

Global United Technology Services Co., Ltd.

Report No.: GTS201907000145F02

FCC Report (Bluetooth)

GSM GLOBE.COM INC Applicant:

Address of Applicant: 134 N.E 1 Street, Miami, Florida 33132, United States

Z-TECH COMMUNICATION(SZ) Co., Ltd **Manufacturer/Factory:**

Address of 7/F BLK D ,BAO'AN ZHI'GU YIN'TIAN ROAD NO.4 XI'XIANG

STR' BAO'AN SHENZHEN CITY, CHINA Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: MOBILE PHONES

Model No.: F10 Prime, F10 Plus, F10 Pro

Trade Mark: GOL mobile

FCC ID: 2AEJAGOLF10

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: July 22, 2019

Date of Test: July 23, 2019-August 09, 2019

Date of report issued: August 09, 2019

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	August 09, 2019	Original

Prepared By:	Bill. Yvan	Date:	August 09, 2019
	Project Engineer		
Check By:	Reviewer	Date:	August 09, 2019

3 Contents

		Page
1	I COVER PAGE	1
2	2 VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	5 GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 Test mode	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 DEVIATION FROM STANDARDS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 TEST FACILITY	
	5.7 TEST LOCATION	
6	TEST INSTRUMENTS LIST	8
7	7 TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED PEAK OUTPUT POWER	
	7.4 20dB Emission Bandwidth	
	7.5 CARRIER FREQUENCIES SEPARATION	
	7.6 HOPPING CHANNEL NUMBER	
	7.7 DWELL TIME	
	7.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	7.9 BAND EDGE	
	7.9.1 Conducted Emission Method	
	7.9.2 Radiated Emission Welflod	
	7.10.1 Conducted Emission Method	
	7.10.2 Radiated Emission Method	
8	3 TEST SETUP PHOTO	46
9	EUT CONSTRUCTIONAL DETAILS	46

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	±3.8039dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 3.9679dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.29dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.44dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	MOBILE PHONES			
Model No.:	F10 Prime, F10 Plus, F10 Pro			
Test Model No:	F10 Prime			
	e identical in the same PCB layout, interior structure and electrical circuits.			
Test sample(s) ID:	GTS201907000145-1			
Sample(s) Status:	Engineer sample			
Serial No.:	0123456789ABCDEF			
Hardware Version:	JY_Y891A_MB_V1			
Software Version:	Y891A9_ZXT_FWQHD_Z6006F_20190711			
Operation Frequency:	2402MHz~2480MHz			
Channel numbers:	79			
Channel separation:	1MHz			
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK			
Antenna Type:	PIFA Antenna			
Antenna gain:	1.27dBi(Declare by applicant)			
Power supply:	Adaptor			
	Model: F10			
	Input: AC 100-240V, 50/60Hz, 0.15A			
	Output: DC 5.0V, 1Amp			
	Or			
	Battery: DC 3.8V, 2800mAh			

Operation	Frequency eacl	h of channel	<u> </u>				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
0	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020		
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020		
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020		
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020		
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020		
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020		

Cond	ducted Emission					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020			

General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020		
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020		

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

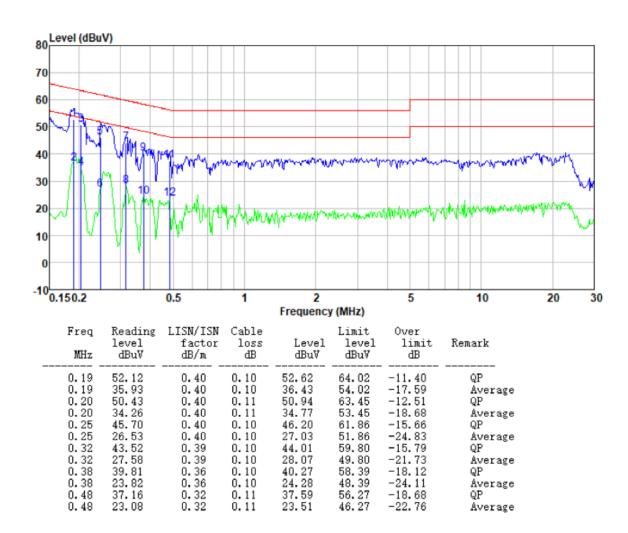
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

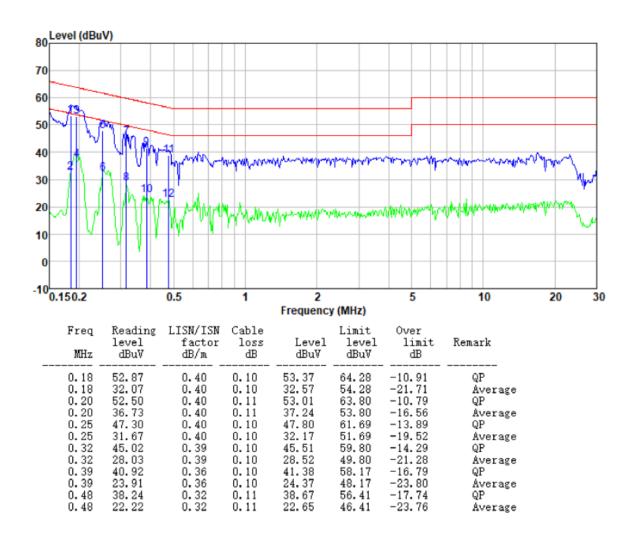
E.U.T Antenna:

The antenna is PIFA antenna, the best case gain of the antenna is 1.27dBi, reference to the appendix II for details

7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207	,		
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto		
Limit:	Fraguerou range (MHz)	Limit	(dBuV)	
	Frequency range (MHz)	Quasi-peak	Avei	
	0.15-0.5	66 to 56*	56 to	
	0.5-5	56	4	
	5-30 * Decreases with the logarithm	60	5	0
Test setup:	Reference Plane			
Test procedure:	Remark E.U.T Equipment Under Test LISN Line impedance stabilization network (L.I.S.N.). This provides a			
	 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar			
Test voltage:	AC 120V, 60Hz			1
Test results:	Pass			
1 oot 1 oodito.	1 . 450			

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data:

Line:

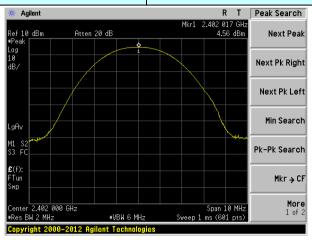
Neutral:

Notes:

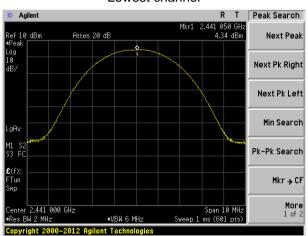
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

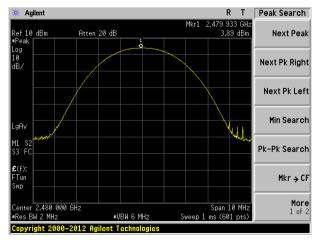
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013	
Limit:	30dBm(for GFSK),20.97dBm(for EDR)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	


Measurement Data

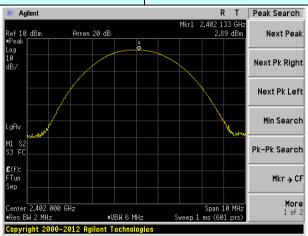
Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	4.56		
GFSK	Middle	4.34	30.00	Pass
	Highest	3.89		
	Lowest	2.89		
π/4-DQPSK	Middle	2.76	20.97	Pass
	Highest	2.80		
	Lowest	2.76		
8-DPSK	Middle	2.35	20.97	Pass
	Highest	2.27		

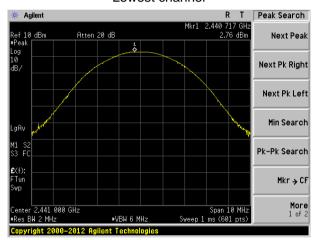


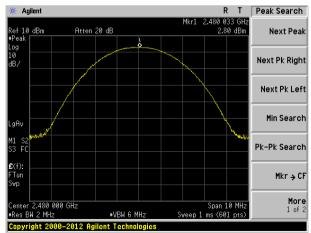
Test plot as follows:


Test mode: GFSK mode

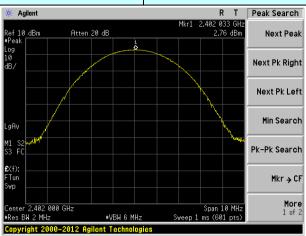
Lowest channel

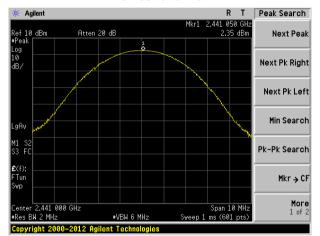

Middle channel

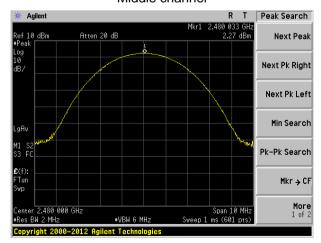

Highest channel


Test mode: π/4-DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

Middle channel

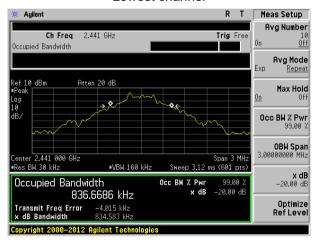
Highest channel

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass


Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.833	
GFSK	Middle	0.835	Pass
	Highest	0.818	
	Lowest	1.118	
π/4-DQPSK	Middle	1.118	Pass
	Highest	1.119	
	Lowest	1.167	
8-DPSK	Middle	1.159	Pass
	Highest	1.167	

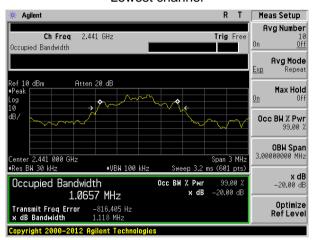


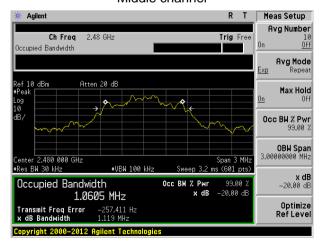
Test plot as follows:


Test mode: GFSK mode

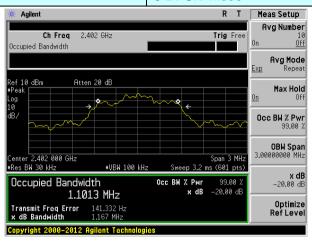
Lowest channel

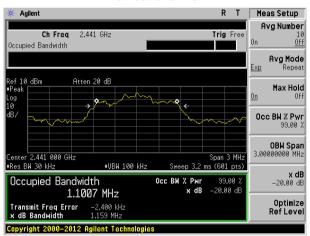
Middle channel


Highest channel


Test mode: π/4-DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

Middle channel

Highest channel

7.5 Carrier Frequencies Separation

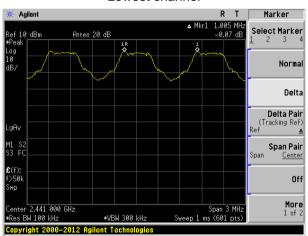
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	GFSK: 20dB bandwidth π/4-DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Mode	Test channel	Carrier Frequencies Separation (kHz) Limit (kHz		Result
	Lowest	1005	835	Pass
GFSK	Middle	1005	835	Pass
	Highest	1005	835	Pass
	Lowest	1005	746	Pass
π/4-DQPSK	Middle	1005	746	Pass
	Highest	1005	746	Pass
	Lowest	1005	778	Pass
8-DPSK	Middle	1005	778	Pass
	Highest	1005	778	Pass

Note: According to section 7.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	835	835
π/4-DQPSK	1119	746
8-DPSK	1167	778

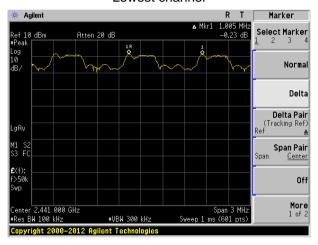


Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

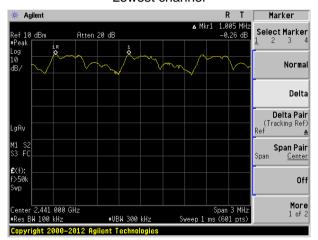

Highest channel

Test mode: π/4-DQPSK mode

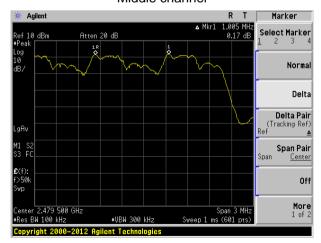
Lowest channel



Middle channel



Highest channel

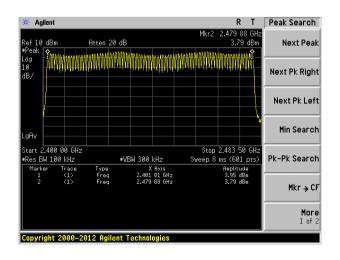

Test mode: 8-DPSK mode

Lowest channel

Middle channel

Highest channel

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102


7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
π/4-DQPSK	79	15	Pass
8-DPSK	79	15	Pass

Test plot as follows:

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	117.86	400	Pass
2441MHz	DH3	260.80	400	Pass
2441MHz	DH5	306.67	400	Pass

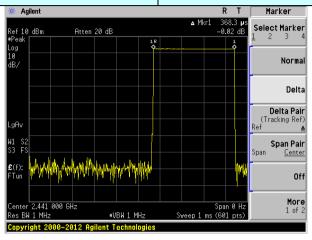
Remarks:

1. The test data shows only the worst case GFSK mode

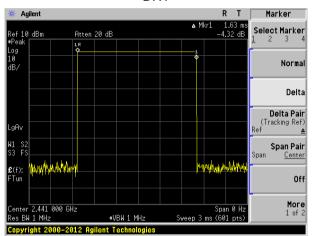
2. The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

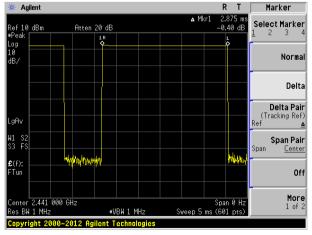
DH1 time slot=0.3683(ms)*(1600/ (2*79))*31.6=117.86ms


DH3 time slot=1.63(ms)*(1600/ (4*79))*31.6=260.80ms

DH5 time slot=2.875(ms)*(1600/ (6*79))*31.6=306.67ms



Test plot as follows:


Test channel: 2441MHz

DH1

DH3

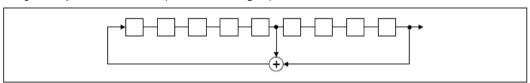
DH5

7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1)/g/h requirement:

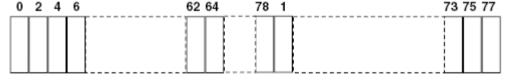
a(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

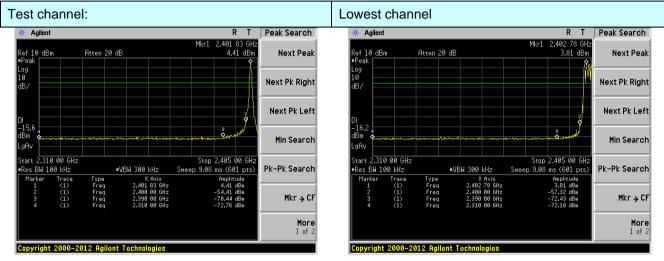
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

it permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted.

7.9 Band Edge


7.9.1 Conducted Emission Method

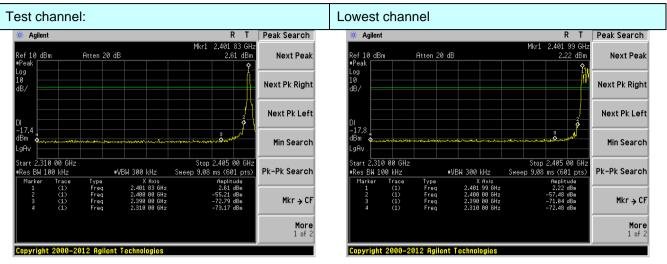
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Test plot as follows:

GFSK Mode:

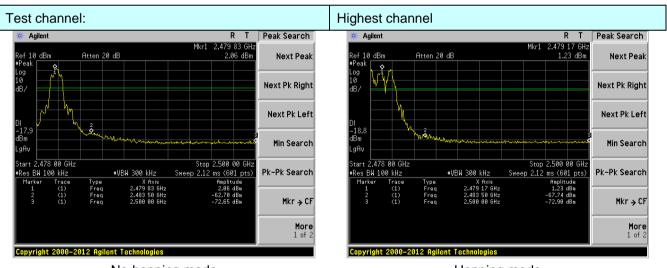
No-hopping mode

Hopping mode


Test channel: Highest channel Agilent R T Peak Search R T Alignments Auto Align Alert Off Next Peak Atten 20 dB Atten 20 dB Next Pk Right Align All Now Next Pk Left Align Subsys Min Search Stop 2.500 00 GH: Sweep 2.12 ms (601 pts) rt 2.478 00 GHz s BW 100 kHz Stop 2.500 00 GHz Sweep 2.12 ms (601 pts) Pk-Pk Search ≢VBW 300 kHz #UBW 300 kHz Mkr → CF Restore Align Defaults Copyright 2000-2012 Agilent Technologies

No-hopping mode

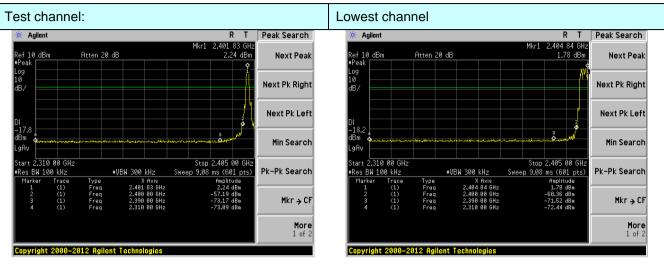
Hopping mode



π/4-DQPSK Mode:

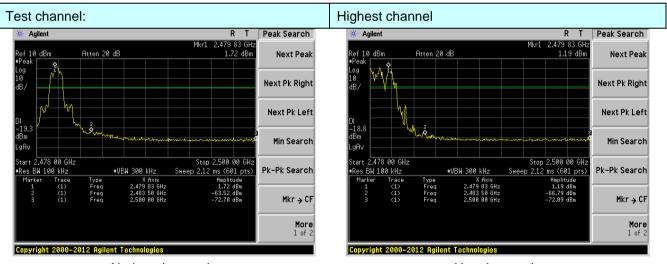
No-hopping mode

Hopping mode



No-hopping mode

Hopping mode



8-DPSK Mode:

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

7.9.2 Radiated Emission Method

7.9.2 Radiated Emission Me	tillou									
Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency	Detector	RBW	VBW	Remark					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
		Peak	1MHz	10Hz	Average Value					
Limit:	Freque	ency	Limit (dBuV/		Remark					
	Above 1	IGHz -	54.0 74.0		Average Value Peak Value					
Test Broadure:	Tum Table < 150cm > 1	EUT-	Test Antenna < 1m 4m > Receivers Pr	eamplifier						
Test Procedure:	ground at a 3 determine th 2. The EUT wa antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum res 5. The test-rece Specified Ba 6. If the emissic limit specified EUT would be 10dB margin	a meter camble position of the position of the set 3 meters of the	er. The table was set to Pea Maximum Hole EUT in peak grould be stopether was entered by the red from 0 decorated by the red from 6 decorated	was rotated diation. The interference of a variable of the field the antenna was arrang that from 1 regrees to 36 at Detect Field Mode. The mode was apped and the missions the one using part of the field of the field was arrang that from 1 regrees to 36 at Detect Field Mode.	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the unction and 10dB lower than the ne peak values of the hat did not have peak, quasi-peak or					
Test Instruments:	Refer to section	6.0 for detail	S							
Test mode:	Refer to section	5.2 for detail	s							
Test results:	Pass									

Measurement Data

Test channe	Test channel: Lowest									
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
2310.00	39.60	27.59	5.38	30.18	42.39	74.00	-31.61	Horizontal		
2400.00	55.92	27.58	5.40	30.18	58.72	74.00	-15.28	Horizontal		
2310.00	39.83	27.59	5.38	30.18	42.62	74.00	-31.38	Vertical		
2400.00	57.60	27.58	5.40	30.18	60.40	74.00	-13.60	Vertical		
Average va	lue:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
2310.00	30.89	27.59	5.38	30.18	33.68	54.00	-20.32	Horizontal		
2400.00	41.93	27.58	5.40	30.18	44.73	54.00	-9.27	Horizontal		
2310.00	30.60	27.59	5.38	30.18	33.39	54.00	-20.61	Vertical		
2400.00	43.27	27.58	5.40	30.18	46.07	54.00	-7.93	Vertical		

Test channel:	Highest

Peak value:

1 oak valao	•							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	41.31	27.53	5.47	29.93	44.38	74.00	-29.62	Horizontal
2500.00	41.11	27.55	5.49	29.93	44.22	74.00	-29.78	Horizontal
2483.50	41.61	27.53	5.47	29.93	44.68	74.00	-29.32	Vertical
2500.00	41.79	27.55	5.49	29.93	44.90	74.00	-29.10	Vertical

Average value:

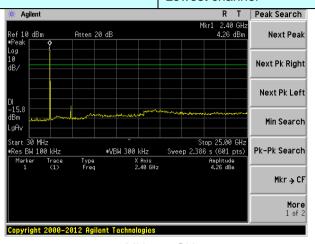
71101ago 1a								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	33.68	27.53	5.47	29.93	36.75	54.00	-17.25	Horizontal
2500.00	32.15	27.55	5.49	29.93	35.26	54.00	-18.74	Horizontal
2483.50	34.62	27.53	5.47	29.93	37.69	54.00	-16.31	Vertical
2500.00	31.80	27.55	5.49	29.93	34.91	54.00	-19.09	Vertical

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

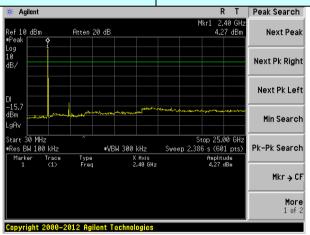
7.10 Spurious Emission

7.10.1 Conducted Emission Method

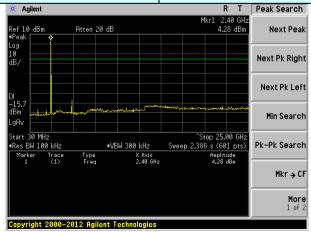

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Remark:

During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.



Test channel: Lowest channel

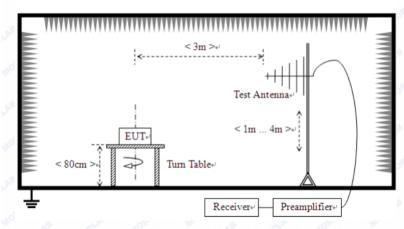

30MHz~25GHz

Test channel: Middle channel

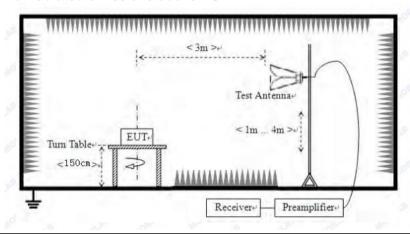
30MHz~25GHz

Test channel: Highest channel

30MHz~25GHz



7.10.2 Radiated Emission Method


Test Requirement:	FCC Part15 C Section 15.209									
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency		Detector	RB\	W	VBW	Value			
	9KHz-150KHz	Qι	ıasi-peak	2001	Hz	600Hz	z Quasi-peak			
	150KHz-30MHz	Qι	ıasi-peak	9KF	Ηz	30KHz	z Quasi-peak			
	30MHz-1GHz	Qι	ıasi-peak	120K	Ήz	300KH	z Quasi-peak			
	Above 1GHz		Peak	1MH	Ηz	3MHz	Peak			
	Above TOTIZ		Peak	1MH	Ηz	10Hz	Average			
Limit:	Frequency		Limit (u\	//m)	>	/alue	Measurement Distance			
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP	300m			
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP	30m			
	1.705MHz-30MH	lz	30		QP		30m			
	30MHz-88MHz		100		QP					
	88MHz-216MHz	<u>z</u>	150		QP					
	216MHz-960MH	Z	200 500		QP QP		3m			
	960MHz-1GHz						3111			
	Above 1GHz		500		Average					
	715070 10112		5000		F	Peak				
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH	Z				
	< 80cm >+	UT-		m > d		eamplifier.				

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

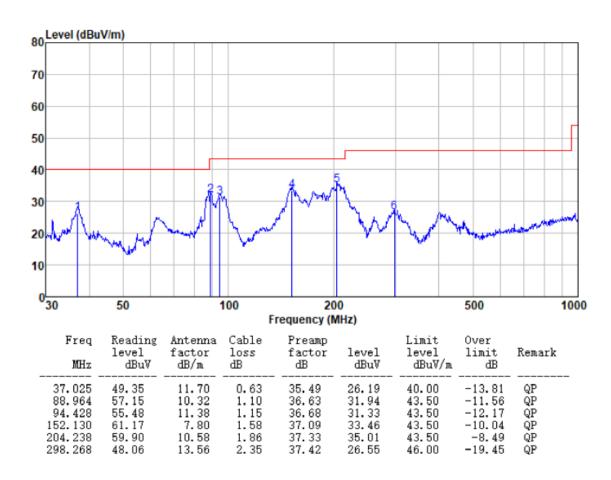
Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have

		10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
Test Instruments:	Refer to se	Refer to section 6.0 for details						
Test mode:	Refer to se	Refer to section 5.2 for details						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
Test voltage:	AC 120V,	AC 120V, 60Hz						
Test results:	Pass				_			

Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz Horizontal:

152.664

183.844

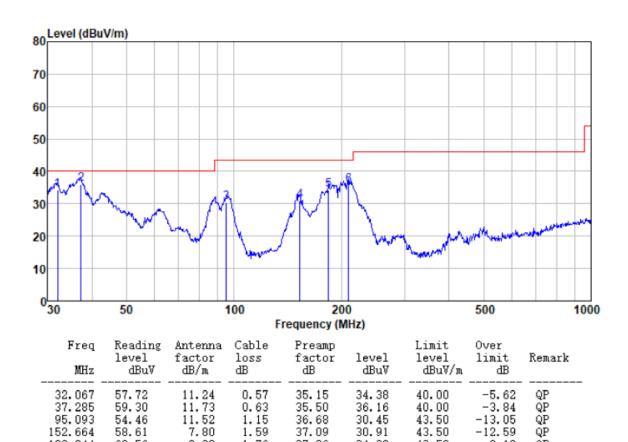
209.313

58.61

60.56

60.34

Report No.: GTS201907000145F02


QΡ

QΡ

-9.12

-7.85

Vertical:

37.09

37.26

37.34

30.91

34.38

35.65

43.50

43.50

43.50

1.59

1.76

1.89

9.32

10.76

■ Above 1GHz

Test channel:	Lowest
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.24	31.78	8.60	32.09	44.53	74.00	-29.47	Vertical
7206.00	31.12	36.15	11.65	32.00	46.92	74.00	-27.08	Vertical
9608.00	30.84	37.95	14.14	31.62	51.31	74.00	-22.69	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	40.30	31.78	8.60	32.09	48.59	74.00	-25.41	Horizontal
7206.00	32.78	36.15	11.65	32.00	48.58	74.00	-25.42	Horizontal
9608.00	30.16	37.95	14.14	31.62	50.63	74.00	-23.37	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	25.25	31.78	8.60	32.09	33.54	54.00	-20.46	Vertical
7206.00	19.93	36.15	11.65	32.00	35.73	54.00	-18.27	Vertical
9608.00	19.07	37.95	14.14	31.62	39.54	54.00	-14.46	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	29.36	31.78	8.60	32.09	37.65	54.00	-16.35	Horizontal
7206.00	22.03	36.15	11.65	32.00	37.83	54.00	-16.17	Horizontal
9608.00	18.71	37.95	14.14	31.62	39.18	54.00	-14.82	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Test channel:	Middle

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	36.37	31.85	8.67	32.12	44.77	74.00	-29.23	Vertical
7323.00	31.21	36.37	11.72	31.89	47.41	74.00	-26.59	Vertical
9764.00	30.91	38.35	14.25	31.62	51.89	74.00	-22.11	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	40.46	31.85	8.67	32.12	48.86	74.00	-25.14	Horizontal
7323.00	32.88	36.37	11.72	31.89	49.08	74.00	-24.92	Horizontal
9764.00	30.25	38.35	14.25	31.62	51.23	74.00	-22.77	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	25.37	31.85	8.67	32.12	33.77	54.00	-20.23	Vertical
7323.00	20.01	36.37	11.72	31.89	36.21	54.00	-17.79	Vertical
9764.00	19.14	38.35	14.25	31.62	40.12	54.00	-13.88	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	29.49	31.85	8.67	32.12	37.89	54.00	-16.11	Horizontal
7323.00	22.12	36.37	11.72	31.89	38.32	54.00	-15.68	Horizontal
9764.00	18.79	38.35	14.25	31.62	39.77	54.00	-14.23	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Test channel:	Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.12	31.93	8.73	32.16	44.62	74.00	-29.38	Vertical
7440.00	31.04	36.59	11.79	31.78	47.64	74.00	-26.36	Vertical
9920.00	30.77	38.81	14.38	31.88	52.08	74.00	-21.92	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	40.16	31.93	8.73	32.16	48.66	74.00	-25.34	Horizontal
7440.00	32.69	36.59	11.79	31.78	49.29	74.00	-24.71	Horizontal
9920.00	30.08	38.81	14.38	31.88	51.39	74.00	-22.61	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	25.21	31.93	8.73	32.16	33.71	54.00	-20.29	Vertical
7440.00	19.90	36.59	11.79	31.78	36.50	54.00	-17.50	Vertical
9920.00	19.04	38.81	14.38	31.88	40.35	54.00	-13.65	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	29.31	31.93	8.73	32.16	37.81	54.00	-16.19	Horizontal
7440.00	22.00	36.59	11.79	31.78	38.60	54.00	-15.40	Horizontal
9920.00	18.68	38.81	14.38	31.88	39.99	54.00	-14.01	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The test data shows only the worst case GFSK mode

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----