TEST REPORT

FCC ID: 2AEJAGOLF9
Product: Smart phone
Model No.: F9
Additional Model: Sport
Trade Mark: GOL
Report No.: TCT160322E021
Issued Date: Mar. 31, 2016

Issued for:

GSM GLOBE.COM INC

134 N.E 1 Street, Miami, Florida, United States

Issued By:

Shenzhen Tongce Testing Lab.
1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China
TEL: +86-755-27673339
FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. Test Certification 3
2. Test Result Summary 4
3. EUT Description 5
4. Genera Information 6
4.1. Test environment and mode. 6
4.2. Test Mode 8
4.3. Description of Support Units 9
4.4. Configuration of Tested System 10
4.5. Measurement Results Explanation Example 10
5. Facilities and Accreditations 11
5.1. Facilities 11
5.2. Location 11
5.3. Measurement Uncertainty 11
6. Test Results and Measurement Data 12
6.1. Conducted Output Power Measurement 12
6.2. Peak to Average Ratio 14
6.3. 99\% Occupied Bandwidth and 26dB Bandwidth Measurement 20
6.4. Band Edge and Conducted Spurious Emission Measurement 25
6.5. Test Specification 25
6.6. Effective Radiated Power and Effective Isotropic Radiated Power Measurement. 33
6.7. Field Strength of Spurious Radiation Measurement 38
6.8. Frequency Stability Measurement 45
Appendix A: Photographs of Test Setup
Appendix B: Photographs of EUT

1．Test Certification

Product：	Smart phone
Model No．：	F9
Additional Model No．：	Sport
Applicant：	GSM GLOBE．COM INC
Address：	134 N．E 1 Street，Miami，Florida，United States
Manufacturer：	ShenZhen Huanuo Internet Technology Co．，Ltd
Address：	Room 10G，Tower 4C，Software Industry Base，Nanshan District， ShenZhen，China
Date of Test：	Mar．22－Mar．29，2016
Applicable Standards：	FCC CFR Title 47 Part 2 FCC CFR Title 47 Part22 Subpart H FCC CFR Title 47 Part24 Subpart E

The above equipment has been tested by Shenzhen Tongce Testing Lab．and found compliance with the requirements set forth in the technical standards mentioned above．The results of testing in this report apply only to the product／system，which was tested．Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties．

2．Test Result Summary

Requirement	CFR 47 Section	Result
Conducted Output Power	§2．1046	PASS
Peak－to－Average Ratio	§24．232（d）	PASS
Effective Radiated Power	§22．913（a）（2）	PASS
Equivalent Isotropic Radiated Power	§24．232（c）	PASS
Occupied Bandwidth	$\begin{gathered} \S 2.1049 \\ \S 22.917(\mathrm{~b}) \\ \S 24.238(\mathrm{~b}) \end{gathered}$	PASS
Band Edge	$\begin{gathered} \S 2.1051 \\ \S 22.917(\mathrm{a}) \\ \S 24.238(\mathrm{a}) \end{gathered}$	PASS
Conducted Spurious Emission	$\begin{gathered} \S 2.1051 \\ \S 22.917(\mathrm{a}) \\ \$ 24.238(\mathrm{a}) \end{gathered}$	PASS
Field Strength of Spurious Radiation	$\begin{gathered} \$ 2.1053 \\ \S 22.917(\mathrm{a}) \\ \$ 24.238(\mathrm{a}) \end{gathered}$	PASS
Frequency Stability for Temperature \＆ Voltage	$\begin{aligned} & \$ 2.1055 \\ & \$ 22.355 \\ & \$ 24.235 \end{aligned}$	PASS

Note：
1．PASS：Test item meets the requirement．
2．Fail：Test item does not meet the requirement．
3．N／A：Test case does not apply to the test object．
4．The test result judgment is decided by the limit of test standard．

3．EUT Description

Product Name：	Smart phone
Model ：	F9
Additional Model：	Sport
Trade Mark：	GOL
Hardware Version：	TS28＿V2．0
Software Version：	GOL＿F9＿S5010B＿TS28＿HN＿VI． 00
Tx Frequency：	GPRS／GSM850：824．2 MHz～848．8 MHz GPRS／GSM1900：1850．2 MHz～1909．8MHz WCDMA Band V：826．4 MHz～846．6 MHz
Rx Frequency：	GPRS／GSM 850：869．2 MHz～893．8 MHz GPRS／GSM 1900：1930．2 MHz～1989．8 MHz WCDMA Band V： $871.4 \mathrm{MHz} \sim 891.6 \mathrm{MHz}$
Maximum Output Power to Antenna：	GSM 850 ： 32.72 dBm GSM 1900 ： 28.56 dBm WCDMA Band V ： 23.09 dBm
99\％Occupied Bandwidth：	GPRS850 Class 8：246KGXW GPRS1900 Class 8：247KGXW WCDMA Band V RMC 12．2Kbps：4M10F9W
Type of Modulation：	GPRS／GSM：GMSK WCDMA：QPSK HSDPA：QPSK HSUPA：QPSK
Antenna Type：	PIFA Antenna
Antenna Gain：	GPRS／GSM 850：－1．0 GPRS／GSM 1900：－1．8dBi WCDMA Band V ：-1.2 dBi
Power Supply：	DC 3．7V from rechargeable lithium battery
Remark：	All models above are identical in interior structure，electrical circuits and components，and just model names are different for the marketing requirement．

4．Genera Information

4．1．Test environment and mode

Operating Environment：	$25.0^{\circ} \mathrm{C}$
Temperature：	$56 \% \mathrm{RH}$
Humidity：	1010 mbar
Atmospheric Pressure：	Keep the EUT in communication with CMU200 and select channel with modulation
Test Mode：	Operation mode：
Remark：This product has a built－in rechargeable battery，so in an independent test， the EUT battery was fully－charged．	
The sample was placed 0．8m above the ground plane of 3m chamber．Measurements in both horizontal and vertical polarities were performed．During the test，each emission was maximized by：having the EUT continuously working，investigated all operating modes，rotated about all 3 axis（X，Y \＆Z）and considered typical configuration to obtain worst position，manipulating interconnecting cables，rotating the turntable，varying antenna height from 1m to 4m in both horizontal and vertical polarizations．The emissions worst－case are shown in Test Results of the following pages．	

Description Operation Frequency

GSM 850		PCS1900	
Channel：	Frequency（MHz）	Channel：	Frequency（MHz）
128	824.20	512	1850.20
129	824.40	513	1850.40
\ldots	．．．．	．．．．	．．．．
189	836.40	660	1879.80
190	836.60	661	1880.00
191	836.80	662	1880.20
\ldots	．．．	\ldots	．．．
250	848.60	809	1909.60
251	848.80	810	1909.80
WCDMA Band V			
Channel：	Frequency（MHz）		
4132	826.40		
4133	826.60		
．．．．	．．．．		
4182	836.40		
4183	836.60		
4184	836.80		
．．．	\ldots		
4232	846.40		
4233	846.60		

通测检测
tegting centhe technology

4．2．Test Mode

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas．License Digital Systems v02r02 with maximum output power． Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission．
Radiated emissions were investigated as following frequency range：
1． 30 MHz to 10000 MHz for GSM850 and WCDMA Band V．
2． 30 MHz to 20000 MHz for PCS1900
All modes and data rates and positions were investigated．
Test modes are chosen to be reported as the worst case configuration below：

Test Mode		
Band	Radiated TCs	Conducted TCs
GSM 850	GSM Link GPRS class 8 Link	GSM Link GPRS class 8 Link
PCS 1900	GSM Link GPRS class 8 Link	GSM Link GPRS class 8 Link
WCDMA Band V	RMC 12．2Kbps Link	RMC 12．2Kbps Link

Note：The maximum power levels are chosen to test as the worst case configuration as follows： GSM multi－slot class 8 mode for GMSK modulation，
GPRS multi－slot class 8 mode for GMSK modulation，Only these modes were used for all tests．In addition to above worst－case test，below investigating on all data rates，and all modes are compliance with each FCC test case which has specific test limits．For spurious emissions at antenna port，the EUT was investigated the band edges on low and high channels，and the unwanted spurious emissions on middle channel for all modes，the results are PASS，then only the worst－results were reported in the test report．The Radiated Spurious emissions for GSM／GPRS modes were investigated on the middle channel and the PASS results were not worst than those data tested from the highest power channels．

通测检测
testing centae technology

4．3．Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units．The following support units or accessories were used to form a representative test configuration during the tests．

Equipment	Model No．	Serial No．	FCC ID	Trade Name
$/$	$/$	$/$	$/$	$/$

Note：
1．All the equipment／cables were placed in the worst－case configuration to maximize the emission during the test．
2．Grounding was established in accordance with the manufacturer＇s requirements and conditions for the intended use．

4．4．Configuration of Tested System

4．5．Measurement Results Explanation Example

For all conducted test items：

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer．With the offset compensation，the spectrum analyzer reading level will be exactly the RF output level．The spectrum analyzer offset is derived from RF cable loss and attenuator factor． Offset $=$ RF cable loss + attenuator factor．
The following shows an offset computation example with RF cable loss 3 dB and a 5 dB attenuator．
Example：Offset $(d B)=R F$ cable loss（dB）＋attenuator factor（dB）．

$$
=8(\mathrm{~dB})
$$

5．Facilities and Accreditations

5．1．Facilities

The test facility is recognized，certified，or accredited by the following organizations：
－FCC－Registration No．： 572331
Shenzhen Tongce Testing Lab
The 3 m Semi－anechoic chamber has been registered and fully described in a report with the（FCC）Federal Communications Commission．The acceptance letter from the FCC is maintained in our files．
－IC－Registration No．：10668A－1
The 3 m Semi－anechoic chamber of Shenzhen TCT Testing Technology Co．，Ltd．has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing
－CNAS－Registration No．：CNAS L6165
Shenzhen TCT Testing Technology Co．，Ltd．is accredited to ISO／IEC 17025：2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing．The Registration No．is CNAS L6165．

5．2．Location

Shenzhen Tongce Testing Lab
Address：1F，Leinuo Watch Building，Fuyong Town，Baoan Dist，Shenzhen，China Tel：86－755－36638142

5．3．Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$ ，where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$ ，providing a level of confidence of approximately 95% ．

No．	Item	MU
1	Conducted Emission	$\pm 2.56 \mathrm{~dB}$
2	RF power，conducted	$\pm 0.12 \mathrm{~dB}$
3	Spurious emissions，conducted	$\pm 0.11 \mathrm{~dB}$
4	All emissions，radiated（＜1G）	$\pm 3.92 \mathrm{~dB}$
5	All emissions，radiated（＞1G）	$\pm 4.28 \mathrm{~dB}$
6	Temperature	$\pm 0.1^{\circ} \mathrm{C}$
7	Humidity	$\pm 1.0 \%$

通测检测
testing centhe technology
6．Test Results and Measurement Data

6．1．Conducted Output Power Measurement

6．1．1．Test Specification

Test Requirement：	FCC part 22．913（a）and FCC part 24．232（b）
Test Method：	FCC part 2.1046
Operation mode：	Refer to item 4.1
Limits：	GSM 850 7W PCS 1900 2W WCDMA Band V：7W
Test Setup：	
Test Procedure：	1．The transmitter output port was connected to the system simulator． 2．Set EUT at maximum power through system simulator． 3．Select lowest，middle，and highest channels for each band and different modulation． 4．Measure the maximum burst average power for GSM and maximum average power for other modulation signal．
Test Result：	PASS

6．1．2．Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
System simulator	R\＆S	CMU200	111382	Sep．11，2016
RF cable	TCT	RE－06	N／A	Sep．12，2016
Antenna Connector	TCT	RFC－01	N／A	Sep．12，2016

Note：The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit（SI）．

Conducted Power Measurement Results：

Average Conducted Power（＊Unit：dBm）						
Band	GSM850			PCS 1900		
Channel	128	189	251	512	661	810
Frequency（MHz） 8	824.2	836.4	848.8	1850.2	1880.0	1909.8
GSM	33.56	33.50	33.58	30.00	30.01	30.39
GPRS class8 32	32.31	32.48	32.14	27.29	27.32	27.56
GPRS class10 3	30.61	30.75	30.86	25.23	25.34	26.23
GPRS class11 2	28.64	28.76	28.88	23.55	23.64	24.57
GPRS class12 2	26.49	26.64	26.25	21.60	21.70	22.64
Average Conducted Power（＊Unit：dBm）						
Band	WCDMA Band V					
Channel	4132		4183		4233	
Frequency（MHz）	826.4		836.6		846.6	
WCDMA RMC 12．2K	K 23.09		23.04		22.99	
HSDPA Subtest－1		21.99	21.95		21.88	
HSDPA Subtest－2		22.00	21.90		21.84	
HSDPA Subtest－3		21.59	21.44		21.40	
HSDPA Subtest－4		21.56	21.39		21.38	
HSUPA Subtest－1		20.64	20.97		20.59	
HSUPA Subtest－2		20.49	20.80		20.47	
HSUPA Subtest－3		20.45	20.46		20.41	
HSUPA Subtest－4		20.35	20.24		20.03	
HSUPA Subtest－5		20.62	20.59		20.64	

6．2．Peak to Average Ratio

6．2．1．Test Specification

Test Requirement：	FCC Part24．232
Test Method：	FCC KDB 971168 v02r02 Section 5．7．1
Operation mode：	Refer to item 4.1
Limit：	The peak－to－average ratio（PAR）of the transmission may not exceed 13 dB ．
Test Setup：	
Test Procedure：	1．The testing follows FCC KDB 971168 v02r02 Section 5．7．1． 2．The EUT was connected to spectrum analyzer and system simulator via a power divider． 3．Set EUT to transmit at maximum output power． 4．For GSM／EGPRS operating modes，signal gating is implemented on the spectrum analyzer by triggering from the system simulator． 5．Set the CCDF（Complementary Cumulative Distribution Function）option of the spectrum analyzer． Record the maximum PAPR level associated with a probability of 0.1% ．
Test Result：	PASS

6．2．2．Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
System simulator	R\＆S	CMU200	111382	Sep．11，2016
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep．12，2016
RF cable	TCT	RE－06	N／A	Sep．12，2016
Antenna Connector	TCT	RFC－01	N／A	Sep．12，2016

Note：The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit（SI）．

6．2．3．Test Data

Cellular Band									
Mode	GSM850			GSM 1900		WCDMA Band V （RMC 12．2Kbps）			
Channel	128	189	251	512	661	810	4132	4183	4233
Frequency （MHz）	824.2	836.4	848.8	1850.2	1880	1909.8	826.4	836.6	846.8
Peak－to－ Average Ratio（dB）	2.63	2.63	2.64	2.67	2.67	2.67	3.27	3.08	3.10

Test plots as follows：

Peak－to－Average Ratio on Channel 128

Peak－to－Average Ratio on Channel 189

Peak－to－Average Ratio on Channel 251

Peak－to－Average Ratio on Channel 512

Peak－to－Average Ratio on Channel 661

Peak－to－Average Ratio on Channel 810

Peak－to－Average Ratio on Channel 4132

Peak－to－Average Ratio on Channel 4183

Peak－to－Average Ratio on Channel 4233

通测检测

6．3．99\％Occupied Bandwidth and 26dB Bandwidth Measurement

6．3．1．Test Specification

Test Requirement：	FCC part 22．913（a）and FCC part 24．232（b）
Test Method：	FCC part 2.1049
Operation mode：	Refer to item 4.1
Limit：	N／A
Test Setup：	
Test Procedure：	1．The testing follows FCC KDB 971168 v02r02 Section 4．2． 2．The EUT was connected to the spectrum analyzer and system simulator via a power divider． 3．The RF output of the EUT was connected to the spectrum analyzer by RF cable and attenuator． The path loss was compensated to the results for each measurement． 4．The 99% occupied bandwidth were measured，set RBW $=1 \%$ of span，$V B W=3^{*}$ RBW，sample detector， trace maximum hold． 5．The 26 dB bandwidth were measured，set $\mathrm{RBW}=1 \%$ of EBW，VBW＝ 3^{*} RBW，peak detector，trace maximum hold．
Test Result：	PASS

6．3．2．Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
System simulator	R\＆S	CMU200	111382	Sep．11，2016
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep．12，2016
RF cable	TCT	RE－06	N／A	Sep．12，2016
Antenna Connector	TCT	RFC－01	N／A	Sep．12，2016

Note：The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit（SI）．

6．3．3．Test data

Cellular Band						
Mode	GSM850			GSM1900		
Channel	128	189	251	512	661	810
Frequency （MHz）	824.2	836.4	848.8	1850.2	1880.0	1909.8
99% OBW（kHz）	286.96	287.97	288.89	244.14	244.42	243.77
26dB BW（kHz）	360.0	359.0	353.9	318.0	313.9	317.9

Cellular Band			
Mode	WCDMA Band V（RMC 12．2Kbps）		
Channel	$\mathbf{4 1 3 2}$	$\mathbf{4 1 8 3}$	$\mathbf{4 2 3 3}$
Frequency（MHz）	$\mathbf{8 2 6 . 4}$	$\mathbf{8 3 6 . 6}$	$\mathbf{8 4 6 . 6}$
99\％OBW（kHz）	4090.4	4111.1	4099.9
26dB BW（kHz）	4661	4654	4667

Test plots as follows：

Report No．：TCT160322E021

Band：	GSM850	Test Mode：	GSM850（GMSK）

99\％\＆26dB Occupied Bandwidth Plot on Channel 128

99\％\＆26dB Occupied Bandwidth Plot on Channel 189

99\％\＆26dB Occupied Bandwidth Plot on Channel 251

Report No．：TCT160322E021

Band：	GSM1900	Test Mode：	GSM1900（GMSK）

99\％\＆26dB Occupied Bandwidth Plot on Channel 512

99\％\＆26dB Occupied Bandwidth Plot on Channel 661

99\％\＆26dB Occupied Bandwidth Plot on Channel 810

Report No．：TCT160322E021

Band：	WCDMA Band V	Test Mode：	RMC 12．2Kbps Link （QPSK）

99\％\＆26dB Occupied Bandwidth Plot on Channel 4132

99\％\＆26dB Occupied Bandwidth Plot on Channel 4183

99\％\＆26dB Occupied Bandwidth Plot on Channel 4233

6．4．Band Edge and Conducted Spurious Emission Measurement
6．5．Test Specification

Test Requirement：	FCC part22．917（a）and FCC part24．238（a）
Test Method：	FCC part2． 1051
Operation mode：	Refer to item 4.1
Limit：	－13dBm
Test Setup：	
Test Procedure：	1．The testing follows FCC KDB 971168 v02r02 Section 6．0． 2．The EUT was connected to the spectrum analyzer and system simulator via a power divider． 3．The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator． The path loss was compensated to the results for each measurement． 4．The band edges of low and high channels for the highest RF powers were measured． 5．The conducted spurious emission for the whole frequency range was taken． 6．The RF fundamental frequency should be excluded against the limit line in the operating frequency band． 7．The limit line is derived from $43+10 \log (P) d B$ below the transmitter power $P($ Watts $)=P(W)-[43+10 \log (P)](d B)=[30+$ $10 \log (P)](d B m)-[43+10 \log (P)](d B)=-13 d B m$ ．
Test Result：	PASS

6．5．1．Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
System simulator	R\＆S	CMU200	111382	Sep．11，2016
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep．12，2016
RF cable	TCT	RE－06	N／A	Sep．12，2016
Antenna Connector	TCT	RFC－01	N／A	Sep．12，2016

Note：The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit（SI）．

Report No．：TCT160322E021

6．5．2．Test data

Test plots as follows：

Band：	GSM850	Test Mode：	GSM850（GMSK）

Lower Band Edge Plot on Channel 128

Higher Band Edge Plot on Channel 251

Band:	GSM1900	Test Mode:	GSM850 (GMSK)

Lower Band Edge Plot on Channel 512

Higher Band Edge Plot on Channel 810

Report No．：TCT160322E021

Band：	WCDMA Band V	Test Mode：	RMC 12．2Kbps Link （QPSK）

Lower Band Edge Plot on Channel 4132

Higher Band Edge Plot on Channel 4233

Report No．：TCT160322E021

Band：	GSM850	Test Mode：	GSM850（GMSK）

Conducted Spurious Emission on Channel 128

Conducted Spurious Emission on Channel 189

Conducted Spurious Emission on Channel 251

Report No．：TCT160322E021

Band：	GSM1900	Test Mode：	GSM1900（GMSK）

Conducted Spurious Emission on Channel 512

Conducted Spurious Emission on Channel 661

Conducted Spurious Emission on Channel 810

TCT
 通测检测
 TESTING CENTAE TECHNOLOGY

Report No．：TCT160322E021

Band：	WCDMA Band V	Test Mode：	RMC 12．2Kbps Link （QPSK）

Conducted Spurious Emission on Channel 4132

Conducted Spurious Emission on Channel 4183

Conducted Spurious Emission on Channel 4233

6．6．Effective Radiated Power and Effective Isotropic Radiated Power

Measurement

6．6．1．Test Specification

Test Requirement：	FCC part 22．913（a）and FCC part 24．232（b）		
Test Method：	FCC part 2.1046		
Receiver Setup：		GSM／GPRS／EDGE	WCDMA／HSPA
	SPAN	500 kHz	10 MHz
	RBW	10 kHz	100kHz
	VBW	30 kHz	300 kHz
	Detector	RMS	RMS
	Trace	Average	Average
	Average Type	Power	Power
	Sweep Count	100	100
	GSM850 7W ERP PCS1900 2W EIRP WCDMA Band V：7W ERP		
Limit			
Test Setup：			
Test Procedure：	1．The testing follows FCC KDB 971168 v02r02 Section 5．2．1．（for CDMAWCDMA），Section 5．2．2．2（for GSM／GPRS／EDGE）and ANSI／TIA－603－C－2004 Section 2．2．17． 2．The EUT was placed on a non－conductive rotating platform 0.8 meters high in a semi－anechoic chamber．The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RMS detector per section 5．of KDB 971168 D01． 3．During the measurement，the system simulator parameters were set to force the EUT transmitting at		

maximum output power．The maximum emission was recorded from analyzer power level（LVL）from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations．
4．Effective Isotropic Radiated Power（EIRP）was measured by substitution method according to TIA／EIA－603－C．The EUT was replaced by dipole antenna（substitution antenna）at the same location， and then a known power from S．G．was applied into the dipole antenna through a Tx cable，and then recorded the maximum Analyzer reading through raised and lowered the test antenna．The correction factor（in dB）＝S．G．－Tx Cable loss＋Substitution antenna gain－Analyzer reading．Then the EUT＇s EIRP was calculated with the correction factor，EIRP＝ LVL＋Correction factor and ERP $=$ EIRP -2.15 ．

Test results：

"\#
testing centae technology
6.6.2. Test Instruments

Radiated Emission Test Site (966)				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
ESPI Test Receiver	$\underset{\substack{\text { ROHDE\&SCHW } \\ \text { ARZ }}}{ }$	ESVD	100008	Sep. 11, 2016
System simulator	R\&S	CMU200	111382	Sep. 11, 2016
Spectrum Analyzer	$\begin{gathered} \text { ROHDE\&SCHW } \\ \text { ARZ } \end{gathered}$	FSEM	848597/001	Sep. 11, 2016
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 11, 2016
Pre-amplifier	HP	8447D	$2727 A 05017$	Sep. 11, 2016
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 13, 2016
Horn Antenna	Schwarzbeck	BBHA9120D	631	Sep. 13, 2016
Broadband Antenna	Schwarzbeck	VULB9163	412	Sep. 13, 2016
Horn Antenna	Schwarzbeck	BBHA9120D	813	Sep. 13, 2016
Dipole Antenna	TCT	TCT-RF	N/A	Sep. 13, 2016
Coax cable	TCT	RE-low-01	N/A	Sep. 11, 2016
Coax cable	TCT	RE-high-02	N/A	Sep. 11, 2016
Coax cable	TCT	RE-low-03	N/A	Sep. 11, 2016
Coax cable	TCT	RE-High-04	N/A	Sep. 11, 2016
Antenna Mast	CCS	CC-A-4M	N/A	Sep. 12, 2016
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A
UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	R\&S	Sep. 12, 2015	Sep. 11, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6．6．3．Test Data

Test Result of ERP

GSM850 Radiated Power ERP				
Horizontal Polarization				
Frequency (MHz)	$\begin{gathered} \text { LVL } \\ (\mathrm{dBm}) \end{gathered}$	Correction Factor （dB）	$\begin{aligned} & \text { ERP } \\ & \text { (dBm) } \end{aligned}$	ERP （W）
824.40	6.54	21.66	26.05	0.40
836.40	6.31	21.54	25.70	0.37
848.80	6.57	21.46	25.88	0.39
Vertical Polarization				
Frequency （MHz）	$\begin{gathered} \mathrm{LVL} \\ (\mathrm{dBm}) \end{gathered}$	Correction Factor （dB）	$\begin{aligned} & \text { ERP } \\ & \text { (dBm) } \end{aligned}$	ERP （W）
824.40	10.31	22.42	30.58	1.14
836.40	10.25	22.65	30.75	1.19
848.80	10.62	22.26	30.73	1.18

$E R P=L V L$（dBm）＋Correction Factor（dB）－ 2.15
Correction Factor＝S．G．Power－Cable loss＋Substitution Antenna Gain－SPA．Reading

WCDMA Band V（RMC 12．2Kbps）Radiated Power ERP				
Horizontal Polarization				
Frequency （MHz）	$\begin{gathered} \text { LVL } \\ (\mathrm{dBm}) \end{gathered}$	Correction Factor （dB）	$\begin{aligned} & \text { ERP } \\ & \text { (dBm) } \end{aligned}$	ERP （W）
826.40	－2．32	21.54	17.07	0.05
836.40	－2．65	21.48	16.68	0.05
846.60	－3．03	21.62	16.44	0.04
Vertical Polarization				
Frequency （MHz）	$\begin{gathered} \text { LVL } \\ (\mathrm{dBm}) \end{gathered}$	Correction Factor （dB）	$\begin{aligned} & \text { ERP } \\ & \text { (dBm) } \end{aligned}$	ERP （W）
826.40	1.25	22.74	21.84	0.15
836.40	1.03	22.62	21.5	0.14
846.60	1.18	22.56	21.59	0.14

＊ERP $=$ LVL（dBm）+ Correction Factor（dB）-2.15
Correction Factor $=$ S．G．Power - Cable loss + Substitution Antenna Gain－SPA．Reading

通测检测
tegting centae technology

Test Result of EIRP

GSM1900 Radiated Power EIRP				
Horizontal Polarization				
Frequency (MHz)	$\begin{aligned} & \text { LVL } \\ & (\mathrm{dBm}) \end{aligned}$	Correction Factor （dB）	$\begin{aligned} & \text { EIRP } \\ & \text { (dBm) } \end{aligned}$	EIRP （W）
1850.20	－5．21	30.15	24.94	0.31
1880.00	－5．24	31.01	25.77	0.38
1909.80	－5．14	30.34	25.20	0.33
Vertical Polarization				
$\begin{aligned} & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	$\begin{aligned} & \text { LVL } \\ & (\mathrm{dBm}) \end{aligned}$	Correction Factor （dB）	$\begin{aligned} & \text { EIRP } \\ & \text { (dBm) } \end{aligned}$	EIRP （W）
1850.20	－4．21	30.52	26.31	0.43
1880.00	－4．37	31.47	27.10	0.51
1909.80	－4．20	30.67	26.47	0.44

EIRP $=$ LVL（dBm）＋Correction Factor（dB）
Correction Factor $=$ S．G．Power－Cable loss + Substitution Antenna Gain－SPA．Reading

WCDMA Band II（RMC 12．2Kbps）Radiated Power EIRP				
Horizontal Polarization				
Frequency （MHz）	$\begin{gathered} \text { LVL } \\ (\mathrm{dBm}) \end{gathered}$	Correction Factor （dB）	$\begin{aligned} & \text { EIRP } \\ & \text { (dBm) } \end{aligned}$	EIRP （W）
1852.40	－16．26	31.78	15.52	0.04
1880.00	－15．02	31.63	16.61	0.05
1907.60	－16．98	31.75	14.77	0.03
Vertical Polarization				
Frequency （MHz）	$\begin{gathered} \text { LVL } \\ (\mathrm{dBm}) \end{gathered}$	Correction Factor （dB）	EIRP （dBm）	EIRP （W）
1852.40	－10．54	31.85	21.31	0.14
1880.00	－9．05	31.39	22.34	0.17
1907.60	－10．32	31.67	21.35	0.14

＊EIRP $=$ LVL（dBm）＋Correction Factor（dB）
Correction Factor $=$ S．G．Power－Cable loss + Substitution Antenna Gain－SPA．Reading

6．7．Field Strength of Spurious Radiation Measurement

6．7．1．Test Specification

Test Requirement：	FCC part 22．917（a）and FCC part 24．238（a）
Test Method：	FCC part 2.1053
Operation mode：	Refer to item 4.1
Limit：	－13dBm
Test setup：	For $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$
	Above 1 GHz

1．The testing follows FCC KDB 971168 v02r02 Section 5.8 and ANSI／TIA－603－C－2004 Section 2．2．12．

2．The EUT was placed on a rotatable wooden table 0.8 meters above the ground．
3．The EUT was set 3 meters from the receiving antenna，which was mounted on the antenna tower．
4．The table was rotated 360 degrees to determine the position of the highest spurious emission．

5．The height of the receiving antenna is varied between one meter and four meters to search for the maximum spurious emission for both horizontal and vertical polarizations．
6．Make the measurement with the spectrum analyzer＇s RBW $=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ ，taking record of maximum spurious emission．
7．A horn antenna was substituted in place of the EUT and was driven by a signal generator．
8．Tune the output power of signal generator to the same emission level with EUT maximum spurious emission．
9．Taking the record of output power at antenna port．
10．Repeat step 7 to step 8 for another polarization．
11．EIRP $(\mathrm{dBm})=\mathrm{S} . \mathrm{G}$ ．Power - Tx Cable Loss + Tx Antenna Gain
12．ERP $(\mathrm{dBm})=\operatorname{EIRP}-2.15$
13．The RF fundamental frequency should be excluded against the limit line in the operating frequency band．
14．The limit line is derived from $43+10 \log (P) \mathrm{dB}$ below the transmitter power P （Watts）
$=P(W)-[43+10 \log (P)](\mathrm{dB})$
$=[30+10 \log (P)](\mathrm{dBm})-[43+10 \log (P)](\mathrm{dB})$
$=-13 \mathrm{dBm}$ ．
Test results：
PASS

H2
testing centae technology

6.7.2. Test Instruments

Radiated Emission Test Site (966)					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
ESPI Test Receiver	ROHDE\&SCHW ARZ	ESVD	100008	Sep. 11, 2016	
System simulator	R\&S	CMU200	111382	Sep. 11, 2016	
Spectrum Analyzer	ROHDE\&SCHW ARZ	FSEM	$848597 / 001$	Sep. 11, 2016	
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016	
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 11, 2016	
Pre-amplifier	HP	8447D	$2727 A 05017$	Sep. 11, 2016	
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 13, 2016	
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 13, 2016	
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 13, 2016	
Horn Antenna	Schwarzbeck	BBHA 9170	373	Sep. 13, 2016	
Dipole Antenna	TCT	TCT-RF	N/A	Sep. 13, 2016	
Coax cable	TCT	RE-low-01	N/A	Sep. 11, 2016	
Coax cable	TCT	RE-high-02	N/A	Sep. 11, 2016	
Coax cable	TCT	RE-low-03	N/A	Sep. 11, 2016	
Coax cable	TCT	RE-High-04	N/A	Sep. 11, 2016	
Antenna Mast	CCS	CC-A-4M	N/A	Sep. 12, 2016	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6．7．3．Test Data

Frequency Range（ $9 \mathrm{kHz}-30 \mathrm{MHz}$ ）

Frequency (MHz)	Level＠3m $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit＠3m $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$
--	--	--
--	--	--
--	--	--
--	--	--

Note：1．Emission Level＝Reading＋Cable loss－Antenna factor－Amp factor
2．The emission levels are 20 dB below the limit value，which are not reported．It is deemed to comply with the requirement

Band	PCS 1900		Test channel：	Lowest
Test mode：	GSM Link		Temperature：	$25^{\circ} \mathrm{C}$
			Relative Humidity：	56\％
Note：	Spurious emissions within $30-1000 \mathrm{MHz}$ were found more than 20 dB below limit line．			
Frequency （MHz）	Spurious Emission		Limit（dBm）	Result
	Polarization	Level（dBm）		
3700.40	Vertical	－49．63	－13．00	PASS
5550.60	V	－47．35		
7400.80	V	－52．99		
3700.40	Horizontal	－49．82		
5550.60	H	－50．81		
7400.80	H	－52．53		
Test mode：	PCS 1900		Test channel：	Middle
Test mode：	GSM Link		Temperature：	$25^{\circ} \mathrm{C}$
			Relative Humidity：	56\％
Note：	Spurious emissions within $30-1000 \mathrm{MHz}$ were found more than 20 dB below limit line．			
Frequency （MHz）	Spurious Emission		Limit（dBm）	Result
	Polarization	Level（dBm）		
3760.00	Vertical	－49．52	－13．00	PASS
5640.00	V	－53．48		
7520.00	V	－45．83		
3760.00	Horizontal	－47．18		
5640.00	H	－53．23		
7520.00	H	－53．41		
Test mode：	PCS 1900		Test channel：	Highest
Test mode：	GSM Link		Temperature：	$25^{\circ} \mathrm{C}$
			Relative Humidity：	56\％
Note：	Spurious emissions within $30-1000 \mathrm{MHz}$ were found more than 20 dB below limit line．			
Frequency （MHz）	Spurious Emission		Limit（dBm）	Result
	Polarization	Level（dBm）		
3819.60	Vertical	－47．40	－13．00	PASS
5729.40	V	－50．13		
7639.20	V	－53．19		
3819.60	Horizontal	－48．15		
5729.40	H	－52．36		
7639.20	H	－53．13		

Band	WCDMA Band V		Test channel：	Lowest
Test mode：	RMC 12．2Kbps Link（QPSK）		Temperature ：	$25^{\circ} \mathrm{C}$
			Relative Humidity：	56\％
Note：	Spurious emissions within $30-1000 \mathrm{MHz}$ were found more than 20 dB below limit line．			
Frequency （MHz）	Spurious Emission		Limit（dBm）	Result
	Polarization	Level（dBm）		
1652.80	Vertical	－52．21	－13．00	PASS
2479.20	V	－53．12		
3305.60	V	－52．71		
1652.80	Horizontal	－53．48		
2479.20	H	－50．99		
3305.60	H	－52．93		
Test mode：	WCDMA Band V		Test channel：	Middle
Test mode：	RMC 12．2Kbps Link（QPSK）		Temperature：	$25^{\circ} \mathrm{C}$
			Relative Humidity：	56\％
Note：	Spurious emissions within $30-1000 \mathrm{MHz}$ were found more than 20 dB below limit line．			
Frequency	Spurious Emission		Limit（dBm）	Result
（MHz）	Polarization	Level（dBm）		
1673.20	Vertical	－53．19	－13．00	PASS
2509.80	V	－52．82		
3346.40	V	－52．79		
1673.20	Horizontal	－54．78		
2509.80	H	－51．49		
3346.40	H	－53．86		
Test mode：	WCDMA Band V		Test channel：	Highest
Test mode：	RMC 12．2Kbps Link（QPSK）		Temperature：	$25^{\circ} \mathrm{C}$
			Relative Humidity：	56\％
Note：	Spurious emissions within $30-1000 \mathrm{MHz}$ were found more than 20 dB below limit line．			
Frequency	Spurious Emission		Limit（dBm）	Result
（MHz）	Polarization	Level（dBm）	Limit（dBm）	Result
1693.20	Vertical	－56．27	－13．00	PASS
2539.80	V	－51．21		
3386.40	V	－52．98		
1693.20	Horizontal	－52．96		
2539.80	H	－51．85		
3386.40	H	－54．09		

通测检测

6．8．Frequency Stability Measurement

6．8．1．Test Specification

6．8．2．Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
System simulator	R\＆S	CMU200	111382	Sep．11，2016

RF cable	TCT	RE－06	N／A	Sep．12，2016
Antenna Connector	TCT	RFC－01	N／A	Sep．12，2016

Note：The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit（SI）．

通测检测
testing centae technology

6．8．3．Test Data

Test Result of Temperature Variation

Band ：	GSM 850	Channel：	190
Limit（ppm）：		$\mathbf{2 . 5}$	Frequency：
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Frequency Deviation（ppm）		Result
50	0.011	0.009	
40	0.013	0.013	
30	0.012	0.011	
20	0.009	0.011	
10	0.011	0.010	PASS
0	0.012	0.013	
-10	0.008	0.010	
-20	0.009	0.012	
-30	0.011	0.013	

Band ：	GSM 1900	Channel：	661
Limit（ppm）：	Note	Frequency	1880MHz
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Frequency Deviation（ppm）		Result
50	0.023	0.012	PASS
40	0.021	0.018	
30	0.019	0.015	
20	0.018	0.016	
10	0.022	0.013	
0	0.023	0.016	
－10	0.018	0.016	
－20	0.017	0.014	
－30	0.022	0.018	

Note：The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small．

Report No．：TCT160322E021

Band ：	WCDMA Band V	Channel：	4183
Limit（ppm）：		2．5ppm	Frequency：

Note：The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small．

Test Result of Voltage Variation

Band \＆ Channel	Mode	Voltage （Volt）	$\begin{gathered} \hline \text { Deviation } \\ \text { (ppm) } \\ \hline \end{gathered}$	Limit （ppm）	Result
$\begin{gathered} \text { GSM } 850 \\ \text { CH190 } \end{gathered}$	GSM	4.2	0.025	2.5	PASS
		3.7	0.021		
		BEP	0.016		
$\begin{gathered} \text { GSM } 1900 \\ \text { CH661 } \end{gathered}$	GSM	4.2	0.013	（Note 3．）	
		3.7	0.010		
		BEP	0.001		
WCDMA Band V CH4182	$\begin{gathered} \text { RMC } \\ 12.2 \mathrm{Kbps} \end{gathered}$	4.2	0.026	2.5	
		3.7	0.014		
		BEP	0.015		

Note：
1．Normal Voltage $=3.7 \mathrm{~V}$ ．
2．Battery End Point（BEP）$=3.5 \mathrm{~V}$ ．
3．The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small．

＊＊＊＊＊END OF REPORT＊＊＊＊＊

