ 37% rh	
EUT Serial	E59A-00)53-5XKS-E	EP43			emp / Hum			
EUT Config.		e / chain 0 a				ine AC / Fre		c/60Hz	
Standard			and RSS (Gen		BW / VBW		/ 30 kHz	
Lab/LISN	Lab #5 /	Com-Powe	er, Line 1		P	erformed by	/ Kerwir	nn Corpuz	
Frequency	Raw	Limiter	Ins. Loss	Level	Detector	Line	Limit	Margin	Result
MHz	dBuV	dB	dB	dBuV		Line	dBuV	dB	
0.440	33.92	9.97	0.09	43.98	QP	Live	57.07	-13.09	Pass
0.440	27.94	9.97	0.09	38.00	Ave	Live	47.07	-9.07	Pass
0.389	32.76	9.96	0.09	42.81	QP	Live	58.09	-15.27	Pass
0.389	28.75	9.96	0.09	38.80	Ave	Live	48.09	-9.28	Pass
0.328	32.50	9.96	0.11	42.56	QP	Live	59.49	-16.93	Pass
0.328	28.94	9.96	0.11	39.00	Ave	Live	49.49	-10.49	Pass
0.155	30.13	9.95	0.22	40.30	QP	Live	65.70	-25.41	Pass
0.155	20.23	9.95	0.22	30.39	Ave	Live	55.70	-25.31	Pass
3.540	23.59	10.03	0.05	33.66	QP	Live	56.00	-22.34	Pass
3.540	18.43	10.03	0.05	28.51	Ave	Live	46.00	-17.49	Pass
3.638	23.88	10.03	0.05	33.96	QP	Live	56.00	-22.04	Pass
3.638	15.13	10.03	0.05	25.20	Ave	Live	46.00	-20.80	Pass
Spec Margin =									
Combined Stand									
Notes: EUT	was setup	as table to	p equipme	nt and trar	nsmitted at	5785 MHz i	n 802.11a	at 6Mbps	

EUT Name		i-Fi Router				ate		November 12, 2015 23° C / 37% rh	
EUT Model EUT Serial	A010001		D/2			emp / Hum emp / Hum		<i>31%</i> m	
EUT Config.	E59A-0053-5XKS-EP43 TX mode / chain 0 & 1				ine AC / Fr		/ac/60Hz		
Standard		Part 15.207		Gen		BW / VBW	· · ·	z / 30 kHz	
_ab/LISN		Com-Powe				erformed b	_	/inn Corpuz	,
Frequency	Raw	Limiter	Ins. Loss	Level	Detector	Line	Limit	Margin	Result
MHz	dBuV	dB	dB	dBuV		Line	dBuV	dB	
0.387	35.85	9.96	0.09	45.90	QP	Neutral	58.14	-12.24	Pass
0.387	31.42	9.96	0.09	41.47	Ave	Neutral	48.14	-6.66	Pass
0.495	31.44	9.98	0.08	41.50	QP	Neutral	56.09	-14.59	Pass
0.495	30.31	9.98	0.08	40.37	Ave	Neutral	46.09	-5.72	Pass
0.439	31.48	9.97	0.09	41.54	QP	Neutral	57.08	-15.54	Pass
0.439	24.28	9.97	0.09	34.33	Ave	Neutral	47.08	-12.74	Pass
0.660	28.92	9.98	0.07	38.97	QP	Neutral	56.00	-17.03	Pass
0.660	23.55	9.98	0.07	33.60	Ave	Neutral	46.00	-12.40	Pass
0.333	32.12	9.96	0.11	42.19	QP	Neutral	59.37	-17.18	Pass
0.333	27.76	9.96	0.11	37.83	Ave	Neutral	49.37	-11.54	Pass
0.550	28.21	9.98	0.08	38.27	QP	Neutral	56.00	-17.73	Pass
0.550	21.20	9.98	0.08	31.26	Ave	Neutral	46.00	-14.74	Pass
Spec Margin = C Combined Standa Notes: EUT w	rd Uncertainty	$U_c(y) = \pm 1.2$	2 dB Expan				or 95% confide 802.11a at		

4.7 Frequency Stability

In accordance with 47 CFR Part 15.407(g) the frequency stability of U-NII devices must be such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual. The Manufacturer calls out operating temperature ranges of $+0^{\circ}$ to $+35^{\circ}$ C

4.7.1 Test Methodology

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions. This test performs according to ANSI C63.10-2013 Section 6.8

4.7.2 Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signal should have ± 20 ppm stability.

This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

Worst case: 5.800 GHz- ±20 ppm/116 kHz

 ± 20 ppm at 5.8 GHz translates to a maximum frequency shift of ± 116 kHz. As the edge of the channels are at least one MHz from either of the band edges, ± 103 kHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the radio.

4.7.3 Limit

CFR47 Part 407(g) - Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

4.7.4 **Test results:**

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s) since the maximum frequency drift was -15.90 ppm.

Temperature	Time	PPM
	Start	-12.96
0° C	2 Min.	-7.43
0° C	5 Min	-5.19
	10 min	-1.90
	Start	-0.95
10° C	2 Min.	10.37
10 C	5 Min	1.04
	10 min	1.04
	Start	-0.95
20° C	2 Min.	-3.28
20° C	5 Min	-8.73
	10 min	-2.59
	Start	-6.14
200 0	2 Min.	-6.14
30° C	5 Min	-6.48
	10 min	-0.95
	Start	-14.87
40° C	2 Min.	-3.20
40° C	5 Min	-6.57
	10 min	-15.90
	Start	-9.68
50° C	2 Min.	-7.09
50° C	5 Min	-3.54
	10 min	-8.38
Note: All frequency	v drifts were less than ± 20 p	opm. The worst frequency drift was -15.90 ppm

 Table 17: Frequency Stability – Test Results

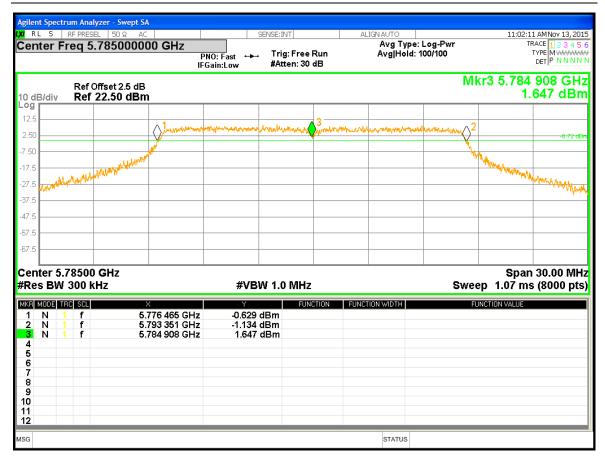


Figure 121: Frequency Stability – Worst Case

4.8 Voltage Variation

In accordance with 47 CFR Part 15.31 (e) intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

4.8.1 Test Methodology

The ac supply voltage was varied between 85% and 115% of the nominal rated supply voltage. The fundamental frequency was observed during the variation. The access point was powered 120 Vac / 60 Hz by programmable power supply. The voltage was varied from 102 Vac to 138 Vac mean while the fundamental frequencies were observed and record for the maximum drift in ppm; part per millions.

4.8.2 Test results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s). The fundamental frequencies drifted less than ± 20 ppm.

Frequency	Nominal (120Vac)	Lo Voltage (102Vac)	Hi Voltage (138Vac)	Max Drift
MHz	MHz	MHz	MHz	ppm
5785	0.0360	0.0225	0.0320	-6.223

Table 18: Voltage Variation – Test Results



Figure 122: Voltage Variation – Worst Case

4.9 Maximum Permissible Exposure

4.9.1 Test Methodology

In this document, we try to prove the safety of radiation harmfulness to the human body for our product. The limit for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 is followed. The Gain of the antenna used in this calculation is declared by the manufacturer, and the maximum total power input to the antenna is measured. Through the Friis transmission formula and the maximum gain of the antenna, we can calculate the distance, away from the product, where the limit of MPE is reached.

Although the Friis transmission formula is a far field assumption, the calculated result of that is an over-prediction for near field power density. We will take that as the worst case to specify the safety range.

4.9.2 **RF Exposure Limit**

According to FCC 1.1310 table 1: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Average Time (minutes)					
	(A)Limits For Occupational / Control Exposures								
0.3–3.0	614	1.63	*(100)	6					
3.0–30	1842/f	4.89/f	*(900/f ²)	6					
30–300			1.0	6					
300 - 1500			f/300	6					
1500 - 100,000			5	6					
(E	B)Limits For Gene	ral Population / Un	controlled Exposu	ire					
0.3–1.34	614	1.63	*(100)	30					
1.34-30	824/f	2.19/f	*(180/ f ²)	30					
30–300	27.5	0.037	0.2	30					
300 - 1500			f/1500	30					
1500 - 100,000			1.0	30					

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

F = Frequency in MHz

* = Plane-wave equivalent power density

4.9.3 EUT Operating Condition

The software provided by Manufacturer enabled the EUT to transmit data at lowest, middle and highest channel individually.

4.9.4 Classification

The antenna of the product, under normal use condition, is at least 20cm away from the body of the user. Warning statement to the user for keeping at least 20cm or more separation distance with the antenna should be included in user's manual. So, this device is classified as a **Mobile Device**.

See below calculation for 5.785 GHz, worse case, RF Exposure at a distance of 20cm.

4.9.5 Test Results

4.9.5.1 Antenna Gain

The 5.785 GHz transmitting maximum antenna gain is +2.24 dBi or 1.68 (numeric).

4.9.5.2 Output Power into Antenna & RF Exposure value at distance 20cm:

Calculations for this report are based on highest power measurement.

Limit for MPE (from FCC part 1.1310 table1) is 1.0 mW/cm²

The highest measured total power is +28.32 dBm or 679.20 mW (summed 2 chains)

Using the Friss transmission formula, the EIRP is Pout*G, and R is 20cm.

 $Pd = (679.20*1.68) / (1600\pi) = 0.2263 \text{ mW/cm}^2$, which is 0.7737 mW/cm² below to the limit.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

4.9.6 Sample Calculation

The Friss transmission formula: $Pd = (Pout^*G) / (4^*\pi^*R^2)$

Where;

 $\begin{array}{l} Pd = power \ density \ in \ mW/cm_2\\ Pout = output \ power \ to \ antenna \ in \ mW\\ G = gain \ of \ antenna \ in \ linear \ scale\\ \pi \approx 3.1416\\ R = distance \ between \ observation \ point \ and \ center \ of \ the \ radiator \end{array}$

in cm

Ref. : David K. Cheng, Field and Wave Electromagnetics, Second Edition, Page 640, Eq. (11-133).

5 Test Equipment List

5.1 Equipment List

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal mm/dd/yyyy	Next Cal mm/dd/yyyy
Bilog Antenna	Sunol Sciences	JB3	A102606	07/08/2014	07/08/2016
Horn Antenna	Sunol Sciences	DRH-118	A040806	02/10/2015	02/10/2016
Antenna (18-40 GHz)	Com-Power	AHA-840	105005	07/08/2015	07/08/2016
Spectrum Analyzer	Rohde & Schwarz	FSL6	100169	01/13/2015	01/13/2016
Spectrum Analyzer	Agilent	N9038A	MY51210195	01/12/2015	01/12/2016
Spectrum Analyzer	Agilent	N9030A	MY52350885	03/02/2015	03/02/2016
Spectrum Analyzer	Rohde Schwarz	ESIB	832427/002	01/13/2015	01/13/2016
Spectrum Analyzer	Rohde Schwarz	FSV40	1321.3008K40	11/01/2015	11/01/2016
Amplifier	Sonoma Instruments	310	185516	01/13/2015	01/13/2016
Amplifier	Miteq	TTA1800-30-4G	1842452	01/13/2015	01/13/2016
Amplifier	Rohde & Schwarz	TS-PR26	100011	07/24/2014	07/24/2016
Amplifier	Rohde & Schwarz	TS-PR40	100012	02/21/2015	02/21/2016
Power Meter	Agilent	E4418B	MY45103902	01/15/2015	01/15/2016
Power Sensor	Hewlett Packard	8482A	US37295801	01/15/2015	01/15/2016
Thermo Chamber	Espec	BTZ-133	0613436	03/16/2015	03/16/2016
DC Power Supply	Agilent	E3634A	MY400004331	01/12/2015	01/12/2016
Notch Filter	Micro-Tronics	BRM50716	003	01/30/2015	01/30/2016
Signal Generator	Anritsu	MG3694A	42803	01/13/2015	01/13/2016
Power Sensors	Rohde & Schwarz	OSP120	1520.9010.02	12/19/2014	12/14/2015

* Calibration of equipment past due for re-calibration will be performed expeditiously. If any equipment is found to be out of tolerance at that time, affected customers will be notified accordingly.

6 EMC Test Plan

6.1 Introduction

This section provides a description of the Equipment Under Test (EUT), configurations, operating conditions, and performance acceptance criteria. It is an overview of information provided by the manufacturer so that the test laboratory may perform the requested testing.

6.2 Customer

Table 19: Customer Information

Company Name	eero inc
Address	933 20th Street
City, State, Zip	San Francisco, CA 94107
Country	USA
Phone	(415) 738-7972
Fax	

 Table 20: Technical Contact Information

Name	Clifford Clarke			
E-mail	compliance@eero.com			
Phone	(415) 738-7972			
Fax				

6.3 Equipment Under Test (EUT)

Table 21: EUT Specifications

EUT Specifications				
Dimensions	W: 4.75in (121mm) x D: 4.75in (121mm) x H: 0.85-1.26in (22-33mm)			
AC Input	100-240V AC, 50 – 60 Hz			
Environment	Indoor			
Operating Temperature Range:	0 to 35 degrees C			
Multiple Feeds:	☐ Yes and how many ⊠ No			
Hardware Version	01A			
Part Number	830-00001-14			
RF Software Version	v1.0.0			
802.11-radio modules				
Operating Mode	802.11a, 802.11n (HT20, HT40), 802.11ac (VHT20, VHT40, VHT80)			
Transmitter Frequency Band	5.725 GHz – 5.850 GHz, U-NII-3 band			
Max. Rated Power Output	See Channel Planning Table.			
Power Setting @ Operating Channel	See Channel Planning Table.			
Antenna Type	Qty 7 – 2 custom antennas at 5.8GHz. See Table 13 for details			
Antenna Gain	Antenna 7 = -1.01 dBi , Antenna 8 = $+2.24 \text{ dBi}$			
Modulation Type	AM FM SSS OFDM Other describe: 16QAM and 64 QAM			
Data Rate	 802.11a: 2 Spatial Streams: 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11n/ac HT20/VHT20: 2 Spatial Streams: 13, 26, 39, 52, 78, 104, 117, 130 /156 Mbps (LGI) 802.11n/ac HT40/VHT40: 2 Spatial Streams: 27, 54, 81, 108, 162, 216, 243, 270 / 324, 370 Mbps (LGI) 802.11ac VHT 80: 2 Spatial Streams: 58.5, 117, 175.5, 234, 351, 468, 526.5, 585, 702, 780 Mbps (LGI) 			
TX/RX Chain (s)	MIMO (2x2); no beam forming			
Directional Gain Type	Correlated Beam-Forming Other describe:			

EUT Specifications				
Type of Equipment	Table Top Wall-mount Floor standing cabinet Other:			
Note: All 2 chains will be on / transmitted at all time.				

Table 22: Antenna Information

Number	Antenna Type	Description	Max Gain (dBi)
Antenna 1	Stamped metal Planar Inverted F antenna(PIFA)	2.4 GHz Wi-Fi Chain 2	1.50
Antenna 2	Stamped metal PIFA	2.4 GHz Wi-Fi Chain 1	-0.75
Antenna 3	Stamped metal PIFA	Bluetooth	2.51
Antenna 5	Monopole	5 GHz Wi-Fi U-NII-1 Band, Chain 1	1.11
Antenna 6	Monopole	5 GHz Wi-Fi U-NII-1 Band, Chain 2	2.13
Antenna 7	Monopole	5 GHz Wi-Fi U-NII-3 Band, Chain 1	-1.01
Antenna 8	Monopole	5 GHz Wi-Fi U-NII-3 Band, Chain 2	2.24

Table 23: EUT Channel Power Specifications

Max Power for single Chain

ТР		No. Frequency (MHz)	Target Power Value dBm					
Setting	No.		802.11a	802.11n HT20	802.11ac VHT20	802.11n HT40	802.11ac VHT40	802.11ac VHT80
18	149	5745	19.76	19.88	19.66			
16	151	5755				18.02	18.04	
23	153	5765	24.26	24.22	24.09			
14	155	5775						14.62
25	157	5785	25.35	25.46	25.17			
16	159	5795				18.27	18.26	
22	161	5805	23.36	23.21	23.14			
15	165	5825	17.62	17.64	16.55			
Note: The	Note: The adjusted power target values are updated at the evaluated frequencies.							

Table 24: Interface Specifications

Interface Type	Cabled with what type of cable?	Is the cable shielded?	Maximum potential length of the cable?	Metallic (M), Coax (C), Fiber (F), or Not Applicable?
Ethernet	RJ45	🖂 No	🛛 Metric: 2 m	N/A

Table 25: Supported Equipment

Equipment	Manufacturer	Model	Serial	Used for
Laptop	Dell	Latitude	35521341769	Setup EUT operating channel
Note: None.				

Table 26: Description of Sample used for Testing

Device	Serial	RF Connection	CFR47 Part 15.247
	E59A-0053-	Custom Integrated	Radiated Emissions,
	5XSK-EP43	Antenna	AC Conducted Emissions
	E5AN0264	Custom Integrated	Radiated Bandedge Emissions
Home Wi-Fi Router		Antenna	Radiated Bandeuge Emissions
	E5AN0264		Peak Transmit Power,
		Direct Connection	Peak Power Spectral Density,
			Occupied Bandwidth,
			Band-Edge,
			Out-of-Band Emissions

 Table 27: Description of Test Configuration used for Radiated Measurement.

Device	Antenna	Mode	Setup Photo (X-Axis)	Setup Photo (Y-Axis)	Setup Photo (Z-Axis)
Home Wi-Fi Router	Custom Integrated	Transmit	EUT laid flat.	N/A	N/A
Note: N/A.					

6.4 Test Specifications

Testing requirements

Table 28: Test Specifications

Emissions and Immunity			
Standard	Requirement		
CFR 47 Part 15.407: 2015	All		
RSS 247 Issue 1, 2015	All		

END OF REPORT

FCC ID: 2AEM4-A010001, IC: 20631-33ROI52C001