

RF Exposure Evaluation Declaration

Product Name	: Tire Pressure Monitoring System (TPMS)
Model No.	:P11x
FCC ID.	: 2ABPMP11X0

Applicant : Picolink Technology Co., Ltd.

Address : Rm.5, 8F, No.100, Sec.1, Jiafeng 11th Rd., Zhubei City, Hsinchu County 302, Taiwan(R.O.C.)

Date of Receipt:	2015/04/23
Issued Date :	2015/05/18
Report No. :	1540501R-RF-US-Exp
Report Version:	V1.0
BC-MRA	Testing Laboratory 3024

The declaration results relate only to the samples calculated. The declaration shall not be reproduced except in full without the written approval of QuieTek Corporation.

1. **RF Exposure Evaluation**

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time		
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)		
(A) Limits for Occupational/ Control Exposures						
300-1500			F/300	6		
1500-100,000			5	6		
(B) Limits for General Population/ Uncontrolled Exposures						
300-1500			F/1500 6			
1500-100,000			1 30			

F= Frequency in MHz

Friis Formula Friis transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where Pd = power density in mW/cm2 Pout = output power to antenna in mW G = gain of antenna in linear scale Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18° C and 78°_{\circ} RH.

1.3. Test Result of RF Exposure Evaluation

Product	Tire Pressure Monitoring System (TPMS)	
Test Mode	Mode :P11x	
Test Condition	RF Exposure Evaluation	

Antenna Gain

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 0dBi or 1 in linear scale.

Output Power into Antenna & RF Exposure Evaluation Distance:

Channel	Channel Frequency	Output Power to Antenna	Power Density at R = 20 cm
	(MHz)	(mW)	(mW/cm ²)
01	433.92	0.0086	0.0000

The power density Pd (4th column) at a distance of 20 cm calculated from the Friis transmission formula is far below the limit of 0.29 mW/cm² in 433.92MHz.