

TEST REPORT

Test report no.: 1-9749/19-01-03-A BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany + 49 681 5 98 - 0 Phone: Fax: + 49 681 5 98 - 9075

Internet: http://www.ctcadvanced.com mail@ctcadvanced.com e-mail:

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Neratec Solutions AG

Rosswiesstrasse 29

8608 Bubikon / SWITZERLAND Phone: +41 55 253 2078 Contact: Michael Aeschbacher

e-mail· michael.aeschbacher@neratec.com

Phone: +41 55 253 20 73

Manufacturer

Neratec Solutions AG

Rosswiesstrasse 29

8608 Bubikon / SWITZERLAND

Test standard/s

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

Part 15 frequency devices

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and RSS - 247 Issue 2

Licence - Exempt Local Area Network (LE-LAN) Devices

Spectrum Management and Telecommunications Radio Standards Specification RSS - Gen Issue 5

- General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: **WLAN Module** Model name: DT50RF MK2

FCC ID: 2AEJD-103902-1-DT50 IC: 9301A-1039021DT50

Frequency: U-NII-3 band 5725 MHz to 5850 MHz

Technology tested: WI AN

Antenna: 2 external directional antennas

24.0 V to DC by external power supply Power supply:

Temperature range: -40°C to +85°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Marco Bertolino	René Oelmann

Lab Manager

Radio Communications

Lab Manager Radio Communications

Table of contents

1	Table o	of contents	
2	Genera	al information	
	2.1 I	Notes and disclaimer	
	2.2	Application details	
	2.3	Test laboratories sub-contracted	3
3	Test st	andard/s, references and accreditations	4
4	Test er	nvironment	
5		em	
		General description	
		Additional information	
6	Descri	otion of the test setup	6
•		Shielded semi anechoic chamber	
		Shielded fully anechoic chamber	
	-	Radiated measurements > 18 GHz	
		Conducted measurements with peak power meter & spectrum analyzerand	
	6.5	AC conducted	11
7	Seque	nce of testing	12
		Sequence of testing radiated spurious 9 kHz to 30 MHz	
	7.1	Sequence of testing radiated spurious 3 MHz to 1 GHz	
		Sequence of testing radiated spurious 1 GHz to 18 GHz	
		Sequence of testing radiated spurious above 18 GHz	
8	Measu	rement uncertainty	16
9	Cumm		
•	Summa	ary of measurement results	17
		•	
10	Addi	tional comments	18
	Addi Meas	tional commentssurement results	18
10	Addi Meas 11.1	tional commentssurement resultsldentify worst case data rate	18 19
10	Addi Meas 11.1 11.2	tional comments	19 19 19
10	Addi Meas 11.1 11.2 11.3	tional comments	19 19 20
10	Addi Meas 11.1 11.2	tional comments	1919202
10	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2	Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements	1920212223
10	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5	tional comments surement results Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements Power spectral density	1920212223
10	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1	Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements Power spectral density Power spectral density according to FCC requirements	181920222323
10	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2	Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements Power spectral density Power spectral density according to IC requirements Power spectral density according to IC requirements Power spectral density according to IC requirements	
10	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6	tional comments	
10	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2	Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements Power spectral density Power spectral density according to IC requirements Power spectral density according to IC requirements Power spectral density according to IC requirements	
10	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6 11.7 11.8 11.9	Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements Power spectral density Power spectral density according to FCC requirements Power spectral density according to IC requirements Power spectral density according to IC requirements Minimum emission bandwidth for the band 5.725-5.85 GHz Spectrum bandwidth / 26 dB bandwidth Occupied bandwidth / 99% emission bandwidth Spurious emissions radiated < 30 MHz	
10	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6 11.7 11.8 11.9 11.10	Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements Power spectral density Power spectral density according to FCC requirements Power spectral density according to IC requirements Power spectral density according to IC requirements Minimum emission bandwidth for the band 5.725-5.85 GHz Spectrum bandwidth / 26 dB bandwidth Occupied bandwidth / 99% emission bandwidth Spurious emissions radiated < 30 MHz TX spurious emissions radiated	
10	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6 11.7 11.8 11.9 11.10	Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements Power spectral density Power spectral density according to FCC requirements Power spectral density according to IC requirements Power spectral density according to IC requirements Power spectral density according to IC requirements Minimum emission bandwidth for the band 5.725-5.85 GHz Spectrum bandwidth / 26 dB bandwidth Occupied bandwidth / 99% emission bandwidth Spurious emissions radiated < 30 MHz TX spurious emissions radiated RX spurious emissions radiated	
10	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6 11.7 11.8 11.9 11.10 11.11	Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements Power spectral density Power spectral density according to FCC requirements Power spectral density according to IC requirements Power spectral density according to IC requirements Minimum emission bandwidth for the band 5.725-5.85 GHz Spectrum bandwidth / 26 dB bandwidth Occupied bandwidth / 99% emission bandwidth Spurious emissions radiated < 30 MHz TX spurious emissions radiated RX spurious emissions conducted < 30 MHz	
10	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6 11.7 11.8 11.9 11.10 11.11	Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements Power spectral density Power spectral density according to FCC requirements Power spectral density according to IC requirements Power spectral density according to IC requirements Minimum emission bandwidth for the band 5.725-5.85 GHz Spectrum bandwidth / 26 dB bandwidth Occupied bandwidth / 99% emission bandwidth Spurious emissions radiated < 30 MHz TX spurious emissions radiated RX spurious emissions conducted < 30 MHz	
10 11	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6 11.7 11.8 11.9 11.10 11.11	Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements Power spectral density Power spectral density according to FCC requirements Power spectral density according to IC requirements Power spectral density according to IC requirements Minimum emission bandwidth for the band 5.725-5.85 GHz Spectrum bandwidth / 26 dB bandwidth Occupied bandwidth / 99% emission bandwidth Spurious emissions radiated < 30 MHz TX spurious emissions radiated RX spurious emissions conducted < 30 MHz	
10 11 12 Anr	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.5.1 11.5.1 11.5.2 11.6 11.7 11.8 11.9 11.10 11.11 11.12 Obse	Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements Power spectral density Power spectral density according to FCC requirements Power spectral density according to IC requirements Power spectral density according to IC requirements Minimum emission bandwidth for the band 5.725-5.85 GHz Spectrum bandwidth / 26 dB bandwidth Occupied bandwidth / 99% emission bandwidth Spurious emissions radiated < 30 MHz TX spurious emissions radiated RX spurious emissions conducted < 30 MHz	
10 11 12 Anr Anr	Addi Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6 11.7 11.8 11.9 11.10 11.11 11.12 Observed	Identify worst case data rate Antenna gain Duty cycle Maximum output power Maximum output power according to FCC requirements Maximum output power according to IC requirements Power spectral density Power spectral density according to FCC requirements Power spectral density according to IC requirements Power spectral density according to IC requirements Minimum emission bandwidth for the band 5.725-5.85 GHz Spectrum bandwidth / 26 dB bandwidth Occupied bandwidth / 99% emission bandwidth Spurious emissions radiated < 30 MHz TX spurious emissions radiated RX spurious emissions radiated Spurious emissions conducted < 30 MHz Ervations Glossary	

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-9749/19-01-03 and dated 2020-02-20.

2.2 Application details

Date of receipt of order: 2020-01-14
Date of receipt of test item: 2020-01-22
Start of test: 2020-01-23
End of test: 2020-01-31

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 85

3 Test standard/s, references and accreditations

Test standard	Date	Description					
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices					
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices					
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus					
Guidance	Version	Description					
KDB 789033 D02 ANSI C63.4-2014	v02r02 -/-	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz					
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices					
KDB 662911 D01	v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band					
Accreditation	Descriptio	n					
D-PL-12076-01-04		unication and EMC Canada lakks.de/as/ast/d/D-PL-12076-01-04.pdf DAkkS Deutsche Akkreditierungsstell D-PL-12076-01-04					
D-PL-12076-01-05		unication FCC requirements akks.de/as/ast/d/D-PL-12076-01-05.pdf Deutsche Akkreditierungsstelle D-PL-12076-01-05					

© CTC advanced GmbH Page 4 of 85

4 Test environment

Temperature	••	$\begin{array}{c} T_{\text{nom}} \\ T_{\text{max}} \\ T_{\text{min}} \end{array}$	+22 °C during room temperature tests No test under extreme temperature conditions required. No test under extreme temperature conditions required.
Relative humidity content			46 %
Barometric pressure	••		1011 hpa
		V_{nom}	24.0 V DC by external power supply
Power supply	:	V_{max}	No test under extreme voltage conditions required.
		V_{min}	No test under extreme voltage conditions required.

5 Test item

5.1 General description

Kind of test item :	WLAN Module
Type identification :	DT50RF MK2
HMN :	-/-
PMN :	DT50RF_MK2_1
HVIN :	DT50RF_MK2_1
FVIN :	6.6
S/N serial number :	006000037020060
Hardware status :	MK2
Software status :	6.6
Frequency band :	U-NII-3 band 5725 MHz to 5850 MHz
Type of radio transmission: Use of frequency spectrum:	OFDM
Type of modulation :	BPSK, QPSK, 16 – QAM, 64 – QAM
Number of channels :	24 with 5 MHz channel bandwidth
Antenna :	2 external directional antennas Type: SPA-5600/40/14/0/V_2 with 14 dBi
Power supply :	24.0 V to DC by external power supply
Temperature range :	-40°C to +85°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-9749/19-01-01_AnnexA

1-9749/19-01-01_AnnexB 1-9749/19-01-01_AnnexD

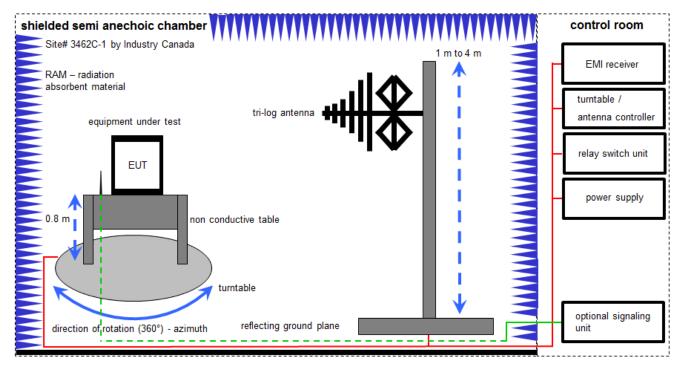
© CTC advanced GmbH Page 5 of 85

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve vlkl!	long-term stability recognized Attention: extended calibration interval	g	blocked for accredited testing
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 85

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

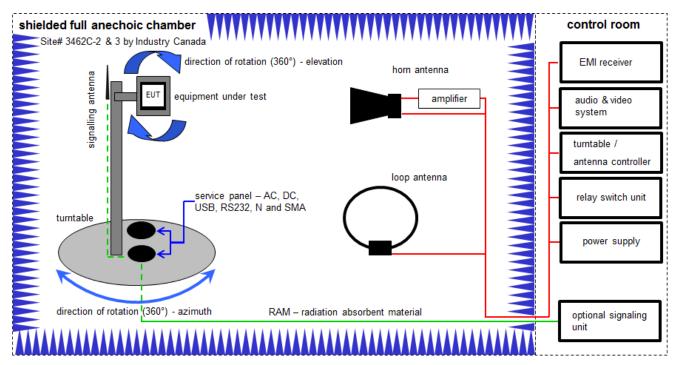
EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	000000000	k	21.05.2019	20.05.2020
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	24.11.2017	23.11.2020
8	Α	Power Supply DC	N5767A	Agilent Technologies	US14J1569P	300004851	vIKI!	13.12.2018	12.12.2020

© CTC advanced GmbH Page 7 of 85

6.2 Shielded fully anechoic chamber

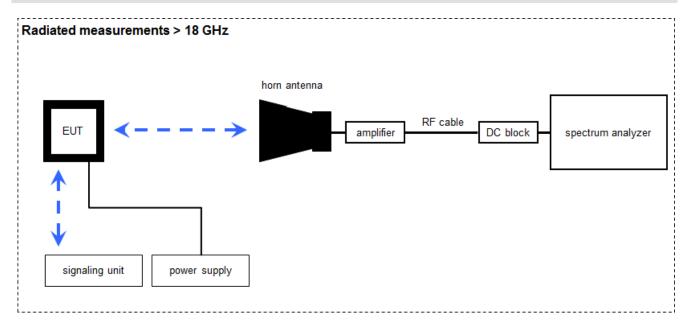
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
3	A, C	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	27.02.2019	26.02.2021
4	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2019	10.12.2020
5	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
6	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
7	Α	High Pass Filter	VHF-3500+	Mini Circuits	-/-	400000193	ne	-/-	-/-
8	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
9	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
10	A, B, C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
11	A, B, C	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-
12	А	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-
13	В	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021

© CTC advanced GmbH Page 8 of 85

6.3 Radiated measurements > 18 GHz

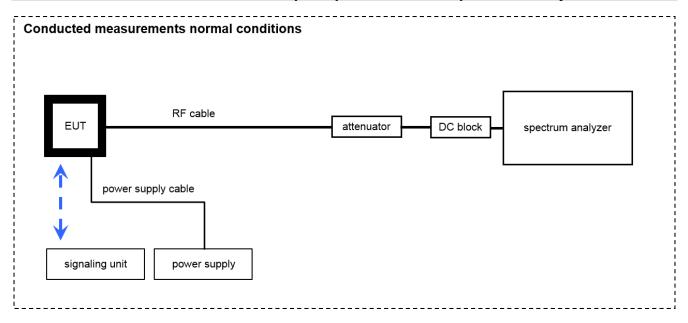
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 40.0 \text{ [dB}\mu\text{V/m]} + (-60.1) \text{ [dB]} + 36.74 \text{ [dB/m]} = 16.64 \text{ [dB}\mu\text{V/m]} (6.79 \ \mu\text{V/m})$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vIKI!	-/-	-/-
3	А	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vIKI!	-/-	-/-
4	А	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
5	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	17.12.2019	16.12.2020
6	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
7	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
8	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

© CTC advanced GmbH Page 9 of 85

6.4 Conducted measurements with peak power meter & spectrum analyzer

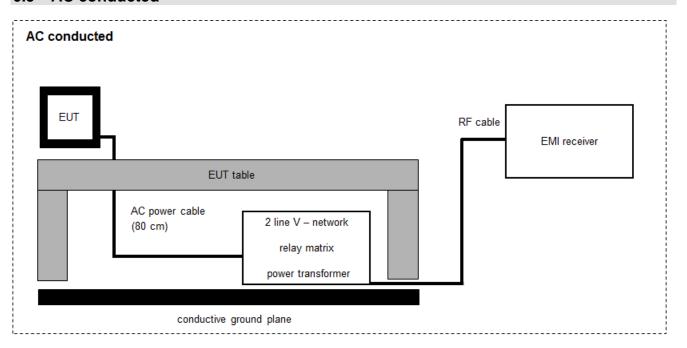
WLAN tester version: 1.1.13; LabView2015

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
2	А	Hygro-Thermometer	-/-, 5-45°C, 20- 100%rF	Thies Clima	-/-	400000108	ev	11.05.2018	10.05.2020
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	17.12.2019	16.12.2020
4	Α	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A45 23	300004589	ne	-/-	-/-
5	Α	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH	-/-	300004590	ne	-/-	-/-
6	Α	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
7	А	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits	-/-	400001186	ev	-/-	-/-
8	А	Synchron Power Meter	SPM-4	СТС	1	300005580	ev	-/-	-/-
9	А	DC-Blocker	WA7046	Weinschel Associates	-/-	400001310	ev	-/-	-/-

© CTC advanced GmbH Page 10 of 85

6.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.		Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	11.12.2019	10.12.2021
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	A	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	10.12.2019	09.12.2020

© CTC advanced GmbH Page 11 of 85

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 12 of 85

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 85

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 85

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 15 of 85

8 Measurement uncertainty

Measurement uncertainty								
Test case	Uncei	rtainty						
Antenna gain	± 3	dB						
Power spectral density	± 1.1	5 dB						
Spectrum bandwidth	± 100 kHz (depends	s on the used RBW)						
Occupied bandwidth	± 100 kHz (depends	s on the used RBW)						
Maximum output power		conducted radiated						
Minimum emissions bandwidth	± 100 kHz (depends on the used RBW)							
Band edge compliance radiated	± 3 dB							
	> 3.6 GHz	± 1.15 dB						
Spurious emissions conducted	> 7 GHz	± 1.15 dB						
Opunous emissions conducted	> 18 GHz	± 1.89 dB						
	≥ 40 GHz	± 3.12 dB						
Spurious emissions radiated below 30 MHz	± 3	dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3	dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB							
Spurious emissions radiated above 12.75 GHz	± 4.5 dB							
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.	6 dB						

© CTC advanced GmbH Page 16 of 85

9	Summary	of	measurement	results
---	---------	----	-------------	---------

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 247, Issue 2	See table	2020-04-28	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
-/-	Output power verification (cond.)	Nominal	Nominal		-/	'-		-/-
-/-	Antenna gain	Nominal	Nominal		-/	'-		-/-
U-NII Part 15	Duty cycle	Nominal	Nominal		-/	'-		-/-
§15.407(a) RSS - 247 (6.2.1.1) RSS - 247 (6.2.2.1) RSS - 247 (6.2.3.1) RSS - 247 (6.2.4.1)	Maximum output power (conducted & radiated)	Nominal	Nominal	X				-/-
§15.407(a) RSS - 247 (6.2.1.1) RSS - 247 (6.2.2.1) RSS - 247 (6.2.3.1) RSS - 247 (6.2.4.1)	Power spectral density	Nominal	Nominal	X				-/-
RSS - 247 (6.2.4.1)	Spectrum bandwidth 6dB bandwidth	Nominal	Nominal	\boxtimes				-/-
§15.407(a) RSS - 247 (6.2.1.2)	Spectrum bandwidth 26dB bandwidth	Nominal	Nominal	\boxtimes				-/-
RSS Gen clause 6.6	en Spectrum bandwidth Nominal Nominal		-/-					
§15.205 RSS - 247 (6.2.1.2) RSS - 247 (6.2.2.2) RSS - 247 (6.2.3.2) RSS - 247 (6.2.4.2)	Band edge compliance radiated	Nominal	Nominal			×		-/-
§15.407(b) RSS - 247 (6.2.1.2) RSS - 247 (6.2.2.2) RSS - 247 (6.2.3.2) RSS - 247 (6.2.4.2)	TX spurious emissions radiated	Nominal	Nominal	X				-/-
§15.109 RSS-Gen	RX spurious emissions radiated	Nominal	Nominal	\boxtimes				-/-
§15.209(a) RSS-Gen	Spurious emissions radiated < 30 MHz	Nominal	Nominal	\boxtimes				-/-
§15.107(a) §15.207	Spurious emissions conducted emissions < 30 MHz	Nominal	Nominal	×				-/-

Notes:

C	: :	Compliant	NC:	Not compliant	NA:	Not applicable	NP:	Not performed

© CTC advanced GmbH Page 17 of 85

10 Additional comments

Reference documents: Configuration_Instruction_FCC

Special test descriptions: -/-

Configuration descriptions: 2 active chains with power setting tp=17 and Polomarconi Filter T05162004

Frequency:5720 MHz - 5855 MHz

Provided channels:

Channels with 5 MHz channel bandwidth:

U-NII-3 (5725 MHz to 5850 MHz) center frequency										
	5730	5735	5740	5745	5750	5755	5760	5765	5770	5775
fc / MHz	5780	5785	5790	5795	5800	5805	5810	5815	5820	5825
	5830	5835	5840	5845	-/-	-/-	-/-	-/-	-/-	-/-

Note: The channels used for the tests were marked in bold in the list.

Test mode:		No test mode available. Iperf was used to ping another device with the largest support packet size
		Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
	\boxtimes	Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

© CTC advanced GmbH Page 18 of 85

11 Measurement results

11.1 Identify worst case data rate

Measurement:

All modes of the module will be measured with an average power meter to identify the maximum transmission power on mid channel. In the case that only one or two channels are available, only these will be measured.

In further tests only the identified worst case modulation scheme or bandwidth will be measured.

Measurement parameters:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	3 MHz			
Video bandwidth:	3 MHz			
Trace mode:	Max hold			
Used test setup:	See chapter 6.4 – A			
Measurement uncertainty:	See chapter 8			

Results:

	Modulation scheme / bandwidth							
OFDM – mode	U-NII-1 &	U-NII-2A	U-NII-2C		U-NII-3			
	Low	high	Low	high	Low	high		
	channel	channel	channel	channel	channel	channel		
5 MHz channel bandwidth	-/-	-/-	-/-	-/-	6 Mbit/s	6 Mbit/s		

© CTC advanced GmbH Page 19 of 85

11.2 Antenna gain

Limits:

Antenna Gain

6 dBi / > 6 dBi output power and power density reduction required

Declared antenna gain:

Huber & Suhner SPA-5600/40/14/0/V_2 with 14 dBi

Results:

The conducted output power limit should be reduced from 30 dBm to 22 dBm based on the high antenna gain. The maximum power spectral density limit should be reduced from 30 dBm to 22 dBm based on the high antenna gain.

© CTC advanced GmbH Page 20 of 85

11.3 Duty cycle

Description:

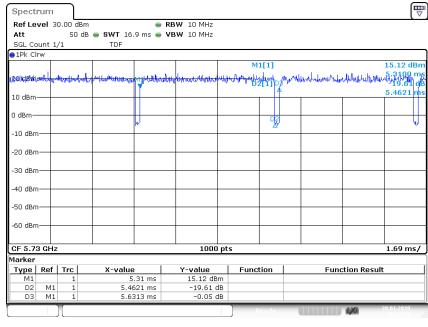
The duty cycle is necessary to compute the maximum power during an actual transmission. The shown plots and values are to show an example of the measurement procedure. The real value is measured direct during the power measurement or power density measurement. The correction value is shown in each plot of these measurements.

Measurement:

Measurement parameter				
According to: KDB789033 D02, B.				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	10 MHz			
Video bandwidth:	10 MHz			
Span:	Zero			
Trace mode:	Video trigger / view / single sweep			
Used test setup:	See chapter 6.4 – A			
Measurement uncertainty:	See chapter 8			

Results:

Duty cycle and correction factor:


	Calculation method						
OFDM - mode	T_{on} (D2 _{plot}) * 100 / $T_{complete}$ (D3 _{plot}) = duty cycle 10 * log(duty cycle) = correction factor						
	Ton (D2plot)	T _{complete} (D3 _{plot})	Duty cycle	Correction factor			
5 MHz channel bandwidth	5.4621 ms	5.6313 ms	97.0 %	0.13 dB			

© CTC advanced GmbH Page 21 of 85

Plots:

Plot 1: duty cycle of the transmitter; 5 MHz; lowest channel

Date: 28.JAN.2020 08:17:47

Duty cycle and correction factor (example for one channel & one antenna port). The correction factor will be measured and calculated for all channels and antennas during the measurement session.

© CTC advanced GmbH Page 22 of 85

11.4 Maximum output power

11.4.1 Maximum output power according to FCC requirements

Description:

Measurement of the maximum output power conducted

Measurement:

Measurement parameter					
According to:	According to: KDB789033 D02, E.2.e.				
Detector:	RMS				
Sweep time:	≥10*(swp points)*(total on/off time)				
Resolution bandwidth:	1 MHz				
Video bandwidth:	3 MHz				
Span:	> EBW				
Trace mode:	Max hold				
Analyzer function	Band power / channel power Interval > 26 dB EBW				
Used test setup:	See chapter 6.4 – A				
Measurement uncertainty:	See chapter 8				

Limits:

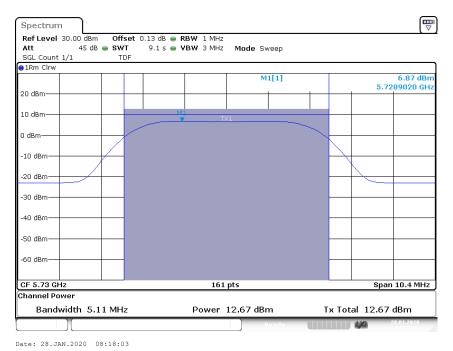
Radiated output power	Conducted output power for mobile equipment
Conducted power + 6 dBi antenna gain	5.725-5.85 GHz with 30 dBm / 1 W
Re-calculated limit for 14 dBi antenna gain	22 dBm / 158 mW

Results:

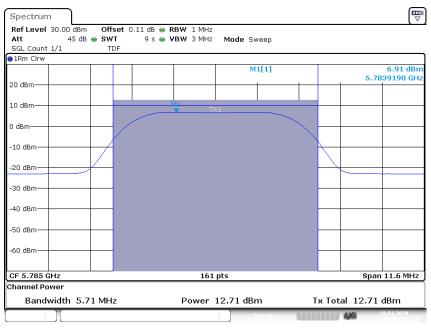
Maximum output power conducted [dBm]			
U-NII-3 (5725 MHz to 5850 MHz)			
ANT 1	Lowest channel	Middle channel	Highest channel
	12.67	12.71	12.81
	U-NII-3 (5725 MHz to 5850 MHz)		
ANT 2	Lowest channel	Middle channel	Highest channel
	13.89	14.34	14.19

	Maximum output power conducted calculated [dBm] U-NII-3 (5725 MHz to 5850 MHz)			
ANT 1 . 2				
ANT 1 + 2	Lowest channel	Middle channel	Highest channel	
	16.33	16.61	16.56	

Results:


The conducted output power limit should be reduced from 30 dBm to 22 dBm based on the high antenna gain. The maximum power spectral density limit should be reduced from 30 dBm to 22 dBm based on the high antenna gain.

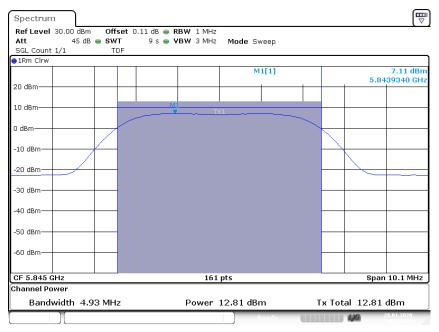
© CTC advanced GmbH Page 23 of 85



Plots: antenna 1

Plot 1: U-NII-3; lowest channel

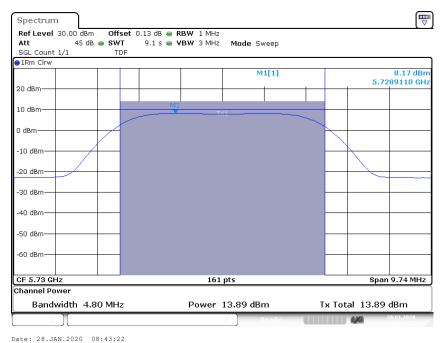
Plot 2: U-NII-3; middle channel



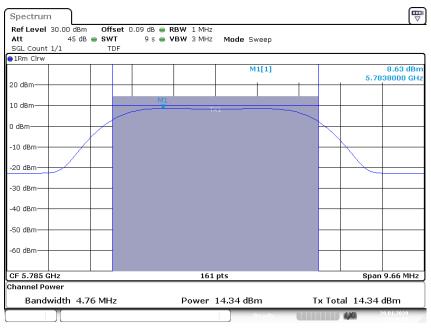
Date: 28.JAN.2020 07:54:02

© CTC advanced GmbH Page 24 of 85

Plot 3: U-NII-3; highest channel


Date: 28.JAN.2020 07:58:29

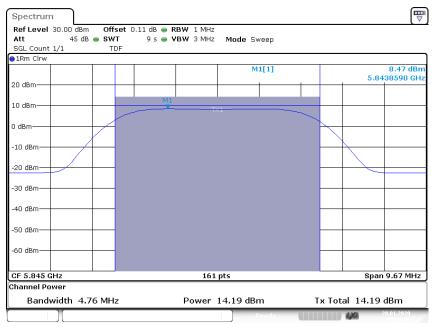
© CTC advanced GmbH Page 25 of 85


Plots: antenna 2

Plot 4: U-NII-3; lowest channel

5400. 20.01M.2020 00.10.21

Plot 5: U-NII-3; middle channel



Date: 28.JAN.2020 08:49:59

© CTC advanced GmbH Page 26 of 85

Plot 6: U-NII-3; highest channel

Date: 28.JAN.2020 08:54:07

© CTC advanced GmbH Page 27 of 85

11.4.2 Maximum output power according to IC requirements

Description:

Measurement of the maximum output power conduced + radiated

Measurement:

Measurement parameter			
Detector:	RMS		
Sweep time:	≥10*(swp points)*(total on/off time)		
Resolution bandwidth:	1 MHz		
Video bandwidth: ≥ 3 MHz			
Span:	> EBW		
Trace mode:	Max hold		
Analyzer function	Band power / channel power Interval > 99% OBW		
Used test setup: See chapter 6.4 – A			
Measurement uncertainty:	See chapter 8		

Limits:

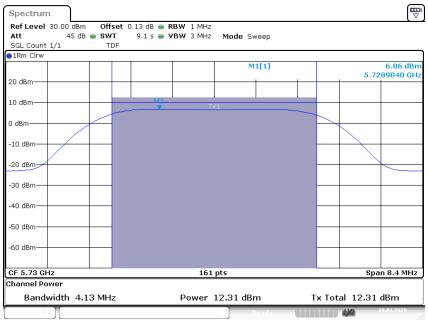
Radiated output power	Conducted output power for mobile equipment
Conducted power + 6 dBi antenna gain 5.725-5.825 GHz	5.725-5.85 GHz with 30 dBm / 1 W
Re-calculated limit for 14 dBi antenna gain	22 dBm / 158 mW

Results:

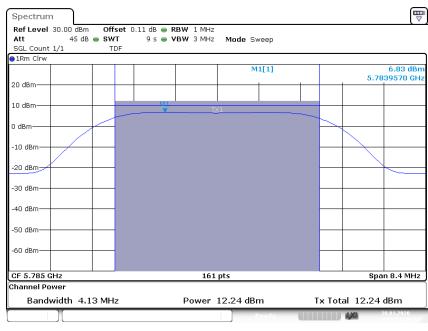
Maximum output power conducted [dBm]				
U-NII-3 (5725 MHz to 5850 MHz)				
ANT 1 Lowest channel Middle channel Highest channel				
	12.31	12.24	12.62	
	U-NII-3 (5725 MHz to 5850 MHz)			
ANT 2	Lowest channel	Middle channel	Highest channel	
	13.66	14.00	13.87	

Maximum output power conducted calculated [dBm]			
U-NII-3 (5725 MHz to 5850 MHz)			
ANT 1 + 2	Lowest channel	Middle channel	Highest channel
	16.05	16.22	16.30

Results:


The conducted output power limit should be reduced from 30 dBm to 22 dBm based on the high antenna gain. The maximum power spectral density limit should be reduced from 30 dBm to 22 dBm based on the high antenna gain.

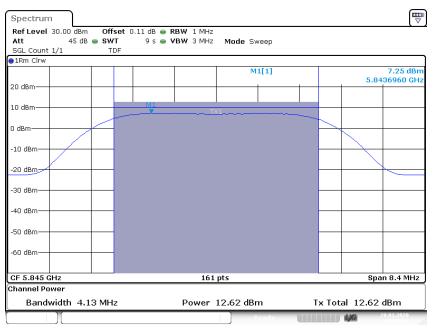
© CTC advanced GmbH Page 28 of 85


Plots: antenna 1

Plot 1: U-NII-3; lowest channel

Date: 28.JAN.2020 08:18:27

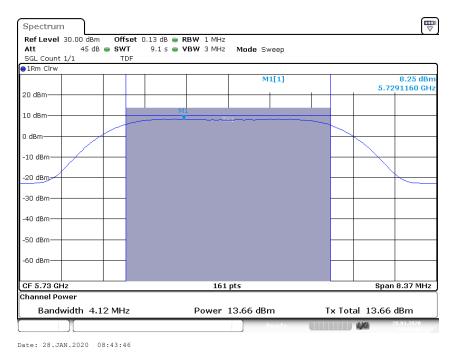
Plot 2: U-NII-3; middle channel



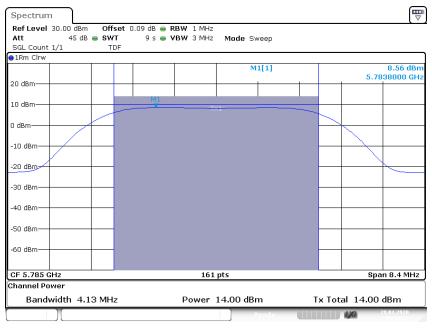
Date: 28.JAN.2020 07:54:29

© CTC advanced GmbH Page 29 of 85

Plot 3: U-NII-3; highest channel


Date: 28.JAN.2020 07:58:53

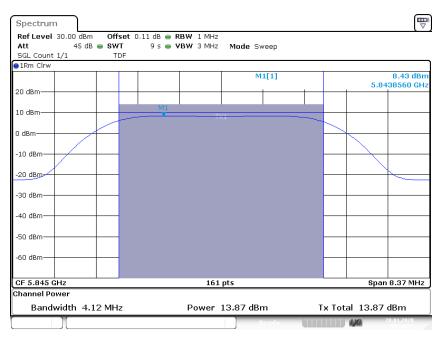
© CTC advanced GmbH Page 30 of 85



Plots: antenna 2

Plot 4: U-NII-3; lowest channel

Plot 5: U-NII-3; middle channel



Date: 28.JAN.2020 08:50:25

© CTC advanced GmbH Page 31 of 85

Plot 6: U-NII-3; highest channel

Date: 28.JAN.2020 08:54:31

© CTC advanced GmbH Page 32 of 85

11.5 Power spectral density

11.5.1 Power spectral density according to FCC requirements

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

Measurement parameter			
According to: KDB789033 D02, F.			
Detector: RMS			
Sweep time:	≥10*(swp points)*(total on/off time)		
Resolution bandwidth:	1 MHz for U-NII-1/2A & 2C 500 kHz for U-NII-3		
Video bandwidth:	≥ 3xRBW		
Span:	> EBW		
Trace mode:	Max hold		
Used test setup: See chapter 6.4 – A			
Measurement uncertainty: See chapter 8			

Limits:

Power Spectral Density	
power spectral density conducted ≤ 30 dBm in any 500 kHz band (band 5725 – 5850 MHz)	
Re-calculated limit for antenna gain > 6 dBi; 30 dBm – 8 dB = 22 dBm	

© CTC advanced GmbH Page 33 of 85

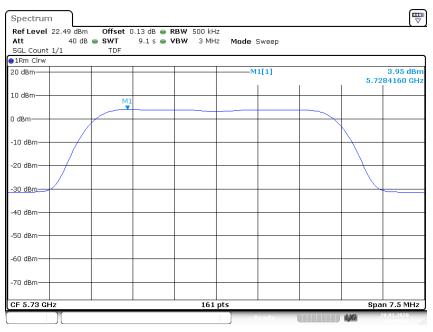
Results:

	Power spectral density (dBm/500kHz)			
Ant 1	U-NII-3 (5725 MHz to 5850 MHz)			
Ant 1	Lowest channel	Middle channel	Highest channel	
	3.95	3.92	4.67	

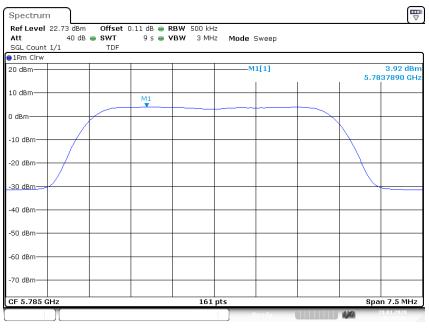
	Power spectral density (dBm/500kHz)		
Ant 2	U-NII-3 (5725 MHz to 5850 MHz)		
Ant 2	Lowest channel	Middle channel	Highest channel
	5.42	5.70	5.63

Power spectral density calculated (dBm/500kHz)			
Ant 1 . 2	U-NII-3 (5725 MHz to 5850 MHz)		
Ant 1 + 2	Lowest channel	Middle channel	Highest channel
	7.75	7.92	8.19

Results:


The conducted output power limit should be reduced from 30 dBm to 22 dBm based on the high antenna gain. The maximum power spectral density limit should be reduced from 30 dBm to 22 dBm based on the high antenna gain.

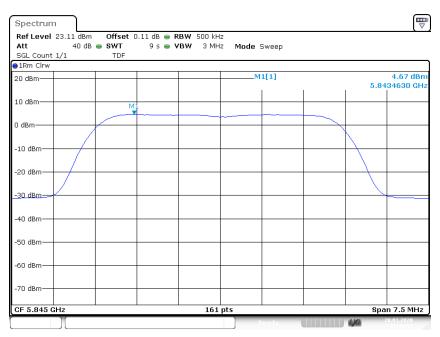
© CTC advanced GmbH Page 34 of 85


Plots: antenna 1

Plot 1: U-NII-3; lowest channel

Date: 28.JAN.2020 08:19:38

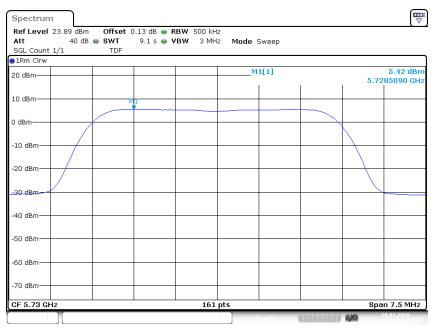
Plot 2: U-NII-3; middle channel



Date: 28.JAN.2020 07:55:17

© CTC advanced GmbH Page 35 of 85

Plot 3: U-NII-3; highest channel



Date: 28.JAN.2020 07:59:53

© CTC advanced GmbH Page 36 of 85



Plot 4: U-NII-3; lowest channel

Date: 28.JAN.2020 08:48:23

Plot 5: U-NII-3; middle channel

Date: 28.JAN.2020 08:52:48

© CTC advanced GmbH Page 37 of 85

Plot 6: U-NII-3; highest channel

Date: 28.JAN.2020 09:01:05

© CTC advanced GmbH Page 38 of 85

11.5.2 Power spectral density according to IC requirements

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

Measurement parameter		
Detector:	RMS	
Sweep time:	≥10*(swp points)*(total on/off time)	
Resolution bandwidth:	500 kHz for U-NII-3	
Video bandwidth:	≥ 3xRBW	
Span:	> EBW	
Trace mode:	Max hold	
Used test setup:	See chapter 6.4 – A	
Measurement uncertainty:	See chapter 8	

Limits:

Power Spectral Density
power spectral density conducted ≤ 30 dBm in any 500 kHz band (band 5725 – 5850 MHz)
Re-calculated limit for antenna gain > 6 dBi; 30 dBm – 8 dB = 22 dBm

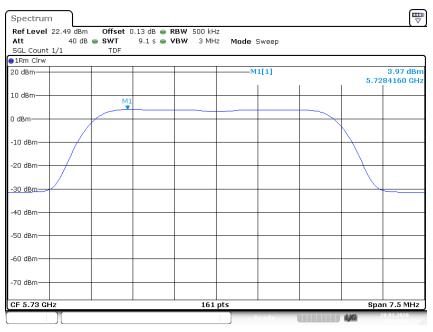
© CTC advanced GmbH Page 39 of 85

Results:

	Power spectral density (dBm/500kHz)				
ANT 1	U-NII-3 (5725 MHz to 5850 MHz)				
ANTI	Lowest channel	Middle channel	Highest channel		
	3.97	3.94	4.64		

	Power spectral density (dBm/500kHz)			
ANT 2	U-NII-3 (5725 MHz to 5850 MHz)			
ANI Z	Lowest channel	Middle channel	Highest channel	
	5.43	5.72	5.69	

Power spectral density calculated (dBm/500kHz)				
ANT 1 + 2	U-NII-3 (5725 MHz to 5850 MHz)			
ANI I+Z	Lowest channel	Middle channel	Highest channel	
	7.77	7.93	8.21	


Results:

The conducted output power limit should be reduced from 30 dBm to 22 dBm based on the high antenna gain. The maximum power spectral density limit should be reduced from 30 dBm to 22 dBm based on the high antenna gain.

© CTC advanced GmbH Page 40 of 85

Plot 7: U-NII-3; lowest channel

Date: 28.JAN.2020 08:19:27

Plot 8: U-NII-3; middle channel



Date: 28.JAN.2020 07:55:06

© CTC advanced GmbH Page 41 of 85

Plot 9: U-NII-3; highest channel

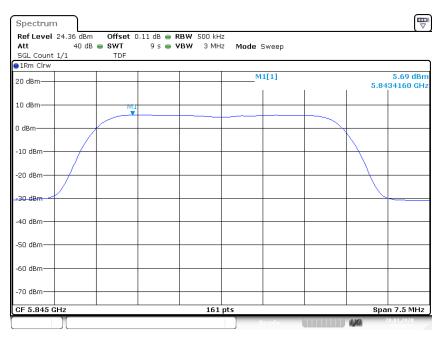
Date: 28.JAN.2020 07:59:43

© CTC advanced GmbH Page 42 of 85

Plot 10: U-NII-3; lowest channel

Date: 28.JAN.2020 08:48:13

Plot 11: U-NII-3; middle channel



Date: 28.JAN.2020 08:52:37

© CTC advanced GmbH Page 43 of 85

Plot 12: U-NII-3; highest channel

Date: 28.JAN.2020 09:00:54

© CTC advanced GmbH Page 44 of 85

11.6 Minimum emission bandwidth for the band 5.725-5.85 GHz

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

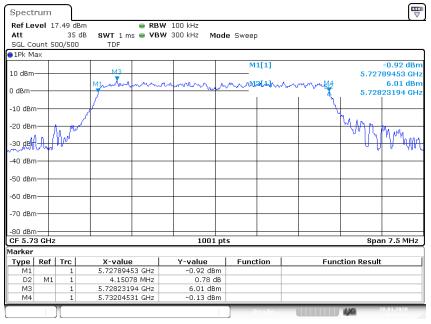
Measurement:

Measurement parameter		
According to: KDB789033 D02, C.2.		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	100 kHz	
Video bandwidth:	300 kHz	
Span:	40 MHz	
Measurement procedure:	Using marker to find -6dBc frequencies	
Trace mode:	Max hold (allow trace to stabilize)	
Used test setup: See chapter 6.4 – A		
Measurement uncertainty: See chapter 8		

Limits:

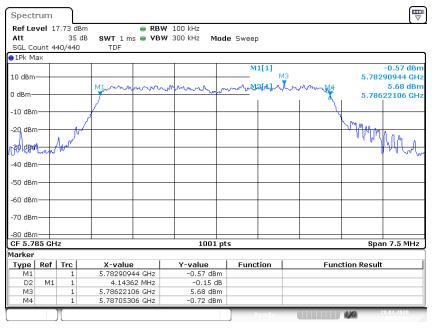
FCC	IC	
The minimum 6 dB bandwid	Ith shall be at least 500 kHz.	

Results:


6 dB emission bandwidth (MHz)			
ANT 1	U-NII-3 (5725 MHz to 5850 MHz)		
ANII	Lowest channel	Middle channel	Highest channel
	4.15	4.14	4.13

	6 dB emission bandwidth (MHz)				
ANT 2	U-NII-3 (5725 MHz to 5850 MHz)				
ANI Z	Lowest channel	Middle channel	Highest channel		
	4.12	4.14	4.15		

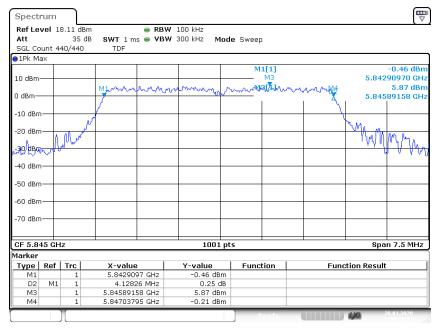
© CTC advanced GmbH Page 45 of 85



Plot 1: U-NII-3; lowest channel

Date: 28.JAN.2020 08:18:10

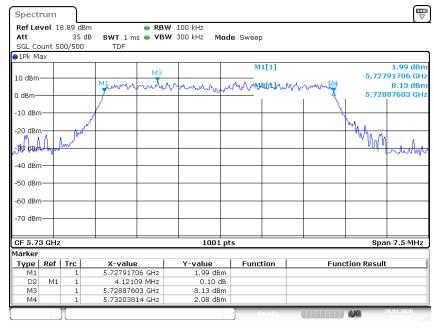
Plot 2: U-NII-3; middle channel



Date: 28.JAN.2020 07:54:11

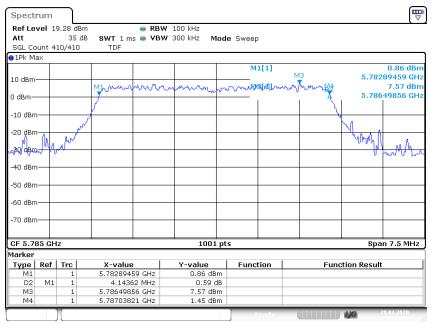
© CTC advanced GmbH Page 46 of 85

Plot 3: U-NII-3; highest channel



Date: 28.JAN.2020 07:58:37

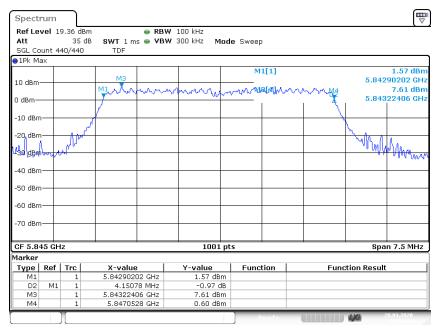
© CTC advanced GmbH Page 47 of 85



Plot 4: U-NII-3; lowest channel

Date: 28.JAN.2020 08:43:29

Plot 5: U-NII-3; middle channel



Date: 28.JAN.2020 08:50:08

© CTC advanced GmbH Page 48 of 85

Plot 6: U-NII-3; highest channel

Date: 28.JAN.2020 08:54:14

© CTC advanced GmbH Page 49 of 85

11.7 Spectrum bandwidth / 26 dB bandwidth

Description:

Measurement of the 26 dB bandwidth of the modulated signal.

Measurement:

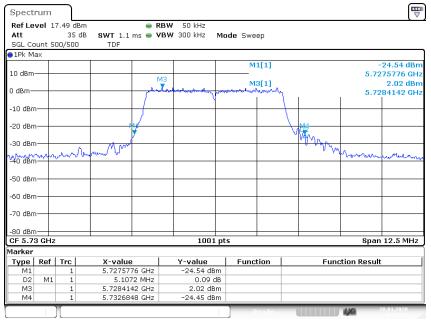
Measurement parameter		
According to: KDB789033 D02, C.1.		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1% EBW	
Video bandwidth:	≥ RBW	
Span:	> Complete signal	
Trace mode:	Max hold	
Used test setup: See chapter 6.4 – A		
Measurement uncertainty: See chapter 8		

Limits:

Spectrum Bandwidth – 26 dB Bandwidth
The whole 26 dB bandwidth shall fall into the specific band

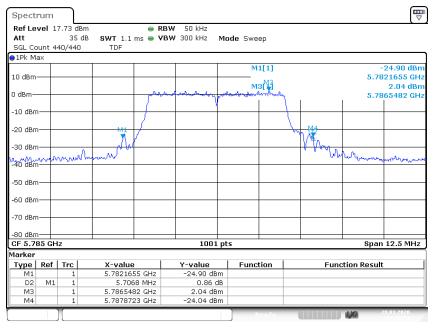
© CTC advanced GmbH Page 50 of 85

Results:


	26 dB bandwidth (MHz)				
	U-NII-3 (5725 MHz to 5850 MHz)				
ANT 1	Lowest channel	Middle channel		Highest channel	
ANII	5.11	5.	71	4.93	
	Lowest frequency	/ H		lighest frequency	
	5727.6		5847.5		

	26 dB bandwidth (MHz)						
	U-NII-3 (5725 MHz to 5850 MHz)						
ANT 2	Lowest channel	Middle channel		Highest channel			
ANI Z	4.80	4.76		4.76			
	Lowest frequency	У	Highest frequency				
	5727.6		5847.3				

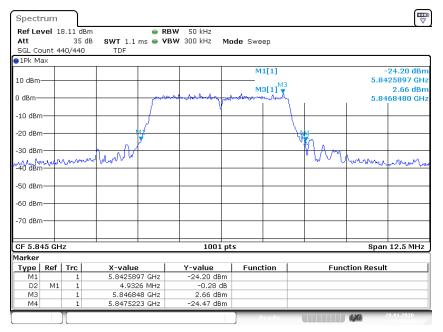
© CTC advanced GmbH Page 51 of 85



Plot 1: U-NII-3; lowest channel

Date: 28.JAN.2020 08:17:52

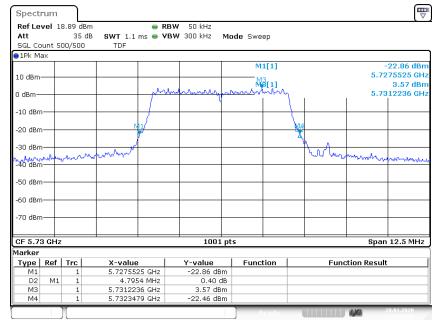
Plot 2: U-NII-3; middle channel



Date: 28.JAN.2020 07:53:51

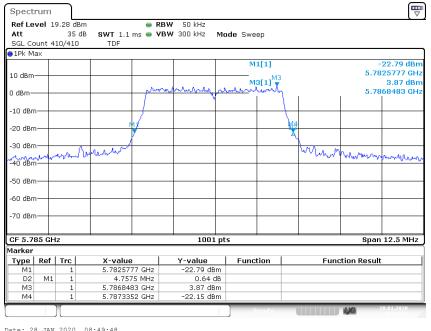
© CTC advanced GmbH Page 52 of 85

Plot 3: U-NII-3; highest channel



Date: 28.JAN.2020 07:58:18

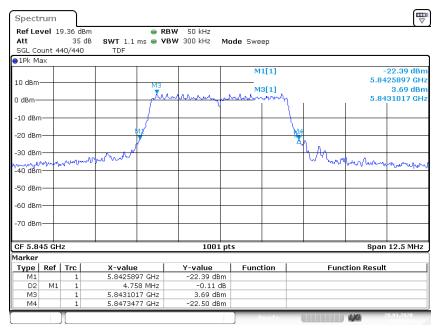
© CTC advanced GmbH Page 53 of 85



Plot 4: U-NII-3; lowest channel

Date: 28.JAN.2020 08:43:11

Plot 5: U-NII-3; middle channel



Date: 28.JAN.2020 08:49:48

© CTC advanced GmbH Page 54 of 85

Plot 6: U-NII-3; highest channel

Date: 28.JAN.2020 08:53:56

© CTC advanced GmbH Page 55 of 85

11.8 Occupied bandwidth / 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

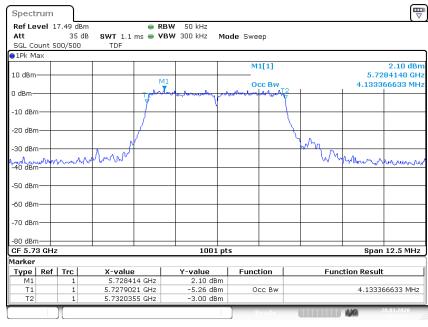
Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	300 kHz / 500 kHz			
Video bandwidth:	1 MHz / 3 MHz			
Span:	50 MHz / 100 MHz			
Measurement procedure:	Measurement of the 99% bandwidth using the integration function of the analyzer			
Trace mode:	Max hold (allow trace to stabilize)			
Test setup:	See sub clause 6.4 – A			
Measurement uncertainty:	See sub clause 8			

<u>Usage:</u>

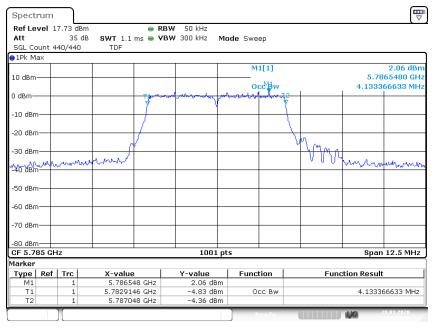
-/-	IC
OBW is necessary for	or Emission Designator

Results:


ANT 1	99% bandwidth (kHz)					
	U-NII-3 (5725 MHz to 5850 MHz)					
	Lowest channel	Middle channel	Highest channel			
	4133	4133	4133			

ANT 2	99% bandwidth (kHz)					
	U-NII-3 (5725 MHz to 5850 MHz)					
	Lowest channel	Middle channel	Highest channel			
	4121	4133	4121			

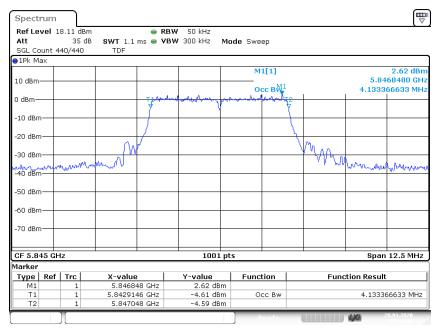
© CTC advanced GmbH Page 56 of 85



Plot 1: U-NII-3; lowest channel

Date: 28.JAN.2020 08:18:16

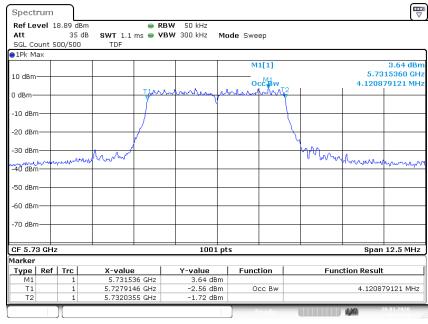
Plot 2: U-NII-3; middle channel



Date: 28.JAN.2020 07:54:18

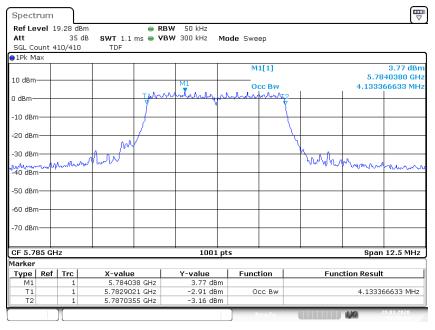
© CTC advanced GmbH Page 57 of 85

Plot 3: U-NII-3; highest channel



Date: 28.JAN.2020 07:58:42

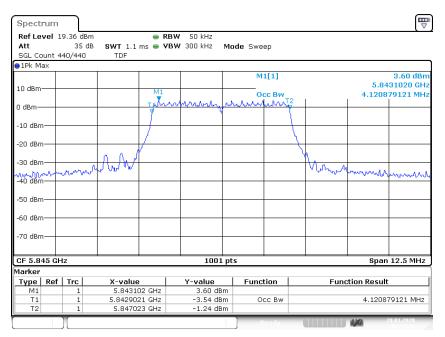
© CTC advanced GmbH Page 58 of 85



Plot 4: U-NII-3; lowest channel

Date: 28.JAN.2020 08:43:35

Plot 5: U-NII-3; middle channel



Date: 28.JAN.2020 08:50:14

© CTC advanced GmbH Page 59 of 85

Plot 6: U-NII-3; highest channel

Date: 28.JAN.2020 08:54:20

© CTC advanced GmbH Page 60 of 85

11.9 Spurious emissions radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode and receive mode below 30 MHz. The EUT is set first to middle channel. This measurement is representative for all channels and modes. If critical peaks are found the lowest channel and the highest channel will be measured too. Then the EUT is set to receive or idle mode. The limits are re-calculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

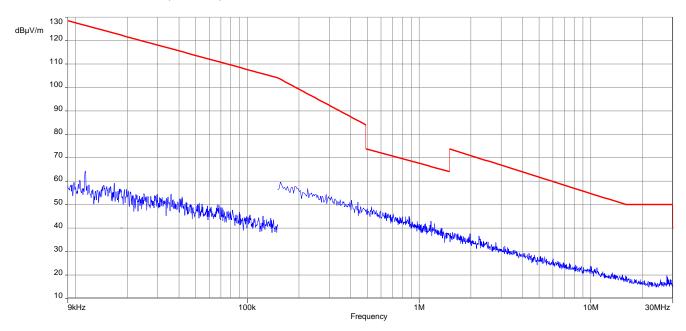
Measurement:

Measurement parameter					
Detector:	Peak / Quasi Peak				
Sweep time:	Auto				
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace mode:	Max Hold				
Test setup:	See chapter 6.2 – B				
Measurement uncertainty:	See chapter 8				

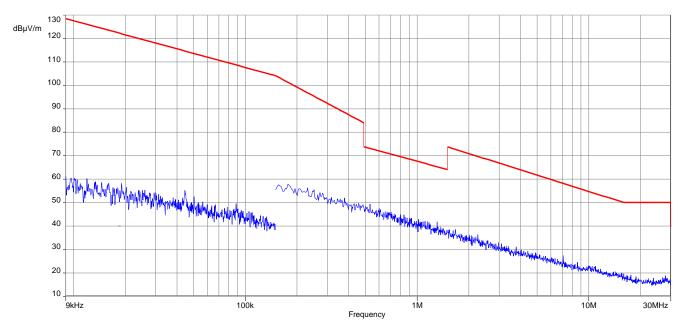
Limits:

Spurious Emissions Radiated < 30 MHz							
Frequency (MHz) Field Strength (dBµV/m) Measurement distance							
0.009 – 0.490	2400/F(kHz)	300					
0.490 – 1.705	24000/F(kHz)	30					
1.705 – 30.0	30	30					

Results: both antennas are transmitting simultaneous

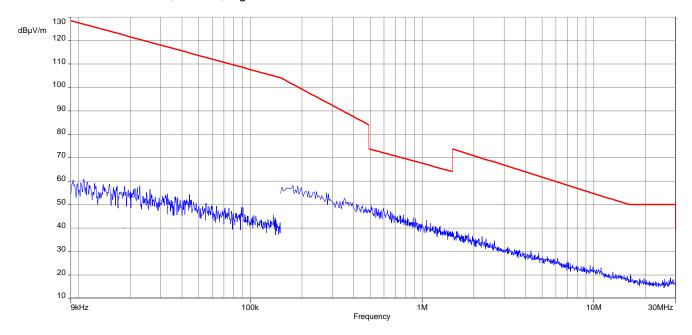

Spurious Emissions Radiated < 30 MHz [dBµV/m]							
F [MHz] Detector Level [dBµV/m]							
All detected	d emissions are more than 20 dB belo	w the limit.					

© CTC advanced GmbH Page 61 of 85



Plots:

Plot 1: 9 kHz to 30 MHz, U-NII-3; lowest channel


Plot 2: 9 kHz to 30 MHz, U-NII-3; middle channel

© CTC advanced GmbH Page 62 of 85

Plot 3: 9 kHz to 30 MHz, U-NII-3; highest channel

© CTC advanced GmbH Page 63 of 85

11.10 TX spurious emissions radiated

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at lowest, middle and highest channel.

Measurement:

Measurement parameter					
Detector:	Quasi Peak below 1 GHz (alternative Peak) Peak above 1 GHz / RMS				
Sweep time:	Auto				
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz				
Video bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: ≥ 3 MHz / 1 MHz				
Span:	30 MHz to 40 GHz				
Trace mode:	Max Hold / Average with 100 counts + 20 log (1 / X) for duty cycle lower than 100 %				
Test setup:	See chapter 6.1 – A See chapter 6.2 – B See chapter 6.3 – A				
Measurement uncertainty:	See sub clause 8				

Limits:

TX Spurious Emissions Radiated							
	§15.209						
Frequency (MHz) Field Strength (dBµV/m) Measurement distance							
30 - 88	30.0	10					
88 – 216	33.5	10					
216 – 960	36.0	10					
Above 960	54.0	3					
§15.407							
Outside the restricted bands! -27 dBm / MHz							

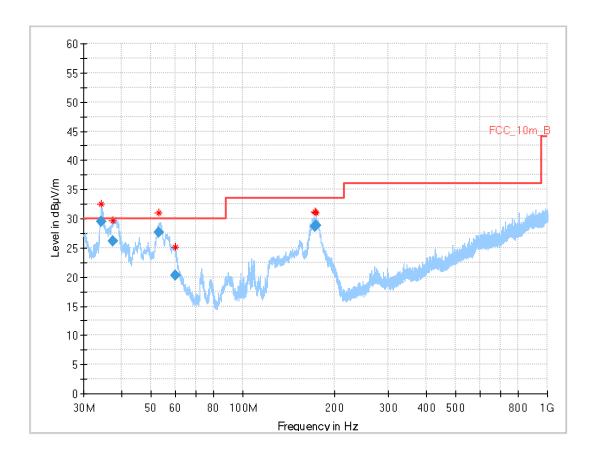
$$E_{lim} = 20 \times log_{10} \left(\frac{\sqrt{30 \times P_{lim}}}{d} \right) + 120$$

where

 $\begin{array}{ll} E_{lim} & = \text{electric field strength limit, in dB (μV/m)} \\ P_{lim} & = \text{EIRP limit, in watts (-27dBm} \approx 0.000002 \text{ W)} \end{array}$

d = measurement distance, in meters

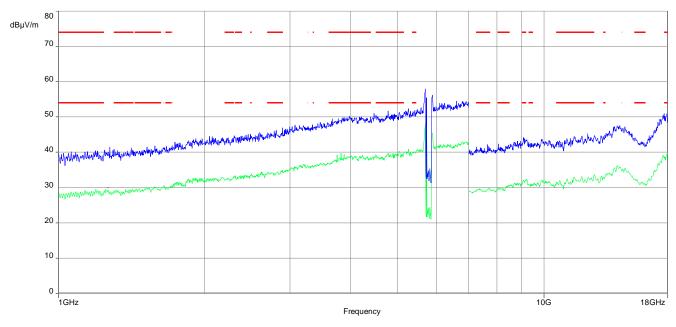
Results: both antennas are transmitting simultaneous


	TX Spurious Emissions Radiated [dBμV/m] / dBm								
	U-NII-3 (5725 MHz to 5850 MHz)								
L	Lowest channel Middle channel Highest channel								
F [MHz]	EINHALL LIGHTOCTOR LEINHALL LIGHTOCTOR LEINHALL LIGHTOCTOR L							Level [dBµV/m]	
	All detected emissions are more than 10 dB below the limit.								
-/-	Peak	-/-	-/-	Peak	-/-	-/-	Peak	-/-	
-/-	AVG	-/-		AVG	-/-		AVG	-/-	
,	Peak	-/-	,	Peak	-/-	,	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-	
,	Peak	-/-	,	Peak	-/-	,	Peak	-/-	
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-	
	For emissions above 18 GHz please take look at the plots.			For emissions above 18 GHz please take look at the plots.			For emissions above 18 GHz please take look at the plots.		

© CTC advanced GmbH Page 65 of 85

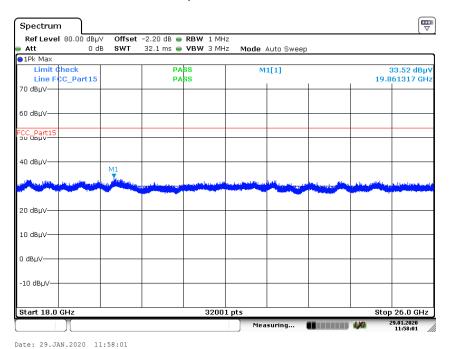
Plots:

Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-3; lowest channel



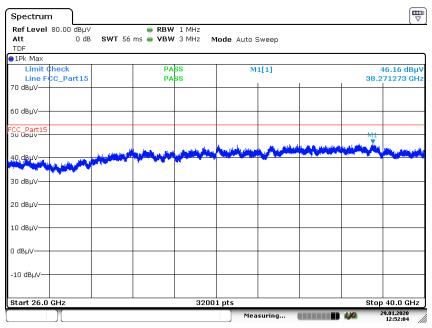
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
34.273	29.52	30.0	0.5	1000	120	123.0	٧	99	12
37.549	26.07	30.0	3.9	1000	120	102.0	٧	121	13
53.020	27.59	30.0	2.4	1000	120	101.0	٧	355	14
60.254	20.34	30.0	9.7	1000	120	160.0	٧	5	13
172.242	28.66	33.5	4.8	1000	120	104.0	٧	348	10
173.506	28.90	33.5	4.6	1000	120	103.0	٧	355	10

© CTC advanced GmbH Page 66 of 85



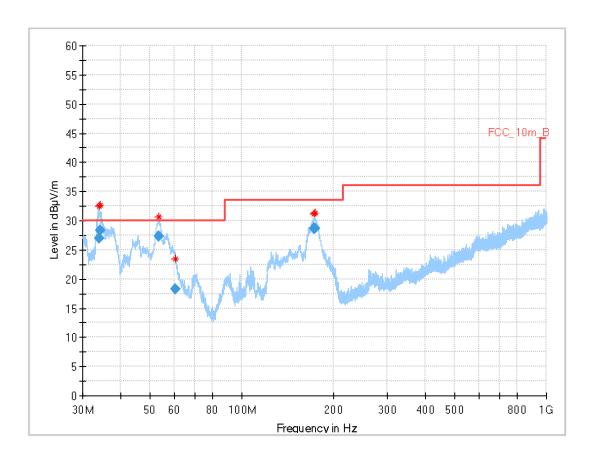
Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

The carrier signal is notched with a 5 GHz band rejection filter. blue - peak; green - AVG


Plot 3: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

© CTC advanced GmbH Page 67 of 85

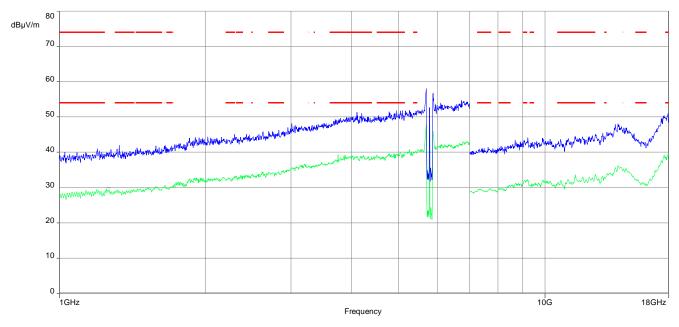
Plot 4: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; lowest channel



Date: 29.JAN.2020 12:52:04

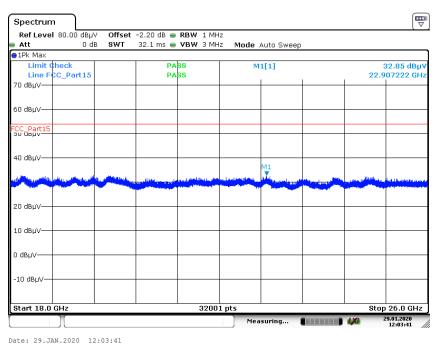
© CTC advanced GmbH Page 68 of 85

Plot 5: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-3; middle channel



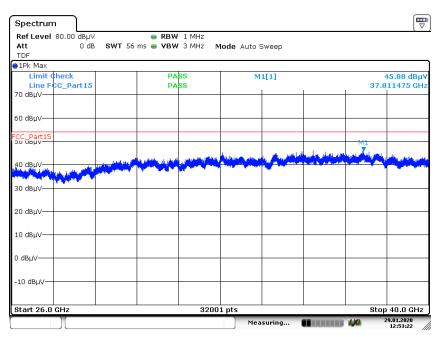
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
33.966	27.06	30.0	2.9	1000	120	117.0	٧	98	12
34.243	28.31	30.0	1.7	1000	120	118.0	٧	274	12
53.207	27.29	30.0	2.7	1000	120	98.0	٧	0	14
60.579	18.30	30.0	11.7	1000	120	160.0	٧	180	13
172.688	28.64	33.5	4.9	1000	120	104.0	٧	0	10
173.207	28.70	33.5	4.8	1000	120	98.0	٧	355	10

© CTC advanced GmbH Page 69 of 85



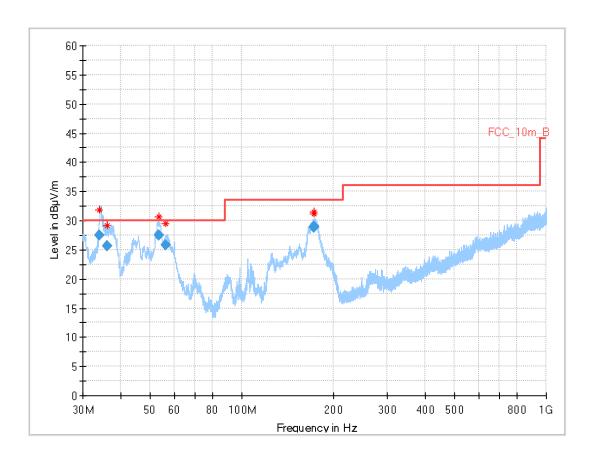
Plot 6: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; middle channel

The carrier signal is notched with a 5 GHz band rejection filter. blue - peak; green - AVG


Plot 7: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; middle channel

© CTC advanced GmbH Page 70 of 85

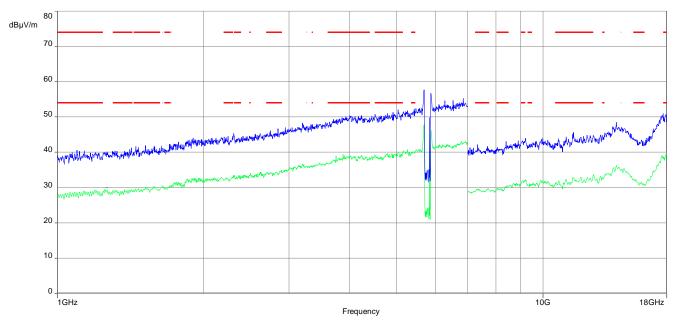
Plot 8: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; middle channel



Date: 29.JAN.2020 12:53:22

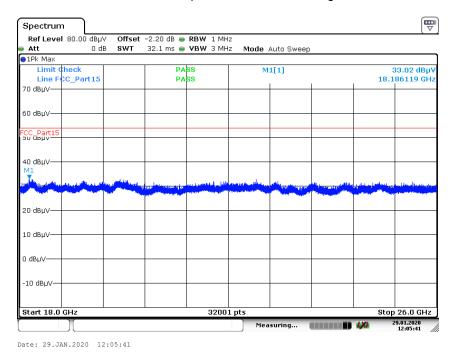
© CTC advanced GmbH Page 71 of 85

Plot 9: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-3; highest channel



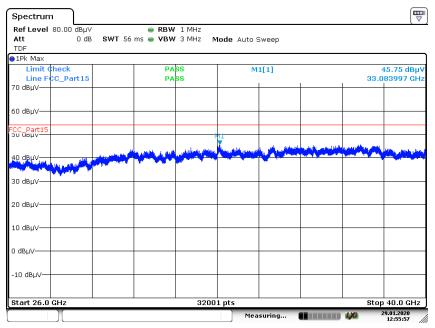
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
33.975	27.48	30.0	2.5	1000	120	118.0	٧	1	12
36.173	25.71	30.0	4.3	1000	120	160.0	٧	100	13
53.192	27.47	30.0	2.5	1000	120	102.0	٧	355	14
56.180	25.79	30.0	4.2	1000	120	160.0	٧	335	15
172.396	28.77	33.5	4.7	1000	120	102.0	٧	352	10
172.971	28.94	33.5	4.6	1000	120	98.0	٧	-5	10

© CTC advanced GmbH Page 72 of 85



Plot 10: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

The carrier signal is notched with a 5 GHz band rejection filter. blue - peak; green - AVG


Plot 11: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; highest channel

© CTC advanced GmbH Page 73 of 85

Plot 12: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; highest channel

Date: 29.JAN.2020 12:55:57

© CTC advanced GmbH Page 74 of 85

11.11 RX spurious emissions radiated

Description:

Measurement of the radiated spurious emissions in idle/receive mode.

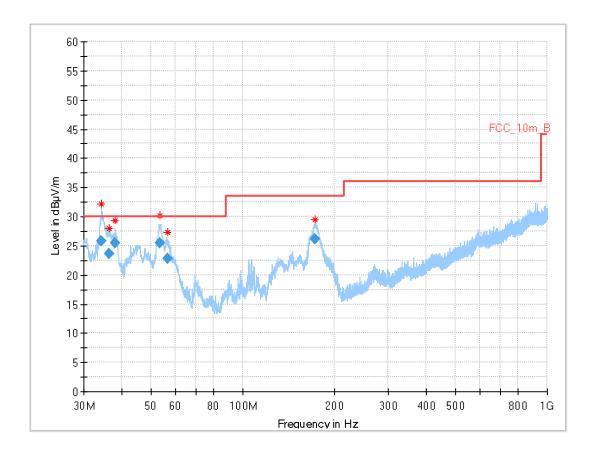
Measurement:

Measurement parameter		
Detector:	Quasi Peak below 1 GHz (alternative Peak) Peak above 1 GHz / RMS	
Sweep time:	Auto	
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz	
Video bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: ≥ 3 MHz	
Span:	30 MHz to 40 GHz	
Trace mode:	Max Hold / Average with 100 counts + 20 log (1 / X) for duty cycle lower than 100 %	
Test setup:	See chapter 6.2 – B	
Measurement uncertainty:	See chapter 8	

Limits:

RX Spurious Emissions Radiated				
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance		
30 - 88	30.0	10		
88 – 216	33.5	10		
216 – 960	36.0	10		
Above 960	54.0	3		

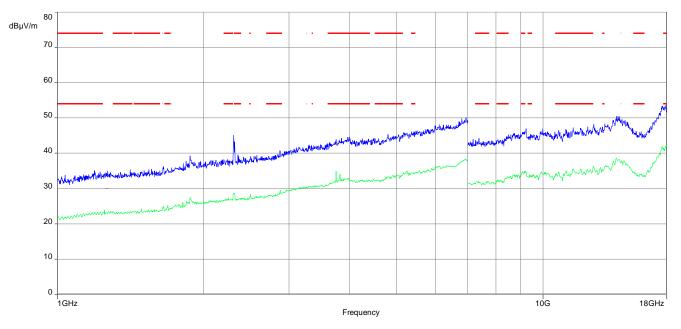
Results:


see tables below the plots.

© CTC advanced GmbH Page 75 of 85

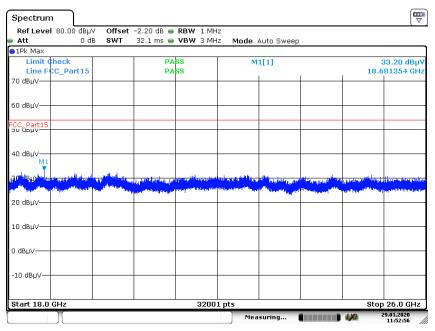
Plots:

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization



Frequency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB/m)
				(ms)					
34.280	25.77	30.0	4.2	1000	120	117.0	٧	120	12
36.455	23.64	30.0	6.4	1000	120	160.0	٧	82	13
38.090	25.48	30.0	4.5	1000	120	98.0	٧	297	13
53.201	25.43	30.0	4.6	1000	120	98.0	٧	0	14
56.763	22.87	30.0	7.1	1000	120	160.0	٧	352	15
171.944	26.16	33.5	7.3	1000	120	102.0	٧	-4	10

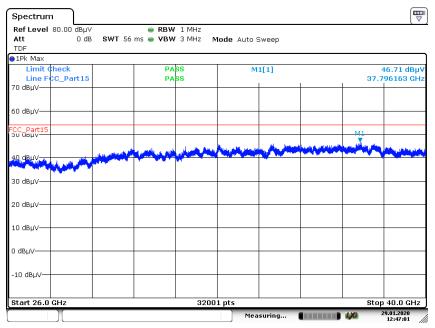
© CTC advanced GmbH Page 76 of 85



Plot 2: 1 GHz to 18 GHz, vertical & horizontal polarization

blue - peak; green - AVG

Plot 3: 18 GHz to 26 GHz, vertical & horizontal polarization



Date: 29.JAN.2020 11:52:56

© CTC advanced GmbH Page 77 of 85

Plot 4: 26 GHz to 40 GHz, vertical & horizontal polarization

Date: 29.JAN.2020 12:47:00

© CTC advanced GmbH Page 78 of 85

11.12 Spurious emissions conducted < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to middle channel. If critical peaks are found the lowest channel and the highest channel will be measured too. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

Measurement parameter		
Detector:	Peak - Quasi Peak / Average	
Sweep time:	Auto	
Video bandwidth:	9 kHz	
Resolution bandwidth:	100 kHz	
Span:	150 kHz to 30 MHz	
Trace mode:	Max Hold	
Test setup:	See sub clause 6.5 – A	
Measurement uncertainty:	See sub clause 8	

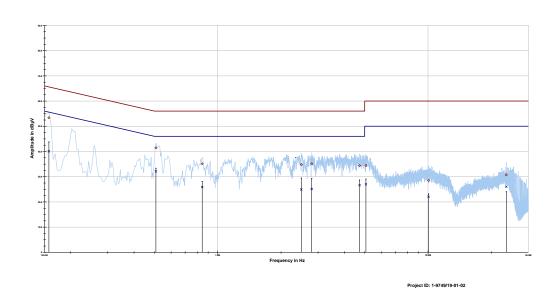
Limits:

Spurious Emissions Conducted < 30 MHz			
Frequency (MHz)	Quasi-Peak (dBµV/m)	Average (dBµV/m)	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 – 5	56	46	
5 – 30.0	60	50	

^{*}Decreases with the logarithm of the frequency

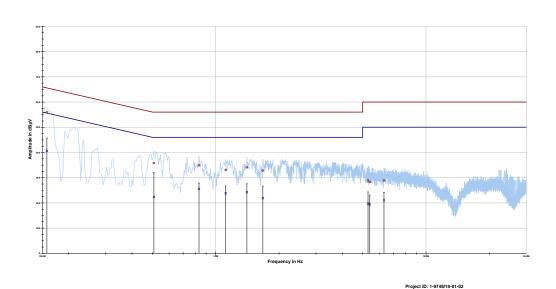
Results:

see tables below the plots.


© CTC advanced GmbH Page 79 of 85

Plots:

Plot 1: 150 kHz to 30 MHz, phase line


Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.157463	53.38	12.22	65.597	40.05	15.74	55.787
0.508200	41.44	14.56	56.000	32.10	13.90	46.000
0.844013	35.12	20.88	56.000	25.89	20.11	46.000
2.496956	34.78	21.22	56.000	24.94	21.06	46.000
2.799187	35.11	20.89	56.000	25.11	20.89	46.000
4.728244	34.36	21.64	56.000	26.61	19.39	46.000
5.067787	34.46	25.54	60.000	26.96	23.04	50.000
10.060200	28.48	31.52	60.000	22.01	27.99	50.000
23.574787	30.73	29.27	60.000	26.01	23.99	50.000

© CTC advanced GmbH Page 80 of 85

Plot 2: 150 kHz to 30 MHz, neutral line

Margin Limit QP Limit AV Frequency Quasi peak Average Margin level quasi peak level Average MHz dΒμV dΒμV dΒμV dB dΒμV dB 9.67 65.597 40.67 15.12 55.787 0.157463 55.93 20.19 56.000 22.32 46.000 0.508200 35.81 23.68 0.832819 34.93 21.07 56.000 25.57 20.43 46.000 1.116394 33.08 22.92 56.000 23.77 22.23 46.000 1.407431 21.88 56.000 24.23 21.77 46.000 34.12 1.676081 32.83 23.17 56.000 21.86 24.14 46.000 30.28 28.93 31.07 60.000 19.72 50.000 5.299125 5.403600 28.26 31.74 60.000 19.38 30.62 50.000 6.314025 28.90 31.10 60.000 21.01 28.99 50.000

© CTC advanced GmbH Page 81 of 85

12 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 82 of 85

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 83 of 85

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2020-02-20
А	FCC ID, IC ID, PMN and HVIN changed	2020-04-28

Annex C Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields:	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 1.0 Europa-Allies 52 Bundesallee 100 38116 Braunschweig 38116 Braunschweig
Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number 0-Pt-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-Pt-12076-01-04	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkScalleG) of 31 July 2009 (federal and Scalette in 2.829) and the Regulation (ELN TO-5/2009) of the Suppose Perlument and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillator relating to the marketing of products Official Journal of the European Union 1.28 of 9 July 2008, 8, 30) DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation (EA), International Accreditation and Accreditation for Accreditation (EA), International accreditation formul (EA) and international allobators, Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.lac.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

© CTC advanced GmbH Page 84 of 85

Annex D Accreditation Certificate - D-PL-12076-01-05

first page	last page
DakkS Deutsche Akkrediterungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmark I. 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication (FCC Requirements)	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAMS). Exempted is the unchanged form of separate dissemination of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette I.p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 3 July 2008 string out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1.218 of 3 July 2008, p. 30). DAMS is a signatory to the Multilateral Agreements for Multila Recognition of the European Co-peration for Accreditation (IAA). The signatories to these agreements recognite each other's accreditation.
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number 0-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 11.01.2019 Frankfurt am Main, 11.01.2019	The up-to-date state of membership can be retrieved from the following websites: EA: www.ulac.org IJAC: www.ilac.org JAF: www.isf.nu
Ser save sentant.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf

© CTC advanced GmbH Page 85 of 85