

Electromagnetic Compatibility Test Report

Test Report No: APT 231120 Issued on: November 23, 2020

> Product Name SciO Cup

Tested According to FCC 47 CFR, Part 15, Subparts C

Tests Performed for VeriFood Ltd. PO Box 12414, Herzliya 4672211, Israel +972-9-7724885

QualiTech EMC Laboratory

30 Hasivim Street, P.O.Box 7500 Petah-Tikva, 4951169, Israel Tel: +972-3-926-6994 Fax: +972-3-928 7490

The information contained herein is the property of QualiTech, EMC Lab and is supplied without liability for errors or omissions.

The copyright for this document vests in QualiTech, EMC Lab. All rights reserved.

This Test Report may not be reproduced, by any method, without the written permission of the QualiTech, EMC Lab.

If and when such permission is granted, the report must be reproduced only in the full format.

Test Personnel

Tests Performed By:

Agi Yizhak

Report Prepared By:

Bina Talkar

Rami Na

Report Approved By: ------

Rami Nataf EMC Lab. Manager QualiTech EMC Laboratory

Test Report details:

Test commencement date:	24.09.2020
Test completion date:	02.11.2020
Customer's representative:	Elad Heiman
Issued on:	23.11.2020

Revision details:

Version	Date	Details/Reasons
Rev. 1	23.11.2020	-
Rev. 2	22.09.2021	-

Assessment information:

This report contains an assessment of the EUT against Electromagnetic Compatibility based upon tests carried out on the samples submitted. The results contained in this report relate only to the items tested. Manufactured products will not necessarily give identical results due to production and measurement tolerances. QualiTech, EMC Lab does not assume responsibility for any conclusion and generalization drawn from the test results with regards to other specimens or samples of type of the equipment represented by test item.

The EUT was setup and exercised using the configuration, modes of operation and arrangements defined in this report only.

Modifications:

Modifications made to the EUT

None

Modifications made to the Test Standard

None

Summary of Compliance Status

The EUT was tested according to the following test methods. Test results are given in full in section 4.

Test Case	Test Spec. Clause	Remarks
6dB Bandwidth	47 CFR §15.247 (a) (2),ANSI C63.10 Subclause 11.8.2 Option 2	Pass
Maximum Peak Output Power	47 CFR §15.247 (b) (3), ANSI C63.10 Subclause 11.9.1.1	Pass
DTS maximum power spectral density level in the fundamental emission	47 CFR §15.247 (e) (1),ANSI C63.10 Subclause 11.10.2	Pass
Radiated Spurious Emission in non-restricted frequency bands	47 CFR §15.247 (d),ANSI C63.10 Subclause 11.11.1(a)	Pass
Radiated Spurious Emissions, Restricted Bands	47 CFR §15.247 (d), §15.205, §15.209(a), ANSI C63.10. Subclause 11.12.1	Pass
Band-edge compliance of RF Conducted Emission	47 CFR §15.247 (d), ANSI C63.10. Subclause 11.13.2	Pass
Antenna Connector Requirements	47 CFR §15.203	Pass
Power line Emission measurements	47 CFR §15.207	Pass

Table of Contents

1.	GENERAL
1.1.	Referenced documents:
1.2.	General Description7
2.	METHOD OF MEASUREMENTS
2.1.	Radiated Emissions Measurements in the restricted bands:
2.2.	Radiated Emission measurements:
2.3.	Worst Case Results:
2.4.	Power Line Emission measurements:
3.	TEST FACILITY & UNCERTAINTY OF MEASUREMENT
3.1.	Accreditation/ Registration reference:
3.2.	Accreditation/ Registration reference:
3.3.	Test Facility description
3.4.	The measurement software used:
4.	BLE: REPORT OF MEASUREMENTS AND EXAMINATIONS 10
4.1.	The minimum 6dB DTS bandwidth10
4.2.	Maximum Peak Output Power13
4.3.	DTS maximum power spectral density level in the fundamental emission
4.4.	Spurious Emissions
	4.4.1.Spurious Emissions - Radiated Measurements214.4.2.Spurious Emissions in Restricted Bands Radiated Measurements33
4.5.	Band-edge compliance of RF Radiated Emission42
4.6.	Antenna Connector Requirements
4.7.	Power Line Emissions measurements
5.	APPENDIX

1. General

1.1. Referenced documents:

FCC Part 15	Code of Federal Regulations (Washington, DC: Federal Communications Commission), Title 47, Part 15, Subpart C
ANSI C63.10:2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.2. General Description

Product name: SCiO Cup

Model: SCCUP01

FCC ID: 2AEKW-CP-SCM003

Description:

The SCiO cup is a portable Near Infrared device for grains and feed, food, and materials analysis

THE SCiO Cup is the world's fastest lab-grade analyzer, combining portability, accuracy, and ease of use. It revolutionizes feed food, and material analysis by moving decision making out of the lab and into the field, by using Near Infra-Red Spectroscopy (NIRS).

Maximum Radiated Peak Output Power: 0.7348 mW

Frequency range: 2400-2483.5 GHz

Type of Modulation:

Protocol	Modulation
Bluetooth	GFSK

Antenna Specification:

Type: Antenna Gain: Max 1.3 dBi in the range 2.4 – 2.5 GHz

2. Method of Measurements

2.1. Radiated Emissions Measurements in the restricted bands:

For radiated emissions, which fall in the restricted bands the spectrum from 9 kHz to 25GHz was investigated following the guidelines in ANSI C63.10-2013, with the transmitter set to the lowest, middle and highest channel frequencies. Measurements were performed with peak detector and repeated averaged with VBW=10Hz. Only Peak detection plots are presented.

2.2. Radiated Emission measurements:

Measurements were performed at a 3-meter measurement distance in the semi-anechoic chamber in order to evaluate the radiated electromagnetic interference characteristics of the EUT. The EUT was placed on a non-metallic table/support, 0.8m for frequency below 1GHz and 1.5m for frequency above 1GHz above the turntable, was configured, arranged and operated in a manner consistent with typical application and load conditions. The test program of exercising the equipment ensured that various parts of the EUT were exercised to permit detection of all EUT disturbances.

An appropriate antenna depending upon the frequency range, per ANSI C63.10-2013 was used. While the turntable was being rotated, the height of the antenna was scanned from 1 to 4m. The highest radiated emission was detected by manipulating the system cables to the worst-case position. This process was repeated for both antenna polarizations. The spectrum up to 40GHz was investigated for spurious emissions, using a band-reject filter where appropriate.

The amplitudes of worst-case emission were measured with the detector modes and resolution bandwidths over various frequency ranges according to the requirements of ANSI C63.10-2013.

2.3. Worst Case Results:

Worst case result is determined as the channel with the highest output power and operating on charging mode with AC/DC adapter . Pre-scan has been conducted to determine the worst-case. Test result of various modulation modes/data rates and EUT's configurations(Battery operated mode, charging mode with AC/DC adapter) were investigated and worst case was reported.

FCC 15.31(e)

The EUT operates with AC/DC adaptor 110Vac ,60Hz with a new rechargeable battery During power output measurement the AC input was varied between 85% and 115% No change of power and frequency was observed-comply

2.4. Power Line Emission measurements:

The EUT was placed on a non-conductive table/support 80 cm above the reference ground plane. The EUT was configured in accordance with ANSI C63.10-2013 using a 50μ H/50 ohm LISN.

Compliance with the provisions was based on the measurements of the radio frequency voltage between each line and the ground at the power terminal.

The EUT was operated in receive mode and then with DTS transmitters operating alternately and the worst case results were presented.

3. Test Facility & Uncertainty of Measurement

3.1. Accreditation/ Registration reference:

3.2. Accreditation/ Registration reference:

- A2LA Certificate Number: 1633.01
- FCC Designation Number : IL1006

3.3. Test Facility description

The tests were performed at the EMC Laboratory, QualiTech Division, ECI Telecom

Address: 30, Hasivim St., Petah Tikva, Israel. Tel: 972-3-926-6994

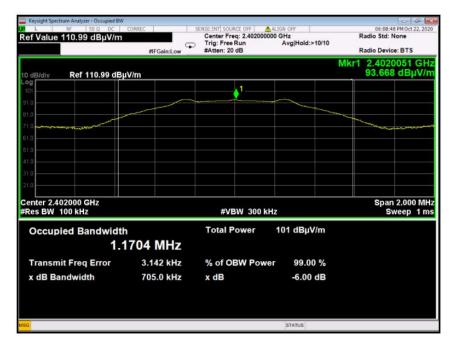
Semi Anechoic Configuration:

Measurement distance	3m
Chamber dimensions	9.5m x 6.5m x 5.2m
Antenna height	1 - 4m
Shielding Effectiveness	Magnetic field ≥80dB at 15 kHz ≥90dB at 100 kHz Electric field >120dB from 1MHz to 1GHz >110dB from 1GHz to 10GHz
Absorbing material	Ferrite tiles on the walls and ceiling Emerson and Cuming absorbing material in selected positions on the walls
Normalized Site Attenuation measured at 5 positions	±3.9dB, 30MHz to 200MHz ±3dB, 200MHz to 1000MHz
Transmission Loss measured at 5 positions, at 1.5m height	±3dB, 1GHz to 18GHz

3.4. The measurement software used:

Software Name	Software Version	
Test Software "TILE	Version 7.1.4.1	

4. BLE: Report of Measurements and examinations


Reference document:	47 CFR §15.247 (a) (2),ANSI C63.10 Subclause 11.8.2 Option 2			
Test Requirements:	The minimum 6dB Bandwidth of DTS			
Operating conditions:	Under normal test conditions	Under normal test conditions		
Method of testing:	Radiated			
S.A. Settings:	RBW: 100kHz, VBW: 300kHz, Span: 2MHz	Pass		
Hopping function:	Disabled			
Environment conditions:	Ambient Temperature: 24.3 °C	Relative Humidity: 49.8% Atmospheric Pressure 1011.4 hPa		
Test Result:	See below	See Plot 4.1.1 – 4.1.3		

4.1. The minimum 6dB DTS bandwidth

Test results:

Channel	Frequency, [MHz]	6dB BW, [kHz]	Limit([kHz]	Margin	Pass/Fail
Low	2402	705.0	>500	205.0	Pass
Mid	2440	694.1	>500	194.1	Pass
High	2480	694.6	>500	194.6	Pass

Plot 4.1.1: 6 dB bandwidth test results, GFSK, channel 0 (Low)

Plot 4.1.2: 6 dB bandwidth test results, GFSK, channel 39 (Mid)

Keysight Spectrum Analyzer - Occupied BW	CORREC			
enter Freq 2.480000000		Center Freq: 2.48000000	LIGN OFF 0 GHz Avg Hold:>10/10	06:24:38 PM Oct 22, 202 Radio Std: None Radio Device: BTS
0 dB/div Ref 110.99 dBj	ıV/m			Mkr1 2.480252 GH 93.429 dBµV/n
og 101				
1.0				
1.0				
1.0				
10				
i.0				
1.0				
1.0				
enter 2.480000 GHz Res BW 100 kHz		#VBW 300 kH	z	Span 2.000 MH Sweep 1 m
Occupied Bandwidth	n	Total Power	101 dBµV/m	
	690 MHz			
Transmit Freq Error	1.538 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	694.6 kHz	x dB	-6.00 dB	

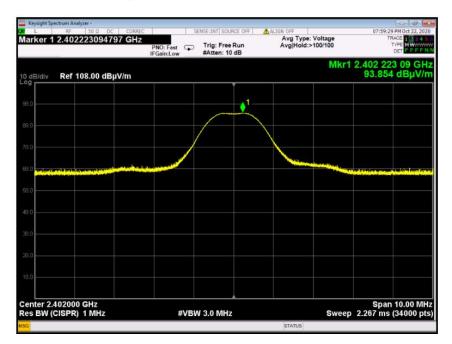
Plot 4.1.3: 6dB bandwidth test results, GFSK, channel 78 (High)

4.2. Maximum Peak Output Power

Reference document:	47 CFR §15.247 (b) (1), ANSI C63.10 Subclause 11.9.1.1			
Test Requirements:	The maximum peak output power shall not exceed 1Watt (30dBm)			
Operating conditions:	Under normal test conditions			
Method of testing:	Conducted	Pass		
S.A. Settings:	RBW: 1MHz, VBW: 3MHz,			
Hopping function:	Disabled			
Environment conditions:	Ambient Temperature: 24.9°C	Relative Humidity:Atmospheric Pressure:50.1%1011.4 hPa		
Test Result:	See below	See Plot 4.2.1 – Plot 4.2.6		

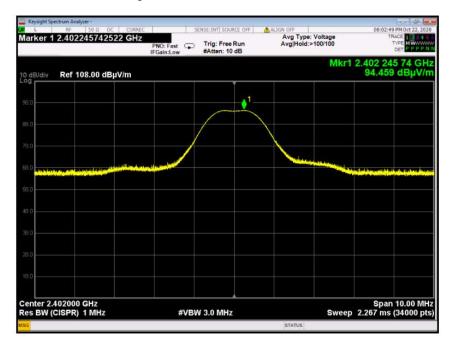
Test results:

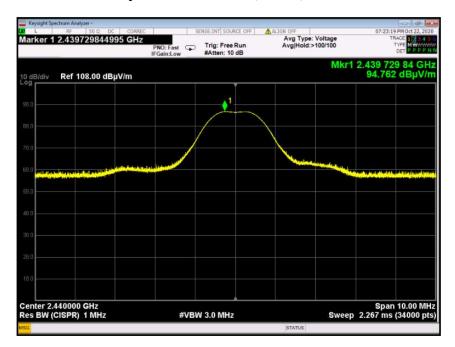
Type of modulation	Channel	Frequency (MHz)	Antenna position	Reading field (dBµV/m)	Max. peak output power*,** [dBm] EIRP	Antenna gain [dBi]	Max peak conducted output power [dBm]	Limit [dBm]	Delta [dB]	Pass/Fail
	Low	2402	Н	93.854	-1.346	0.9	-2.246	30.00	-32.25	Pass
	Low	2402	V	94.459	-0.741	0.9	-1.641	30.00	-31.64	Pass
GFSK/BLE	Mid	2440	Н	94.762	-0.438	0.9	-1.338	30.00	-31.34	Pass
GL2V/BLE	Iviid	2440	V	94.075	-1.125	0.9	-2.025	30.00	-32.03	Pass
	High	2480	Н	94.674	-0.526	1.3	-1.826	30.00	-31.83	Pass
	rign	2480	V	95.024	-0.176	1.3	-1.476	30.00	-31.48	Pass


*Corrected for external attenuations & cable

**Conversion formula from field strength to P

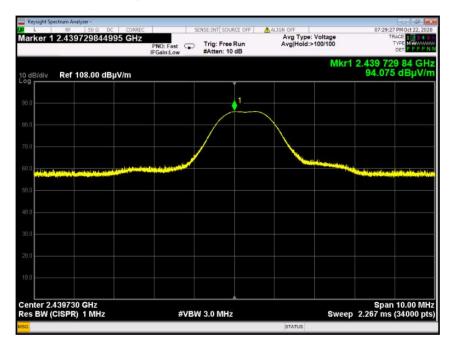
$$P = \frac{(E_{V/m} \times d)^2}{(30 \times G)}$$
[W]

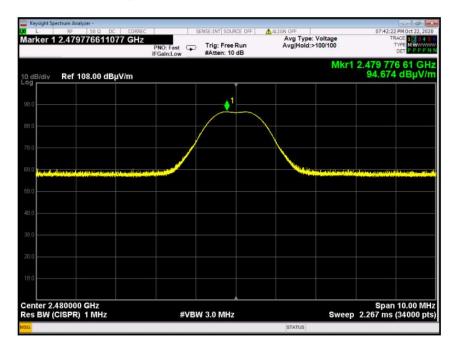

EIRP = P x G = (E (V/m) x d) 2 /30 Where: P = Peak Power (W) G = Antenna gain E = electric field strength in V/m, d = Measurement distance m-3m



Plot 4.2.1: Maximum Peak Output Power test results, GFSK, channel 0 Horizontal Polarization

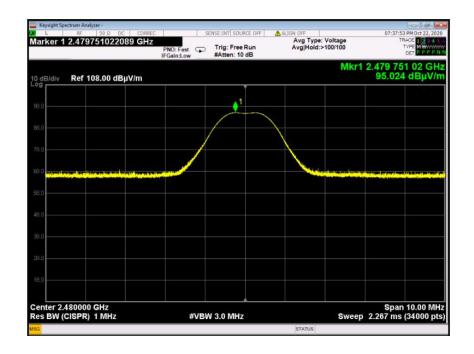
Plot 4.2.2: Maximum Peak Output Power test results, GFSK, channel 0 Vertical Polarization





Plot 4.2.3: Maximum Peak Output Power test results, GFSK, channel 39 Horizontal Polarization

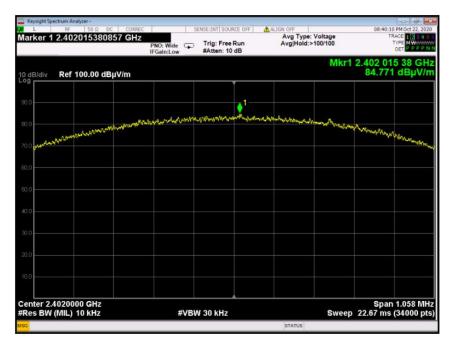
Plot 4.2.4: Maximum Peak Output Power test results, GFSK, channel 39 Vertical Polarization



Plot 4.2.5: Maximum Peak Output Power test results, GFSK, channel 78 Horizontal Polarization

Plot 4.2.6: Maximum Peak Output Power test results, GFSK, channel 78 Vertical Polarization

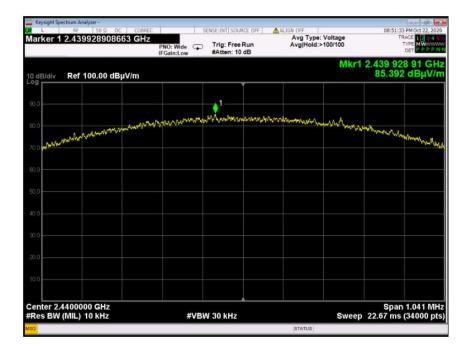
4.3.	DTS maximum power spectral density level in the fundamental emission
------	--


Reference document:	47 CFR §15.247 (e) (1), ANSI C63.10 Subclause 11.10.2					
Test Requirements:	DTS maximum power spectral density level in the fundamental emission					
Operating conditions:	Under normal test conditions					
Method of testing:	Radiated					
S.A. Settings:	RBW: 10KHz, VBW: 30KHz,	Pass				
Hopping function:	Disabled					
Environment conditions:	Ambient Temperature: 24.9°C	Relative Humidity: 50.1%	Atmospheric Pressure: 1011.4 hPa			
Test Result:	See below	See Plot 4.3.1 –]	Plot 4.3.6			

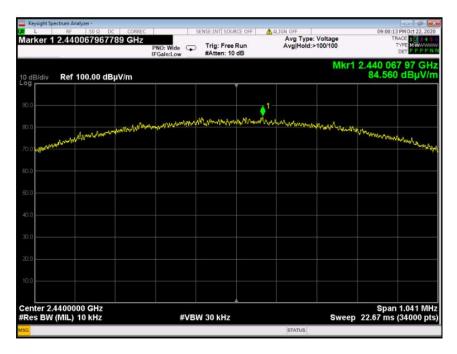
Test results:

Type of modulation	Channel	Frequency (MHz)	Antenna position	Worst case reading (dBµV/m)	Max. power spectral density * [dBm] EIRP	Antenn a gain [dBi]	Max conducted power spectral density [dBm]	Limit [dBm]	Delta [dB]	Pass/ Fail
	Len	2402	Н	84.771	-10.429	0.9	-11.329	8.00	-19.33	Pass
	Low	2402	V	85.997	-9.203	0.9	-10.103	8.00	-18.10	Pass
CESK/DLE	MCI	2440	Н	85.392	-9.808	0.9	-10.708	8.00	-18.71	Pass
GFSK/BLE	Mid	2440	V	84.560	-10.64	0.9	-11.54	8.00	-19.54	Pass
	11.1	2480	Н	85.618	-9.582	1.3	-10.882	8.00	-18.88	Pass
	High	2480	V	85.074	-10.126	1.3	-11.426	8.00	-19.43	Pass


*Corrected for external attenuations & cable

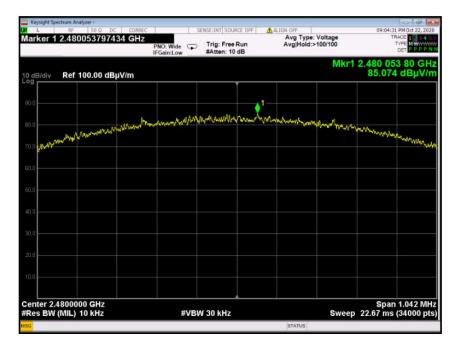

Plot 4.3.1: DTS maximum power spectral density level in the fundamental emission, channel 0 Horizontal Polarization

Plot 4.3.2: DTS maximum power spectral density level in the fundamental emission, channel 0 Vertical Polarization



Plot 4.3.3: DTS maximum power spectral density level in the fundamental emission, channel 39 Horizontal Polarization

Plot 4.3.4: DTS maximum power spectral density level in the fundamental emission, channel 39 Vertical Polarization



Plot 4.3.5: DTS maximum power spectral density level in the fundamental emission, channel 78 Horizontal Polarization

Plot 4.3.6: DTS maximum power spectral density level in the fundamental emission, channel 78 Vertical Polarization

4.4. Spurious Emissions

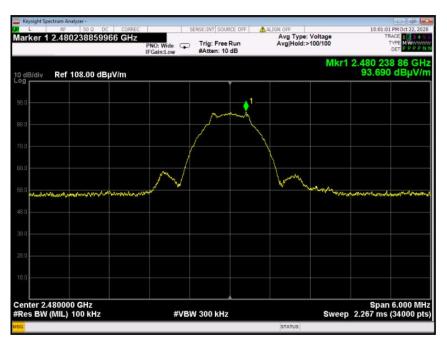
4.4.1. Spurious Emissions - Radiated Measurements

Reference document:	47 CFR §15.247 (d), ANSI C63.10 Subclau	47 CFR §15.247 (d), ANSI C63.10 Subclause 11.11.1(a)					
Test Requirements:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.						
Operating conditions:	Under normal test conditions						
Method of testing:	Radiated						
S.A. Settings:	f>1GHz: Peak: RBW= 1MHz, VBW= 3MHz, Average: VBW= 1 kHz f<1GHz: RBW: 100kHz,VBW: 300kHz	Pass					
Hopping function:	Disabled (lowest, middle, and highest channels to be investigated)						
Environment conditions:	Ambient Temperature: 24.9°C	Relative Humidity: 50.1%	Atmospheric Pressure: hPa				
Test Result:	See below	Plots 4.4.1.1	– Plot 4.4.1.19				

All measurements were done in horizontal and vertical polarizations; the results show the worst case.

Test results below 1GHz:

Channel	Emission Frequency [MHz]	Detector Type	Antenna Polarization	Emission Level, [dBµV/m]	Ref.level, [dBµV/m]	Delta [dBc]	Limit, [dBc]	Pass/Fail
	120.00	Peak	Н	38.621	93.69	-55.07	-20.0	Pass
Low	570.02	Peak	Н	42.67	93.69	-51.02	-20.0	Pass
	570.02	Peak	V	42.20	93.69	-51.49	-20.0	Pass
	570.02	Peak	Н	41.87	93.69	-51.82	-20.0	Pass
Mid	629.96	Peak	Н	43.00	93.69	-50.69	-20.0	Pass
Mild	689.97	Peak	Н	39.89	93.69	-53.80	-20.0	Pass
	749.97	Peak	V	42.50	93.69	-51.19	-20.0	Pass
	570.02	Peak	Н	45.32	93.69	-48.37	-20.0	Pass
High	749.97	Peak	Н	44.22	93.69	-49.47	-20.0	Pass
	570.02	Peak	V	43.24	93.69	-50.45	-20.0	Pass


Channel	Emission Frequency [GHz]	Detector Type	Antenna Polarization,	Emission Level, [dBµV/m]	Reference Level,, [dBµV/m]	Delta, [dBc]	Limit Delta, [dBc]	Pass/Fail
	9.928	Peak	Н	41.544	93.69	-52.146	-20.0	Pass
T	4.806	Peak	V	42.205	93.69	-51.485	-20.0	Pass
Low	7.205	Peak	V	39.072	93.69	-54.618	-20.0	Pass
	12.008	Peak	V	44.952	93.69	-48.738	-20.0	Pass
Mid	12.1988	Peak	Н	43.907	93.69	-49.783	-20.0	Pass
IVIId	12.1988	Peak	V	42.547	93.69	-51.143	-20.0	Pass
	12.3988	Peak	Н	42.363	93.69	-51.327	-20.0	Pass
High	12.398	Peak	V	42.458	93.69	-51.232	-20.0	Pass
	4.9576	Peak	V	40.261	93.69	-53.429	-20.0	Pass

Test results above 1GHz:

Note: Emission Level $[dB\mu V/m]$ = Measured Emission $[dB\mu V]$ + Correction-factor [dB (1/m)]

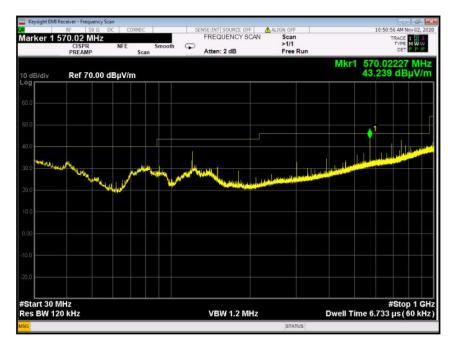
Correction Factor = Antenna factor + Cable Loss + Filter I/L

Plot 4.4.1.1: The maximum PSD Reference level Vertical Polarization

Plot 4.4.1.2: Radiated Spurious Emission in 30 MHz – 1 GHz range, Fc = 2402 MHz, Horizontal Polarization

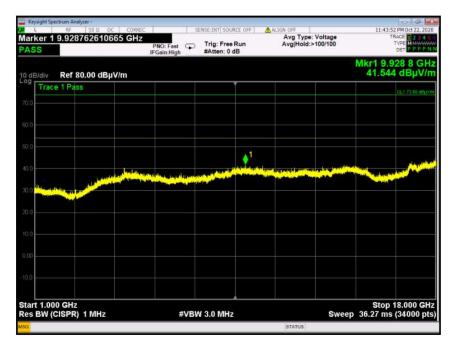
Plot 4.4.1.3: Radiated Spurious Emission in 30 MHz – 1 GHz range, Fc = 2402 MHz, Vertical Polarization

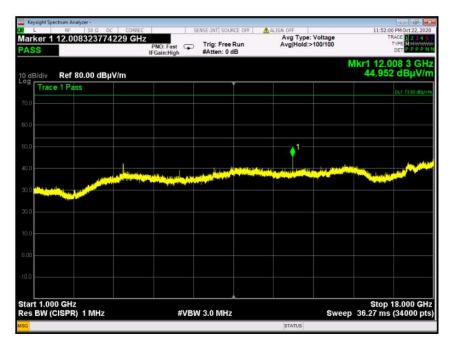
Plot 4.4.1.4: Radiated Spurious Emission in 30 MHz – 1 GHz range, Fc = 2440 MHz, Horizontal Polarization



Plot 4.4.1.5: Radiated Spurious Emission in 30 MHz – 1 GHz range, Fc = 2440 MHz, Vertical Polarization

Plot 4.4.1.6: Radiated Spurious Emission in 30 MHz – 1 GHz range, Fc = 2480 MHz, Horizontal Polarization





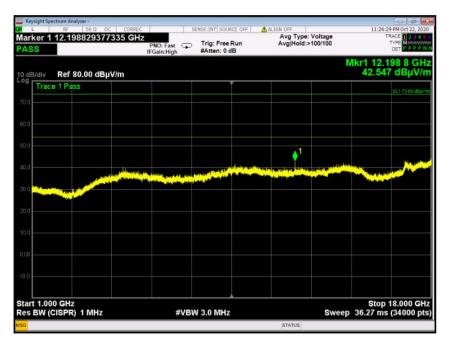
Plot 4.4.1.7: Radiated Spurious Emission in 30 MHz – 1 GHz range, Fc = 2480 MHz, Vertical Polarization

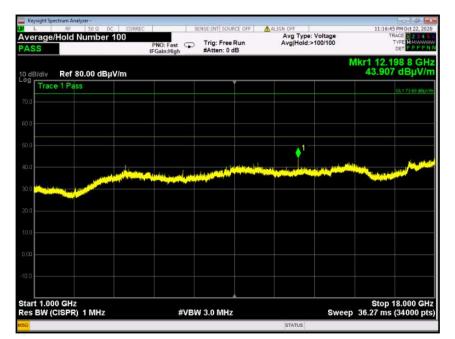
Plot 4.4.1.8 Radiated Spurious Emission in 1 – 18 GHz range, Fc = 2402 MHz, Horizontal Polarization, Peak



Plot 4.4.1.9 Radiated Spurious Emission in 1 – 18 GHz range, Fc = 2402 MHz, Vertical Polarization, Peak

Plot 4.4.1.10: Radiated Spurious Emission in 18 – 25 GHz range, Fc = 2402 MHz, Horizontal Polarization


Reysignt Spectrum	Analyzer - Swept SA F 50 Q DC	CORREC		SENSE:INT SOURCE	OFF A	LIGN ÖFF		04:04:30	PM Nov 02, 20
arker 1 24. ASS	916000000	NFE	PNO: Fast	Trig: Free Ru Atten: 6 dB	n	Avg Type: Avg Hold:>			ACE 1 2 3 4
dB/div Re	f 75.00 dBµ\	v/m					<u>\$</u> 1	Mkr1 24 46.047	.916 GH dBµV/
Trace 1 F	ass								
0									
0									
	You when when	holomoula	una superior and the second	the and the	mandahlm	ad which have a get	da waanini dh	wight works	1. Andra Maria
.0			1 PAPERINE 1						
o									
ō									
1	217							Stop 2	25.000 G
art 18.000 (s BW (CISP			#VE	3W 3.0 MHz			Sweep	14.20 m	s (1001 p



Plot 4.4.1.11: Radiated Spurious Emission in 18 – 25 GHz range, Fc = 2402 MHz, Vertical Polarization

Plot 4.4.1.12: Radiated Spurious Emission in 1 – 18 GHz range, Fc = 2440 MHz, Horizontal Polarization, Peak

Plot 4.4.1.13: Radiated Spurious Emission in 1 – 18 GHz range, Fc = 2440 MHz, Vertical Polarization, Peak

Plot 4.4.1.14: Radiated Spurious Emission in 18 – 25 GHz range, Fc = 2440 MHz, Horizontal Polarization

RF 50 Ω D			SENSE:INT SOUR	CE DEF A	LIGN OFF			9 PM Nov 02, 20
rker 1 24.87400000 SS	NFE	PNO: Fast G	Trig: Free Atten: 6 dl	Run 3	Avg Type: Avg Hold:>		т	RACE 1 2 3 4 TYPE M
dB/div Ref 75.00 dBj	µV/m						Mkr1 24 48.532	.874 GH 2 dBµV/
Trace 1 Pass								
0								
0							ulu la da	a the state of the
wells out with start base	International Generation	Lating deal later	la constante a der la	abl Martina	me more line	and production of the	and the second second	
6 haladaana maratara ay	autilitation deriv	Modeline Anthrophy	Sector and because	add to the state				
	สายผู้เห็นสาวท	na dan sa ka s Ka sa ka s	ala a na tao a a	all toth size				
0	มิปัตวสม.ค.ปะวพ	u on the state of						
D	au hile at the start	n an						
p	2019 2019 2019 2019 2019 2019 2019 2019							
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				**************************************				
D n 			BW 3.0 MHz					25.000 G

Arker 1 24.90200			SENSE INT SOURC		Aug Type: Avg Hold:>	Voltage 54/54		PMNov 02, 2 RACE 1 2 3 4 TYPE MUMUU DET PINNN
dB/div Ref 75.00	dBµV/m						Mkr1 24 46.730	.902 G dBµV
Trace 1 Pass			Ĭ					
5.0								
60								1
5.0							and the second	When the m
Just / all west West und	Mary Malaker	hele make here	- walnut the lower	NUMBER OF	AND MARINE	And the start of the start	MUNINAM.	
5.0 5.0 atrild(AllpetAMaral	491Marshildrogenit	likelikerintaleiken	portal-output-	NUMBER	altable the special fill	Part Art Hart All	MLATHE ANDA	
5.0 utr////////////////////////////////////	49. Hornshild y gynesi	Nederoralistus	pondouringl/ma	NUNVALIN	atastametrevolder)	P _{NN} Acres (MAN	MUNNES CARL	
	41bhranlubhranai	Nelle-maleius	poundousinglineer	NUMBAN	altablereke valderi	e _{nn f} hand y brita	*U.)[}}-	
5.0 5.11	Atladeren i Nelaleragaki ti	yalu-mahuur	poredrautallerer	ng ministration ng ministratio	dinimeter state	# ₁₁₁₇ #10-140 ⁴ ¥ ¹ 0 ⁴ 744	AUT We from I.	
5.0 5.0 	All Martin Laboratori	Wennahuur	poologikousingillooren	หมูงพัฒน	alantinoheredalari	P _{III} Association	AUT	
5.0	elleksenski konstall	NA Hertria holy of	n de la d Internet de la d	na n	effectioned a solid of l	P _{at} thone Plant		

Plot 4.4.1.15: Radiated Spurious Emission in 18 – 25 GHz range, Fc = 2440 MHz, Vertical Polarization

Plot 4.4.1.16: Radiated Spurious Emission in 1 – 18 GHz range, Fc = 2480 MHz, Horizontal Polarization Peak

Plot 4.4.1.17: Radiated Spurious Emission in 1 – 18 GHz range, Fc = 2480 MHz, Vertical Polarization, Peak

Plot 4.4.1.18: Radiated Spurious Emission in 18 – 25 GHz range, Fc = 2480 MHz, Horizontal Polarization

Keysight Spectrum Analyz RF	50 D DC CORREC		SENSE INT SOURCE OFF	ALIGN OFF	A140	04:30:53 PM Nov	02,20
arker 1 24.790	000000000 GH	Z PNO: Fast G	Trig: Free Run Atten: 6 dB	Avg Type: Avg Hold:>		TRACE TYPE DET	
dB/div Ref 75	.00 dBµV/m					Mkr1 24.790 48.618 dB	
Trace 1 Pass			Ĭ				
.0							
						. moles	الرسانية
Locustition and apply the	michandrawa	Karjerya Karridor dat	h-maintan Indiana	terretury conversions	en of the second second	pro-pro-shifter internet	
0							
0							
0							
0							
c							
art 18.000 GHz s BW (CISPR) 1	I MHz	#VB	W 3.0 MHz		Sweep	Stop 25.00 14.20 ms (100	

Plot 4.4.1.19 Radiated Spurious Emission in 18 – 25 GHz range, Fc = 2480 MHz, Vertical Polarization

RF 50 Q	DC CORREC	SENSE INT SOURCE OFF	ALIGN OFF	04:22:59 PM Nov 02, 20
arker 1 24.95100000 SS		ast 🖵 Trig: Free Run ow Atten: 6 dB	Avg Type: Voltage Avg Hold:>54/54	TRACE 2 2 4 TYPE M
dB/div Ref 75.00 dB	μV/m		N	Akr1 24.951 GI 48.010 dBµV/
Trace 1 Pass				
n				
ō			1	a a week and wear about
without the states and the states of the sta	in produced and the second	normby Arrenter in platameter below	In made portan and the failed and and	n-ipt-ter
0				
n				
0				
0				
0 0				
				Dt-= 05 000 0
art 18.000 GHz s BW (CISPR) 1 MHz		#VBW 3.0 MHz	Sweep	Stop 25.000 G 14.20 ms (1001 p

4.4.2. Spurious Emissions in Restricted Bands Radiated Measurements

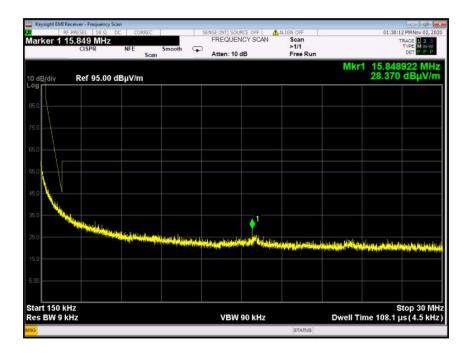
Reference document:	47 CFR §15.247 (d) & §15.205& §15.209(a), ANSI C63.10. Subclause 11.12.1				
Test Requirements:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c).				
Operating conditions:	Under normal test conditions				
Method of testing:	Radiated				
S.A. Settings:	f>1GHz: Peak: RBW= 1MHz, VBW= 3MHz, Average: VBW= 1 kHz f<1GHz: RBW: 100kHz,VBW: 300kHz	Pass			
Hopping function:	Disabled/Enabled				
Environment conditions:	Ambient Temperature: 23.8°c	Relative Humidity: 51.6%	Atmospheric Pressure: hPa		
Test Result:	See below	See Plot 4.4.2.1 – Plot 4.4.2.14			

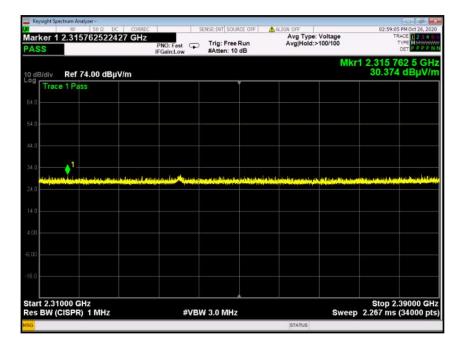
Test results below 1GHz:

Channel	Emission Frequency [MHz]	Detector Type	Antenna Polarization	Emission Level, [dBµV/m]	Limit, [dBµV/m]	Delta, [dB]	Pass/Fail
Low	120.00	Peak	Н	38.62	43.50	-4.88	Pass
	150.00	Peak	Н	35.27	43.50	-8.23	Pass
	120.00	Peak	V	36.37	43.50	-7.13	Pass
	150.00	Peak	V	31.63	43.50	-11.87	Pass
Mid	120.00	Peak	Н	37.39	43.50	-6.12	Pass
	150.00	Peak	Н	35.97	43.50	-7.54	Pass
	120.00	Peak	V	35.48	43.50	-8.02	Pass
High	120.00	Peak	Н	37.02	43.50	-6.48	Pass
	150.00	Peak	Н	35.30	43.50	-8.20	Pass
	240.01	Peak	Н	33.01	46.00	-13.00	Pass
	120.00	Peak	V	37.80	43.50	-5.70	Pass

Test results above 1GHz:

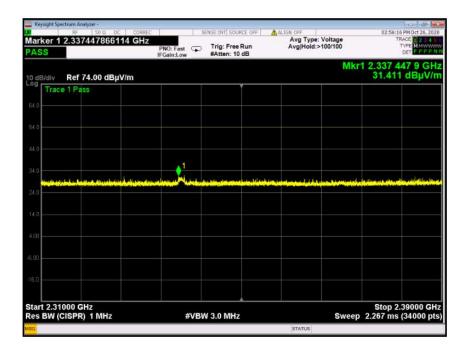
Channel	Emission Frequency, [MHz]	Detector Type	Antenna Polarization ,	Emission Level, [dBµV/m]	Limit, [dBµV/m]	Delta, [dB]	Pass/Fail
	4.806	Peak	V	42.205	74.0	-31.80	Pass
		Average	V	38.944	54.0	-15.06	Pass
	4.806	Peak	Н	40.811	74.0	-33.19	Pass
		Average	Н	35.580	54.0	-18.42	Pass
Low	7.205	Peak	V	39.072	74.0	-34.93	Pass
		Average	V	33.572	54.0	-20.43	Pass
	12.008	Peak	V	44.952	74.0	-29.05	Pass
		Average	V	37.323	54.0	-16.68	Pass
	12 1000	Peak	Н	43.907	74.0	-30.09	Pass
	12.1988	Average	Н	34.133	54.0	-19.87	Pass
Mid	12.1988	Peak	V	42.547	74.0	-31.45	Pass
		Average	V	35.002	54.0	-19.00	Pass
	1.055	Peak	V	40.261	74.0	-33.74	Pass
	4.9576	Average	V	35.845	54.0	-18.16	Pass
TT' 1	12.398	Peak	V	42.458	74.0	-31.54	Pass
High		Average	V	38.712	54.0	-15.29	Pass
	12.398	Peak	Н	42.363	74.0	-31.64	Pass
		Average	Н	35.559	54.0	-18.44	Pass

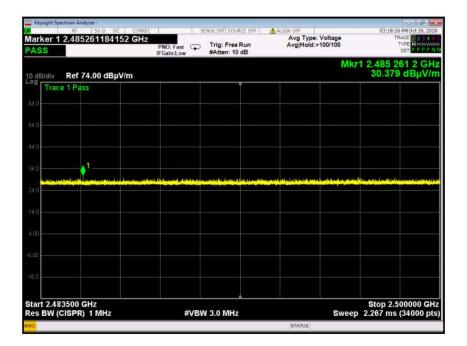

Note: Radiated Emission $[dB\mu V/m] =$ Measured Emission $[dB\mu V] +$ Correction-factor [dB (1/m)]Correction Factor = Antenna factor + Cable Loss



Plot 4.4.2.1: Spurious Emissions in Restricted Bands, Single mode, Fc = 2402MHz, Horizontal Polarization, 9 k-150 KHz

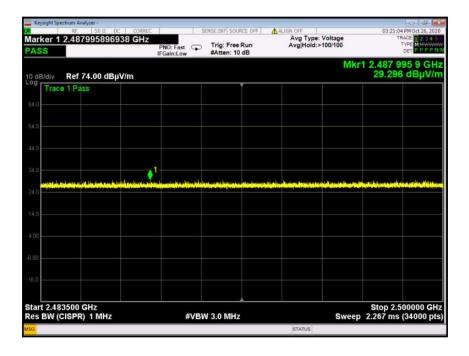
Plot 4.4.2.2: Spurious Emissions in Restricted Bands, Single mode, Fc = 2480MHz, Horizontal Polarization, 150K-30MHz

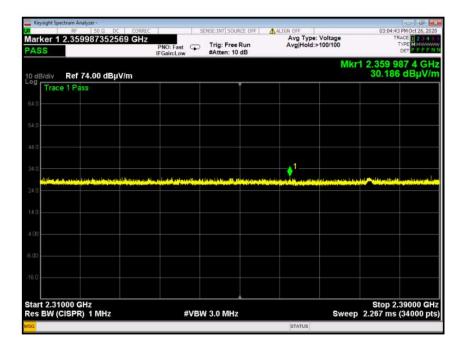




Plot 4.4.2.3: Spurious Emissions in Restricted Bands, Single mode, Fc = 2402MHz, Horizontal Polarization, 2310-2390MHz

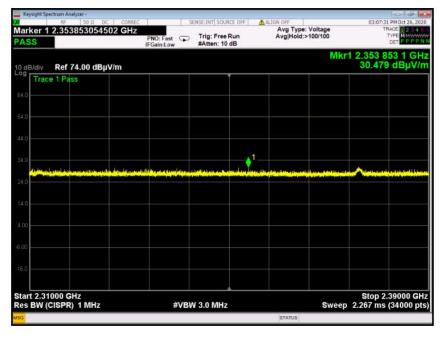
Plot 4.4.2.4: Spurious Emissions in Restricted Bands, Single mode, Fc = 2402MHz, Vertical Polarization 2310-2390MHz

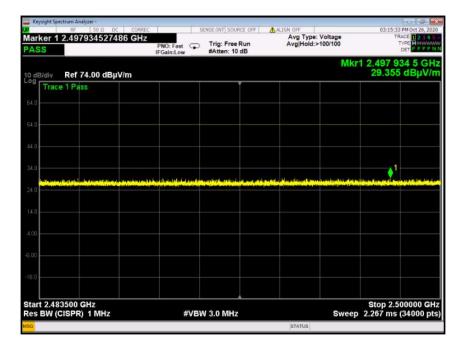




Plot 4.4.2.5: Spurious Emissions in Restricted Bands, Single mode, Fc = 2402MHz, Horizontal Polarization, 2483.5-2500MHz

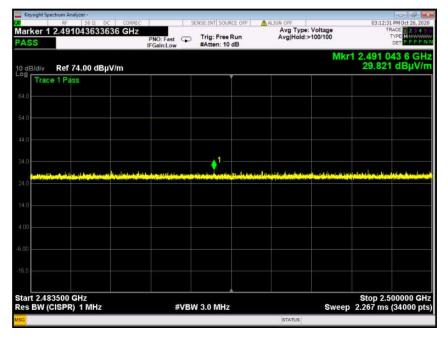
Plot 4.4.2.6: Spurious Emissions in Restricted Bands, Single mode, Fc = 2402MHz, Vertical Polarization 2483.5-2500MHz





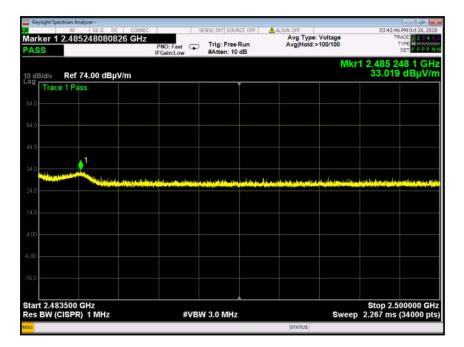
Plot 4.4.2.7: Spurious Emissions in Restricted Bands, Single mode, Fc = 2440MHz, Horizontal Polarization, 2310-2390MHz

Plot 4.4.2.8: Spurious Emissions in Restricted Bands, Single mode, Fc = 2440MHz, Vertical Polarization 2310-2390MHz



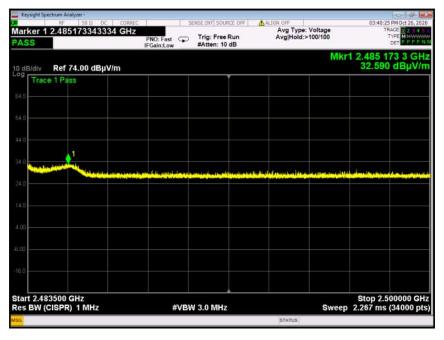
Plot 4.4.2.9: Spurious Emissions in Restricted Bands, Single mode, Fc = 2440MHz, Horizontal Polarization, 2483.5-2500MHz

Plot 4.4.2.10: Spurious Emissions in Restricted Bands, Single mode, Fc = 2440MHz, Vertical Polarization 2483.5-2500MHz



Plot 4.4.2.11: Spurious Emissions in Restricted Bands, Single mode, Fc = 2480MHz, Horizontal Polarization, 2310-2390MHz

Plot 4.4.2.12: Spurious Emissions in Restricted Bands, Single mode, Fc = 2480MHz, Vertical Polarization 2310-2390MHz


larker 1 2.352057707580 G	Hz PNO: East 🕞 Trig	nt SOURCE OFF g: Free Run ten: 10 dB	Aug Type: Voltage Avg Hold:>100/100	03:52:31 PM Oct 26, 202 TRACE 2 3 4 5 TYPE M M
dB/div Ref 74.00 dBµV/m			Mkr1	2.352 057 7 GH 30.326 dBµV/r
Trace 1 Pass				
4.0				
4.0				
4.0.	den talkenen földe av alle stansamet alle kannelle state state	1	a to them to the only of the second	ويورد معطر الأسبا وتأويره بذ وأجزازات أوالكوار والأور
4.0	ni denti da kana indi na kana da na da na na di	antinen stallfederen	ander deprinter of etc. and a second second statement of the t	lan an bitan dia aka maka maka dia katika dia
4.0				
00				
50				
tart 2.31000 GHz				Stop 2.39000 GF
es BW (CISPR) 1 MHz	#VBW 3.0	MHz	Sweep	2.267 ms (34000 pt

Plot 4.4.2.13: Spurious Emissions in Restricted Bands, Single mode, Fc = 2480MHz, Horizontal Polarization, 2483.5-2500MHz

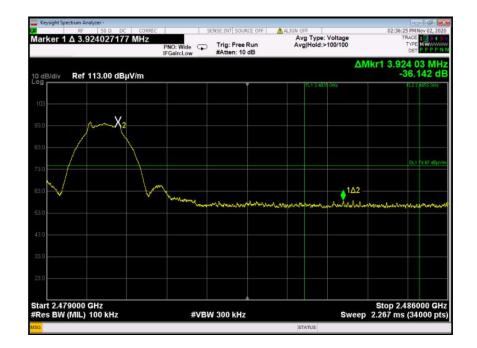
Plot 4.4.2.14: Spurious Emissions in Restricted Bands, Single mode, Fc = 2480MHz, Vertical Polarization 2483.5-2500MHz


4.5. Band-edge compliance of RF Radiated Emission

Reference document:	47 CFR §15.247 (d), ANSI C63.10:2013 section 11.13.2					
Test Requirements and limit:	In any 100 kHz bandwidth outside the frequency band in which the digitally modulated radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in Section §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (See §15.205(c).					
Operating conditions:	Under normal test conditions					
Method of testing:	Radiated					
S.A. Settings:	RBW: 100kHz, VBW: 300kHz		Pass			
Hopping function:	NO	7				
Environment conditions:	Ambient Temperature: 23.6°C	Relative Humidity: Atmospheric Pressure: 1011 49.1% hPa				
Test Result:	See below	See Plot 4.5.1 – Plot 4.5.4				

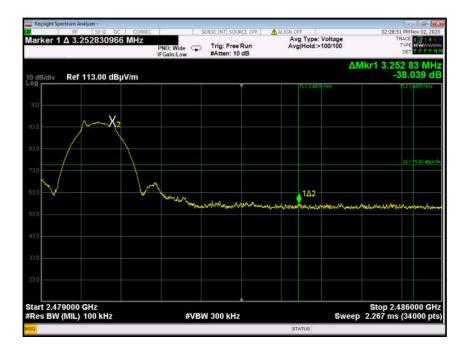
Test results

Antenna Position	Channel	Measured emission, [dBc]	Limit, [dBc]	Margin(db)	Result
horizontal	Low	-31.241	-20.00	-11.24	Pass
vertical	Low	-31.740	-20.00	-11.74	Pass
horizontal	High	-36.142	-20.00	-16.14	Pass
vertical	High	-38.039	-20.00	-18.04	Pass



Plot 4.5.1: Band-edge test results, GFSK, channel 0, Horizontal Polarization

Plot 4.5.2: Band-edge test results, GFSK, channel 0, Vertical Polarization



Plot 4.5.3: Band-edge test results, GFSK, channel 78, Horizontal Polarization

Plot 4.5.4: Band-edge test results, GFSK, channel 78, Vertical Polarization

Reference document:	47 CFR §15.203 RSS-Gen, Section 7.1.4
Test Requirements:	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with provisions of this section.
Verdict	Integral Antenna -Comply

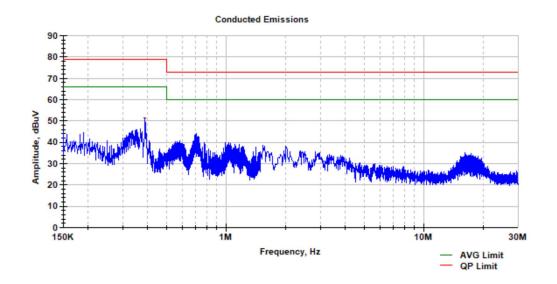
4.6. Antenna Connector Requirements

Reference document:	47 CFR §207				
Test Requirements:	The emissions from an intentional radiator shall not exceed the field strength levels specified in §15.207.Any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Sec.15.207.				
Operating conditions:	Under normal test conditions				
Method of testing:	Conducted Emissions	Pass			
S.A. Settings:	f <30MHz: RBW: 9kHz, VBW:30kHz				
Radio device:	Transmitting				
Environment conditions:	Ambient Temperature: 23.2°c	Relative Humidity: 48.1%Atmospheric Pressure: 1011.4 hPa			
Test Result:	See below	See Plot 4.7.1 - Plot 4.7.2			

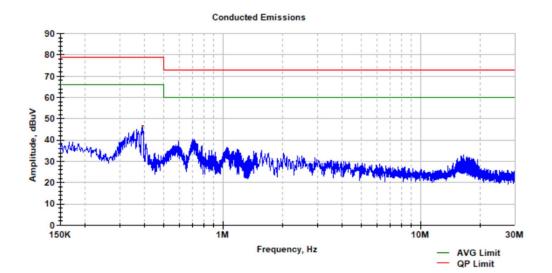
4.7. Power Line Emissions measurements

Test Results:

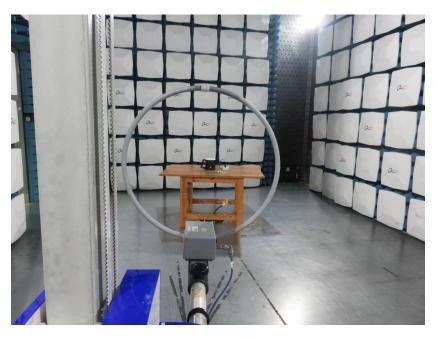
"Phase" Lead

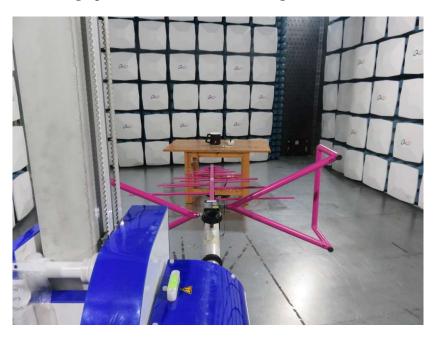

Frequency (MHz)	Peak (dBuV)	QP (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AVG (dBuV)	AVG Limit (dBuV)	AVG Margin (dBuV)	Pass/Fail
0.154	49.0	39.0	79.0	-40.0	30.2	66.0	-35.8	Pass
0.391	51.8	50.6	79.0	-28.4	45.1	66.0	-20.9	Pass
0.585	41.3	38.7	73.0	-34.3	29.3	60.0	-30.7	Pass
0.738	44.4	38.3	73.0	-34.7	29.4	60.0	-30.6	Pass
1.037	40.3	37.1	73.0	-35.9	28.0	60.0	-32.0	Pass
1.175	39.5	37.7	73.0	-35.3	30.7	60.0	-29.3	Pass

"Neutral" Lead

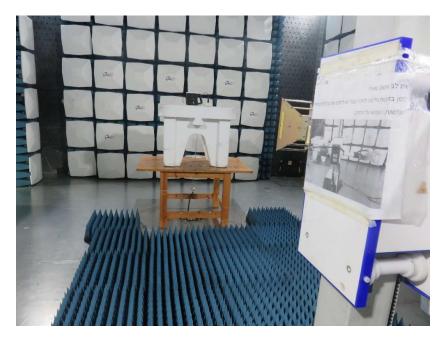

Frequency (MHz)	Peak (dBuV)	QP (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AVG (dBuV)	AVG Limit (dBuV)	AVG Margin (dBuV)	Pass/Fail
0.390	48.7	47.4	79.0	-31.6	42.8	66.0	-23.2	Pass
0.587	39.2	36.5	73.0	-36.5	28.0	60.0	-32.0	Pass
0.719	41.0	38.3	73.0	-34.7	30.0	60.0	-30.0	Pass
0.876	36.4	30.0	73.0	-43.0	20.9	60.0	-39.1	Pass
1.045	37.4	34.0	73.0	-39.0	26.5	60.0	-33.5	Pass
1.199	35.8	28.0	73.0	-45.0	19.7	60.0	-40.3	Pass

Plot 4.7.1: Power Supply Port, Phase Lead


Plot 4.7.2: Power Supply Port, Neutral Lead


5. Appendix

Appendix A: Test Photographs



Photograph 1: Radiated Emission Testing 9kHz-30MHz

Photograph 2: Radiated Emission Testing 30MHz-1000MHz

Photograph 3: Radiated Emission Testing 1GHz-18GHz

Photograph 4: Radiated Emission Testing 18GHz-25GHz

Photograph 4: Conducted Emission Testing on AC Power Supply Port

Description	Manufacturer	Model	Serial No.	Last Cal	Cal Due
RF Filter Section (2.9GHz)	HP	85460A	3448A00282	07/10/2020	07/10/2021
EMI Receiver (2.9GHz)	HP	8546A	3617A00318	07/10/2020	07/10/2021
Spectrum Analyzer 3Hz-44GHz	Agilent	E4446A	MY46180602	16/09/2020	16/09/2022
Signal Generator	Marconi	2024	1122681029	20/05/2020	20/05/2021
Signal Generator	Marconi	2025	202301940	18/02/2020	18/02/2021
Temp & Hum Meter	Zico	Zi-9622	141101658	20/02/2020	20/02/2021
Spectrum Analyzer 9KHz-22GHz	Agilent/HP	8593EM	3536A00131	08/09/2019	08/09/2021
Spectrum Analyzer 3Hz-44GHz	Agilent	E4446A	MY43360126	14/01/2020	14/01/2022
RF Transient Limiter	Agilent	11947A	3107A04119	20/11/2019	20/03/2021
LISN	FCC	50/250-25-2	9705	20/11/2019	20/03/2021
LISN	Schwarzbeck	NNBL 8226-2	8226120	05/12/2019	05/12/2020
Line impedance stabilization network, 9 kHz to 30 MHz, 3- Phase	Schwarzbeck	NNLK 8121	8121-526	07/10/2020	07/10/2021
RF Transient Limiter	Com Power Corporation	LIT-930A	22020024	06/10/2020	06/10/2022
Horn Antenna (EMM) 1-18GHz	A.R.A	DRG-118/A	17188	07/10/2020	07/10/2021
DCAMN (LISN) 150 kHz to 30 MHz	Schwarzbeck	PVDC 8300	30	19/04/2020	19/04/2023
Horn Antenna (for IMM) 1-18GHz	EMCO	3115	9602-4677	15/09/2019	15/09/2022
Horn Antenna 15-40 GHz	Schwarzbeck	BBHA 9170	BBHA9170214	12/03/2018	12/03/2021
Bilog Antenna 30MHz - 1000MHz	Teseq	CBL 6141B	34119	18/03/2019	18/03/2022
Spectrum Analyzer (9KHz-3.6GHz)	Agilent	N9010A	MY50060093	27/09/2017	27/09/2022
Universal Telecom ISN	FCC	F-071115- 1057-1	20616	25/02/2020	25/02/2023
Oscilloscope	Tektronix	TDS 680C	B020110	17/11/2019	17/03/2021
15MHz Function / Arbitrary Waveform Generator	НР	33120A	US36027136	19/11/2019	19/03/2021
Attenuator 30 dB	HP	11708A	14454	27/11/2017	27/03/2021
Power sensor	HP	8481A	401821	26/11/2017	26/03/2021

Appendix B: List of Measuring Equipment used:

Appendix C: Accreditation Certificate

End of the Test Report